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Abstract
In this paper, extending our previous joint work (Hu et al., Math Nachr 291:343–373, 2018),
we initiate the study of Hopf hypersurfaces in the homogeneousNK (nearly Kähler) manifold
S3×S3. First, we show that any Hopf hypersurface of the homogeneous NK S3×S3 does not
admit two distinct principal curvatures. Then, for the important class of Hopf hypersurfaces
with three distinct principal curvatures, we establish a complete classification under the
additional condition that their holomorphic distributions {U }⊥ are preserved by the almost
product structure P of the homogeneous NK S3 × S3.

Keywords Nearly Kähler manifold S3 × S3 · Hopf hypersurface · Principal curvature ·
Holomorphic distribution · Almost product structure
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1 Introduction

Let M̄ be an almost Hermitian manifold with almost complex structure J . Given a connected
orientable real hypersurface M of M̄ , there appears an important notion the structure vector
field defined by U := −Jξ , where ξ is the unit normal vector field. If the integral curves
of U are geodesics, then it is well known that M is called a Hopf hypersurface. During the
last four decades, Hopf hypersurfaces of the complex space forms and several other almost
Hermitian manifolds have been extensively and deeply investigated, for details we refer to
[4,10,20,21,24] and [5,6,15] and the references therein. Recall that a nearly Kähler (NK)
manifold is an almost Hermitian manifold such that the covariant derivative of the almost
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complex structure J is skew-symmetric. It is well known fromNagy’s classification of nearly
Kähler manifolds [23] that the six-dimensional ones are important construction factor, and
fromButruille [8,9] that the only homogeneous 6-dimensional NKmanifolds are the 6-sphere
S6, the S3×S3, the complex projective spaceCP3 and the flagmanifold SU (3)/U (1)×U (1),
and moreover from Foscolo and Haskins [13] that both S6 and S3×S3 admit inhomogeneous
NK structures.

Notice that the Riemannian geometric invariants of the homogeneous NK S3 × S3 were
systematically presented by Bolton et al. [7]. Since then the study of the canonical submani-
folds of the homogeneous NK S3×S3 becomes quite active andmany interesting results have
been obtained. This includes the results about almost complex surfaces in [7,11,18], about
Lagrangian and CR submanifolds in [1–3,12,19,26]. Nevertheless, about hypersurfaces the
results are few that appear only in [16,17].

The goal of this paper is to study Hopf hypersurfaces in the homogeneous NK S3 × S3.
In this situation, according to Proposition 1 of [5], the Hopf condition is equivalent to that
the structure vector field is a principal curvature vector field of the hypersurface.

Our first concern is Hopf hypersurfaces with two distinct principal curvatures. The result
we obtain is the following:

Theorem 1.1 No Hopf hypersurface in the homogeneous NK S3 × S3 admits exactly two
distinct principal curvatures.

Our next concern isHopf hypersurfaceswith three distinct principal curvatures. It turns out
that hypersurfaces of this class are quite complicated and examples of at least three families
appear. As the second main result of this paper, we obtain a classification of them under the
additional/natural condition that their holomorphic distributions {U }⊥ are preserved by the
almost product structure P of the homogeneous NK S3 × S3. Before stating the result, we
would recall that, according to Moruz and Vrancken [22] and Podestà and Spiro [25], the
following three maps

(1) F1 : S3 × S3 → S3 × S3 with F1(p, q) = (q, p),
(2) F2 : S3 × S3 → S3 × S3 with F2(p, q) = ( p̄, q p̄),
(3) Fabc : S3 × S3 → S3 × S3 with Fabc(p, q) = (apc̄, bqc̄) for any unitary quaternions

a, b, c

are isometries of the NK S3 × S3. Then, the result can be stated as follows:

Theorem 1.2 Let M be a Hopf hypersurface of the homogeneous NK S3 × S3 with three
distinct principal curvatures. If P{U }⊥ = {U }⊥, then, up to isometries of type Fabc, M is
locally given by one of the following embeddings fr , f ′

r and f ′′
r : S3×S2 → S3×S3 defined

by:

fr (x, y) = (x,
√
1 − r2 + ry), f ′

r = F1 ◦ fr , f ′′
r = F2 ◦ fr ,

where 0 < r ≤ 1, x ∈ S3, y ∈ S2 ⊂ R
3, and as usual S3 (resp. S2) is regarded as the set of

the unitary (resp. imaginary) quaternions in the quaternion space H.

Remark 1.1 Let M (r)
1 , M (r)

2 , M (r)
3 denote the images of the three embeddings fr , f ′

r , f ′′
r ,

respectively. Then, for 0 < r ≤ 1, M (r)
1 , M (r)

2 and M (r)
3 correspond to the three possibilities

of the action P on the unit normal vector field ξ , which we shall establish in Proposition 5.1.

Remark 1.2 Theorem 1.2 is an extension of the previous result in [16], where the hyper-
surfaces M (r)

1 , M (r)
2 , M (r)

3 corresponding to r = 1 were characterized by the property of

123



On Hopf hypersurfaces of the homogeneous nearly Kähler S3 × S3 1149

satisfying Aφ = φA, where A is the shape operator of the hypersurfaces and φ is the almost
contact structure induced from J . Moreover, it is worthy to mention that each of the hyper-
surfaces M (r)

1 , M (r)
2 and M (r)

3 is minimal if and only if r = 1.

Remark 1.3 Theorem 1.2 shows that Niebergall and Ryan’s observation (cf. p.234 of [24]),
which states that certain interesting classes of hypersurfaces in the complex space forms can
be characterized by conditions on the holomorphic distribution {U }⊥, is similarly valid for
the homogeneous NK S3 × S3. On the other hand, at the moment we do not know if there
exist Hopf hypersurfaces of the homogeneous NK S3 × S3 that have three distinct principal
curvatures and satisfy P{U }⊥ 	= {U }⊥.

2 Preliminaries

2.1 The homogeneous NK structure on S3 × S3

One can look the classical and comprehensive study of the NK manifolds from [14]. In this
section, we first collect some necessary materials from [7]. Let us denote by S3 the 3-sphere
in R

4 as the set of all unitary quaternions. By the natural identification T(p,q)(S3 × S3) ∼=
TpS3 ⊕ TqS3, we write a tangent vector at (p, q) ∈ S3 ×S3 as Z(p, q) = (U(p,q), V(p,q)) or
simply Z = (U , V ). The well-known almost complex structure J on S3 × S3 is defined by

J Z(p, q) = 1√
3
(2pq−1V −U ,−2qp−1U + V ). (2.1)

On S3 × S3, we can define a Hermitian metric g compatible with J by

g(Z , Z ′) = 1
2 (〈Z , Z ′〉 + 〈J Z , J Z ′〉)

= 4
3 (〈U ,U ′〉 + 〈V , V ′〉) − 2

3 (〈p−1U , q−1V ′〉 + 〈p−1U ′, q−1V 〉), (2.2)

where Z = (U , V ) and Z ′ = (U ′, V ′) are tangent vectors, and 〈·, ·〉 is the standard product
metric on S3 × S3. Then, {g, J } gives the homogeneous NK structure on S3 × S3.

Let ∇̃ be the Levi-Civita connection with respect to g, and as usual we define a (1, 2)-
tensor field G by G(X , Y ) := (∇̃X J )Y for X , Y ∈ T (S3 ×S3). Then, we have the following
formulas for G:

G(X , Y ) + G(Y , X) = 0, (2.3)

G(X , JY ) + JG(X , Y ) = 0, (2.4)

g(G(X , Y ), Z) + g(G(X , Z), Y ) = 0, (2.5)

g(G(X , Y ),G(Z ,W )) = 1
3

[
g(X , Z)g(Y ,W ) − g(X ,W )g(Y , Z)

+ g(J X , Z)g(JW , Y ) − g(J X ,W )g(J Z , Y )
]
. (2.6)

An almost product structure P on S3 × S3 is introduced by

PZ = (pq−1V , qp−1U ), ∀ Z = (U , V ) ∈ T(p,q)(S3 × S3). (2.7)

It is easily seen that P is compatible with the metric g, i.e., P is symmetric with respect to
g. Also P is anti-commutative with J . Moreover, with respect to G and P , we further have

2(∇̃X P)Y = JG(X , PY ) + J PG(X , Y ), (2.8)

PG(X , Y ) + G(PX , PY ) = 0. (2.9)
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Note also that in terms of P the usual product structure Q, defined by Q(Z) = (−U , V )

for Z = (U , V ), can be expressed by

QZ = 1√
3
(2P J Z − J Z). (2.10)

For the NK S3 × S3, we also need the useful relation between the NK connection ∇̃ and
the usual Euclidean connection ∇E (cf. Lemma 2.2 of [11] and Remark 2.5 of [12]):

∇E
X Y = ∇̃XY + 1

2 [JG(X , PY ) + JG(Y , PX)]. (2.11)

The Riemannian curvature tensor R̃ of the NK S3 × S3 is given by

R̃(X , Y )Z = 5
12

[
g(Y , Z)X − g(X , Z)Y

]

+ 1
12

[
g(JY , Z)J X − g(J X , Z)JY − 2g(J X , Y )J Z

]

+ 1
3

[
g(PY , Z)PX − g(PX , Z)PY

+ g(J PY , Z)J PX − g(J PX , Z)J PY
]
.

(2.12)

2.2 Hypersurfaces of the NK S3 × S3

Let M be a hypersurface of the NK S3 × S3 with unit normal vector field ξ . For any vector
field X tangent to M , we have the decomposition

J X = φX + η(X)ξ, (2.13)

where φX and η(X)ξ are the tangent and normal parts of J X , respectively. Then, φ is a
tensor field of type (1, 1), η is a 1-form on M . By definition, the following relations hold:

{
η(X) = g(X ,U ), η(φX) = 0, φ2X = −X + η(X)U , φU = 0,

g(φX , Y ) = −g(X , φY ), g(φX , φY ) = g(X , Y ) − η(X)η(Y ),
(2.14)

where U := −Jξ is called the structure vector field of M . Equation (2.14) shows that
(φ,U , η, g) determines an almost contact metric structure over M .

Let ∇ be the induced connection on M and R its Riemannian curvature tensor. The
formulas of Gauss and Weingarten state that

∇̃XY = ∇XY + h(X , Y ), ∇̃X ξ = −AX , ∀ X , Y ∈ T M, (2.15)

where h is the second fundamental form and A is the shape operator. They are related by
h(X , Y ) = g(AX , Y )ξ . Using the formulas of Gauss and Weingarten, we can easily show
that

∇XU = φAX − G(X , ξ). (2.16)

The Gauss and Codazzi equations of M are given by

R(X , Y )Z = 5
12

[
g(Y , Z)X − g(X , Z)Y

]

+ 1
12

[
g(JY , Z)φX − g(J X , Z)φY − 2g(J X , Y )φZ

]

+ 1
3

[
g(PY , Z)(PX)� − g(PX , Z)(PY )�

+ g(J PY , Z)(J PX)� − g(J PX , Z)(J PY )�
]

+ g(AZ , Y )AX − g(AZ , X)AY ,

(2.17)
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and

(∇X A)Y − (∇Y A)X = 1
12

[
g(X ,U )φY − g(Y ,U )φX − 2g(J X , Y )U

]

+ 1
3

[
g(PX , ξ)(PY )� − g(PY , ξ)(PX)�

+ g(PX ,U )(J PY )� − g(PY ,U )(J PX)�
]
,

(2.18)

where ·� means the tangential part.
Similar to that of the complex space forms, a hypersurface M of the NK S3 ×S3 is a Hopf

hypersurface if and only if the integral curves of its structure vector fieldU are geodesics, i.e.,
∇UU = 0. We denote by α the principal curvature function corresponding to the structure
vector fieldU , i.e., AU = αU . First of all, we shall present two elementary lemmas for Hopf
hypersurfaces of the NK S3 × S3 as follows:

Lemma 2.1 (cf. [17]) Let M be a Hopf hypersurface in the NK S3 × S3. Then, we have

1
6g(φX , Y ) − 2

3

[
g(PX , ξ)g(PY ,U ) − g(PX ,U )g(PY , ξ)

]

= g((α I − A)G(X , ξ), Y ) + g(G((α I − A)X , ξ), Y )

− αg((Aφ + φA)X , Y ) + 2g(AφAX , Y ), X , Y ∈ {U }⊥,

(2.19)

where {U }⊥ denotes the subdistribution of T M that is orthogonal to U, and I denotes the
identity transformation.

Lemma 2.2 Let M be a Hopf hypersurface in the NK S3 × S3 satisfying P{U }⊥ = {U }⊥.
Then, the function α is constant.

Proof By using the Codazzi equation and the symmetry of A, we have the calculation

0 = g((∇U A)Y − (∇Y A)U ,U ) = g((∇U A)U , Y ) − g((∇Y A)U ,U ) = −Yα, Y ∈ {U }⊥.

It follows that ∇α = (Uα)U . Then, for X , Y ∈ {U }⊥, we have
0 = X(Yα) − Y (Xα) = [X , Y ]α = g([X , Y ],U )Uα. (2.20)

If Uα 	= 0 holds on some open set, then (2.20) implies that [X , Y ] ∈ {U }⊥. Thus, {U }⊥ is
integrable which gives four-dimensional almost complex submanifolds of the NK S3 × S3.
This is impossible because, according to Lemma 2.2 of [25], any six-dimensional compact
non-Kähler NK manifold admits no almost complex four-dimensional submanifold. Hence,
Uα = 0 and α is constant. ��

2.3 A canonical distribution related to hypersurfaces of the NK S3 × S3

In order for choosing an appropriate local orthonormal frame of the NK S3 × S3 along its
hypersurface M , following that in [17] we consider

D(p) := Span {ξ(p),U (p), Pξ(p), PU (p)}, p ∈ M .

It is easily seen that, since P is anti-commutative with J , D defines a distribution on M
with dimension exact 2 or 4, and that it is invariant under both J and P . Along M , let D⊥
denote the distribution in T (S3 × S3) that is orthogonal to D at each p ∈ M . For later’s
purpose, we shall make some remarks about dimD:
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(1) If dimD = 4 holds in an open set, then there exists a unit tangent vector field e1 ∈ {U }⊥
and functions a, b, c with c > 0 such that

Pξ = aξ + bU + ce1, a2 + b2 + c2 = 1. (2.21)

Put e2 = Je1. Moreover, from the fact dim D⊥ = 2 and that D⊥ is invariant under the
action of both J and P , we can choose a local unit vector field e3 ∈ D⊥ such that Pe3 = e3.
Now, putting e4 = Je3 and e5 = U , then {ei }5i=1 is a well-defined orthonormal basis of T M
and, acting by P , it has the following properties:

⎧
⎪⎨

⎪⎩

Pξ = aξ + ce1 + be5, Pe1 = cξ − ae1 − be2,

Pe2 = ce5 − be1 + ae2, Pe3 = e3,

Pe4 = −e4, Pe5 = bξ + ce2 − ae5.

(2.22)

(2) If dimD = 2 holds in an open set, then P{U }⊥ = {U }⊥ and we can write

Pξ = aξ + bU , a2 + b2 = 1. (2.23)

Now, D⊥ is a 4-dimensional distribution that is invariant under the action of both J and
P . Hence, we can choose unit vector fields e1, e3 ∈ D⊥ such that Pe1 = e1, Pe3 = e3. Put
e2 = Je1, e4 = Je3 and e5 = U . In this way, we obtain an orthonormal basis {ei }5i=1 of
T M . However, we would remark that such choice of {e1, e3} (resp. {e2, e4}) is unique up to
an orthogonal transformation.

3 The proof of Theorem 1.1

Suppose on the contrary that M is a Hopf hypersurface in the NK S3 × S3 which has two
distinct principal curvatures, say α and λ, with AU = αU . We denote by Vα and Vλ the
corresponding eigen-distributions. By the continuity of the principal curvature functions, we
know that the dimensions (dim Vα, dim Vλ) of the two eigen-distributions have to be one of
the four possibilities: (1, 4), (2, 3), (3, 2) and (4, 1).

Next, we separate the proof of Theorem 1.1 into the proofs of two lemmas, depending on
the dimension ofD.

Lemma 3.1 The case dimD = 4 does not occur.

Proof To argue by contradiction, we assume that dimD = 4 does hold on an open set. Now
we check each possibility of (dim Vα, dim Vλ).

(i) (dim Vα, dim Vλ) = (1, 4) on M .
In this case, it is easy to see that Aφ = φA holds. This is impossible because, according

to Theorem 4.1 of [16], hypersurfaces satisfying Aφ = φAmust have three distinct principal
curvatures.

(ii) (dim Vα, dim Vλ) = (2, 3) on M .
In this case, we can take a local orthonormal frame field {Xi }5i=1 such that

AXi = αXi , i = 1, 5; AX j = λX j , j = 2, 3, 4,

where X2 = J X1, X4 = J X3, X5 = U . Then by using (2.3)–(2.6), we get

G(X1, X4) = G(X2, X3) = −JG(X1, X3),

g(G(X1, X3), Xi ) = 0 for 1 ≤ i ≤ 4, (3.1)
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g(G(X1, X3),G(X1, X3)) = 1
3 . (3.2)

Let {ei }5i=1 be the orthonormal basis as described in (2.22). Then,

X1 = me1 + ne2 + ue3 + ve4, X3 = −ue1 + ve2 + me3 − ne4,

for some functions m, n, u, v; and

X2 = −ne1 + me2 − ve3 + ue4, X4 = −ve1 − ue2 + ne3 + me4.

Now, taking in (2.19), respectively, (X , Y ) = (X1, X3), (X1, X4), (X2, X3), (X2, X4),
we can obtain

2
3c

2mv + 2
3c

2nu = (λ − α)g(G(X1, ξ), X3), (3.3)

− 2
3c

2mu + 2
3c

2nv = (λ − α)g(G(X1, ξ), X4), (3.4)

− 2
3c

2nv + 2
3c

2mu = 2(λ − α)g(G(X2, ξ), X3), (3.5)
2
3c

2nu + 2
3c

2mv = 2(λ − α)g(G(X2, ξ), X4). (3.6)

From (3.4) and (3.5), and, respectively, (3.3) and (3.6), we deduce that

g(G(X1, X3),U ) = 0, g(G(X1, X3), ξ) = 0.

This combining with (3.1) implies that G(X1, X3) = 0, a contradiction to (3.2).
(iii) (dim Vα, dim Vλ) = (3, 2) on M .
In this case, as U ∈ Vα , we have dim(Vα ∩ {U }⊥) = dim Vλ = 2. For an orthonormal

basis {X1, X2} of Vα ∩ {U }⊥, we consider |g(J X1, X2)|, which is obviously independent of
the choice of {X1, X2}, thus gives a well-defined function θ := |g(J X1, X2)| on M , with
0 ≤ θ ≤ 1. Since our concern is only local, in order to prove that Case (iii) does not occur,
we are sufficient to show that the following three subcases do not occur on M .

(iii)-(1) 0 < θ < 1.
In this subcase, we can take a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = αX1, AX2 = αX2, AX3 = λX3, AX4 = λX4, X5 = U ,

where X3 = (J X1 − θX2)/
√
1 − θ2, X4 = (J X2 + θX1)/

√
1 − θ2 and θ = g(J X1, X2).

Moreover, direct calculations give the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J X1 =
√
1 − θ2X3 + θX2, J X2 =

√
1 − θ2X4 − θX1,

J X3 = −
√
1 − θ2X1 − θX4, J X4 = −

√
1 − θ2X2 + θX3,

g(J X1, X2) = −g(J X3, X4) = θ, g(J X1, X3) = g(J X2, X4) =
√
1 − θ2,

g(J X1, X4) = g(J X2, X3) = 0, G(X3, X4) = −G(X1, X2),

G(X1, X3) = −θ√
1−θ2

G(X1, X2), G(X1, X4) = −1√
1−θ2

JG(X1, X2),

G(X2, X3) = 1√
1−θ2

JG(X1, X2), G(X2, X4) = −θ√
1−θ2

G(X1, X2).

(3.7)

Let {ei }5i=1 be the orthonormal basis as described in (2.22) and assume that

Xi =
4∑

j=1

ai j e j , 1 ≤ i ≤ 4.
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Then, by the definition of X3 and X4, we can derive
⎧
⎨

⎩

a31 = −a12−a21θ√
1−θ2

, a32 = a11−a22θ√
1−θ2

, a33 = −a14−a23θ√
1−θ2

, a34 = a13−a24θ√
1−θ2

;
a41 = −a22+a11θ√

1−θ2
, a42 = a21+a12θ√

1−θ2
, a43 = −a24+a13θ√

1−θ2
, a44 = a23+a14θ√

1−θ2
.

(3.8)

Taking, in (2.19), (X , Y ) = (Xi , X j ) for 1 ≤ i < j ≤ 4, and using (3.7) and (2.22), we
get

− 1
6θ + 2

3c
2(a11a22 − a12a21) = 0, (3.9)

2
3
√
1−θ2

c2(a11a21 + a12a22) + 1√
1−θ2

(α − λ)g(G(X1, X2),U ) = 0, (3.10)

2
3
√
1−θ2

c2(a11a21 + a12a22) − 1√
1−θ2

(α − λ)g(G(X1, X2),U ) = 0, (3.11)

2
3
√
1−θ2

c2(−a211 − a212 + (a22a11 − a21a12)θ) +
√
1−θ2

6

− θ√
1−θ2

(α − λ)g(G(X1, X2), ξ) + α(α − λ)
√
1 − θ2 = 0, (3.12)

2
3
√
1−θ2

c2(−a221 − a222 + (a22a11 − a21a12)θ) +
√
1−θ2

6

− θ√
1−θ2

(α − λ)g(G(X1, X2), ξ) + α(α − λ)
√
1 − θ2 = 0, (3.13)

2
3(1−θ2)

c2
[
a21a12 − a11a22 + (a222 + a211 + a221 + a212)θ + (a12a21 − a11a22)θ

2]

− θ
6 − 2(α − λ)g(G(X1, X2), ξ) − 2λ(α − λ)θ = 0. (3.14)

From (3.10), (3.11) and g(X1, X2) = 0, we have

g(G(X1, X2),U ) = 0, a11a21 + a12a22 = 0, a13a23 + a14a24 = 0.

From (3.9), (3.12), (3.13) and g(X1, X1) = g(X2, X2) = 1, we have

a211 + a212 = a221 + a222 	= 0, a213 + a214 = a223 + a224.

Thus, we can write
⎧
⎪⎨

⎪⎩

a11 =
√
a211 + a212 cosω1, a12 =

√
a211 + a212 sinω1;

a21 =
√
a211 + a212 cosω2, a22 =

√
a211 + a212 sinω2.

Then, the fact 0 = a11a21 + a12a22 = (a211 + a212) cos(ω1 − ω2) implies that ω1 − ω2 =
π
2 (2k + 1) for k ∈ Z. Hence, (a21, a22) = ± (a12,−a11). On the other hand, (3.9) implies
that a11a22 − a12a21 = θ

4c2
> 0, so it should be that (a21, a22) = −(a12,−a11).

Similarly, we can prove that (a23, a24) = (a14,−a13). It follows that a211 +a212 = θ
4c2

and

a213 + a214 = 1 − θ
4c2

. On the other hand, by definition, we can finally get

θ =
∑

a1i a2 j g(Jei , e j ) = a11a22 − a12a21 + a13a24 − a14a23 = θ
2c2

− 1,

and thus θ = 2c2

1−2c2
.

Next, from the fact g(G(X1, X2), Xi ) = 0 for 1 ≤ i ≤ 5 and that, by (2.6),

g(G(X1, X2),G(X1, X2)) = 1
3 (1 − θ2),
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we have G(X1, X2) = ±√
(1 − θ2)/3 ξ . Since the discussion is totally similar, we just

consider the case G(X1, X2) = √
(1 − θ2)/3 ξ . We calculate the connections {∇Xi X j } so

that we can apply for the Codazzi equations.
Put ∇Xi X j = ∑


k
i j Xk with 
k

i j = −

j
ik , 1 ≤ i, j, k ≤ 5.

Then, on the one hand, by definition and the Gauss–Weingarten formulas, we have

G(X1, ξ) = −
5∑

i=1


i
15Xi + α J X1.

On the other hand, using G(X1, ξ) = ∑
i g(G(X1, ξ), Xi )Xi , we easily get

G(X1, ξ) = −
√

1−θ2

3 X2 +
√
3
3 θX3.

From the above calculations and (3.7), it follows that


1
15 = 0, 
2

15 = αθ +
√

1−θ2

3 , 
3
15 = α

√
1 − θ2 −

√
3
3 θ, 
4

15 = 0. (3.15)

Analogously, calculating G(Xi , ξ) = (∇̃Xi J )ξ for 2 ≤ i ≤ 4, we can further obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


1
25 = −αθ −

√
1−θ2

3 , 
2
25 = 0, 
3

25 = 0, 
4
25 = α

√
1 − θ2 −

√
3
3 θ,


1
35 = −λ

√
1 − θ2 +

√
3
3 θ, 
2

35 = 0, 
3
35 = 0, 
4

35 = −λθ −
√

1−θ2

3 ,


1
45 = 0, 
2

45 = −λ
√
1 − θ2 +

√
3
3 θ, 
3

45 = λθ +
√

1−θ2

3 , 
4
45 = 0.

(3.16)

Now, we are ready to calculate (∇U A)ei − (∇ei A)U for 1 ≤ i ≤ 4.
On the one hand, using ei = ∑4

j=1 a ji X j and the preceding results (3.15) and (3.16),

direct calculations give the {U }⊥-components of (∇U A)ei − (∇ei A)U :

⎛

⎜⎜⎜
⎝

(∇U A)e1 − (∇e1 A)U

(∇U A)e2 − (∇e2 A)U

(∇U A)e3 − (∇e3 A)U

(∇U A)e4 − (∇e4 A)U

⎞

⎟⎟⎟
⎠

{U }⊥

= BC

⎛

⎜⎜⎜
⎝

X1

X2

X3

X4

⎞

⎟⎟⎟
⎠

,

where

B = (ai j )
T =

⎛

⎜⎜
⎝

a11 −a12 −a12
√

(1 − θ)/(1 + θ) −a11
√

(1 − θ)/(1 + θ)

a12 a11 a11
√

(1 − θ)/(1 + θ) −a12
√

(1 − θ)/(1 + θ)

a13 a14 −a14
√

(1 + θ)/(1 − θ) a13
√

(1 + θ)/(1 − θ)

a14 −a13 a13
√

(1 + θ)/(1 − θ) a14
√

(1 + θ)/(1 − θ)

⎞

⎟⎟
⎠ ,

C = (Ci j ) :=

⎛

⎜⎜
⎝

U (α) 0 (α − λ)(
3
51 − 
3

15) (α − λ)
4
51

0 U (α) (α − λ)
3
52 (α − λ)(
4

52 − 
4
25)

(λ − α)
1
53 (λ − α)
2

53 U (λ) (λ − α)
4
35

(λ − α)
1
54 (λ − α)
2

54 (λ − α)
3
45 U (λ)

⎞

⎟⎟
⎠ .

On the other hand, using the Codazzi equation (2.18), ei = ∑4
j=1 a ji X j and (2.22),

another calculation for the {U }⊥-components of (∇U A)ei − (∇ei A)U can be carried out to
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obtain:
⎛

⎜⎜⎜
⎝

(∇U A)e1 − (∇e1 A)U

(∇U A)e2 − (∇e2 A)U

(∇U A)e3 − (∇e3 A)U

(∇U A)e4 − (∇e4 A)U

⎞

⎟⎟⎟
⎠

{U }⊥

= (D + E)

⎛

⎜⎜⎜
⎝

X1

X2

X3

X4

⎞

⎟⎟⎟
⎠

,

where

D = (Di j ) :=

⎛

⎜⎜⎜⎜⎜⎜
⎝

− 2ab
3 a11

2ab
3 a12

2aba12
3

√
1−θ
1+θ

2aba11
3

√
1−θ
1+θ

2ab
3 a12

2ab
3 a11

2aba11
3

√
1−θ
1+θ

− 2aba12
3

√
1−θ
1+θ

b
3a13

b
3a14 − ba14

3

√
1+θ
1−θ

ba13
3

√
1+θ
1−θ

− b
3a14

b
3a13 − ba13

3

√
1+θ
1−θ

− ba14
3

√
1+θ
1−θ

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

E = (Ei j ) :=

⎛

⎜⎜⎜⎜⎜⎜
⎝

8a2−3
12 a12

8a2−3
12 a11

(8a2−3)a11
12

√
1−θ
1+θ

− (8a2−3)a12
12

√
1−θ
1+θ

3−8b2
12 a11

8b2−3
12 a12

(8b2−3)a12
12

√
1−θ
1+θ

(8b2−3)a11
12

√
1−θ
1+θ

1−4a
12 a14 − 1−4a

12 a13
(1−4a)a13

12

√
1+θ
1−θ

(1−4a)a14
12

√
1+θ
1−θ

− 1+4a
12 a13 − 1+4a

12 a14
(1+4a)a14

12

√
1+θ
1−θ

− (1+4a)a13
12

√
1+θ
1−θ

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

In this way, we obtain the equation BC = D+ E . This can be written in equivalent form:
Ci j = ∑

k aik(Dkj + Ekj ) for 1 ≤ i, j ≤ 4. Then, since by (3.16) we have

C11 − C22 = 0, C12 + C21 = 0, C33 − C44 = 0, C34 + C43 = 0,

it follows that LF = 0, where L = (a211 − a212, a
2
13 − a214, a11a12, a13a14), and

F =

⎛

⎜⎜
⎝

−2ab a2 − b2 (b2 − a2)(1 − θ)2 2ab(1 − θ)2

b a −a(1 + θ)2 −b(1 + θ)2

2(a2 − b2) 4ab −4ab(1 − θ)2 2(b2 − a2)(1 − θ)2

−2a 2b −2b(1 + θ)2 2a(1 + θ)2

⎞

⎟⎟
⎠ .

Now, direct calculation gives that det F = −64θ2(a2 + b2)3.

If det F = 0, then c = 1 and this contradicts to θ = 2c2

1−2c2
∈ (0, 1). If det F 	= 0, then

L = 0 and thus a11 = a12 = a13 = a14 = 0, which is also a contradiction.
In summary, we have shown that (iii)-(1) does not occur.
(iii)-(2) θ = 0.
In this case, we have J {Vα ∩ {U }⊥} = Vλ. Take a local orthonormal frame field {Xi }5i=1

of M such that

AX1 = αX1, AX2 = αX2, AX3 = λX3, AX4 = λX4, AX5 = αX5,

where X3 = J X1, X4 = J X2, X5 = U . It follows that

g(G(X1, X2), Xi ) = 0, 1 ≤ i ≤ 4; g(G(X1, X2),G(X1, X2)) = 1
3 .

Assume that Xi = ∑4
j=1 ai j e j for 1 ≤ i ≤ 4. Then taking in (2.19) that (X , Y ) = (Xi , X j )

for each 1 ≤ i, j ≤ 4, we can still get the equations from (3.9) up to (3.14) but with θ = 0.
From (3.9) and (3.14) corresponding to θ = 0, we get g(G(X1, X2), ξ) = 0. Then, by (3.10)
and (3.11), we obtain g(G(X1, X2),U ) = 0.

It follows that G(X1, X2) = 0, a contradiction to g(G(X1, X2),G(X1, X2)) = 1
3 .
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(iii)-(3) θ = 1.
In this case, both Vα ∩{U }⊥ and Vλ are J -invariant. Then, it is easily seen that M satisfies

Aφ = φA, and according to Theorem 4.1 of [16] oncemore we get as desired a contradiction.
(iv) (dim Vα, dim Vλ) = (4, 1) on M .
In this case, we can take a local orthonormal basis {Xi }5i=1 such that

AX1 = λX1, AX2 = αX2, AX3 = αX3, AX4 = αX4, AX5 = αX5,

where X2 = J X1, X4 = J X3, X5 = U . Then, as preceding we have

g(G(X1, X3), Xi ) = 0, 1 ≤ i ≤ 4; |G(X1, X3)|2 = 1
3 . (3.17)

Let {ei }5i=1 be the orthonormal basis as described in (2.22) and assume, for some functions
m, n, u, v that X1 = me1 + ne2 + ue3 + ve4, X3 = −ue1 + ve2 + me3 − ne4. Then, by
definition, we have

X2 = −ne1 + me2 − ve3 + ue4, X4 = −ve1 − ue2 + ne3 + me4.

Taking in (2.19), respectively, (X , Y ) = (X1, X3), (X1, X4), (X3, X2), (X4, X2), we get

2
3c

2mv + 2
3c

2nu = (λ − α)g(G(X1, ξ), X3), (3.18)

− 2
3c

2mu + 2
3c

2nv = (λ − α)g(G(X1, ξ), X4), (3.19)

− 2
3c

2mu + 2
3c

2nv = 0, (3.20)
2
3c

2nu + 2
3c

2mv = 0. (3.21)

From these equations, we immediately obtain

g(G(X1, X3),U ) = 0, g(G(X1, X3), ξ) = 0.

This together with (3.17) gives G(X1, X3) = 0, a contradiction to |G(X1, X3)|2 = 1
3 .

This finally completes the proof of Lemma 3.1. ��
Lemma 3.2 The case dimD = 2 does not occur.

Proof Suppose on the contrary that dimD = 2 does hold on M .
Then, we consider each possibility of the dimensions (dim Vα, dim Vλ).
(i) (dim Vα, dim Vλ) = (1, 4) on M .
In this case, we can easily show that M satisfies Aφ = φA. As before by Theorem 4.1 in

[16], this is impossible.
(ii) (dim Vα, dim Vλ) = (2, 3) on M .
In this case, we take a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = αX1, AX2 = λX2, AX3 = λX3, AX4 = λX4, AX5 = αX5,

where X2 = J X1, X4 = J X3, X5 = U . By (2.3)–(2.5), G(X1, ξ) is orthogonal to
Span{ξ,U , X1, X2}, so AG(X1, ξ) = λG(X1, ξ). Then, taking X = X1 in (2.19), we
can get

(α − λ)g(G(X1, ξ), Y ) = (α2 − αλ + 1
6 )g(X2, Y ), ∀ Y ∈ {U }⊥. (3.22)

Notice that g(X2, X3) = g(X2, X4) = 0 and α 	= λ, so (3.22) implies thatG(X1, ξ) = 0.
However, by (2.6) we have |G(X1, ξ)|2 = 1

3 . This is a contradiction.
(iii) (dim Vα, dim Vλ) = (3, 2) on M .
In this case, we take a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = αX1, AX2 = αX2, AX3 = λX3, AX4 = λX4, AX5 = αX5,
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where X5 = U . Taking in (2.19) (X , Y ) = (X1, X2) gives g(φX1, X2) = 0. It follows that
J {Vα ∩ {U }⊥} = Vλ. Then, we can choose a local orthonormal frame field {X̃i }5i=1 such that
X̃1 = X1, X̃2 = J X̃1, X̃3 = X2, X̃4 = J X̃3, X̃5 = U , and moreover, X̃1, X̃3, X̃5 ∈ Vα

and X̃2, X̃4 ∈ Vλ. By identity (2.19) with (X , Y ) equal to (X̃2, X̃3), (X̃2, X̃4), respectively,
we have g(G(X̃2, ξ), X̃3) = g(G(X̃2, ξ), X̃4) = 0. This implies that G(X̃2, ξ) = 0 due to
the obvious fact G(X̃2, ξ) ⊥ Span {ξ,U , X̃1, X̃2}.

However, by (2.6) we have |G(X̃2, ξ)|2 = 1
3 . This is also a contradiction.

(iv) (dim Vα, dim Vλ) = (4, 1) on M .
In this case, we take a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = λX1, AX2 = αX2, AX3 = αX3, AX4 = αX4, AX5 = αX5,

where X2 = J X1, X4 = J X3, X5 = U . By (2.3)–(2.5), G(X1, ξ) is orthogonal to
Span{ξ,U , X1, X2}, so AG(X1, ξ) = αG(X1, ξ). Taking in (2.19) X = X1, we get

(α − λ)g(G(X1, ξ), Y ) = (α2 − αλ + 1
6 )g(X2, Y ), ∀ Y ∈ {U }⊥. (3.23)

Then, similar as in case (ii), from (3.23), the fact g(X2, X3) = g(X2, X4) = 0 and α 	= λ,
we obtain G(X1, ξ) = 0.

However, by (2.6), |G(X1, ξ)|2 = 1
3 . This is a contradiction. ��

4 Examples of Hopf hypersurfaces in S3 × S3

As usual we denote S3 (resp. S2) the set of the unitary (resp. imaginary) quaternions in
the quaternion space H. Then, in this short section, we can describe several of the simplest
examples of Hopf hypersurfaces in the NK S3 × S3.

Examples 4.1 For each 0 < r ≤ 1, we define three families of hypersurfaces M (r)
1 , M (r)

2 and

M (r)
3 in the NK S3 × S3 as below:

M (r)
1 :=

{
(x,

√
1 − r2 + ry) ∈ S3 × S3 | x ∈ S3, y ∈ S2

}
,

M (r)
2 := F1(M

(r)
1 ),

M (r)
3 := F2(M

(r)
1 ).

Remark 4.1 Among the preceding hypersurfaces M (r)
1 , M (r)

2 and M (r)
3 of the NK S3 × S3,

M (r)
1 ,M (r)

2 andM (1)
3 have been carefully discussed, respectively, in Examples 5.1, 5.2 and 5.3

of [16]. As a matter of fact, all of them are Hopf hypersurfaces with three distinct constant

principal curvatures: α = 0 (i.e., AU = 0) of multiplicity 1, λ =
√
1−r2
2r −

√
3−2r2

2
√
3r

of

multiplicity 2, and β =
√
1−r2
2r +

√
3−2r2

2
√
3r

of multiplicity 2. The holomorphic distributions

{U }⊥ of these hypersurfaces are all preserved by the almost product structure P of the NK
S3 × S3, but P acts differently on their unit normal vector fields.

Examples 4.2 For each 0 < k, l < 1, k2 + l2 = 1, we can define three families of hypersur-
faces M (k,l)

4 , M (k,l)
5 and M (k,l)

6 in the NK S3 × S3 as below:

M (k,l)
4 := {

(x, (y1, y2, y3, y4)) ∈ S3 × S3 | x ∈ S3, y21 + y22 = k2, y23 + y24 = l2
}
,

M (k,l)
5 := F1(M

(k,l)
4 ),

M (k,l)
6 := F2(M

(k,l)
4 ).
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Remark 4.2 Direct calculations show that all of these three families of hypersurfaces are
Hopf ones, and they have five distinct constant principal curvatures: α = 0 (i.e., AU = 0),

λ1 = 3k−√
9k2+3l2
6l , λ2 = 3k+√

9k2+3l2
6l , λ3 = −3l−√

3k2+9l2
6k , λ4 = −3l+√

3k2+9l2
6k . Similarly,

the holomorphic distributions {U }⊥ of these hypersurfaces are all preserved by the almost
product structure P of the NK S3 × S3, but P acts differently on their unit normal vector
fields.

Remark 4.3 Theorem 1.2 gives a characterization of the Hopf hypersurfaces M (r)
1 , M (r)

2 and

M (r)
3 in the NK S3 × S3. We expect that a similar interesting characterization of the Hopf

hypersurfaces M (k,l)
4 , M (k,l)

5 and M (k,l)
6 in the NK S3 × S3 is possible, but at the moment it

is still not achieved.

5 The proof of Theorem 1.2

This last section is devoted to the proof of Theorem 1.2, which is given in two steps. In the
sequel, we assume that M is a Hopf hypersurface of the NK S3 × S3 with three distinct
principal curvatures α, λ and β such that AU = αU , and that P{U }⊥ = {U }⊥. In particular,
(2.23) holds.

5.1 The principal curvatures and their multiplicities

Let Vα, Vλ and Vβ denote the eigenspaces corresponding to the principal curvatures
α, λ and β, respectively. By the assumption of having three distinct principal curvatures
and the continuity of the principal curvature functions, we know that the dimensions
(dim Vα, dim Vλ, dim Vβ) remain unchanged on M , which, without loss of generality, have
four possibilities: (3, 1, 1), (2, 2, 1), (1, 3, 1) and (1, 2, 2).

First of all, we shall determine the multiplicities of the principal curvatures.

Lemma 5.1 The multiplicities of the three distinct principal curvature functions α, λ, β can
only be 1, 2 and 2, respectively.

Proof Suppose on the contrary that, for the multiplicities of the principal curvatures α, λ

and β, one of the three possibilities (3, 1, 1), (2, 2, 1), (1, 3, 1) does occur. Then, for each
possible case, we shall derive a contradiction by using Lemma 2.1.

(i) (dim Vα, dim Vλ, dim Vβ) = (3, 1, 1) on M .
We take a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = λX1, AX2 = βX2, AX3 = αX3, AX4 = αX4, X5 = U .

Taking in (2.19) (X , Y ) = (X3, X4), we get g(φX3, X4) = 0, which implies that J {Vλ ⊕
Vβ} = Vα ∩ {U }⊥. So we can further choose X3 = J X1 and X4 = J X2. Then, we easily
show that G(X1, X2) ∈ Span{ξ,U }, and by (2.6), we have |G(X1, X2)|2 = 1

3 .
Now, taking in (2.19) (X , Y ) = (X1, X3), (X2, X4), (X2, X3), (X1, X2), respectively,

we obtain

α2 − αλ = − 1
6 , α2 − αβ = − 1

6 , (5.1)

(α − β)g(G(X1, X2),U ) = 0, (2α − λ − β)g(G(X1, X2), ξ) = 0. (5.2)
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From (5.2), α − β 	= 0 and the preceding results, we see that g(G(X1, X2), ξ) 	= 0 and
λ + β = 2α. On the other hand, from (5.1) we get 2α2 − α(λ + β) = − 1

3 . But this is a
contradiction to λ + β = 2α.

(ii) (dim Vα, dim Vλ, dim Vβ) = (2, 2, 1) on M .
In this case,we can define a function θ := |g(J X , Y )|onM for unit vectors X ∈ Vα∩{U }⊥

and Y ∈ Vβ . Since 0 ≤ θ ≤ 1 and that our concern is only local, in order to prove that Case
(ii) does not occur, it is sufficient to show that the following three subcases do not occur on
M .

(ii)-(a) 0 < θ < 1.
In this subcase, we have the decomposition J X = W + g(J X , Y )Y and 0 	= W ∈ Vλ.

Then, we can take a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = αX1, AX2 = βX2, AX3 = λX3, AX4 = λX4, X5 = U ,

where X3 = (J X1 − θX2)/
√
1 − θ2, X4 = (J X2 + θX1)/

√
1 − θ2 and θ = g(J X1, X2).

It follows that G(X1, X2) ∈ Span{ξ,U } and, by (2.6), |G(X1, X2)|2 = (1 − θ2)/3.
Moreover, it is easily seen that with respect to the frame field {Xi }5i=1, all relations of (3.7)
hold.

Then, taking in (2.19) that (X , Y ) = (X1, X4) and making use of (3.7), we get

0 = (λ − α)g(G(X1, X2),U ).

It follows that g(G(X1, X2),U ) = 0 and G(X1, X2) = ±√
(1 − θ2)/3 ξ .

In case G(X1, X2) = −√
(1 − θ2)/3 ξ , with respect to the normal vector ξ̃ = −ξ , we

have G(X1, X2) = √
(1 − θ2)/3 ξ̃ , and the principal curvatures become α̃ = −α, λ̃ = −λ,

β̃ = −β, and X1, X5 ∈ Vα̃ , X2 ∈ Vβ̃ , X3, X4 ∈ Vλ̃. So it is sufficient to show that

G(X1, X2) = √
(1 − θ2)/3 ξ .

Taking in (2.19), respectively, (X , Y ) = (X1, X2), (X1, X3), (X2, X4), (X3, X4), and
making use of (3.7), we have

− θ
6 = (α − β)

√
1−θ2

3 + (α2 − αβ)θ, (5.3)
√
3α +

√
3

6(α−λ)
= θ√

1−θ2
, (5.4)

−
√
1−θ2

6 = −
√
3
3 (2α − λ − β)θ + (αλ + αβ − 2λβ)

√
1 − θ2, (5.5)

−√
3λ −

√
3

12(α−λ)
=

√
1−θ2

θ
. (5.6)

From these equations, we can derive a contradiction. Indeed, from (5.4) and (5.6), we
have √

3(α − λ) +
√
3

12(α−λ)
= 1

θ
√
1−θ2

. (5.7)

It follows that α − λ = 1±√
1−θ2+θ4

2θ
√

3(1−θ2)
. Then, from (5.4), (5.6) and (5.3) we get

α = −1+θ2±√
1−θ2+θ4

θ
√

3(1−θ2)
, λ = −3+2θ2±√

1−θ2+θ4

2θ
√

3(1−θ2)
, β = ±(2−θ2+θ4)−2(1−θ2)

√
1−θ2+θ4

2
√
3θ

√
(1−θ2)(1−θ2+θ4)

.

Now, substituting α, λ and β into (5.5), we get the contradiction
√
1−θ2

3
√
1−θ2+θ4

= 0.
(ii)-(b) θ = 1.
In this subcase, both (Vα∩{U }⊥)⊕Vβ and Vλ are J -invariant.We take a local orthonormal

frame field {Xi }5i=1 of M such that

AX1 = αX1, AX2 = βX2, AX3 = λX3, AX4 = λX4, X5 = U ,
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where X2 = J X1 and X4 = J X3. Then, G(X1, X3) ∈ Span{ξ,U }, and by (2.6), we have
|G(X1, X3)|2 = 1

3 . Taking in (2.19) (X , Y ) = (X1, X3) and (X1, X4), respectively, we
easily get (α − λ)g(G(X1, X3), ξ) = (α − λ)g(G(X1, X4), ξ) = 0. This together with
G(X1, X4) = −JG(X1, X3) implies that G(X1, X3) = 0, which is a contradiction.

(ii)-(c) θ = 0.
In this subcase, J {(Vα ∩{U }⊥)⊕Vβ} = Vλ. Then, we can take a local orthonormal frame

field {Xi }5i=1 of M such that

AX1 = αX1, AX2 = λX2, AX3 = λX3, AX4 = βX4, X5 = U ,

where X2 = J X1 and X4 = J X3. Then, G(X1, X3) ∈ Span{ξ,U } and |G(X1, X3)|2 = 1
3 .

Taking in (2.19) (X , Y ) = (X1, X3) and (X1, X4), respectively, we get

(α − λ)g(G(X1, X3), ξ) = (α − β)g(G(X1, X4), ξ) = 0.

Then similar as the last subcase, we get G(X1, X3) = 0, which is a contradiction.
(iii) (dim Vα, dim Vλ, dim Vβ) = (1, 3, 1) on M .
In this case, we can take a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = βX1, AX2 = λX2, AX3 = λX3, AX4 = λX4, X5 = U ,

where X2 = J X1, X4 = J X3. Then G(X1, X3) ∈ Span{ξ,U } and |G(X1, X3)|2 = 1
3 .

Taking in (2.19) (X , Y ) = (X1, X2), (X1, X3) and (X1, X4), respectively, we have

− 1
6 = αλ + αβ − 2λβ, (5.8)

(2α − λ − β)g(G(X1, X3), ξ) = (2α − λ − β)g(G(X1, X4), ξ) = 0. (5.9)

Then, by (5.9) and the fact g(G(X1, X4), ξ) = g(−JG(X1, X3), ξ) = −g(G(X1, X3),U ),
we get 2α − λ − β = 0. This together with (5.8) gives the contradiction (λ − β)2 = − 1

3 .
We have completed the proof of Lemma 5.1. ��

Next, we shall determine the principal curvatures and show that they are constants. Since
we have the fact dim Vα = 1 and dim Vλ = dim Vβ = 2, without loss of generality, we shall
assume that λ > β. Then, we can state our result as follows:

Lemma 5.2 All the three distinct principal curvatures α, λ and β are constants. More specif-

ically, we have α = 0, λ =
√
1−θ2+1
2
√
3θ

and β =
√
1−θ2−1
2
√
3θ

for some 0 < θ ≤ 1.

Proof It is easily seen that |g(J X , Y )|, for an orthonormal basis {X , Y } of Vλ, defines a
well-defined function θ on M satisfying 0 ≤ θ ≤ 1. Since our concern is only local, in order
to prove Lemma 5.2, by using the continuity of the principal curvature functions and θ , we
are sufficient to consider the following three cases:

(1) 0 < θ < 1 on M .
In this case, we see that JVλ 	= Vβ and Vλ is not J -invariant. Then, we can take a local

orthonormal frame field {Xi }5i=1 of M such that θ = g(J X1, X2) and

AX1 = λX1, AX2 = λX2, AX3 = βX3, AX4 = βX4, AX5 = αX5, (5.10)

where X5 = U , X3 = J X1−θX2√
1−θ2

, X4 = J X2+θX1√
1−θ2

. Thus, G(X1, X2) ∈ Span{ξ,U } and, by
(2.6), |G(X1, X2)|2 = 1

3 (1 − θ2). Moreover, it is easily seen that with respect to the frame
field {Xi }5i=1, all relations of (3.7) hold.
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Taking, in (2.19), (X , Y ) = (X3, X4) and (X , Y ) = (X1, Xi ) for 2 ≤ i ≤ 4, respectively,
and making use of (3.7), we have

− θ
6 = 2(α − λ)g(G(X1, X2), ξ) + 2λ(α − λ)θ, (5.11)

− 1
6

√
1 − θ2 = − θ(2α−λ−β)√

1−θ2
g(G(X1, X2), ξ) + (αλ + αβ − 2λβ)

√
1 − θ2, (5.12)

0 = (2α − λ − β)g(G(X1, X2),U ), (5.13)
θ
6 = −2(α − β)g(G(X1, X2), ξ) + 2β(β − α)θ. (5.14)

If 2α − λ − β = 0, then together with (5.12) we derive a contradiction (λ − β)2 = − 1
3 .

Hence, 2α − λ − β 	= 0. Then from (5.13), we get g(G(X1, X2),U ) = 0, and therefore,
we obtain G(X1, X2) = ±√

(1 − θ2)/3 ξ . Without loss of generality, we shall assume that
G(X1, X2) = −√

(1 − θ2)/3 ξ .
Actually, if it occurs G(X1, X2) = √

(1 − θ2)/3 ξ , then G(X3, X4) = −√
(1 − θ2)/3 ξ

and g(J X3, X4) = −θ < 0. Now, with respect to the normal vector field ξ̃ = −ξ , the
principal curvatures become α̃ = −α, λ̃ = −β and β̃ = −λ, λ̃ > β̃. Putting X̃1 = X3,

X̃2 = −X4, X̃3 = J X̃1−θ X̃2√
1−θ2

, X̃4 = J X̃2+θ X̃1√
1−θ2

and X̃5 = U , then, with respect to the

orthonormal frame field {X̃i }5i=1, as assumed we have G(X̃1, X̃2) = −√
(1 − θ2)/3 ξ̃ and

g(J X̃1, X̃2) = θ > 0.
Having the assumption G(X1, X2) = −√

(1 − θ2)/3 ξ , Eqs. (5.11), (5.12) and (5.14)
become

θ = 4
√
3(α − λ)

√
1 − θ2 + 12λ(λ − α)θ, (5.15)

−
√
1 − θ2 = 2

√
3θ(2α − λ − β) + 6(αλ + αβ − 2λβ)

√
1 − θ2, (5.16)

θ = 4
√
3(α − β)

√
1 − θ2 + 12β(β − α)θ. (5.17)

Then, solving λ and β from (5.15) and (5.17), we obtain

λ + β = 3αθ+
√

3(1−θ2)

3θ , λβ = 4α
√

3(1−θ2)−θ

12θ .

This combiningwith (5.16) gives α(α
√
1 − θ2+ 2θ2−1√

3θ
) = 0. Hence, α = 0 or α = 1−2θ2

θ
√
3−3θ2

.
In conclusion, we can solve the above equations to obtain two possibilities:

Case (1)-(i): α = 0, λ =
√
1−θ2+1
2
√
3θ

, β =
√
1−θ2−1
2
√
3θ

;

Case (1)-(ii): α = 1−2θ2

θ
√

3(1−θ2)
, λ = 2−3θ2+θ

2θ
√

3(1−θ2)
, β = 2−3θ2−θ

2θ
√

3(1−θ2)
.

Before dealing with these two subcases in more details, we need some preparations.
Put ∇Xi X j = ∑


k
i j Xk with 
k

i j = −

j
ik , 1 ≤ i, j, k ≤ 5. First of all, we have

G(X1, ξ) = −
5∑

i=1


i
15Xi + λJ X1.

On the other hand, the facts g(G(X1, X2), ξ) = −√
(1 − θ2)/3 and g(G(X1, X2),U ) = 0

imply that G(X1, ξ) =
√

1−θ2

3 X2 −
√
3
3 θX3. Hence, we obtain


1
15 = 0, 
2

15 = λθ −
√

1−θ2

3 , 
3
15 = λ

√
1 − θ2 +

√
3
3 θ, 
4

15 = 0. (5.18)
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Similarly, calculating G(Xi , ξ) for 2 ≤ i ≤ 4, we can further obtain
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


1
25 = −λθ +

√
1−θ2

3 , 
2
25 = 0, 
3

25 = 0, 
4
25 = λ

√
1 − θ2 +

√
3
3 θ,


1
35 = −β

√
1 − θ2 −

√
3
3 θ, 
2

35 = 0, 
3
35 = 0, 
4

35 = −βθ +
√

1−θ2

3 ,


1
45 = 0, 
2

45 = −β
√
1 − θ2 −

√
3
3 θ, 
3

45 = βθ −
√

1−θ2

3 , 
4
45 = 0.

(5.19)

Now, we calculate g((∇Xi A)X j − (∇X j A)Xi , Xk) for each 1 ≤ i, j, k ≤ 4.
First, by using (2.18) we easily see that g((∇Xi A)X j − (∇X j A)Xi , Xk) = 0.
On the other hand, by using (5.10) we can calculate 0 = g((∇Xi A)X j − (∇X j A)Xi , Xk)

to conclude that X1λ = X2λ = X3β = X4β = 0 that is Xiθ = 0 for 1 ≤ i ≤ 4, and

k
i j = 


j
ik = 0 for i ∈ {1, 2, 3, 4}, j ∈ {1, 2} and k ∈ {3, 4}.

Next, by definition, the above information of {
k
i j } and (3.7), we can get

0 = g(G(X1, X2), X3) = g((∇̃X1 J )X2, X3) =
√
1 − θ2 (
3

14 − 
1
12).

It follows that 
3
14 = 
1

12. Similarly, by calculating 0 = g(G(Xi , X1), X4) for 2 ≤ i ≤ 4,
we further get 
4

23 = 
2
21, 


4
33 = 
2

31 and 
4
43 = 
2

41.

Moreover, by using (3.7) we have g(G(U , X1), X4) = −
√
3
3 , then direct calculation of

its left hand side gives

(
4
53 − 
2

51)
√
1 − θ2 + (
4

52 + 
3
51)θ = −

√
3
3 . (5.20)

Finally, from now onwe assume that PXi = ∑4
j=1 pi j X j for 1 ≤ i ≤ 4, where pi j = p ji

and, by the definition of X3 and X4, we have the following relations:
⎧
⎨

⎩

p23 = p14 − (p11+p22)θ√
1−θ2

, p33 = θ2 p22−p11+2θ2 p11
1−θ2

− 2θ p14√
1−θ2

,

p34 = (p13−p24)θ√
1−θ2

− p12, p44 = 2θ p14√
1−θ2

− p22+θ2 p11
1−θ2

.
(5.21)

Now, we come to discuss Case (1)-(i) and show that in this subcase θ is constant.
For that purpose, we apply for the Codazzi equation (2.18) with (X , Y ) = (U , Xi ) for

1 ≤ i ≤ 4, and then checking the results we obtain the following equations:

3Uλ − p11b − a(p12θ + p13
√
1 − θ2 ) = 0, (5.22)

ap11θ − p12b − ap14
√
1 − θ2 = 0, (5.23)

2ap14θ − 1 − 2p13b + 2
√
3

θ

3
51 + 2ap11

√
1 − θ2 = 0, (5.24)

√
3

θ

4
51 − p14b − ap13θ + ap12

√
1 − θ2 = 0, (5.25)

3Uλ − p22b + ap12θ − ap24
√
1 − θ2 = 0, (5.26)


3
52

√
3(1 − θ2) + bθ

[
(p11 + p22)θ − p14

√
1 − θ2

]

+ aθ(p12 − p12θ
2 + p24θ

√
1 − θ2 ) = 0, (5.27)

2
√
3
4

52(θ
2 − 1) − θ

{
θ2 − 1 + 2p24b(θ

2 − 1)

+ 2a
[
p14θ(θ2 − 1) +

√
1 − θ2(p22 + p11θ

2)
]} = 0, (5.28)

2p14bθ(θ2 − 1) +
√
1 − θ2

[
(2p11b + p22b + 3Uβ)θ2 − p11b − 3Uβ

]

+ a(θ2 − 1)
[
p13 − θ(p24θ + p12

√
1 − θ2 )

] = 0, (5.29)
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b(θ2 − 1)
[
(p24 − p13)θ + p12

√
1 − θ2

]

+ a
[
θ
√
1 − θ2(p22 + p11θ

2) + p14(θ
4 − 1)

] = 0, (5.30)

2p14bθ(θ2 − 1) +
√
1 − θ2

[
p22b + 3Uβ + (p11b − 3Uβ)θ2

]

− a(θ2 − 1)
[
p24 + θ(p12

√
1 − θ2 − p13θ )

] = 0. (5.31)

Calculating (5.22)–(5.26) and (5.29)+(5.31), respectively, we obtain

0 = (p22 − p11)b + a
[ − 2p12θ + (p24 − p13)

√
1 − θ2

]
, (5.32)

0 = a(1 − θ2)
[
(p24 − p13)(1 + θ2) + 2p12θ

√
1 − θ2

]

+b
{
4p14θ(θ2 − 1) +

√
1 − θ2

[
p22 − p11 + (3p11 + p22)θ

2]}. (5.33)

Now, we claim that a 	= 0 holds on M .
Indeed, if otherwise, we assume a(z) = 0 for some z ∈ M . Then, carrying calculations

below at z, we have b = ±1 and, by (5.32), (5.33), (5.23) and (5.30), we have

p22 − p11 = p12 = p24 − p13 = 0, p14 = p11θ√
1−θ2

. (5.34)

From (5.22) and (5.31), we obtain Uλ = −Uβ = 1
3 p11b and thus U (λ + β) = 0. Then,

as λ + β =
√
1−θ2√
3θ

and 0 < θ < 1, we get Uθ = 0 and thus Uλ = Uβ = p11 = 0. From

(5.34), we have p11 = p12 = p22 = p14 = 0.
Finally, we apply for 0 = g(G(PX1, PX2) + PG(X1, X2),U ). By direct calculation of

the right hand side, making use of the fact G(X1, X2) = −
√

1−θ2

3 ξ , (3.7) and (5.21), we get

the contradiction
√
1 − θ2b = 0, which verifies the claim.

As a 	= 0, from (5.23) we solve p14 = ap11θ−p12b
a
√
1−θ2

. Then, from (5.32), (5.33) and (5.30),
we obtain a matrix equation AB = 0, where

A = (p22 − p11, p12, p24 − p13),

B =
⎛

⎜
⎝

b b(1 + θ2) −a

−2aθ
4b2θ+2a2θ(1−θ2)

a −2bθ
a
√
1 − θ2 a

√
1 − θ2(1 + θ2) b

√
1 − θ2

⎞

⎟
⎠ .

The fact det B = 4θ
√
1−θ2

a 	= 0 implies that p22 − p11 = p12 = p24 − p13 = 0. By

(5.22) and (5.31), we have Uλ = −Uβ = 1
3 (p11b + ap13

√
1 − θ2 ). The fact 0 < θ < 1

and λ + β =
√
1−θ2√
3θ

then implies that Uθ = 0. This combining with Xiλ = Xiβ = 0 for
1 ≤ i ≤ 4 shows that θ and so that λ and β are constants on M .

Moreover, from (5.22) up to (5.31), we can finally obtain:

p13 = − p11b
a
√
1−θ2

, p14 = p11θ√
1−θ2

, 
3
51 = 
4

52 = θ(−2p11+a
√
1−θ2)

2a
√
3−3θ2

, 
4
51 = 
3

52 = 0. (5.35)

Then, by
∑4

i=1(p1i )
2 = 1, we get (p11)2 = a2(1 − θ2).

Now, calculating the curvature tensor, we obtain

g(R(X1, X3)X3, X1) = 
5
31


1
53 − 
5

13

1
35 − 
5

13

1
53 = 4p11(1+θ2)−a

√
1−θ2(5+3θ2)

12a
√
1−θ2

. (5.36)

On the other hand, by Gauss equation (2.17) and the fact a2 + b2 = 1, we have

g(R(X1, X3)X3, X1) = a2(10θ2−7−3θ4)−4(p11)2(θ2−2)
12a2(θ2−1)

. (5.37)
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Comparing these two calculations, we get

(p11)
2(2 − θ2) + 3a2(θ2 − 1) + ap11

√
1 − θ2(1 + θ2) = 0.

Then, by using (p11)2 = a2(1 − θ2), we finally get p11 = a
√
1 − θ2. It follows that, by

(5.20), (5.35) and the previous results about pi j , we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p11 = p22 = −p33 = −p44 = a
√
1 − θ2, p12 = p34 = 0,

p13 = p24 = −b, p14 = −p23 = aθ,


3
51 = 
4

52 = − θ

2
√
3
, 
4

53 = 
2
51 −

√
1−θ2

3 .

(5.38)

Later, in Lemma 5.3, we will show that Case (1)-(ii) occurs only if θ =
√
2
2 . But this

implies that Case (1)-(ii) is actually a special situation of Case (1)-(i) with θ =
√
2
2 .

(2) θ = 1 on M .
In this case, it is easy to see that M satisfies Aφ = φA. According to Proposition 5.7 of

[16], the principal curvatures of M are α = 0, λ =
√
3
6 and β = −

√
3
6 . This exactly shows

that expressions of the principal curvatures stated in Case (1)-(i) are valid also for θ = 1.
(3) θ = 0 on M .
In this case, we choose a local orthonormal frame field {Xi }5i=1 of M such that

AX1 = λX1, AX2 = βX2, AX3 = λX3, AX4 = βX4, X5 = U ,

where X2 = J X1 and X4 = J X3. Then G(X1, X3) ∈ Span{ξ,U } and |G(X1, X3)|2 = 1
3 .

Now, taking in (2.19) (X , Y ) = (X1, X2), (X1, X3) and (X1, X4), respectively, we obtain

αβ + αλ − 2λβ = − 1
6 , (5.39)

(α − λ)g(G(X1, X3), ξ) = 0, (2α − λ − β)g(G(X1, X3),U ) = 0. (5.40)

From (5.40), α 	= λ and |G(X1, X3)|2 = 1
3 , we get 2α −λ−β = 0. This combining with

(5.39) gives the contradiction (λ − β)2 = − 1
3 .

We have completed the proof of Lemma 5.2. ��

Lemma 5.3 If Case (1)-(ii) in the proof of Lemma 5.2 does occur, then θ =
√
2
2 .

Proof First of all, according to Lemma 2.2, α is constant. Hence, by the formulas for Case
(1)-(ii) of the proof of Lemma 5.2, also θ, λ and β are constants. Now, since the local
orthonormal frame field {Xi }5i=1 of M satisfy (5.10), we apply for the Codazzi equation
(2.18) with (X , Y ) = (U , Xi ) for 1 ≤ i ≤ 4. Then, by checking the results, as in Case (1)-(i)
we obtain Eqs. (5.22), (5.23), (5.26) and (5.29)–(5.31) with Uλ = Uβ = 0. Moreover, we
have the following additional four equations:

θ
{
2
√
3
3

51 + θ − 2p13b
√
1 − θ2 + 2a

[
p11(1 − θ2) + p14θ

√
1 − θ2

]} − 1 = 0, (5.41)
√
3
4

51 − p14b
√
1 − θ2 + a

[
p12(1 − θ2) − p13θ

√
1 − θ2

] = 0, (5.42)
√
3
3

52 + (p11 + p22)bθ − p14b
√
1 − θ2 + a

[
p12(1 − θ2) + p24θ

√
1 − θ2

] = 0,
(5.43)

θ
{
2
√
3
4

52 + θ − 2p24b
√
1 − θ2 + 2a

[
p22 + θ(p11θ − p14

√
1 − θ2 )

]} − 1 = 0. (5.44)
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It follows that (5.32) and (5.33) are still valid. Then, similar discussions as in dealing with
Case (1)-(i), we have

a 	= 0, (p11)
2 = a2(1 − θ2), p22 = p11, p12 = 0, p13 = p24 = − p11b

a
√
1−θ2

, p14 = p11θ√
1−θ2

.

Moreover, by using Eqs. (5.41)–(5.44), we can get


3
51 = 
4

52 = a−2p11θ−aθ2

2
√
3aθ

, 
4
51 = 
3

52 = 0.

Now, calculating the curvature tensor, we obtain

g(R(X1, X3)X4, X2) = 
5
34


2
15 − 
5

13

2
54 + 
5

31

2
54 = a(6θ2−4−3θ4)−4p11θ(θ2−2)

12aθ2
,

g(R(X1, X3)X3, X1) = 
5
31


1
53 − 
5

13

1
35 − 
5

13

1
53 = a(11θ2−8−3θ4)−4p11θ(θ2−2)

12aθ2
.

On the other hand, by the Gauss equation (2.17) and the fact a2 + b2 = 1, we have

g(R(X1, X3)X4, X2) = 4(p11)2θ2+a2(2−3θ2)(1−θ2)

12a2(1−θ2)
,

g(R(X1, X3)X3, X1) = 4(p11)2θ2(2−θ2)−a2(1−θ2)2(4+3θ2)
12a2θ2(θ2−1)

.

Comparing these two calculations, respectively, we can obtain

(p11)
2θ4 − ap11θ(2 − θ2)(1 − θ2) + a2(1 − θ2)2 = 0, (5.45)

(p11)
2θ2(θ2 − 2) − ap11θ(2 − θ2)(1 − θ2) + 3a2(1 − θ2)2 = 0. (5.46)

Now calculation (5.45)–(5.46) gives that

(p11)
2θ2 = a2(1 − θ2)2,

and, by using the fact (p11)2 = a2(1 − θ2), we obtain θ =
√
2
2 .

This completes the proof of Lemma 5.3. ��
Based on Lemma 5.2, we can prove the following result for Hopf hypersurfaces which is

an interesting counterpart of Proposition 5.8 in [16].

Proposition 5.1 Let M be aHopf hypersurface of the NK S3×S3 with three distinct principal
curvatures and assume that the almost product structure P of M preserves the holomorphic

distribution, i.e., P{U }⊥ = {U }⊥. Then either Pξ = 1
2 ξ +

√
3
2 Jξ , or Pξ = 1

2 ξ −
√
3
2 Jξ , or

Pξ = −ξ .

Proof We first assume that 0 < θ < 1. Let {Xi }5i=1 be as described by (5.10). Then, by using

(3.7), (5.38) and the fact G(X1, X2) = −√
(1 − θ2)/3 ξ , we can show that the equation

0 = g(G(PX1, PX2) + PG(X1, X2), ξ) becomes equivalently

(1 − 2a)(1 + a) = 0.

This implies the assertion that we have three possibilities for Pξ , namely,

(1) a = 1
2 and b = −

√
3
2 , (2) a = 1

2 and b =
√
3
2 , (3) a = −1 and b = 0.

Next, if θ = 1, then as stated before the hypersurface satisfies Aφ = φA and the assertion
follows from Proposition 5.8 of [16]. ��

For the sake of later’s purpose, we summarize the following conclusion that we have
established.
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Lemma 5.4 For 0 < θ < 1 with α = 0, λ =
√
1−θ2+1
2
√
3θ

and β =
√
1−θ2−1
2
√
3θ

, the vector Pξ has

three possibilities: 1
2 ξ +

√
3
2 Jξ, 1

2 ξ −
√
3
2 Jξ, −ξ . For each of these cases, we have a local

orthonormal frame {Xi }5i=1, which is described by (5.10), such that PXi = ∑4
j=1 pi j X j

for 1 ≤ i ≤ 4, and {pi j } satisfy (5.38). Moreover, with respect to {Xi }5i=1, the connection
coefficients {
k

i j } satisfy (5.18), (5.19), (5.38), as well as the following relations:
{


k
i j = 0, if i ∈ {1, 2, 3, 4}, j ∈ {1, 2}, k ∈ {3, 4};


3
14 = 
1

12, 
4
23 = 
2

21, 
4
33 = 
2

31, 
4
43 = 
2

41, 
4
51 = 
3

52 = 0.
(5.47)

5.2 Proof of Theorem 1.2

We get the proof of Theorem 1.2 as a direct consequence of three results concerning the
three possibilities for Pξ described in Proposition 5.1. First of all, we prove the following
result:

Theorem 5.1 Let M be a Hopf hypersurface of the NK S3×S3 which possesses three distinct
principal curvatures and satisfies P{U }⊥ = {U }⊥ on M. If Pξ = 1

2 ξ +
√
3
2 Jξ , then, up to

isometries of typeFabc, M is locally given by the embedding fr (0 < r ≤ 1) in Theorem 1.2.

Proof We first assume that 0 < θ < 1 and let {Xi }5i=1 be as described by (5.10). Put
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ē1 =
√

2+√
1−θ2

2 X1 −
√
3

2
√

2+√
1−θ2

X3 + θ

2
√

2+√
1−θ2

X4, ē5 = X5 = U ,

ē2 =
√

2+√
1−θ2

2 X2 − θ

2
√

2+√
1−θ2

X3 −
√
3

2
√

2+√
1−θ2

X4,

ē3 = θ√
2+2

√
1−θ2

X2 +
√

1+√
1−θ2√
2

X3, ē4 = θ√
2+2

√
1−θ2

X1 −
√

1+√
1−θ2√
2

X4.

(5.48)

Then, {ēi }5i=1 is a local (non-orthonormal) frame field of M . We consider the following
decomposition of the tangent bundle of M : T M = Span{ē1, ē2} ⊕ Span{ē3, ē4, ē5}.

Using Lemma 5.4, we have

∇ēi ē j ∈ Span{ē1, ē2, ē5} for i, j = 1, 2; ∇ēi ē j ∈ Span{ē3, ē4, ē5} for i, j = 3, 4, 5.

Moreover, by direct calculation, we can show that

[ēi , ē j ] ∈ Span{ē1, ē2} for i, j = 1, 2; [ēi , ē j ] ∈ Span{ē3, ē4, ē5} for i, j = 3, 4, 5.

It follows that both Span{ē1, ē2} and Span{ē3, ē4, ē5} are integrable distributions. Let M1 and
M2 be the integral manifolds of Span{ē3, ē4, ē5} and Span{ē1, ē2}, respectively. Note also
that now we have

g(Aēi , ē j ) = 0 for i, j = 3, 4, 5; g(Aēi , ē j ) =
√

3(1−θ2)

4θ δi j for i, j = 1, 2.

So we have ∇̃ēi ē j ∈ T M1 for i, j = 3, 4, 5; and ∇̃ēi ē j = ∇̂ēi ē j + ĥ(ēi , ē j ) for i, j = 1, 2,
where ∇̂ is the Levi-Civita connection of M2, and ĥ is the second fundamental form of the
submanifold M2 ↪→ S3 ×S3. Moreover, by direct calculations we can show that ĥ(ēi , ē j ) =
(
√
1−θ2

4θ U +
√

3(1−θ2)

4θ ξ)δi j , i, j = 1, 2. Hence, M1 is a totally geodesic submanifold of
S3 × S3, whereas M2 is a totally umbilical submanifold of S3 × S3.
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Applying for (2.12), we further see that M1 and M2 have constant sectional curvature 3
4

and 1+2θ2

4θ2
, respectively. Thus, M1 (resp. M2) is locally isometric to S3 (resp. S2) equipped

with metric 4
3g0 (resp.

4θ2

1+2θ2
g0), where g0 denotes the standard metric of constant sectional

curvature 1 on S3 (resp. S2). In particular, M is locally diffeomorphic to the product manifold
S3 × S2.

By the identification of M with an open subset of S3×S2, we can express the hypersurface
M by an immersion f = (p, q) with the parametrization (x, y) of S3 × S2 such that

f : S3 × S2 −→ S3 × S3, (x, y) �→ (p(x, y), q(x, y)).

From (2.10), Pξ = 1
2 ξ −

√
3
2 U , (3.7), (5.38) and (5.48), it can be verified that

Qē1 = ē1, Qē2 = ē2, Qē3 = −ē3, Qe4 = −ē4, QU = −U .

Then, by the definition of Q, it follows that dp, dq : T (S3 × S2) → TS3 have the following
properties:

{
(dp(v), 0) = 1

2 (d f (v) − Qd f (v)) = d f (v),

(0, dq(v)) = 1
2 (d f (v) + Qd f (v)) = 0,

∀ v ∈ T (S3 × {pt}). (5.49)

{
(dp(w), 0) = 1

2 (d f (w) − Qd f (w)) = 0,

(0, dq(w)) = 1
2 (d f (w) + Qd f (w)) = d f (w),

∀ w ∈ T ({pt} × S2). (5.50)

The first equation of (5.50) shows that p depends only on the first entry x , and hence, it
can be regarded as a mapping from S3 to S3. From (5.49), we see that p : S3 → S3 is a local
diffeomorphism. Noting that the pull-back metric f ∗g restricted on S3 ×{pt} is exactly 4

3g0,
p is actually an isometry. By a re-parametrization of the preimage S3, we can assume that
p(x) = x .

Similarly, from the second equation in (5.49) we derive that q depends only on the second
entry y; thus, q is actually a mapping from S2 to S3. As the second equation in (5.50) shows
that dq is of rank 2, then q(S2) is a 2-dimensional submanifold in S3. Noting that the pull-

back metric f ∗g restricted on {pt} × S2 is 4θ2

1+2θ2
g0. It follows that S2 is totally umbilical

immersed in S3 and, up to an isometry of S3, we can assume that q(y) = √
1 − r2 + ry,

where r =
√
3θ√

1+2θ2
and y ∈ S3 ∩ ImH.

Hence, up to isometries of type Fabc, M is locally the image of the embedding fr , corre-
sponding to 0 < r < 1, as described in Theorem 1.2.

Next, we consider the case θ = 1. As we mentioned earlier, in this case M satisfies
Aφ = φA. Then, according to Theorem 5.9 of [16], M is locally given by the embedding f1
as described in Theorem 1.2.

This completes the proof of Theorem 5.1. ��
Theorem 5.2 Let M be a Hopf hypersurface of the NK S3×S3 which possesses three distinct
principal curvatures and satisfies P{U }⊥ = {U }⊥ on M. If Pξ = 1

2 ξ −
√
3
2 Jξ , then, up to

isometries of typeFabc, M is locally given by the embedding f ′
r (0 < r ≤ 1) in Theorem 1.2.

Proof Given M , by using the isometry F1, we obviously get another Hopf hypersurface
F1(M) of the NK S3 × S3 which also possesses three distinct principal curvatures. From
Theorem 5.1 of [22], we know that the differential of the isometryF1 anticommutes with the
almost complex structure J , and commutes with the almost product structure P , that is,

dF1 ◦ J = −J ◦ dF1, dF1 ◦ P = P ◦ dF1.
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Noticing that ξ ′ := dF1(ξ) andU ′ := −Jξ ′ = −dF1(U ) are the unit normal vector field

and the structure vector field of F1(M). By using Pξ = 1
2 ξ −

√
3
2 Jξ , we have

Pξ ′ = PdF1(ξ) = dF1P(ξ) = dF1(
1
2 ξ −

√
3
2 Jξ)

= 1
2dF1(ξ) +

√
3
2 JdF1(ξ) = 1

2 ξ
′ +

√
3
2 Jξ ′.

It follows that P{U ′}⊥ = {U ′}⊥ holds on F1(M).
Noticing that, for any unitary quaternions a, b, c, the isometries Fabc and F1 satisfy

(F1)
2 = id and Fabc ◦F1 = F1 ◦Fbac. Then, applying for Theorem 5.1 to the hypersurface

F1(M), we immediately conclude the proof of Theorem 5.2. ��
Theorem 5.3 Let M be a Hopf hypersurface of the NK S3×S3 which possesses three distinct
principal curvatures and satisfies P{U }⊥ = {U }⊥ on M. If Pξ = −ξ , then, up to isometries
of type Fabc, M is locally given by the embedding f ′′

r (0 < r ≤ 1) in Theorem 1.2.

Proof Given M , by using the isometry F2, we get another Hopf hypersurface F2(M) of the
NK S3 × S3 which also possesses three distinct principal curvatures. From Theorem 5.2 of
[22], the differential of the isometry F2 satisfies the following relationship with J and P:

dF2 ◦ J = −J ◦ dF2, dF2 ◦ P = (− 1
2 P +

√
3
2 J P) ◦ dF2.

Noticing that ξ ′′ := dF2(ξ) and U ′′ := −Jξ ′′ = −dF2(U ) are the unit normal vector
field and the structure vector field of F2(M). By using Pξ = −ξ , we have

Pξ ′′ = PdF2(ξ) = −2dF2P(ξ) + √
3J PdF2(ξ)

= 2dF2(ξ) + √
3J Pξ ′′ = 2ξ ′′ + √

3J Pξ ′′.

It follows that Pξ ′′ = 1
2 (ξ

′′ − √
3P J Pξ ′′) = 1

2 ξ
′′ +

√
3
2 Jξ ′′, and P{U ′′}⊥ = {U ′′}⊥ holds

on F2(M).
Noticing also that, for any unitary quaternions a, b, c, the isometries Fabc and F2 satisfy

(F2)
2 = id and Fabc ◦F2 = F2 ◦Fcba . Then, applying for Theorem 5.1 to the hypersurface

F2(M), we immediately conclude the proof of Theorem 5.3. ��
Finally, combining Proposition 5.1 and Theorems 5.1–5.3, we have completed the proof

of Theorem 1.2. ��
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