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Abstract
We state the following weighted Hardy inequality:

co,μ

∫
RN

ϕ2

|x |2 dμ ≤
∫
RN

|∇ϕ|2 dμ + K
∫
RN

ϕ2 dμ ∀ ϕ ∈ H1
μ,

in the context of the study of the Kolmogorov operators:

Lu = �u + ∇μ

μ
· ∇u,

perturbed by inverse square potentials and of the related evolution problems. The function
μ in the drift term is a probability density on R

N . We prove the optimality of the constant
co,μ and state existence and nonexistence results following the Cabré–Martel’s approach
(Cabré and Martel in C R Acad Sci Paris 329 (11): 973–978, 1999) extended to Kolmogorov
operators.
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1 Introduction

This paper on weighted Hardy inequalities fits in the framework of the study of Kolmogorov
operators on smooth functions:

Lu = �u + ∇μ

μ
· ∇u,

where μ is a probability density on RN , and of the related evolution problems:

(P)

{
∂t u(x, t) = Lu(x, t) + V (x)u(x, t), x ∈ R

N , t > 0,
u(·, 0) = u0 ≥ 0 ∈ L2

μ.

The operator L in (P) is perturbed by the singular potential V (x) = c
|x |2 , c > 0, and

L2
μ := L(RN , dμ), with dμ(x) = μ(x)dx .
The interest in inverse square potentials of typeV ∼ c

|x |2 relies in their criticality: the strong
maximum principle and Gaussian bounds fail (see [2]). Furthermore, interest in singular
potentials is due to the applications to many fields, for example in many physical contexts
as molecular physics [23], quantum cosmology (see, e.g., [5]), quantum mechanics [4] and
combustion models [19].

The operator � + V , V (x) = c
|x |2 , has the same homogeneity as the Laplacian and does

not belong to the Kato class, then, V cannot be regarded as a lower order perturbation term.
A remarkable result stated in 1984 by P. Baras and J. A. Goldstein in [3] shows that the

evolution problem (P)with L = � admits a unique positive solution if c ≤ co = ( N−2
2

)2
and

no positive solutions exist if c > co. When it exists, the solution is exponentially bounded,
on the contrary, if c > co, there is the so-called instantaneous blow-up phenomenon.

In order to extend these results to Kolmogorov operators, the technique must be different.
A result analogous to that stated in [3] has been obtained in 1999 by X. Cabré and Y.

Martel [8] for more general potentials 0 ≤ V ∈ L1
loc(R

N ) with a different approach.
To state the existence and nonexistence results, we follow the Cabré–Martel’s approach.

We use the relation between the weak solution of (P) and the bottom of the spectrum of the
operator −(L + V ):

λ1(L + V ) := inf
ϕ∈H1

μ\{0}

(∫
RN |∇ϕ|2 dμ − ∫

RN V ϕ2 dμ∫
RN ϕ2 dμ

)

where H1
μ is the suitable weighted Sobolev space.

When μ = 1, Cabré and Martel showed that the boundedness of λ1(� + V ), 0 ≤ V ∈
L1
loc(R

N ), is a necessary and sufficient condition for the existence of positive exponentially
bounded in time solutions to the associated initial value problem. Later in [9,20], similar
results have been extended to Kolmogorov operators. The proof uses some properties of the
operator L and of its corresponding semigroup in L2

μ(RN ).
For Ornstein–Uhlenbeck-type operators, Lu = �u − ∑n

i=1 A(x − ai ) · ∇u, ai ∈ R
N ,

i = 1, . . . , n, perturbed by multipolar inverse square potentials, weighted multipolar Hardy
inequalities and related existence and nonexistence results were stated in [11]. In such a case,

the invariant measure for these operators is dμ = μA(x)dx = K e− 1
2

∑n
i=1〈A(x−ai ),x−ai 〉dx .

There is a close relation between the estimate of the bottom of the spectrum λ1(L + V )

and the weighted Hardy inequality with V (x) = c
|x |2 , c ≤ co,μ,

∫
RN

V ϕ2 dμ ≤
∫
RN

|∇ϕ|2dμ + K
∫
RN

ϕ2dμ ∀ ϕ ∈ H1
μ, K > 0 (1)
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A class of weighted Hardy inequalities and applications to… 1173

with the best possible constant co,μ.
In particular, the existence of positive solutions to (P) is related to the Hardy inequality (1)

and the nonexistence is due to the optimality of the constant co,μ.
The main results in the paper are, in Sect. 2, the weighted Hardy inequality (1) with

measures which satisfy fairly general conditions and the optimality of the constant co,μ in
Sect. 3.

The proof of theweightedHardy inequality is different from the others in the literature. It is
based on the introduction of a suitableC∞ function, and it can be used to prove inequality (1)
with 0 ≤ V ∈ L1

loc(R
N ) of a more general type, in other words Hardy type inequalities.

In [9], the authors state a weighted Hardy inequality using a different approach and
improved Hardy inequalities. This requires suitable conditions on μ. Our technique, with
different assumptions on μ, allows us to achieve the best constant (cf. [9, Theorem 3.3])
for a wide class of functions μ. To state the optimality of the constant in the estimate, we
need further assumptions on μ as usually it is done. We find a suitable function ϕ for which
the inequality (1) does not hold if c > co,μ, and this is a crucial point in the proof. The
way to estimate the bottom of the spectrum is close to the one used in [9]. We remark that
the inequality obtained under our hypotheses applies in the context of weighted multipolar
Hardy inequalities stated in the forthcoming paper [12].

Finally, we state an existence and nonexistence result in Sect. 4 following the Cabré–
Martel’s approach and using some results stated in [9,20] when the function μ belongs to
C1,λ
loc (RN ) or belongs to C1,λ

loc (RN \{0}), for some λ ∈ (0, 1).
Some classes of functions μ satisfying the hypotheses of the main Theorems are given in

Sect. 2.

2 Weighted Hardy inequalities

Let μ be a weight function in R
N . We define the weighted Sobolev space H1

μ =
H1(RN , μ(x)dx) as the space of functions in L2

μ := L2(RN , μ(x)dx) whose weak deriva-
tives belong to (L2

μ)N .
As first step, we consider the following conditions on μ which we need to state a prelim-

inary weighted Hardy inequality:

(H1) μ ≥ 0, μ ∈ L1
loc(R

N );

(H2) ∇μ ∈ L1
loc(R

N );

(H3) there exist constants k1, k2 ∈ R, k2 > 2 − N , such that if

fε = (ε + |x |2) α
2 , α < 0, ε > 0,

it holds

∇ fε
fε

· ∇μ = αx

ε + |x |2 · ∇μ ≤
(

k1 + k2α

ε + |x |2
)

μ

for any ε > 0.

The condition (H3) contains the requirement that the scalar product αx · ∇μ
μ

is bounded in

BR , R > 0, while αx
ε+|x |2 · ∇μ

μ
is bounded in RN \BR , where BR is a ball of radius R centered

in zero.
The reason we use the function fε , introduced in [17], will be clear in the proof of the

weighted Hardy inequality which we will state below. Finally, we observe that we need the
condition k2 > 2 − N to apply Fatou’s lemma in the proof of Theorem 1.
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1174 A. Canale et al.

Theorem 1 Under conditions (H1–H3), there exists a positive constant c such that

c
∫
RN

ϕ2

|x |2 dμ ≤
∫
RN

|∇ϕ|2 dμ + k1

∫
RN

ϕ2 dμ, (2)

for any function ϕ ∈ C∞
c (RN ), where c ∈ (0, co(N + k2)] with co(N + k2) =

(
N+k2−2

2

)2
.

Proof As first step, we start from the integral of the square of the gradient of the function ϕ.
Then, we introduce ψ = ϕ

fε
, with fε defined in (H3), and integrate by parts taking in mind

(H1) and (H2).∫
RN

|∇ϕ|2 dμ =
∫
RN

|∇(ψ fε)|2 dμ

=
∫
RN

|∇ψ fε + ∇ fεψ |2 dμ

=
∫
RN

|∇ψ |2 f 2ε dμ +
∫
RN

ψ2|∇ fε|2 dμ + 2
∫
RN

fεψ∇ψ · ∇ fε dμ

=
∫
RN

|∇ψ |2 f 2ε dμ +
∫
RN

ψ2|∇ fε|2 dμ

−
∫
RN

ψ2|∇ fε|2 dμ −
∫
RN

f 2ε ψ2 � fε
fε

dμ −
∫
RN

f 2ε ψ2 ∇ fε
fε

· ∇μ dx .

(3)
Observing that

� fε = α(N − 2 + α)|x |2 + αεN

(ε + |x |2)2− α
2

and using hypothesis (H3), we deduce that∫
RN

|∇ϕ|2 dμ ≥ −
∫
RN

� fε
fε

ϕ2 dμ −
∫
RN

∇ fε
fε

· ∇μϕ2 dx

≥ − [
α(N − 2) + α2] ∫

RN

|x |2
(ε + |x |2)2 ϕ2 dμ − εαN

∫
RN

ϕ2

(ε + |x |2)2 dμ

− k1

∫
RN

ϕ2 dμ − k2α
∫
RN

ϕ2

ε + |x |2 dμ

= [−α(N − 2 + k2) − α2]
∫
RN

|x |2
(ε + |x |2)2 ϕ2 dμ

− εα(N + k2)
∫
RN

ϕ2

(ε + |x |2)2 dμ − k1

∫
RN

ϕ2 dμ.

(4)
The constant −α(N − 2 + k2) − α2 is greater than zero for −(N − 2 + k2) < α < 0 and
k2 > 2 − N , so by Fatou’s lemma, we state the following estimate letting ε → 0:

∫
RN

|∇ϕ|2 dμ + k1

∫
RN

ϕ2 dμ ≥ c
∫
RN

ϕ2

|x |2 dμ,

where c = −α(N − 2 + k2) − α2. Finally, we observe that

max
α

[−α(N + k2 − 2) − α2] =
(

N + k2 − 2

2

)2

=: co(N + k2),

123



A class of weighted Hardy inequalities and applications to… 1175

attained for αo = − N+k2−2
2 . �


Remark 1 In an alternative way, we can define fε in (H3) setting α = αo and get the esti-
mate (2) with c = co(N + k2). Although the result goes in the same direction, in the proof
we point out that co(N + k2) is the maximum value of the constant c.

Remark 2 In the case μ = 1, we obtain the classical Hardy inequality. We remark that if in
the proof we introduce a function f ∈ C∞(RN ) in place of fε, the inequality (4) can be used
to get Hardy type inequalities: ∫

RN
V ϕ2 dx ≤

∫
RN

|∇ϕ|2 dx (5)

where the potential V = V (x) ∈ L1
loc(R

N ), V (x) ≥ 0, is such that

−� f

f
≥ V ∀ x ∈ R

N .

Operators perturbed by potentials of a more general type, for which the generation of semi-
groups was stated, have been investigated, for example, in [13–15] when μ = 1 and in [10]
in weighted spaces. For functions μ �= 1 such that k2 �= 0, we have to modify the condition
(H3) to get the Hardy type inequality (5) with respect to the measure dμ.

Now, we suppose that

(H4) μ ≥ 0,
√

μ ∈ H1
loc(R

N );

(H5) μ−1 ∈ L1
loc(R

N ).

Let us observe that in the hypotheses (H4–H5), the space C∞
c (RN ) is dense in H1

μ, and H1
μ

is the completion of C∞
c (RN ) with respect to the Sobolev norm:

‖ · ‖2H1
μ

:= ‖ · ‖2L2
μ

+ ‖∇ · ‖2L2
μ

(see [25]). For some interesting papers on density of smooth functions in weighted Sobolev
spaces and related questions, we refer, for example, to [6,7,16,18,21,22,26].

So, we can deduce the following result from Theorem 1 by density argument.

Theorem 2 Under conditions (H2–H5), there exists a positive constant c such that

c
∫
RN

ϕ2

|x |2 dμ ≤
∫
RN

|∇ϕ|2 dμ + k1

∫
RN

ϕ2 dμ, (6)

for any function ϕ ∈ H1
μ, where c ∈ (0, co(N + k2)] with co(N + k2) =

(
N+k2−2

2

)2
.

We give some examples of functions μ which satisfy the hypotheses of
Theorem 2.

We remark that, in the hypotheses μ = μ(|x |) ∈ C1 for |x | ∈ [r0,+∞[, r0 > 0, a class
of weight functions μ which satisfies (H3) is the following:

μ(x) ≥ Ce− k1
2|α| |x |2 |x |k2− k1|α| ε, for |x | ≥ r0, (7)

where C is a constant depending on μ(r0) and r0.
Indeed, in the case of radial functions, μ(x) = μ(|x |), if we set |x | = ρ, the condition

(H3) states that μ satisfies the following inequality:

αρ

ε + ρ2 μ′(ρ) ≤
(

k1 + k2α

ε + ρ2

)
μ(ρ),

123



1176 A. Canale et al.

which implies

μ′(ρ) ≥ a(ρ)μ(ρ)

where

a(ρ) = k1
α

(
ε + ρ2

ρ

)
+ k2

ρ
.

Integrating in [r0, r ], we get

μ(r) ≥ μ(r0)e
∫ r

r0
a(s)ds = μ(r0)

(
r

r0

)k2− k1|α| ε
e− k1

2|α| (r2−r20 ) for r ≥ r0,

from which we deduce that

μ(r) ≥ μ(r0)

r
k2− k1|α| ε
0

e
k1
2|α| r20 rk2− k1|α| εe− k1

2|α| r2 for r ≥ r0.

Example 1 Another class of weight functions satisfying (H3), when k1 = k2 = 0, consists
of the bounded increasing functions, as, for example, cos e−|x |2 . Such a function verifies the
requirements of Theorem 2.

In the following example, we consider a wide class of functions which contains the Gaussian
measure and polynomial-type measures. A class of functions which behaves as 1

|x |γ when
|x | goes to zero.

Example 2 We consider the following weight functions:

μ(x) = 1

|x |γ e−δ|x |m , δ ≥ 0, γ < N − 2. (8)

We state the values of γ and m for which the functions in (8) are “good” functions to get the
weighted Hardy inequality (6).

The weight μ satisfies (H2), (H4) and (H5) if γ > −N . The condition (H3):

α(−γ − δm|x |m)

ε + |x |2 ≤ k1 + αk2
ε + |x |2 ,

is fulfilled if
− (αγ + αk2 + k1ε) − αδm|x |m − k1|x |2 ≤ 0. (9)

In the case δ = 0, we only need to require that γ ≤ −k2 − k1
α

ε, and we are able to get the
Caffarelli–Nirenberg inequality:

(
N − 2 − γ

2

)2 ∫
RN

ϕ2

|x |2 |x |−γ dx ≤
∫
RN

|∇ϕ|2|x |−γ dx ∀ϕ ∈ H1
μ.

While if γ = 0, the inequality (6) holds, for k1 large enough, with k2 = 0 if m = 2 and with
k2 < 0 if m < 2.

In general to get (9), we need the following conditions on parameters and on the constant
k1:

(i) γ ∈ (−N ,−k2], δ = 0, k1 = 0,
(ii) γ ∈ (−N ,−k2], k1 ≥ −2αδ, m = 2,
(iii) γ ∈ (−N ,−k2), k1 ≥ k̃1, m < 2,

123



A class of weighted Hardy inequalities and applications to… 1177

where k̃1 = m
2 (1− m

2 )
2
m −1

(−αδm)
2
m

[α(γ+k2)] 2
m −1

, to get the inequality (6).

Example 3 The function μ(x) = [log(1+ |x |)]−γ , for γ < N − 2, behaves as 1
|x |γ when |x |

goes to 0. So, we can state the weightedHardy inequality (6) with k1 = 0 and γ ∈ (−N ,−k2]
as in the previous example.

3 Optimality of the constant

To state the optimality of the constant co(N + K2) in the estimate (6), we need further
assumptions on μ as usually it is done. We remark that in the proof of optimality, the choice
of the function ϕ plays a fundamental role.

We suppose

(H6)
μ(x)

|x |δ ∈ L1
loc(R

N ) iff δ ≤ N + k2.

We observe that the condition (H6) is necessary for the technique used to estimate the bottom
of the spectrum of the operator −L − V in the proof of the optimality. For example, the
functions μ such that

lim|x |→0

μ(|x |)
|x |k2 = l, l > 0,

verify (H6).
The result below states the optimality of the constant co(N + k2) in the Hardy inequality.

Theorem 3 In the hypotheses (H2–H6), the Hardy inequality (6)does not hold for anyϕ ∈ H1
μ

if c > co(N + k2) =
(

N+k2−2
2

)2
.

Proof Let θ ∈ C∞
c (RN ) be a cut-off function, 0 ≤ θ ≤ 1, θ = 1 in B1 and θ = 0 in Bc

2 . We
introduce the function:

ϕε(x) =
⎧⎨
⎩

(ε + |x |)η if |x | ∈ [0, 1[,
(ε + |x |)ηθ(x) if |x | ∈ [1, 2[,
0 if |x | ∈ [2,+∞[,

where ε > 0 and the exponent η is such that

max

{
−√

c,− N + k2
2

}
< η < min

{
− N + k2 − 2

2
, 0

}
.

The function ϕε belongs to H1
μ for any ε > 0.

For this choice ofη, we obtainη2 < c, |x |2η ∈ L1
loc(R

N , dμ) and |x |2η−2 /∈ L1
loc(R

N , dμ).
Let us assume that c > co(N + k2). In order to state the result, we prove that bottom of

the spectrum of the operator −(L + V ):

λ1 = inf
ϕ∈H1

μ\{0}

(∫
RN |∇ϕ|2 dμ − ∫

RN
c

|x |2 ϕ
2 dμ∫

RN ϕ2 dμ

)
, (10)

is −∞. For this purpose, we estimate at first the numerator in (10) with ϕ = ϕε.

123



1178 A. Canale et al.

∫
RN

(
|∇ϕε|2 − c

|x |2 ϕ2
ε

)
dμ

=
∫

B1

[
|∇(ε + |x |)η|2 − c

|x |2 (ε + |x |)2η
]
dμ

+
∫

Bc
1

[
|∇(ε + |x |)ηθ |2 − c

|x |2 (ε + |x |)2ηθ2
]
dμ

≤
∫

B1

[
η2(ε + |x |)2η−2 − c

|x |2 (ε + |x |)2η
]
dμ

+ η2
∫

Bc
1

(ε + |x |)2η−2θ2 dμ +
∫

Bc
1

(ε + |x |)2η|∇θ |2 dμ

+ 2η
∫

Bc
1

θ(ε + |x |)2η−1 x

|x | · ∇θ dμ

≤
∫

B1

(ε + |x |)2η
[

η2

(ε + |x |)2 − c

|x |2
]
dμ

+ 2η2
∫

Bc
1

(ε + |x |)2η−2θ2 dμ + 2
∫

Bc
1

(ε + |x |)2η|∇θ |2 dμ

≤
∫

B1

(ε + |x |)2η
[

η2

(ε + |x |)2 − c

|x |2
]
dμ + C1, (11)

where C1 = (
2η2 + 2‖∇θ‖∞

) ∫
Bc
1
dμ.

Furthermore, ∫
RN

ϕ2
ε dμ ≥

∫
B2\B1

(ε + |x |)2ηθ2 dμ = C2,ε. (12)

Putting together (11) and (12), we get from (10):

λ1 ≤
∫

B1
(ε + |x |)2η

[
η2

(ε+|x |)2 − c
|x |2

]
dμ + C1

C2,ε
.

Letting ε → 0 in the numerator above, taking in mind that |x |2η ∈ L1
loc(R

N , dμ) and Fatou’s
lemma, we obtain:

lim
ε→0

∫
B1

(ε + |x |)2η
[

η2

(ε + |x |)2 − c

|x |2
]
dμ ≤ −(c − η2)

∫
B1

|x |2η−2 dμ = −∞,

and then, λ1 = −∞. �


4 Kolmogorov operators and existence and nonexistence results

In the standard setting, one considers μ ∈ C1,λ
loc (RN ) for some λ ∈ (0, 1) and μ > 0 for any

x ∈ R
N .

We consider Kolmogorov operators:

Lu = �u + ∇μ

μ
· ∇u, (13)

on smooth functions, where the probability density μ in the drift term is not necessarily

(1, λ)-Hölderian in the whole space but belongs to C1,λ
loc (RN \{0}).

123



A class of weighted Hardy inequalities and applications to… 1179

These operators arise from the bilinear form integrating by parts:

aμ(u, v) =
∫
RN

∇u · ∇v dμ = −
∫
RN

(Lu)v dμ.

The purpose is to get existence and nonexistence results for weak solutions to the initial value
problem on L2

μ corresponding to the operator L perturbed by an inverse square potential:

(P)

{
∂t u(x, t) = Lu(x, t) + V (x)u(x, t), x ∈ R

N , t > 0,
u(·, 0) = u0 ≥ 0 ∈ L2

μ,

where V (x) = c
|x |2 , with c > 0.

We say that u is a weak solution to (P) if, for each T , R > 0, we have:

u ∈ C([0, T ] , L2
μ), V u ∈ L1(BR × (0, T ) , dμdt)

and ∫ T

0

∫
RN

u(−∂tφ − Lφ) dμdt −
∫
RN

u0φ(·, 0) dμ =
∫ T

0

∫
RN

V uφ dμdt

for all φ ∈ W 2,1
2 (RN × [0, T ]) having compact support with φ(·, T ) = 0, where BR denotes

the open ball of RN of radius R centered at 0. For any � ⊂ R
N , W 2,1

2 (� × (0, T )) is the
parabolic Sobolev space of the functions u ∈ L2(� × (0, T )) having weak space derivatives
Dα

x u ∈ L2(�× (0, T )) for |α| ≤ 2 and weak time derivative ∂t u ∈ L2(�× (0, T )) equipped
with the norm:

‖u‖W 2,1
2 (�×(0,T ))

:=
⎛
⎝‖u‖2L2(�×(0,T ))

+ ‖∂t u‖2L2(�×(0,T ))

+
∑

1≤|α|≤2

‖Dαu‖2L2(�×(0,T ))

⎞
⎠

1
2

.

Let us assume that the function μ is a probability density on RN , μ > 0. In the hypothesis

(H7) μ ∈ C1,λ
loc (RN ), λ ∈ (0, 1),

it is known that the operator L with domain

Dmax(L) = {u ∈ Cb(R
N ) ∩ W 2,p

loc (RN ) for all 1 < p < ∞, Lu ∈ Cb(R
N )}

is the weak generator of a not necessarily C0-semigroup in Cb(R
N ). Since

∫
RN Lu dμ = 0

for any u ∈ C∞
c (RN ), dμ = μ(x)dx is the invariant measure for this semigroup in Cb(R

N ).
So, we can extend it to a positivity preserving and analytic C0-semigroup {T (t)}t≥0 on L2

μ,
whose generator is still denoted by L (see [24]).

When the assumptions on μ allow degeneracy at one point, we require the following
conditions to get that L generates a semigroup:

(H8) μ ∈ C1,λ
loc (RN \{0}), λ ∈ (0, 1), μ ∈ H1

loc(R
N ), ∇μ

μ
∈ Lr

loc(R
N ) for some r > N ,

and infx∈K μ(x) > 0 for any compact set K ⊂ R
N .

So by [1, Corollary 3.7], we have that the closure of (L, C∞
c (RN )) on L2

μ generates a strongly
continuous and analytic Markov semigroup {T (t)}t≥0 on L2

μ.
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We observe that the function e−δ|x |m fully satisfies the condition (H8) while cos e−|x |2 is
(1, λ)-Hölderian in R

N (see Examples in Sect. 2).
For weight functions μ satisfying assumption (H7) or (H8), there are some interesting

properties regarding the semigroup {T (t)}t≥0 generated by the operator L . These properties
listed in the Proposition below are well known under hypothesis (H7) (see [24]) and have
been proved in [9] if μ satisfies (H8).

Proposition 1 Assume that μ satisfies (H7) or (H8). Then, the following assertions hold:

(i) D(L) ⊂ H1
μ.

(ii) For every f ∈ D(L), g ∈ H1
μ we have:

∫
L f g dμ = −

∫
∇ f · ∇g dμ.

(iii) T (t)L2
μ ⊂ D(L) for all t > 0.

The followingTheorem stated in [20] for functionsμ satisfying condition (H7) was proved
in [9] for functions μ under condition (H8).

Theorem 4 Let 0 ≤ V (x) ∈ L1
loc(R

N ). Assume that the weight function μ satisfies H4), H5)

and H8). Then, the following assertions hold:

(i) If λ1(L + V ) > −∞, then there exists a positive weak solution u ∈ C([0,∞), L2
μ) of

(P) satisfying
‖u(t)‖L2

μ
≤ Meωt‖u0‖L2

μ
, t ≥ 0 (14)

for some constants M ≥ 1 and ω ∈ R.
(ii) If λ1(L + V ) = −∞, then for any 0 ≤ u0 ∈ L2

μ\{0}, there is no positive weak solution
of (P) satisfying (14).

To get existence and nonexistence of solutions to (P), we put together the weighted Hardy
inequality (2), Theorems 3 and 4. So, we can state the following result.

Theorem 5 Assume that the weight function μ satisfies hypotheses (H2–H6), (H8) and 0 ≤
V (x) ≤ c

|x |2 . The following assertions hold:

(i) If 0 ≤ c ≤ co(N + k2) =
(

N+k2−2
2

)2
, then there exists a positive weak solution

u ∈ C([0,∞), L2
μ) of (P) satisfying

‖u(t)‖L2
μ

≤ Meωt‖u0‖L2
μ
, t ≥ 0 (15)

for some constants M ≥ 1, ω ∈ R, and any u0 ∈ L2
μ.

(ii) If c > co(N +k2), then for any 0 ≤ u0 ∈ L2
μ, u0 �= 0, there is no positive weak solution

of (P) with V (x) = c
|x |2 satisfying (15).
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