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Abstract
A (T E)-structure ∇ over a complex manifold M is a meromorphic connection defined on a
holomorphic vector bundle overC×M , with poles of Poincaré rank one along {0}×M . Under
a mild additional condition (the so-called unfolding condition), ∇ induces a multiplication
on T M and a vector field on M (the Euler field), which make M into an F-manifold with
Euler field. By taking the pullbacks of ∇ under the inclusions {z} × M → C× M (z ∈ C

∗),
we obtain a family of flat connections on vector bundles over M , parameterized by z ∈ C

∗.
The properties of such a family of connections give rise to the notion of (T )-structure.
Therefore, any (T E)-structure underlies a (T )-structure, but the converse is not true. The
unfolding condition can be defined also for (T )-structures. A (T )-structurewith the unfolding
condition induces on its parameter space the structure of an F-manifold (without Euler field).
After a brief review on the theory of (T )- and (T E)-structures, we determine normal forms
for the equivalence classes, under formal isomorphisms, of (T )-structures which induce a
given irreducible germ of two-dimensional F-manifolds.

Keywords Meromorphic connections · (T) and (TE)-structures · F-manifolds · Euler
fields · Frobenius manifolds · Formal classifications

Mathematics Subject Classification 53B15 · 35J99 · 32A20 · 53B50

1 Introduction

The theory of meromorphic connections is a well-established field with importance in many
areas of modern mathematics (complex analysis, algebraic geometry, differential geometry,
integrable systems, etc.). An important class of meromorphic connections are the so-called
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(T E)-structures. They are meromorphic connections defined on holomorphic vector bundles
over products C × M , with poles of Poincaré rank one along the submanifold {0} × M .
They represent the simplest class of meromorphic connections with irregular singularities.
The parameter space M of a (T E)-structure inherits, under a mild additional condition
(the ‘unfolding condition’) a multiplication ◦ on T M , with nice properties (fiber-preserving,
commutative, associative, with unit field, and satisfying a certain integrability condition), and
a vector field E which rescales ◦, making M into a so-called F-manifold with Euler field.
The notion of an F-manifold was introduced for the first time in [10] as a generalization
of the notion of a Frobenius manifold [5]. Any Frobenius manifold without metric is an F-
manifold. As shown in [12], there are F-manifolds which cannot be enriched to a Frobenius
manifold. Examples of F-manifolds arise also in the theory of integrable systems [14,19]
and quantum cohomology [12].

A natural question which arises in this context is to classify the (T E)-structures over a
given germ of F-manifolds with Euler field. While a (T E)-structure ∇ may be seen as a
family of meromorphic connections on vector bundles over Δ (a small disk centered at the
origin 0 ∈ C), by ‘forgetting’ the derivatives ∇X where X ∈ TM is lifted naturally to C× M
(this point of view being crucial in the theory of isomondromic deformations), we may adopt
the alternative viewpoint and study the derivatives ∇X as a family of flat connections on
vector bundles over M parameterized by z ∈ C

∗. Such a family has received much attention
in the theory of meromorphic connections and is referred in the literature as a (T )-structure
over M . Therefore, any (T E)-structure underlies a (T )-structure, but the converse is not
always true. The parameter space of a (T )-structure inherits the structure of an F-manifold
(without Euler field), when the unfolding condition is satisfied.

Adopting the second viewpoint, in this paper we make a first step in the classification of
(T E)-structures over a given germ of F-manifolds with Euler field.We consider the simplest
case, namely when the germ is two-dimensional and irreducible and we determine formal
normal forms for the (T )-structures over such germs. The results we prove herewill be crucial
for future projects, where we shall classify (T E)-structures over two-dimensional (and,
possibly bigger dimensional) germs of F-manifolds with Euler fields. The two-dimensional
case is considerably simpler, owing to the fact that (unlike higher dimensions) irreducible
germs of two-dimensional F-manifolds are classified [9]: either they coincide with the germ
of the globally nilpotent constant F-manifold N2, or they are generically semisimple and
belong to a class of germs I2(m) parameterized by m ∈ N≥3 (see the end of Sect. 2.2 for
the description of these germs). As F-manifolds isomorphisms lift to isomorphisms between
the spaces of (T ) and (T E)-structures over them, we can (and will) assume, without loss of
generality, that our germs of F-manifolds are N2 or I2(m) (with m ≥ 3). The specific form
of these germs will enable us to find the formal normal forms for (T )-structures over them.

Structure of the paper In Sect. 2, we recall well-known facts we need on (T ), (T E)-
structures and F-manifolds (see, e.g., [8]). Although our original contribution in this paper
refers to (T )-structures,we include also basicmaterial on (T E)-structures as amotivation and
to fix notation and results we shall use in the subsequent stages of our project on classification
of (T E)-structures. In Sect. 3, we study various classes of differential equations which will
be relevant in our treatment. In Sect. 4, we determine the formal normal forms for (T )-
structures over I2(m), and in Sect. 5, we study the similar question for (T )-structures over
N2. A main difference between these two cases lies in the form of formal isomorphisms
used in the classification. The automorphism group of I2(m) is finite (see Lemma 11) and
formal (T )-structure isomorphisms which lift non-trivial automorphisms of I2(m) do not
add much simplification in the expressions of (T )-structures over I2(m). For this reason, in
the case of I2(m), we content ourselves to determine formal normal forms for (T )-structures
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(T)-structures over two-dimensional F-manifolds… 1223

which are formally gauge isomorphic (i.e., are isomorphic by means of formal isomorphisms
which lift the identity map of I2(m)). This is done in Theorem 16. As opposed to I2(m),
the germ N2 has a rich automorphism group (see Lemma 11). The (T )-structures over N2

will be classified up to formal gauge isomorphisms in Theorem 18 and up to the entire
group of formal isomorphisms in Theorem 21. Formal isomorphisms which lift non-trivial
automorphisms ofN2 simplify considerably the classification. Their role in the classification
is explained in Theorem 19.

2 Preliminarymaterial

We begin by fixing our notation.

Notation 1 For a complex manifold M , we denote byOM , TM , Ωk
M the sheaves of holomor-

phic functions, holomorphic vector fields and holomorphic k-forms on M , respectively. For
a holomorphic vector bundle H , we denote by O(H) the sheaf of its holomorphic sections.
We denote by Ω1

C×M (log{0} × M) the sheaf of meromorphic 1-forms on C × M , which
are logarithmic along {0} × M . Locally, in a neighborhood of (0, p), where p ∈ M , any
ω ∈ Ω1

C×M (log{0} × M) is of the form

ω = f (z, t)

z
dz +

∑

i

fi (z, t)dti

where (ti ) is a coordinate system of M around p and f , fi are holomorphic. The ring of
holomorphic functions defined on a neighborhood of 0 ∈ C will be denoted by C{z}, the
subring of formal power series

∑
n≥0 anz

n will be denoted by C[[z]], the subring of power
series

∑
n≥0 anz

n with an = 0 for any n ≤ k − 1 will be denoted by C[[z]]≥k , and the
vector space of polynomials of degree at most k in the variables t = (ti ) will be denoted by
C[t]≤k . Finally, we denote by C{t, z]] the ring of formal power series

∑
n≥0 anz

n where all

an = an(t) are holomorphic on the same neighborhood of 0 ∈ C and byC[[z]][t]≤k the vector
space of formal power series

∑
n≥0 anz

n with an polynomials of degree at most k in t . For
a function f ∈ C{t, z]] and matrix A ∈ Mk×k(C{t, z]]), we often write f = ∑

n≥0 f (n)zn

and A = ∑
n≥0 A(n)zn where f (n) ∈ C{t} and A(n) ∈ Mk×k(C{t}).

2.1 (T) and (TE)-structures

In this section, we recall basic facts on (T ) and (T E)-structures.

Definition 2 Let M be a complex manifold and H → C× M a holomorphic vector bundle.

(i) [11, Def. 3.1] A (T )-structure over M is a pair (H → C × M,∇) where ∇ is a map

∇ : O(H) → 1

z
OC×M · Ω1

M ⊗ O(H) (1)

such that, for any z ∈ C
∗, the restriction of ∇ to H |{z}×M is a flat connection.

(ii) [11, Def. 2.1] A (T E)-structure over M is a pair (H → C × M,∇) where ∇ is a flat
connection on H |C∗×M with poles of Poincaré rank 1 along {0} × M :

∇ : O(H) → 1

z
Ω1

C×M (log({0} × M) ⊗ O(H). (2)
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1224 L. David, C. Hertling

Any (T E)-structure determines (by forgetting the derivative in the z direction) a (T )-
structure (’E’ comes from extension).

Let (H → C×M,∇) be a (T E)-structure andΔ ⊂ C a small disk centered at the origin,
U ⊂ M a coordinate chart with coordinates (t1, . . . , tm), such that H |Δ×U is trivial. Using
a trivialization s = (s1, . . . , sr ) of H |Δ×U , we write

∇(si ) =
r∑

j=1

Ω j i s j , short : ∇(s) = s · Ω,

Ω =
m∑

i=1

z−1Ai (z, t)dti + z−2B(z, t)dz, (3)

where Ai , B are holomorphic,

Ai (z, t) =
∑

k≥0

Ai (k)z
k, B(z, t) =

∑

k≥0

B(k)zk (4)

and Ai (k) and B(k) depend only on t ∈ U . The flatness of ∇ gives, for any i �= j ,

z∂i A j − z∂ j Ai + [Ai , A j ] = 0, (5)

z∂i B − z2∂z Ai + zAi + [Ai , B] = 0. (6)

[when ∇ is a (T )-structure, the summand z−2B(t, z)dz in Ω and relations (6) are dropped].
Relations (5), (6) split according to the powers of z as follows: for any k ≥ 0,

∂i A j (k − 1) − ∂ j Ai (k − 1) +
k∑

l=0

[Ai (l), A j (k − l)] = 0, (7)

∂i B(k − 1) − (k − 2)Ai (k − 1) +
k∑

l=0

[Ai (l), B(k − l)] = 0, (8)

where Ai (−1) = B(−1) = 0.

Definition 3 (i) An isomorphism T : (H̃ , ∇̃) → (H ,∇) between two (T )-structures over
M̃ and M , respectively, is a holomorphic vector bundle isomorphism T : H̃ → H
which covers a biholomorphic map of the form Id × h : C × M̃ → C × M , i.e.,
T (H̃(z, p̃)) ⊂ H(z,h( p̃)), for any p̃ ∈ M̃ , and is compatible with connections:

T (∇̃X p̃ (s)) = ∇h∗(X p̃)(T (s)), ∀X p̃ ∈ Tp̃ M̃, p̃ ∈ M̃, s ∈ O(H̃). (9)

Above, T (s) ∈ O(H) is defined by T (s)(z,p) := T (s(z,h−1(p))), for any p ∈ M .

(ii) An isomorphism T : (H̃ , ∇̃) → (H ,∇) between two (T E)-structures is an isomorphism
between their underlying (T )-structures, which satisfies in addition

T (∇̃∂z (s)) = ∇∂z (T (s)), ∀s ∈ O(H̃). (10)

Recall that if f : Ñ → N is a map and π : E → N is a bundle over N , then f ∗E :=
{(e, p̃) ∈ E × Ñ , π(e) = f ( p̃)} is a bundle over Ñ with bundle projection (e, p̃) → p̃.
Any section s ∈ O(E) defines a section f ∗s ∈ O( f ∗E) by ( f ∗s)( p̃) := (s f ( p̃), p̃). If f
is a biholomorphic map, then there is a natural bundle isomorphism f ∗ : E → f ∗E which
covers f −1. Finally, if ∇ is a connection on E , then the pullback connection f ∗∇ on f ∗E
is defined by ( f ∗∇)X p̃ ( f

∗s) := f ∗(∇ f∗(X p̃)(s)), for any X p̃ ∈ Tp̃ Ñ , p̃ ∈ Ñ and s ∈ O(E).
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(T)-structures over two-dimensional F-manifolds… 1225

Notation 4 For simplicity, we will say that a (T ) or (T E)-structure isomorphism as in Def-
inition 3 covers h instead of Id × h and write h∗ for the pullback (Id × h)∗ (of bundles,
connections, etc.). Similarly, we will sometimes write Ai ◦ h instead of Ai ◦ (Id × h) and
T ◦ h instead of T ◦ (Id × h).

The next lemma can be checked directly.

Lemma 5 Let (H̃ , ∇̃) and (H ,∇) be two (T )-structures over M̃ and M, respectively. If
T : (H̃ , ∇̃) → (H ,∇) is an isomorphism which covers h : M̃ → M, then h∗ ◦ T :
(H̃ , ∇̃) → (h∗H , h∗∇) is an isomorphism which covers the identity map of M̃.

Let T : (H̃ , ∇̃) → (H ,∇) be a (T ) or (T E)-structure isomorphism over M̃ and M ,
respectively, which covers a biholomorphic map h : M̃ → M . Fix trivializations s̃ =
(s̃1, . . . , s̃r ) and s = (s1, . . . , sr ) of H̃ and H over Δ × Ũ and Δ × U , respectively, where
Ũ ⊂ M̃ , U ⊂ M are open subsets and U = h(Ũ ). Then, the isomorphism T is given
by a matrix (Ti j ) = ∑

k≥0 T (k)zk ∈ M(r × r ,OΔ×U ) with T (k) ∈ M(r × r ,OU ), T (0)
invertible, such that T (s̃i ) = ∑r

j=1 Tji s j , or, explicitly,

T ((s̃i )(z, p̃)) =
r∑

j=1

Tji (z, h( p̃))(s j )(z,h( p̃)), ∀ p̃ ∈ Ũ , z ∈ Δ. (11)

We write relation (11) shortly as

T ((s̃)(z, p̃)) = (s)(z,h( p̃)) · T (z, h( p̃)).

Suppose now that (t̃1, . . . , t̃m) and (t1, . . . , tm) are local coordinates of M̃ and M , defined
on Ũ and U , respectively. The compatibility relations (9), (10) read

z∂i T̃ +
m∑

j=1

(∂i h
j )(A j ◦ h)T̃ − T̃ Ãi = 0, ∀i (12)

z2∂z T̃ + (B ◦ h)T̃ − T̃ B̃ = 0, (13)

where T̃ := T ◦ h and (h j ) are the components of the representation of h in the two charts
[relation (13) has to be omitted when ∇̃ and ∇ are (T )-structures]. Relations (12), (13) split
according to the powers of z as

∂i T̃ (k − 1) +
k∑

l=0

⎛

⎝
m∑

j=1

(∂i h
j )(A j (l) ◦ h)T̃ (k − l) − T̃ (k − l) Ãi (l)

⎞

⎠ = 0 (14)

(k − 1)T̃ (k − 1) +
k∑

l=0

((B(l) ◦ h)T̃ (k − l) − T̃ (k − l)B̃(l)) = 0, (15)

for any k ≥ 0, where T̃ (−1) = 0.
We now discuss a particular class of (T ) and (T E)-structure isomorphisms, called

gauge isomorphisms. Consider a (T ) or a (T E)-structure (H ,∇) with H trivial, and
s = (s1, . . . , sr ) a trivialization of H . Any other trivialization s̃ = (s̃1, . . . , s̃r ) of H is
related to s by an invertible holomorphic matrix-valued function T = (Ti j ) defined by
s̃i = ∑r

j=1 Tji s j (short: s̃ = s · T ). Suppose that the connection form Ω of ∇ in the triv-
ialization s is given by (3), (4) [without the term B, when ∇ is a (T )-structure]. Then, the
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1226 L. David, C. Hertling

connection form Ω̃ of ∇ in the new trivialization s̃ has the same form, with matrices Ãi and
B̃ related to Ai and B by

z∂i (T ) + Ai T − T Ãi = 0 (16)

z2∂z(T ) + BT − T B̃ = 0, (17)

or by

∂i T (k − 1) +
k∑

l=0

(Ai (l)T (k − l) − T (k − l) Ãi (l)) = 0, (18)

(k − 1)T (k − 1) +
k∑

l=0

(B(l)T (k − l) − T (k − l)B̃(l)) = 0. (19)

for any k ≥ 0. We say that T defines a gauge isomorphism between the (T ) (or (T E)-
structures) with connection forms Ω and Ω̃ .

Remark 6 (i) Gauge isomorphisms are isomorphisms between (T ) or (T E)-structures over
the same base M which lift the identity map of M . Remark that relations (14), (15) with
h = 1 reduce to (18), (19).

(ii) (T ) and (T E)-structures can be defined also over germs of manifolds. In this case, we
always assume that their underlying bundles are trivial. Isomorphisms between them
which lift a given biholomorphic map of their parameter spaces are given simply by
matrices, as explained above (the matrix T ∈ M(r × r ,OΔ×U ) in the above notation).

(iii) (T ) and (T E)-structures can be extended to the formal setting as follows. A formal (T )

or (T E)-structure over a germ (M, 0) is a pair (H ,∇), where H → (C, 0) × (M, 0)
is the germ of a holomorphic vector bundle and ∇ is given by a connection form (3),
where Ai and B [the latter only when ∇ is a (T E)-structure] are matrices with entries
in C{t, z]], satisfying relations (5), (6) or (7), (8) (relations (6), (8) only when ∇ is a
(T E)-structure). A formal isomorphism between two formal (T ) or (T E)-structures
(H ,∇) and (H̃ , ∇̃) over (M, 0) and (M̃, 0), respectively, which covers a biholomorphic
map h : (M̃, 0) → (M, 0), is given by a matrix T = (Ti j ) with entries Ti j ∈ C{t, z]],
such that relations (12), (13) or (14), (15) are satisfied with T̃ = T ◦ h (relations (13),
(15) only when ∇ and ∇̃ are (T E)-structures). Formal gauge isomorphisms between
(T ) or (T E)-structures over the same germ (M, 0) are formal isomorphisms which
cover the identity map of (M, 0). They are given by matrices T = (Ti j ) with entries in
C{t, z]] such that relations (16), (17) or (18), (19) are satisfied.

2.2 (T)-structures and F-manifolds

2.2.1 General results

Let (H ,∇) be a (T )-structure over a manifold M . It induces a vector valued 1-form C ∈
Ω1(M,End(K )) on the restriction K := H|{0}×M , defined by

CX [a] := [z∇Xa], ∀X ∈ TM , a ∈ O(H), (20)

where [ ] means the restriction to {0} × M and X ∈ TM is lifted canonically from its
domain of definition U ⊂ M to C ×U . In the notation from Sect. 2.1, C is given locally by∑m

i=1 Ai (0)dti . Relation (7) with k = 0 implies [Ai (0), A j (0)] = 0, i.e., CXCY = CYCX
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(T)-structures over two-dimensional F-manifolds… 1227

for any X , Y ∈ T M , which we write asC∧C = 0.We say thatC is a Higgs field and (K ,C)

is a Higgs bundle.
If (H ,∇) is a (T E)-structure, then there is in addition an endomorphism U ∈ End(K ),

U := [z∇z∂z ] : O(K ) → O(K ). (21)

It satisfies CXU = UCX for any X ∈ T M . We write this as [C,U] = 0.

Definition 7 [11, Theorem 2.5]

(a) A Higgs bundle (K → M,C) satisfies the unfolding condition if there is an open cover
V of M such that, on any U ∈ V , there is ζ ∈ O(K |U ) (called a primitive section) with
the property that the map TU � X → CX ζ ∈ K |U is an isomorphism.

(b) A (T )-structure [or a (T E)-structure] satisfies the unfolding condition if the induced
Higgs bundle satisfies the unfolding condition.

Remark 8 If (H → C×M,∇) is a (T )-structure with the unfolding condition, then the rank
of H and the dimension of M coincide.

We now define the parallel notion of F-manifold.

Definition 9 [10] A complex manifold M with a fiber-preserving, commutative, associative
multiplication ◦ on the holomorphic tangent bundle T M and unit field e ∈ TM is an F-
manifold if

LX◦Y (◦) = X ◦ LY (◦) + Y ◦ LX (◦), ∀X , Y ∈ TM . (22)

A vector field E ∈ TM is called an Euler field (of weight 1) if

LE (◦) = ◦. (23)

The following lemmawas proved in Theorem 3.3 of [13]. The proof below is more elegant
and shorter.

Lemma 10 A (T )-structure (H → C × M,∇) with unfolding condition induces a multipli-
cation ◦ on T M which makes M an F-manifold. A (T E)-structure (H → C × M,∇) with
unfolding condition induces in addition a vector field E on M, which, together with ◦, makes
M an F-manifold with Euler field.

Proof Let (H → C×M,∇) be a (T ) or (T E)-structure with induced Higgs bundle (K ,C).
We define ◦ by

CX◦Y ζ = CXCY ζ, ∀X , Y ∈ T M, (24)

where ζ is a local primitive section. We remark that ◦ has unit field e determined by the
condition Ceζ = ζ . When ∇ is a (T E)-structure, the induced endomorphism U of K defines
a unique vector field E ∈ TM with−CEζ = U(ζ ). The definition of ◦ and E are independent
on the choice of ζ (see Lemma 4.1 of [8]).

Suppose now that ∇ is a (T )-structure. In order to prove that (M, ◦, e) is an F-manifold,
it is sufficient to find a (1, 0)-connection D′ on the (complex) C∞-bundle underlying T M ,
with

D′(C ′)X ,Y := D′
X (C ′

Y ) − D′
Y (C ′

X ) − C ′[X ,Y ] = 0, ∀X , Y ∈ TM (25)

where C ′
XY := X ◦ Y . The sufficiency follows with Lemma 4.3 of [8].

If ∇ is a (T E)-structure, in order to prove that (M, ◦, e, E) is an F-manifold with Euler
field it is sufficient to prove in addition the existence of a C∞-endomorphism Q′ of T M ,
with

D′
X (U ′) − [C ′

X ,Q′] + C ′
X = 0, ∀X ∈ TM , (26)
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1228 L. David, C. Hertling

where U ′(X) := −E ◦ X for any X ∈ T M . The sufficieny follows again from Lemma 4.3
of [8].

Wewill define D′ andQ′ locally, on any open subsetU ⊂ M , small enough such that there
is a primitive section ζ of K |U and a coordinate system (t1, . . . , tm) of M defined on U . Let
∂1, . . . , ∂m be the associated coordinate vector fields. Let s := (s1, . . . , sm) be a trivialization
of H onΔ×U (whereΔ is a small disk centered at 0 ∈ C) and letΩ = 1

z

∑m
i=1 Aidti+ 1

z2
Bdz

be the connection form of ∇ in this trivialization [with B = 0 when ∇ is a (T )-structure].
Let s|{0}×U =: s(0) = (s(0)

1 , . . . , s(0)
m ) be the trivialization of K obtained by restricting s to

{0} ×U . Define a (1, 0)-connection D on K |U , by

D∂k (s
(0)
i ) =

m∑

j=1

Ak(1) j i s
(0)
j , short: D∂k (s

(0)) = s(0) · Ak(1), (27)

and, when ∇ is a (T E)-structure, an endomorphism Q of K |U by

Q(s(0)
i ) := −

m∑

j=1

B(1) j i s
(0)
j . short: Q(s(0)) = −s(0) · B(1). (28)

From relations (5) and (6),

∂ j Ak(0) − ∂k A j (0) + [A j (1), Ak(0)] + [A j (0), Ak(1)] = 0, (29)

∂ j B(0) + A j (0) + [A j (1), B(0)] + [A j (0), B(1)] = 0. (30)

From the definitions of C and U ,

C∂ j (s
(0)
r ) =

m∑

k=1

A j (0)kr s
(0)
k , short: C∂ j (s

(0)) = s(0) · A j (0), (31)

U(s(0)
r ) =

m∑

k=1

B(0)kr s
(0)
k , short: U(s(0)) = s(0) · B(0). (32)

Now, a straightforward computation shows that (29) gives

D(C)X ,Y = 0, ∀X , Y ∈ TM (33)

and (30) gives
DX (U) − [CX ,Q] + CX = 0, ∀X ∈ TM . (34)

More precisely, (33) is obtained from the following computation:

D(C)∂ j ,∂r (s
(0)) = (D∂ j (C∂r ) − D∂r (C∂ j ))(s

(0))

= D∂ j (C∂r (s
(0))) − C∂r (D∂ j (s

(0))) − D∂r (C∂ j (s
(0))) + C∂ j (D∂r (s

(0)))

= s(0) ·
[
∂ j (Ar (0)) + A j (1)Ar (0) − Ar (0)A j (1)

− ∂r (A j (0)) − Ar (1)A j (0) + A j (0)Ar (1)
]

= s(0) ·
[
∂ j Ar (0) − ∂r A j (0) + [A j (1), Ar (0)] + [A j (0), Ar (1)]

]
.

which vanishes from (29). Relation (34) can be proved similarly.
By means of the isomorphism TU ∼= K |U defined by X → CX ζ , where ζ is a primitive

section on U , the connection D′ and endomorphism Q′ we are looking for (the latter when
∇ is a (T E)-structure) correspond to the connection D and endomorphism Q, respectively.
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When ∇ is a (T E)-structure, the endomorphisms U and U ′ also correspond. Relations (25)
and (26) follow from (33) and (34), respectively. ��

Let h : (M̃, ◦̃, ẽ) → (M, ◦, e) be an F-manifold isomorphism. If (E,∇) is a (T )-structure
overM which induces (◦, e), then (h∗E, h∗∇) is a (T )-structure over M̃ which induces (◦̃, ẽ)
(and a similar statement holds for (T E)-structures and F-manifolds with Euler fields). In
particular, the spaces of (T )-structures over isomorphic F-manifolds (or isomorphic germs
of F-manifolds) are isomorphic. The same statement is true for the spaces of formal (T )-
structures over isomorphic germs of F-manifolds. (The unfolding condition can be extended,
in the obvious way, to formal (T ) and (T E)-structures, and Lemma 10 remains true when
the (T ) or (T E)-structure is replaced by a formal one.)

2.2.2 Germs of two-dimensional F-manifolds

There exist two types of isomorphism classes of irreducible germs of two-dimensional F-
manifolds (see [9], Theorem 4.7): I2(m) with m ∈ N≥3 (generically semisimple) and N2

(globally nilpotent). As germs of manifolds, I2(m) and N2 are (C2, 0). In the standard
coordinates (t1, t2) ofC2, themultiplication of I2(m) has ∂1 as unit field and ∂2◦∂2 = tm−2

2 ∂1.

Similarly, the multiplication ofN2 has ∂1 as unit field and ∂2◦∂2 = 0. The next simple lemma
describes the automorphism groups of I2(m) and N2.

Lemma 11 (i) The automorphism group of I2(m) (m ≥ 3) is cyclic of order m, generated
by the automorphism

(t1, t2) → (t1, e
2π i
m t2).

(ii) The automorphism group of N2 is the group of all biholomorphic maps

(t1, t2) → (t1, λ(t2)), (35)

where λ ∈ C{t2}, with λ(0) = 0 and λ̇(0) �= 0.

Our aim in this paper is to find normal forms, up to formal isomorphisms, for (T )-
structures over an arbitrary irreducible germ (M, 0) of two-dimensional F-manifolds. From
the comments which end Sect. 2.2.1, we can (and will) assume, without loss of generality,
that (M, 0) is either I2(m) (m ≥ 3) or N2.

3 Differential equations

We now prove various results on differential equations which will be useful in the next
sections. Along this section t ∈ (C, 0) is the standard coordinate.

Lemma 12 Consider the differential equation

d

dt
(ah) + a

dh

dt
= c, (36)

where a, c ∈ C{t} are given and the function h = h(t) is unknown.

(i) If a(0) �= 0, then there is a unique formal solution h with given h(0) ∈ C and this
solution is holomorphic.
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(ii) If t = 0 is a zero of order one for a, then there is a unique formal solution of (36) and
this solution is holomorphic.

(iii) If t = 0 is a zero of order o ≥ 2 for a, then (36) has a formal solution if and only if
t = 0 is a zero of order at least o− 1 for c. When it exists, the formal solution is unique
and holomorphic.

In all cases, if a and c converge on Δ (an open disk centered at 0 ∈ C), then also the
formal solution converges on Δ.

Proof As the proof is elementary, we skip the details. Claim (i) follows from the fundamental
theorem of differential equations. For claims (ii) and (iii), one checks easily (by taking power
series and identifying coefficients) the part concerning the existence of formal solutions. For
the convergence, one uses the general result that any formal solution u(t) = ∑

n≥0 unt
n of

a differential equation of the form

t u̇(t) + A(t)u(t) = b(t), (37)

where A : Δ → Mn(C) and b : Δ → C
n are holomorphic, is convergent on Δ. This was

proved, e.g., in Theorem 5.3 of [20] (see page 22), when b = 0. The case b �= 0 can be
reduced to the case b = 0 in the standard way: if u = (u1, . . . , un)t is a solution of (37) with
b �= 0, one defines v := (u1, . . . , un, 1)t and sees that v satisfies a differential equation (in
dimension n + 1) of the same type (37) but with b = 0. One easily shows that in claims (ii)
and (iii) equation (36) reduces to an equation of the form (37) (with A and b scalar functions).
We obtain that the formal solution of (36), in these cases, converges on Δ if a and c do. ��

For a given function f : (C, 0) → (C, 0) and n ∈ Z≥1 we denote by f n the function
f n(t) := f (t) · · · · · f (t) (multiplication n-times; not to be confused with the iterated
composition f ◦ · · · ◦ f ).

Lemma 13 Let f ∈ C{t} be non-trivial and r := ord0( f ). Then there is λ ∈ C{t}, with
λ(0) = 0 and λ̇(0) �= 0, such that (λ̇)2λr = f . Moreover, any two such functions λ and λ̃

are related by λ̃(t) = λ0λ(t), where λ0 ∈ C, λr+2
0 = 1.

Proof As r = ord0( f ), we can write f (t) = tr g(t) with g ∈ C{t} a unit. Similarly, the
function λ we are looking for is of the form λ(t) = t x(t), with x ∈ C{t} a unit. We are
looking for x which satisfies the differential equation

(x + t ẋ)2xr = g. (38)

As g(0) �= 0, there is k ∈ C{t} a unit, such that g = k2. Similarly, as x(0) �= 0 we can write
x = z2, for z ∈ C{z}. Equation (38) is satisfied if (x + t ẋ)zr = k or

2t(zr+2)′ + (r + 2)zr+2 = (r + 2)k. (39)

The differential equation in the unknown function y

2t ẏ + (r + 2)y = (r + 2)k

has a unique formal solution. From Lemma 12, this solution is holomorphic. As k(0) �= 0,
we obtain y(0) �= 0. Let z ∈ C{t} such that zr+2 = y. The function z satisfies (39) and
λ(t) := t z(t)2 satisfies (λ̇)2λr = f , as needed. The first statement is proved. The second
statement follows by taking into account the freedom in the choice of z and k in the above
argument. ��
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Lemma 14 Consider the system of two differential equations

ġ1 + g2h1 + h2 = 0, (40)(
r + t

d

dt

)
(g2) + g1h3 + h4 = 0, (41)

where r ∈ R>0, h1, h2, h3, h4 ∈ C{t} are given, and the functions g1 = g1(t) and g2 = g2(t)
are unknown.

For any choice of g1(0) ∈ C, there is a unique formal solution (g1, g2) of (40), (41), and
this is holomorphic. If h1, h2, h3 and h4 converge on Δ (an open disk centered at 0 ∈ C),
then also g1 and g2 converge on Δ.

Proof Writing gi = ∑
k≥0 g

(k)
i t k and h j = ∑

k≥0 h
(k)
j t k , the two differential equations are

equivalent to the following equations,

ng(n)
1 +

n−1∑

k=0

g(k)
2 h(n−1−k)

1 + h(n−1)
2 = 0, ∀n ∈ Z≥1, (42)

(r + n)g(n)
2 +

n∑

k=0

g(k)
1 h(n−k)

3 + h(n)
4 = 0, ∀n ∈ Z≥0. (43)

Let g(0)
1 ∈ C be given. Then, Eqs. (42), (43) determine inductively all coefficients g(n)

1 , for

n ≥ 1, and g(n)
2 , for n ≥ 0. We obtain a unique formal solution (g1, g2). From the proof of

Lemma 12, g1 and g2 are holomorphic. [Multiplying (40) by t , we notice that (40), (41) is
of the form (37).] ��

4 (T)-structures over I2(m)

In this section, we find formal normal forms for (T )-structures over the germ I2(m) (m ≥ 3).
We need to introduce notation.

Notation 15 Along this section, (t1, t2) denote the standard coordinates on C2. We shall use
the following matrices

C1 := Id2, C2 :=
(
0 tm−2

2
1 0

)
, D :=

(
1 0
0 −1

)
, E :=

(
0 1
0 0

)
, (44)

and the relations between them:

(C2)
2 = tm−2

2 C1, D2 = C1, E2 = 0,

C2D = C2 − 2tm−2
2 E = −DC2,

C2E = 1

2
(C1 − D), EC2 = 1

2
(C1 + D),

DE = E = −ED. (45)

Remark that

[C2, D] = 2(C2 − 2tm−2
2 E), [C2, E] = −D, [D, E] = 2E . (46)

The matrices C1, C2, D and E form an O(C2,0)-basis of M(2 × 2,O(C2,0)).
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Theorem 16 (i) produces a non-unique normal form, with respect to gauge isomorphisms,
for any (T )-structure over I2(m) (m ≥ 3). Theorem 16 (iii) produces a unique normal form,
with respect to formal gauge isomorphisms, for any formal or holomorphic (T )-structure
over such a germ.

Theorem 16 (i) Over the germ I2(m) (m ≥ 3), any (T )-structure is gauge isomorphic to a
(T )-structure of the form

A1 = C1, A2 = C2 + z f E, (47)

where f ∈ C{t, z} is holomorphic.
(ii) Any formal (T )-structure over I2(m) is formally gauge isomorphic to a formal (T )-

structure of the form (47) where f ∈ C{t, z]].
(iii) Any holomorphic or formal (T )-structure over I2(m) is formally gauge isomorphic to

a formal (T )-structure of the form (47) where f = 0 if m = 3 and f ∈ C[[z]][t2]≤m−4

if m ≥ 4. With respect to formal gauge isomorphisms, the function f is unique.

Proof To prove claim (i), we start with an arbitrary (T )-structure (H ,∇) over I2(m) with
m ≥ 3. We choose a trivialization s = (s1, s2) of H such that the connection form Ω of ∇
is given by Ω = 1

z (A1dt1 + A2dt2), where

A1(0) = C1, A2(0) = C2. (48)

We will reduce ∇ to the required (non-unique) normal form in three steps.
The first step of the normalization is the reduction of A1 to C1 and of A2 to a new matrix

Ã2 with Ã2(0) = C2 and ∂1 Ã2 = 0. Consider the system

∂1T = −
⎛

⎝
∑

k≥1

A1(k)z
k−1

⎞

⎠ T , T (z, 0, t2) = C1. (49)

It has a unique holomorphic solution T . We write T = ∑
k≥0 T (k)zk with T (k) independent

of z. We claim that
T (0) ∈ O(C2,0) · C1 + O(C2,0) · C2. (50)

To prove this claim, we remark that (49) for z = 0 gives

∂1T (0) = −A1(1)T (0), T (0)(0, t2) = C1. (51)

On the other hand, relation (7) for k = 1 together with (48) gives

0 = ∂1A2(0) − ∂2A1(0) + [A1(0), A2(1)] + [A1(1), A2(0)] = [A1(1),C2], (52)

which implies A1(1) = a1C1 + a2C2 for a1, a2 ∈ O(C2,0). The differential equation (51)
with A1(1) of this form and ansatz T (0) = τ01C1 + τ02C2, with τ01, τ02 ∈ O(C2,0), and
τ01(0, t2) = 1, τ02(0, t2) = 0, has a unique solution. We obtain that T satisfies (50), as
required. We now change the trivialization s by means of T . In the new trivialization, ∇ is
given by matrices Ã1 and Ã2. From (12) for i = 1, together with A1(0) = C1 and (49), we
obtain:

0 = z∂1T + A1T − T Ã1 = C1T − T Ã1 = T (C1 − Ã1) (53)

which implies Ã1 = C1. From (18) for k = 0 and i = 2,

0 = A2(0)T (0) − T (0) Ã2(0) = T (0)(C2 − Ã2(0)), (54)
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where we used (50) and A2(0) = C2. We obtain Ã2(0) = C2. Finally, from (16),

0 = z∂1 Ã2 − z∂2 Ã1 + [ Ã1, Ã2] = z∂1 Ã2, (55)

from which we deduce ∂1 Ã2 = 0. The first step is completed.
Owing to the first step, from now onwe assume that A1 = C1, A2(0) = C2 and ∂1A2 = 0.
The second step does not change A1 = C1 and erases the term C1 in A2. Suppose that

A2 = C2 + z(a1C1 + a2C2 + a3D + a4E) (56)

with a1, a2, a3, a4 ∈ C{z, t2}. Let τ1 ∈ C{z, t2} be the unique solution of

∂2τ1 = −a1τ1, τ1(z, 0) = 1 (57)

and T := τ1C1. Relation (16) for i = 2 gives

0 = z∂2T + A2T − T Ã2 = (C2 + z(a2C2 + a3D + a4E)) − Ã2)T .

Thus,
Ã2 = C2 + z(a2C2 + a3D + a4E), (58)

as needed. Remark that the coefficients of C2, D and E in the expressions (56) and (58) of
A2 and Ã2 are same.

The third step of the reduction does not change A1 = C1 and brings A2 to the form
C2 + z f E with f ∈ C{z, t2}. Suppose

A2 = C2 + z(a2C2 + a3D + a4E) (59)

with a2, a3, a4 ∈ C{z, t2}. We are searching for T and Ã2 of the form

T = C1 + z(τ3D + τ4E) (60)

Ã2 = C2 + z(ã1C1 + ã4E) (61)

where τ3, τ4, ã1, ã4 ∈ C{t2, z}, which, together with A2, satisfy (16) for i = 2:

0 = z∂2T + A2T − T Ã2

= z2∂2τ3D + z2∂2τ4E + z[C2, τ3D + τ4E]
+ (C2 + z(a2C2 + a3D + a4E)) − (C2 + z(ã1C1 + ã4E))

+ z2(a2C2 + a3D + a4E)(τ3D + τ4E) − z2(τ3D + τ4E)(ã1C1 + ã4E)

= z2∂2τ3D + z2∂2τ4E + z(τ3(2C2 − 4tm−2
2 E) − τ4D)

+ z(a2C2 + a3D + a4E) − z(ã1C1 + ã4E)

+ z2(a2τ3(C2 − 2tm−2
2 E) + a3τ3C1 − a4τ3E

+ a2τ4
1

2
(C1 − D) + a3τ4E) − z2(ã1τ3D + ã1τ4E4 + ã4τ3E). (62)
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Ordering the terms and dividing once by z, we obtain

0 = C1

(
−ã1 + z

(
a3τ3 + 1

2
a2τ4

))
+ C2(2τ3 + a2 + za2τ3)

+ D

(
−τ4 + a3 + z

(
∂2τ3 − 1

2
a2τ4 − ã1τ3

))

+ E
(
a4 − ã4 − 4tm−2

2 τ3 + z(∂2τ4 − 2tm−2
2 a2τ3 − (a4 + ã4)τ3 + a3τ4 − ã1τ4)

)
.

(63)

The coefficient of C2 determines τ3 uniquely (2 + za2 is a unit in C{z, t2}). The coefficient
of C1 determines ã1 in terms of τ4. The coefficient of D determines then τ4. Finally, the
coefficient of E determines ã4. We proved that A2 can be brought to the form (61). Applying
the second step to A1 = C1 and Ã2 given by (61), we bring (without changing A1 = C1) A2

to the form C2 + z f E (with f = ã4), as needed. This completes the proof of claim (i).
The proof of claim (ii) is analogous, with series inC{t2, z]] instead of functions inC{t2, z}.
Now we prove claim (iii). For this let two arbitrary formal normal forms A1, A2 and

Ã1, Ã2, be given by

A1 = Ã1 = C1, A2 = C2 + z f E, Ã2 = C2 + z f̃ E (64)

where f , f̃ ∈ C{t2, z]]. We study when they are formally gauge isomorphic. This happens
if there is a matrix-valued power series

T = τ1C1 + τ2C2 + τ̃3D + τ̃4E (65)

with τ1, τ2, τ̃3, τ̃4 ∈ C{t, z]], such that T (0)(0) is invertible and

z∂ j T + A j T − T Ã j = 0, j ∈ {1, 2}. (66)

Relation (66) for j = 1 gives ∂1T = 0, or τ1, τ2, τ̃3, τ̃4 ∈ C{t2, z]]. We write τi =∑
n≥0 τi (n)zn with τi (n) ∈ C{t2} (i ∈ {1, 2}) and similarly τ̃i = ∑

n≥0 τ̃i (n)zn with
τ̃i (n) ∈ C{t2} (i ∈ {3, 4}). Relation (66) for j = 2 gives

0 = z∂2T + A2T − T Ã2

= z
(
(∂2τ1)C1 + (∂2τ2)C2 + (m − 2)tm−3

2 τ2E + (∂2τ̃3)D + (∂2τ̃4)E
)

+ [C2, T ] + z( f ET − f̃ T E)

= z
(
(∂2τ1)C1 + (∂2τ2)C2 + (∂2τ̃3)D + ((m − 2)tm−3

2 τ2 + ∂2τ̃4)E
)

+ 2τ̃3(C2 − 2tm−2
2 E) − τ̃4D

+ z

(
f τ2
2

(C1 + D) + f (τ1 − τ̃3)E − f̃ τ2
2

(C1 − D) − f̃ (τ1 + τ̃3)E

)
, (67)

where we used relations (45) and (46). The above relation implies that τ̃3(0) = τ̃4(0) = 0.
Therefore, we can write τ̃i (z) = zτi (z) where τi ∈ C{t2, z]] (i = 3, 4). The coefficients of
C2 and D in (67) determine τ3 and τ4 in terms of τ2:

τ3 = −1

2
∂2τ2, (68)

τ4 = τ2

2
( f + f̃ ) − z

2
∂22 τ2. (69)
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The coefficients of C1 and E in (67) give for τ1 and τ2 the system of differential equations

∂2τ1 + τ2

2
( f − f̃ ) = 0, (70)

tm−3
2 ((m − 2) + 2t2∂2)(τ2) + τ1( f − f̃ )

+ z

2

(
∂2(τ2( f + f̃ )) − z∂32 τ2 + ( f + f̃ )∂2τ2

)
= 0. (71)

Now suppose that f ∈ C{t2, z]] is given. We claim that there exist solutions (τ1, τ2, f̃ )
of (70), (71) with τ1, τ2 ∈ C{t2, z]], τ1|t2=0 ∈ C[[z]]∗ arbitrary and f̃ ∈ C[[z]][t2]≤m−4 if
m ≥ 4, respectively, f̃ = 0 if m = 3. We only prove the statement for m ≥ 4 (the statement
for m = 3 can be proved similarly). We write f = ∑

n≥0 f (n)zn with f (n) ∈ C{t2}, and
similarly τi = ∑

n≥0 τi (n)zn (i ∈ {1, 2}), f̃ = ∑
n≥0 f̃ (n)zn where τi (n) and f̃ (n) depend

only on t2. Let Δ be an open disk centered at 0 ∈ C with f (n) ∈ OΔ for all n ≥ 0.
Relations (70), (71) give for τ1(0), τ2(0) and f̃ (0) the system of equations

d

dt2
τ1(0) + 1

2
τ2(0)( f (0) − f̃ (0)) = 0, (72)

tm−3
2

(
(m − 2) + 2t2

d

dt2

)
(τ2(0)) + τ1(0)( f (0) − f̃ (0)) = 0. (73)

As τ1(0)(0) ∈ C
∗, solvability of (73) requires that tm−3

2 divides f (0) − f̃ (0). Since f̃ (0) ∈
C[t2]≤m−4, we obtain f̃ (0) = [ f (0)]≤m−4. Therefore, f (0) − f̃ (0) = [ f (0)]≥m−3. After
dividing (73) by tm−3

2 , the system (72), (73) takes the form (40), (41). Using Lemma 14, we
obtain, for each value τ1(0)(0) ∈ C

∗, a unique formal solution (τ1(0), τ2(0)). This solution
is holomorphic on Δ.

Consider now n ≥ 1 and assume that τ1(k), τ2(k) ∈ OΔ and f̃ (k) ∈ C[t2]≤m−4 are
known, for any k ≤ n − 1, such that (70), (71) hold up to order n − 1. The coefficients of zn

in (70), (71) give for τ1(n), τ2(n) and f̃ (n) the system of equations

d

dt2
τ1(n) + 1

2
τ2(n)[ f (0)]≥m−3 + 1

2
τ2(0)( f (n) − f̃ (n)) + h1(n) = 0 (74)

tm−3
2

(
(m − 2) + 2t2

d

dt2

)
(τ2(n)) + τ1(0)( f (n) − f̃ (n)) + τ1(n)[ f (0)]≥m−3

+ h2(n) = 0, (75)

where h1(n), h2(n) ∈ OΔ are known functions, which depend on τ1(k), τ2(k) and f̃ (k) for
k ≤ n − 1. Solvability of (75) requires that tm−3

2 divides τ1(0)( f (n) − f̃ (n)) + h2(n). Let
f̃ (n) ∈ C[t2]≤m−4 be the unique polynomial of degree at most m − 4 such that this property
holds. With this definition of f̃ (n), Eqs. (74), (75) reduce [after dividing (75) by tm−3

2 ], to
the system of equations

d

dt2
τ1(n) + 1

2
τ2(n)[ f (0)]≥m−3 + h3(n) = 0 (76)

(
(m − 2) + 2t2

d

dt2

)
(τ2(n)) + τ1(n)[ f (0)]≥m−3t

−(m−3)
2 + h4(n) = 0, (77)

where h3(n), h4(n) ∈ OΔ are known. Lemma 14 applies to the system (76), (77) and gives,
for each value τ1(n)(0) ∈ C, a unique solution (τ1(n), τ2(n))which is holomorphic onΔ. The
existence of a solution (τ1, τ2, f̃ ) for (74), (75) with τi ∈ C{t2, z]] and f̃ ∈ C[[z]][t2]≤m−4

follows by induction.
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It remains to prove the uniqueness part of claim (iii). Suppose that (τ1, τ2, f , f̃ ) satisfy
(70), (71) and τ1, τ2 ∈ C{t2, z]], f , f̃ ∈ C[[z]][t2]≤m−4. We need to prove that f = f̃ .
Equation (73) together with τ1(0)(0) �= 0 and f (0), f̃ (0) ∈ C[t2]≤m−4 implies that f (0) =
f̃ (0) and τ2(0) = 0. Then, Eq. (72) implies that τ1(0) ∈ C

∗. Consider now n ≥ 1. Assume
that f (k) = f̃ (k), τ1(k) ∈ C and τ2(k) = 0 for k ≤ n − 1. As h1(n) = 1

2

∑n−1
k=1 τ2(n −

k)( f (k) − f̃ (k)) we obtain that h1(n) = 0. Similarly, from the definition of h2 and f (k) =
f̃ (k), τ2(k) = 0 for any k ≤ n − 1, we obtain h2(n) = 0. Equation (75), together with
[ f (0)]≥m−3 = 0, h2(n) = 0 and τ1(0)(0) ∈ C

∗, implies, as before, that f (n) = f̃ (n) and
τ2(n) = 0. Equation (74) implies that τ1(n) ∈ C. Inductively, we obtain f = f̃ , τ1 ∈ C[[z]]∗
and τ2 = 0. This finishes the proof of claim (iii). ��
Remark 17 (i) The germs I2(m) (m ≥ 3) coincide with the germs at the origin of the orbit

spaces C2/W of various Coxeter groupsW , with their natural F-manifold structure (see
[9], page 19). In particular, W = A2 for I2(3), W = B2 = C2 for I2(4), W = H2 for
I2(5) and W = G2 for I2(6) (see [2,3] for the definition and classification of Coxeter
groups and Lecture 4 of [5], reference [6], Theorem 14 of [7], or Theorem 5.18 of [9]
for the natural F-manifold structure on their orbit spaces). An immediate consequence
of Theorem 16 (iii) is that any two formal (T )-structures over the germ at the origin of
C
2/A2 are formally isomorphic.

(ii) The multiplication ◦ of I2(m) underlies a Frobenius manifold structure. This follows
from the general fact that the F-manifold multiplication of the orbit space of a Coxeter
group can be extended to a Frobeniusmanifold structure (see Lecture 4 of [5] or reference
[6]). Therefore, over I2(m) lies a standard (T )-structure

∇XY := Dg̃
XY + 1

z
X ◦ Y , ∀X , Y ∈ TM , (78)

where Dg̃ is the Levi–Civita connection of the Frobeniusmetric g̃ = dt1⊗dt2+dt2⊗dt1.
This standard (T )-structure coincides with the normal form (47) with f = 0. Let us
consider now a normal form (47) with f ∈ C[t2]≤m−4 (i.e., f independent of z). It is
mapped, by means of the gauge isomorphism

T =
(
1 β

0 1

)

with β = β(t2) ∈ C[t2]≤m−3 such that β̇ = − f , to the (T )-structure with

Ã1 = C1, Ã2 = T−1A2T + T−1z∂2T =
(−β tm−2

2 − β2

1 β

)
. (79)

Remark that both Ã1 and Ã2 in (79) are independent on z. This is an example of a
general result, namely that any (T )-structure is locally (holomorphically) isomorphic to
a (T )-structure with connection form 1

z

∑
i Ãidti where Ãi = Ãi (0) are independent

on z. We shall prove this result in a forthcoming paper.

5 (T)-structures overN2

In this section, we find formal normal forms for (T )-structures over N2. In a first stage,
we will find them up to formal gauge isomorphisms. They are described in Theorem 18,
whose proof relies on the calculations from the proof of Theorem 16. In a second stage, we
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will exploit the additional freedom from holomorphic isomorphisms which lift non-trivial
automorphisms of the base. Theorem 19 states the results. Finally, Theorem 21 combines
Theorems 18 and 19 and gives round formal normal forms for (T )-structures over N2 up to
the entire group of formal isomorphisms.

We will use the same matrices C1, D and E , as in the previous section. The definition of
the matrix C2 is almost the same as before, with the only difference that the (1, 2) entry tm−2

2
is replaced by 0. Thus,

C1 := Id2, C2 :=
(
0 0
1 0

)
, D :=

(
1 0
0 −1

)
, E :=

(
0 1
0 0

)
. (80)

Relations (45) and (46) still hold, with tm−2
2 replaced by 0.

Theorem 18 (i) Over N2, any (T )-structure is gauge isomorphic to a (T )-structure of the
form (47) where f ∈ C{t2, z} is holomorphic.

(ii) Any formal (T )-structure over N2 is formally gauge isomorphic to a formal (T )-
structure of the form (47) where f ∈ C{t2, z]].

(iii) For a holomorphic or formal (T )-structure of the form (47) overN2, with f ∈ C{t2, z},
respectively, f ∈ C{t2, z]], the function f (0) ∈ C{t2} is a formal gauge invariant of it.
If f (0) = 0, then also the function f (1) ∈ C{t2} is a formal gauge invariant of it.

(iv) A holomorphic (T )-structure of the form (47) over N2, with f (0) = 0, is gauge iso-
morphic to a unique (T )-structure of the form

A1 = C1, A2 = C2 + z2a(1)E . (81)

where a(1) ∈ C{t2}. The coefficient a(1) coincides with f(1).
(v) A holomorphic or formal (T )-structure of the form (47)with f (0) �= 0 and ord0 f (0) =

r ∈ Z≥0 is formally gauge isomorphic to the (T )-structure

A1 = C1, A2 = C2 + za(0)E (82)

if r ∈ {0, 1}, or to a formal (T )-structure

A1 = C1, A2 = C2 + z f̃ E (83)

where f̃ (0) = f (0) and f̃ (k) ∈ C[t2]≤r−2, for any k ≥ 1, if r ≥ 2. These normal
forms are formal gauge invariants and are unique.

Proof Claims (i) and (ii) follow with the same argument as steps 1–3 from the proof of
Theorem16. [The only difference lies in relations (62) and (63), inwhich the terms containing
with tm−3

2 are now replaced by 0.]
To prove claim (iii), we consider two formal normal forms A1, A2 and Ã1, Ã2 as in (64)

and a matrix T = τ1C1+τ2T2 + τ̃3D+ τ̃4E as in (65) such that relation (66) is satisfied (i.e.,
the formal normal forms are formally gauge isomorphic).We find again that T is independent
on t1, τ̃3(0) = 0, τ̃4(0) = 0 and thus write again τ̃3(z) = zτ3(z) and τ̃4(z) = zτ4(z) with τ3,
τ4 ∈ C{t2, z]]. The same calculations lead to the same Eqs. (68), (69), which determine τ3
and τ4 in terms of τ2, f , f̃ , and to the system of equations

∂2τ1 + τ2

2
( f − f̃ ) = 0, (84)

τ1( f − f̃ ) + z

2

(
∂2(τ2( f + f̃ )) − z∂32 τ2 + ( f + f̃ )∂2τ2

)
= 0. (85)

As τ1 ∈ C{t2, z]] is invertible, relation (85) implies that f (0) = f̃ (0). We obtain that
f (0) is a formal gauge invariant, as needed. Suppose now that f (0) = f̃ (0) = 0. Identifying
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the coefficient of z in (85) we obtain τ1(0)( f (1) − f̃ (1)) = 0. Since τ1(0) ∈ C{t2} is a unit,
we deduce that f (1) = f̃ (1), i.e., f (1) is a formal gauge invariant. The proof of claim (iii)
is completed.

We now prove claim (iv). For this, we consider a (T )-structure of the form (47) with
f ∈ C{t2, z} and f (0) = 0. Define f̃ := z f (1). We claim that the system of differential
equations (84), (85) has a holomorphic solution (τ1, τ2) ∈ C{t2, z}2 with τ1|t2=0 ∈ C{z}∗
arbitrary. Write f − f̃ = z2g with g ∈ C{t2, z}. Then, (84), (85) become the system

∂2τ1 + 1

2
z2τ2g = 0, (86)

∂32 τ2 − 2τ1g − ∂2(τ2(2 f (1) + zg)) − (2 f (1) + zg)∂2τ2 = 0, (87)

with leading parts ∂2τ1 and ∂32 τ2. It can be rewritten as a system of linear differential equations
in t2 with holomorphic parameter z, and it has a holomorphic solution (τ1, τ2) with τ1|t2=0 ∈
C{z}∗ arbitrary. Claim (iv) is proved. [The uniqueness follows from claim (iii).]

To prove claim (v), we consider a holomorphic or formal (T )-structure of the form (47)
over N2 with f ∈ C{t2, z]] and ord0 f (0) = r ∈ Z≥0. We need to show that there exists
a solution (τ1, τ2, f̃ ) of (84), (85) with τ1, τ2 ∈ C{t2, z]], τ1|t2=0 ∈ C[[z]]∗ arbitrary and
f̃ = f (0) if r ∈ {0, 1} and f̃ (0) = f (0), f̃ (k) ∈ C[t2]≤r−2 for k ≥ 1, if r ≥ 2. Let Δ be an
open disk centered at 0 ∈ C with f (k) ∈ OΔ for all k ≥ 0.

Equations (84), (85) give for τ1(0), τ2(0) and f̃ (1) the equations

d

dt2
τ1(0) = 0, τ1(0)( f (1) − f̃ (1)) + d

dt2
(τ2(0) f (0)) + f (0)

d

dt2
τ2(0) = 0. (88)

Choose τ1(0) ∈ C
∗ arbitrary. Then, for any f̃ (1) fixed, the second relation (88) can be

considered as a differential equation of the form (36) in the unknown function τ2(0). When
r ∈ {0, 1}, we define f̃ (1) := 0. When r ≥ 2, we define f̃ (1) ∈ C[t2]≤r−2 to be the
unique polynomial of degree at most r −2 such that tr−1

2 divides f (1)− f̃ (1). In both cases,
Lemma 12 provides a holomorphic solution τ2(0) ∈ OΔ.

Let n ≥ 1. When r ≥ 2, suppose that τ1(k), τ2(k) ∈ OΔ, f̃ (k + 1) ∈ C[t2]≤r−2

(0 ≤ k ≤ n − 1) have been constructed such that Eq. (84) up to order n − 1 in z and
Eq. (85) up to order n in z are satisfied. When r ∈ {0, 1}, suppose that τ1(k), τ2(k) ∈ OΔ

(0 ≤ k ≤ n − 1) have been constructed such that Eq. (84) up to order n − 1 in z and Eq. (85)
up to order n in z are satisfied, with f̃ (k) = 0 (1 ≤ k ≤ n). Then, the coefficient of zn in
(84) and the coefficient in zn+1 of (85) give for τ1(n), τ2(n) and f̃ (n + 1) the equations

d

dt2
τ1(n) + h1(n) = 0, (89)

d

dt2
(τ2(n) f (0)) + f (0)

d

dt2
τ2(n)

+ τ1(n)( f (1) − f̃ (1)) + τ1(0)( f (n + 1) − f̃ (n + 1)) + h2(n) = 0, (90)

where h1(n), h2(n) ∈ OΔ are known. Let τ1(n) be a solution of (89). With this choice of
τ1(n), Eq. (90) in the unknown function τ2(n) becomes

d

dt2
(τ2(n) f (0)) + f (0)

d

dt2
τ2(n) − τ1(0) f̃ (n + 1) + h3(n) = 0, (91)

where h3(n) ∈ OΔ is known. Remark that (91) is of the form (36). FromLemma 12, Eq. (91),
with any given f̃ (n + 1), has a solution, which is holomorphic on Δ, when r ∈ {0, 1}. We
choose τ2(n) to be a solution of (91) with f̃ (n+1) := 0.When r ≥ 2, Eq. (91) has a solution
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if and only if tr−1
2 divides (τ1(0) f̃ (n + 1) − h3(n)). We choose f̃ (n + 1) ∈ C[t2]≤r−2 to

be the unique polynomial of degree at most r − 2, such that this property is satisfied, and
τ2(n) ∈ OΔ to be the unique solution of Eq. (91) with this choice of f̃ (n + 1). The first
statement of claim (v) is proved.

It remains to prove the uniqueness of the normal form. When r ∈ {0, 1} this follows from
claim (iii). Suppose now that r ≥ 2. Consider two normal forms of type (83), with functions
f and f̃ . From claim (iii), f (0) = f̃ (0). Let τ1 ∈ C{t2, z]]∗ and τ2 ∈ C{t2, z]] which satisfy
(84), (85). Going again through the above proof for the existence of the normal form, we find
inductively that τ1(n) ∈ C, τ2(n) = 0 and f (n + 1) = f̃ (n + 1) for any n ≥ 0. The details
are as in the proof of Theorem 16 (iii). ��

Below a function f ∈ C{t2, z} is called associated to a (T )-structure over N2 if the (T )-
structure is (holomorphically) isomorphic to the (T )-structure A1 = C1, A2 = C2 + z f E .
From Theorem 18 (i), any (T )-structure admits a (non-unique) associated function, which
was obtained using gauge isomorphisms. In the next theorem, we will exploit the additional
freedom provided by isomorphisms which lift non-trivial automorphisms of N2, in order to
simplify the lower-order terms of associated functions.

Theorem 19 Consider an arbitrary (T )-structure (H ,∇) over N2.

(i) The order ord0 f (0) ∈ Z≥0 ∪ {∞} of an associated function f is a formal invariant of
(H ,∇) (with ord0 f (0) := ∞ when f (0) = 0).

(ii) If some associated function f̃ of (H ,∇) satisfies f̃ (0) = 0, then there is an associated
function f with f (0) = 0 and f (1) = 0.

(iii) If the order of an associated function f̃ of (H ,∇) is r = ord0 f̃ (0) ∈ Z≥0, then there
is an associated function f with f (0) = tr2 .

Proof To prove claim (i), we consider two (T )-structures, given by

A1 = C1, A2 = C2 + z f E

Ã1 = C1, Ã2 = C2 + z f̃ E (92)

with f , f̃ ∈ C{t2, z}, an automorphism h : (C2, 0) → (C2, 0) of N2 and a matrix T̃ ∈
GL2(C{t2, z]]) such that relation (12) is satisfied. We will make relations in (12) explicit.
From Lemma 11 (ii), h is of the form h(t1, t2) = (t1, λ(t2)) with λ ∈ t2C{t2}∗. We write

T̃ =
(
a ẽ
c b

)
(93)

with a, b, c, ẽ ∈ C{t, z]]. Relations (12) become

z∂ j T̃ + δ j1T̃ + δ j2λ̇(A2 ◦ λ)T̃ − T̃ Ã j = 0, j ∈ {1, 2}. (94)

For j = 1 relation (94) gives a, b, c, ẽ ∈ C{t2, z]]. For j = 2 it gives

0 =
(
z∂2a z∂2ẽ
z∂2c z∂2b

)
+

(
0 zλ̇( f ◦ λ)

λ̇ 0

) (
a ẽ
c b

)
−

(
a ẽ
c b

) (
0 z f̃
1 0

)

=
(
z(∂2a + λ̇c( f ◦ λ)) − ẽ z(∂2ẽ + λ̇b( f ◦ λ) − f̃ a)

z∂2c + λ̇a − b z∂2b + λ̇ẽ − z f̃ c

)
. (95)

The (1, 1)-entry in the above matrix implies that ẽ(z) = ze(z) for e ∈ C{t2, z]]. As T̃ is
invertible, we deduce that a(0)(0), b(0)(0) ∈ C

∗. The (1, 2) entry in (95) gives

λ̇b(0)( f (0) ◦ λ) = f̃ (0)a(0), (96)
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which implies ord0 f (0) = ord0 f̃ (0). Claim (i) is proved.
To prove claims (ii) and (iii), we start with f̃ ∈ C{t2, z} as in the assumptions of these

claims. We will find a, b, c, e, f ∈ C{t2, z} which satisfy (95) (with ẽ := ze) and such that
f is in the form required by these claims. In both cases, a ∈ C{t2}∗ will be suitably chosen,
independent on z,

b := a−1 ∈ C{t2}∗, c := 0, e := ȧ ∈ C{t2} (97)

and λ ∈ t2C{t2}∗ satisfies
λ̇ = a−2. (98)

With these choices, three of the four relations (95) are satisfied. The remaining relation is
given by the (1, 2) entry of the matrix and is equivalent to

zä + a−3( f ◦ λ) − f̃ a = 0. (99)

To prove claim (ii), assume that f̃ (0) = 0 and choose a such that

ä = f̃ (1)a. (100)

Then, (99) has a unique solution f ∈ C{t2, z}with f (0) = f (1) = 0 and f (k)◦λ = f̃ (k)a4

for k ≥ 2. Claim (ii) is proved.
To prove claim (iii), assume that ord0 f̃ (0) = r ∈ Z≥0. We start with a solution λ ∈

t2C{t2}∗ of the equation
λr (λ̇)2 = f̃ (0), (101)

(which exists from Lemma 13). Then, we choose a ∈ C{t2}∗ such that (98) holds, and then
b, c, e as in (97). The function f ∈ C{t2, z} with f (0) = tr2 , f (1) ◦ λ = f̃ (1)a4 − a3ä and
f (k) ◦ λ = f̃ (k)a4, for k ≥ 2, satisfies (99). Claim (iii) is proved. ��

Remark 20 The notion of an associated function can be extended to formal (T )-structures
over N2, by replacing in their definition ‘(holomorphically) isomorphic’ with ‘formally iso-
morphic.’ For formal (T )-structures, associated functions belong to C{t2, z]]. Theorem 18
(ii) shows that any formal (T )-structure admits an associated function. Theorem 19 holds
also for formal (T )-structures.

Ourmain result from this section is the next theorem, which states the formal classification
of (T )-structures over N2.

Theorem 21 (i) Any (T )-structure (or formal (T )-structure) overN2 is formally isomorphic
to a (T )-structure of the form

A1 = C1, A2 = C2 + zE (102)

A1 = C1, A2 = C2 + zt2E (103)

A1 = C1, A2 = C2, (104)

or to a holomorphic or formal (T )-structure of the form

A1 = C1, A2 = C2 + z

⎛

⎝tr2 +
∑

k≥1

f (k)zk

⎞

⎠ E, (105)

where f (k) ∈ C[t2]≤r−2 are polynomials of degree at most r − 2 and r ∈ Z≥2.
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(ii) Any two different (T )-structures (or formal (T )-structures)∇ and ∇̃ from (i), at least one
of them not being of the form (105), are formally non-isomorphic. If ∇ and ∇̃ are of the
form (105), then they are formally gauge non-isomorphic. They are formally isomorphic
if and only if there is λ0 ∈ C, λr0 = 1, such that f̃ (k)(t2) = λ−2

0 f (k)( t2
λ0

), for any k ≥ 1.

Proof We only prove the statements for (T )-structures (the arguments for formal (T )-
structures are similar). Let ∇ be a (T )-structure over N2 and f̃ an associated function.
If f̃ (0) �= 0, then, using Theorem 19 (iii), we can assume that f̃ (0) = tr2 with r ∈ Z≥0.
Then, Theorem 18 (v) implies that ∇ is formally isomorphic to a (T )-structure of the form
(102), (103) or to a (T )-structure or formal (T )-structure of the form (105). If f̃ (0) = 0,
then, using Theorem 19 (ii), we can assume that f̃ (1) = 0. Then, Theorem 18 (iv) implies
that ∇ is formally isomorphic to the (T )-structure (104). Claim (i) is proved.

The first two parts of claim (ii) follow from Theorem 19 (i) together with the uniqueness
part in Theorem18 (v). Assume now that∇ and ∇̃ are two formally isomorphic (T )-structures
of the form (105). Let T be a formal isomorphism between them. It covers a map of the form
h(t1, t2) = (t1, λ(t2)), with λ(0) = 0 and λ̇(0) �= 0. From relation (12) together with
A2(0) = Ã2(0) = C2 and f (0) = f̃ (0) = tr2 , we deduce that λ satisfies (λ̇)2λr = tr2 . From
Lemma 13, λ(t2) = λ0t2, where λr0 = 1. Consider now the isomorphism T1 which covers h
and is given by the constant matrix diag(1, λ0). Then, ∇(1) := T1 · ∇ is a (T )-structure with
A(1)
1 = C1, A

(1)
2 = C2 + z f (1)E , where f (1)(0) = tr2 and f (1)(k)(t2) = λ−2

0 f (k)( t2
λ0

), for

any k ≥ 1. Remark that ∇(1) and ∇̃ are formally gauge isomorphic (by means of the formal
gauge isomorphism T ◦ T−1

1 ). Therefore, they coincide. We deduce that f̃ = f (1), which
completes the proof of claim (ii). ��
Remark 22 It is natural to ask if a (T )-structure is holomorphically isomorphic to its formal
normal form provided by Theorems 16 (iii) or 21. We believe that this is not, in general,
true. Let us consider the (T )-structures over I2(m), with m ≥ 4. We do not believe that the
functions τ1, τ2 and f̃ constructed in the proof of part (iii) of Theorem 16 are in general
holomorphic if f is holomorphic. Therefore, in order to obtain holomorphic normal forms
for (T )-structures over I2(m) one needs to modify part (iii) in Theorem 16 substantially. We
plan to work on this. We also plan to work on the formal and holomorphic classification of
(T E)-structures.
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