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Abstract

In this paper, extending our previous joint work (Hu et al., Math Nachr 291:343-373, 2018),
we initiate the study of Hopf hypersurfaces in the homogeneous NK (nearly Kéhler) manifold
S3 x 83, First, we show that any Hopf hypersurface of the homogeneous NK §° x §* does not
admit two distinct principal curvatures. Then, for the important class of Hopf hypersurfaces
with three distinct principal curvatures, we establish a complete classification under the
additional condition that their holomorphic distributions {U} are preserved by the almost
product structure P of the homogeneous NK S* x §3.
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1 Introduction

Let M be an almost Hermitian manifold with almost complex structure J. Given a connected
orientable real hypersurface M of M, there appears an important notion the structure vector
field defined by U := —J&, where £ is the unit normal vector field. If the integral curves
of U are geodesics, then it is well known that M is called a Hopf hypersurface. During the
last four decades, Hopf hypersurfaces of the complex space forms and several other almost
Hermitian manifolds have been extensively and deeply investigated, for details we refer to
[4,10,20,21,24] and [5,6,15] and the references therein. Recall that a nearly Kéhler (NK)
manifold is an almost Hermitian manifold such that the covariant derivative of the almost
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complex structure J is skew-symmetric. It is well known from Nagy’s classification of nearly
Kihler manifolds [23] that the six-dimensional ones are important construction factor, and
from Butruille [8,9] that the only homogeneous 6-dimensional NK manifolds are the 6-sphere
S, the S x S, the complex projective space CP? and the flag manifold SU (3)/U (1) x U (1),
and moreover from Foscolo and Haskins [13] that both S® and S x S3 admit inhomogeneous
NK structures.

Notice that the Riemannian geometric invariants of the homogeneous NK S3 x 8 were
systematically presented by Bolton et al. [7]. Since then the study of the canonical submani-
folds of the homogeneous NK S3 x §3 becomes quite active and many interesting results have
been obtained. This includes the results about almost complex surfaces in [7,11,18], about
Lagrangian and CR submanifolds in [1-3,12,19,26]. Nevertheless, about hypersurfaces the
results are few that appear only in [16,17].

The goal of this paper is to study Hopf hypersurfaces in the homogeneous NK 83 x S3.
In this situation, according to Proposition 1 of [5], the Hopf condition is equivalent to that
the structure vector field is a principal curvature vector field of the hypersurface.

Our first concern is Hopf hypersurfaces with two distinct principal curvatures. The result
we obtain is the following:

Theorem 1.1 No Hopf hypersurface in the homogeneous NK S* x S* admits exactly two
distinct principal curvatures.

Our next concern is Hopf hypersurfaces with three distinct principal curvatures. It turns out
that hypersurfaces of this class are quite complicated and examples of at least three families
appear. As the second main result of this paper, we obtain a classification of them under the
additional/natural condition that their holomorphic distributions {U}* are preserved by the
almost product structure P of the homogeneous NK S3 x S3. Before stating the result, we
would recall that, according to Moruz and Vrancken [22] and Podesta and Spiro [25], the
following three maps

(1) Fr: 3 x 8- 83 x 8 with 71 (p, 9) = (g, p),

2) F: 3 x 8> 83 x 8 with A (p, q) = (P, qp),

() Fape: S xS — 83 x S with Fupe(p, q) = (apc, bgc) for any unitary quaternions
a,b,c

are isometries of the NK S? x S3. Then, the result can be stated as follows:
Theorem 1.2 Let M be a Hopf hypersurface of the homogeneous NK S° x S3 with three
distinct principal curvatures. If P{UY"- = (U}, then, up to isometries of type Fupe, M is
locally given by one of the following embeddings f,, f! and f' : 8* x §* — 83 x 83 defined
by:

Lo y) =0, V1=r24ry), fi=Fiofr, f'=Fof,
where 0 <r <1, x €83,y € S € R3, and as usual S3 (resp. §?) is regarded as the set of

the unitary (resp. imaginary) quaternions in the quaternion space H.

Remark 1.1 Let M l(r) , Mér) , Mér) denote the images of the three embeddings f,, f/, f/,

respectively. Then, for0 <r < 1, M {r), Mér) and Mér) correspond to the three possibilities
of the action P on the unit normal vector field &, which we shall establish in Proposition 5.1.

Remark 1.2 Theorem 1.2 is an extension of the previous result in [16], where the hyper-
surfaces M 1"), Mz(r) , M3(r) corresponding to » = 1 were characterized by the property of
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satisfying A¢ = ¢ A, where A is the shape operator of the hypersurfaces and ¢ is the almost
contact structure induced from J. Moreover, it is worthy to mention that each of the hyper-

surfaces M l(r), Mz(r) and M3(r) is minimal if and only if r = 1.

Remark 1.3 Theorem 1.2 shows that Niebergall and Ryan’s observation (cf. p.234 of [24]),
which states that certain interesting classes of hypersurfaces in the complex space forms can
be characterized by conditions on the holomorphic distribution {U}*, is similarly valid for
the homogeneous NK S3 x S3. On the other hand, at the moment we do not know if there
exist Hopf hypersurfaces of the homogeneous NK S3 x S3 that have three distinct principal
curvatures and satisfy P{U}* # {U}*.

2 Preliminaries
2.1 The homogeneous NK structure on S* x S3

One can look the classical and comprehensive study of the NK manifolds from [14]. In this
section, we first collect some necessary materials from [7]. Let us denote by S? the 3-sphere
in R* as the set of all unitary quaternions. By the natural identification 7{ ,,,q)(S3 x 8%) =
TPS3 ® TqS3, we write a tangent vector at (p, g) € S3 x 83 as Z(p,q) = Up,q), Vip,g) or
simply Z = (U, V). The well-known almost complex structure J on $3 x S? is defined by

JZ(p.q) = %(2pq—1v —U,=2qp~'U+ V). 2.1

On S* x §3, we can define a Hermitian metric g compatible with J by
8(2,2)=502,2)+(1Z,7Z)) 2.2)
=3U.UYH(V.V)=3p ' U.q V) +(p7'U . q7'V)),

where Z = (U, V) and Z' = (U’, V') are tangent vectors, and (-, -) is the standard product
metric on S® x S3. Then, {g, J} gives the homogeneous NK structure on S3 x S3.

Let V be the Levi-Civita connection with respect to g, and as usual we define a (1, 2)-
tensor field G by G(X, Y) := (VxJ)Y for X, Y € T(S® x $). Then, we have the following
formulas for G:

G(X,Y)+G(Y,X)=0, 2.3)
G(X,JY)+JG(X.,Y)=0, 2.4)
¢(G(X,Y), Z)+g(G(X,Z),Y) =0, 2.5)
g(GX,Y),G(Z, W) = He(X, )g(Y, W) — g(X, W)g(Y, 2)

+ g(UX, 2)g(UW,Y) —g(JX, W)g(JZ, V)]. 2.6)

An almost product structure P on 8% x S3 is introduced by
PZ = (pg~'V,qp™'U), YZ =(U,V) e Ty, xS?). Q2.7)

Itis easily seen that P is compatible with the metric g, i.e., P is symmetric with respect to
g. Also P is anti-commutative with J. Moreover, with respect to G and P, we further have

2(VxP)Y = JG(X, PY) + JPG(X.Y), (2.8)
PG(X,Y)+ G(PX, PY)=0. (2.9)
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Note also that in terms of P the usual product structure Q, defined by Q(Z) = (-U, V)
for Z = (U, V), can be expressed by

0Z = %(21)12—12). (2.10)
For the NK S% x S3, we also need the useful relation between the NK connection V and
the usual Euclidean connection VZ (cf. Lemma 2.2 of [11] and Remark 2.5 of [12]):
ViY = VxY + 3[JG(X, PY) + JG(Y, PX)]. 2.11)
The Riemannian curvature tensor R of the NK §3 x $3 is given by
RX,NZ =38V, 2)X - g(X, 2)Y]
+5[e(IY, 2)IX —g(UJX, Z2)JY —2g(JX,Y)JZ]
+ 1[g(PY, Z)PX — g(PX, Z)PY
+8(JPY,Z)JPX — g(JPX, Z)J PY].

(2.12)

2.2 Hypersurfaces of the NK S® x §3

Let M be a hypersurface of the NK S x 8% with unit normal vector field &. For any vector
field X tangent to M, we have the decomposition

JX = ¢X + n(X)E, (2.13)

where ¢ X and n(X)& are the tangent and normal parts of J X, respectively. Then, ¢ is a
tensor field of type (1, 1), 1 is a 1-form on M. By definition, the following relations hold:

— = 2 = — =
{n(X) =g(X.U), n(@X)=0, ¢"X =-X+n(X)U. ¢U =0, 2.14)

g@X,Y) =—g(X,9Y), gdX,dY)=g(X,Y)—nX)n),

where U := —J& is called the structure vector field of M. Equation (2.14) shows that
(¢, U, n, g) determines an almost contact metric structure over M.

Let V be the induced connection on M and R its Riemannian curvature tensor. The
formulas of Gauss and Weingarten state that

VxY = VxY +h(X,Y), Vx&é=—AX, VX, YeTM, (2.15)

where # is the second fundamental form and A is the shape operator. They are related by
h(X,Y) = g(AX, Y)&. Using the formulas of Gauss and Weingarten, we can easily show
that

VxU = ¢pAX — G(X, §). (2.16)

The Gauss and Codazzi equations of M are given by
R(X.Y)Z =3[g(Y, Z)X — g(X, 2)Y]
+5[8(JY, 2)pX — g(JX, Z)pY —28(JX, Y)$Z]
+ %[g(PY, Z)(PX)" —g(PX.Z)(PY)" @.17)
+g(JPY,Z)JPX)| —g(JPX, Z)(JPY)T]
+g(AZ,Y)AX — g(AZ, X)AY,
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and
(VxA)Y — (Vy A)X =5 [¢(X. U)pY — (V. U)pX — 2(JX. V)U]
+i[sPx. PN —g(PY. E)PX)T 2.18)
+e(PX,U)JPY)T — g(PY, U)(JPX)T],
where - T means the tangential part.

Similar to that of the complex space forms, a hypersurface M of the NK S x S3 is a Hopf
hypersurface if and only if the integral curves of its structure vector field U are geodesics, i.e.,
VyU = 0. We denote by o the principal curvature function corresponding to the structure
vector field U, i.e., AU = «U. First of all, we shall present two elementary lemmas for Hopf
hypersurfaces of the NK 83 x S as follows:

Lemma 2.1 (cf. [17]) Let M be a Hopf hypersurface in the NK S* x S3. Then, we have

Le(¢X.Y) — 3[g(PX.£)g(PY,U) — g(PX,U)g(PY.£)]
=g((al —AGX,£),Y)+g(G((xl —A)X,E),Y) (2.19)
— ag((Ap + ¢A)X,Y) +28(APAX.Y), X,Y (U},

where {U)}" denotes the subdistribution of T M that is orthogonal to U, and I denotes the
identity transformation.

Lemma2.2 Let M be a Hopf hypersurface in the NK 8* x 83 satisfying P{U}*+ = (U} .
Then, the function « is constant.

Proof By using the Codazzi equation and the symmetry of A, we have the calculation

0=g((VuA)Y — (Vy AU, U) = g(Vy AU, Y) — g(Vy AU, U) = —Ya, Y € (U}

It follows that Voo = (Uw) U. Then, for X, Y € {U}L, we have
0=X{Ya)—YXa)=[X,Y]e=¢g(X,Y],U)Uqa. (2.20)

If U # 0 holds on some open set, then (2.20) implies that [X, Y] € {U}*. Thus, {U}" is
integrable which gives four-dimensional almost complex submanifolds of the NK 83 x S3.
This is impossible because, according to Lemma 2.2 of [25], any six-dimensional compact
non-Kéhler NK manifold admits no almost complex four-dimensional submanifold. Hence,
Uoa = 0 and « is constant. O

2.3 A canonical distribution related to hypersurfaces of the NK $3 x S3

In order for choosing an appropriate local orthonormal frame of the NK §* x S? along its
hypersurface M, following that in [17] we consider

D(p) :=Span{§(p), U(p), P§(p), PU(p)}, p € M.

It is easily seen that, since P is anti-commutative with J, © defines a distribution on M
with dimension exact 2 or 4, and that it is invariant under both J and P. Along M, let D+
denote the distribution in 7'(S? x S3) that is orthogonal to © at each p € M. For later’s
purpose, we shall make some remarks about dim ©:
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(1)Ifdim ®© = 4 holds in an open set, then there exists a unit tangent vector field e; € {U}*
and functions a, b, ¢ with ¢ > 0 such that

P& =aé +bU +cey, a>+b>+c*=1. (2.21)

Put ¢; = Je;. Moreover, from the fact dim ©1 = 2 and that © is invariant under the
action of both J and P, we can choose a local unit vector field e3 € ©+ such that Pesz = e3.
Now, putting e4 = Je3 and es = U, then {e; }le is a well-defined orthonormal basis of 7 M
and, acting by P, it has the following properties:

P& = a&é + cey + bes, Pey =c& —ae| — bey,
Pey = ces — bey +aer, Pez = e3, (2.22)
Pey = —ey, Pes = bE + cey — aes.

(2) If dim ® = 2 holds in an open set, then P{U}* = {U}* and we can write
P& =af +bU, a®>+b*=1. (2.23)

Now, D+ is a 4-dimensional distribution that is invariant under the action of both J and
P. Hence, we can choose unit vector fields e;, e3 € ©L such that Pe; = e;, Pe3z = e3. Put
ey = Jey, es = Jez and es = U. In this way, we obtain an orthonormal basis {ei}?  of
T M. However, we would remark that such choice of {e1, e3} (resp. {e2, e4}) is unique up to

an orthogonal transformation.

3 The proof of Theorem 1.1

Suppose on the contrary that M is a Hopf hypersurface in the NK 8> x 83 which has two
distinct principal curvatures, say o and A, with AU = oU. We denote by V, and V) the
corresponding eigen-distributions. By the continuity of the principal curvature functions, we
know that the dimensions (dim V,,, dim V) of the two eigen-distributions have to be one of
the four possibilities: (1, 4), (2, 3), (3,2) and (4, 1).

Next, we separate the proof of Theorem 1.1 into the proofs of two lemmas, depending on
the dimension of ©.

Lemma 3.1 The case dim® = 4 does not occur.

Proof To argue by contradiction, we assume that dim ® = 4 does hold on an open set. Now
we check each possibility of (dim V,,, dim Vj).

(1) (dim Vy,dim V;) = (1,4) on M.

In this case, it is easy to see that A¢ = ¢ A holds. This is impossible because, according
to Theorem 4.1 of [16], hypersurfaces satisfying A¢ = ¢ A must have three distinct principal
curvatures.

(ii) (dim Vy,dim V;) = (2,3) on M.

In this case, we can take a local orthonormal frame field {X; }?:1 such that

AXi:OtX,',iII,S; AXj:KXj,j=2,3,4,
where Xo = J X1, X4 = JX3, X5 = U. Then by using (2.3)—(2.6), we get

G(X1, X4) = G(X2, X3) = —JG (X1, X3),
g(G(X1,X3),X;) =0 for 1 <i <4, 3.D
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g(G(X1, X3), G(X1, X3)) = §. (3.2)
Let {ei}f:1 be the orthonormal basis as described in (2.22). Then,
X1 =me| +ney + uez +veq, X3 = —uey + ver, + me3z — ney,
for some functions m, n, u, v; and
Xo = —ne| +mey —ve3 +ueq, X4 = —vey — uer + ne3z + mey.

Now, taking in (2.19), respectively, (X, Y) = (X1, X3), (X1, X4), (X2, X3), (X2, X4),
we can obtain

27 mu + 2P nu = ( — @)g(G(X1, §), X3), 3.3)
— 2mu + 3P nv = (0 — )g(G(X1, ). X4), (3.4)
— 2c%nv + 3cPmu = 20 — 0)g(G (X2, §), X3), 3.5)
2e?nu + 3Pmy =200 — 0)g(G (X2, £), X4). (3.6)

From (3.4) and (3.5), and, respectively, (3.3) and (3.6), we deduce that
g(G(X1,X3),U) =0, g(G(Xy,X3),8)=0.

This combining with (3.1) implies that G(X, X3) = 0, a contradiction to (3.2).

(iii) (dim Vg, dim V;) = (3,2) on M.

In this case, as U € V,, we have dim(V, N {U }l) = dim V, = 2. For an orthonormal
basis { X1, Xo} of Vo N {U}J-, we consider |g(J X1, X»)|, which is obviously independent of
the choice of {X|, X7}, thus gives a well-defined function 6 := |g(J X1, X2)| on M, with
0 < 6 < 1. Since our concern is only local, in order to prove that Case (iii) does not occur,
we are sufficient to show that the following three subcases do not occur on M.

(1i)-(1)0 <8 < 1.

In this subcase, we can take a local orthonormal frame field {X; }15: 1 of M such that

AX1 =aXi, AXo =aXy, AX3 =AX3, AXq4=2AXy, Xs=U,

where X3 = (JX| —0X2)/~/1 =02, X4 =(JX,+60X1)//1—62and 6 = g(J X1, X2).
Moreover, direct calculations give the following relations:

JX1 =vV1—-02X3+60Xs, JXo=+v1—-02X4 —0X;,
JX3=—v1—-0%2X| —0X4, JX4=—v1—-0%2X,+0X3,

g(JX1.X2) = —g(JX3, Xa) = 0. g(JX1.X3) =g(JX2. Xa) = V1 - 62,
8 X1, X4) = g(J X2, X3) =0, G(X3,X4) =—-G(X1, X2),
G(X1.X3) = 755G (X1, X2), G(X1,X4) = =5 JG(X1, X2),

3.7

J1-o2 J1-o2
G(X2.X3) = == JG(X1.X2), G(X2.X4) = =G (X1, X2).

Let {¢; }f:] be the orthonormal basis as described in (2.22) and assume that

4
X :Zaijej, 1<i<4.
j=1
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Then, by the definition of X3 and X4, we can derive

—ajp—an ajp—axb —ajs—axb ajz—az40 .

ay = T gy = Wl gy — SOl gy, — auf,
3.8
—ap+ay b az+appf _ —axn+taizo ax+aisb 3.8)

a41 = — G5, A4 = TR, 43 = < o, a4 = o

Taking, in (2.19), (X, Y) = (X;, X;) for 1 <i < j < 4, and using (3.7) and (2.22), we
get

—10 4 3c*(a11a2 — anaz) =0, (3.9
T @nan +anan) + (@ = M)g(G(X1, X2), U) =0, (3.10)
3\/%62(0116421 +apaxn) — ﬁ(a —1)g(G(X1,X),U) =0, (3.11)
3@62(—0%1 — afz + (axpai — az1a12)0) + 7‘16_92

—\/]0_7(06—)»)g(G(Xl,Xz),f)-l-a(Ot—)»)vl—9 =0, (3.12)
3\/127702(—61%1 — a3, + (apay; — az1a)b) + 7']6_02

—ﬁ(a—)»)g(G(Xl,Xz),f)-i—ot(ol—)»)vl—92=0, (3.13)
3(1392)02[‘121“12 — anan + (a3 + aj) + a3, + aiy)0 + (apaz — a11a22)92]

—0 _2(a = )g(G(X1, X2), &) — 2h( — )0 = 0. (3.14)

From (3.10), (3.11) and g(X1, X»2) = 0, we have
g(G(X1,X2),U) =0, ajjaz +apaxn =0, ajzax; +ajsaxn =0.
From (3.9), (3.12), (3.13) and g(X1, X1) = g(X2, X») = 1, we have
ajy +aj, = a3y +an #0, ajy+ajy = a3+ ajy.

Thus, we can write

ajp = ,/alzl +a12200sa)1, app = ,/alzl +a122 sin wy;
ar; = ‘/afl +afzcosa)2, ar» = 1/alz1 —|—a122 sin wy.

Then, the fact 0 = ajjaz; + ajpar = (alZ1 + alzz) cos(w1 — wy) implies that w; — wy =
%(2/( + 1) for k € Z. Hence, (a1, a22) = =£ (a12, —air). On the other hand, (3.9) implies

407 > 0, so it should be that (a>, ax) = —(aj2, —aiy).

Similarly, we can prove that (a3, ar4) = (a14, —a13). It follows that a]2] + a]22 = 4% and

that ajjaz — ajpax =
a%S + af4 =1- %. On the other hand, by definition, we can finally get

0
0= Zaliazj'g(fei, ej) = aian —apaz +a13a4 —a4a3 = 57 — 1,

and thus 6 = IEC;CZ.
Next, from the fact g(G (X1, X2), X;) =0 for 1 <i <5 and that, by (2.6),

8(G(X1, X2), G(X1, X2)) = (1 = 67),
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we have G(X1, X3) = £/(1 —60?%)/3&. Since the discussion is totally similar, we just
consider the case G(X1, X») = /(1 — 602)/3&. We calculate the connections {Vx, X} so
that we can apply for the Codazzi equations.

Put Vy, X; = Y. TE X with T, = —TJ 1 <@, j.k <5.
Then, on the one hand, by definition and the Gauss—Weingarten formulas, we have

5
G(X1.6)=—) TisX;i+alXi.

i=1

On the other hand, using G (X1, &) =Y, g(G(X1, &), X;)X;, we easily get

G(X1.8) = 52X, + Boxs.
From the above calculations and (3.7), it follows that
iy =0, Ty=a6+ /57, i =aV1-02- %6, Tl =0. (3.15)
Analogously, calculating G(X;, &) = (Vx, J)& for 2 < i < 4, we can further obtain
Mls = —a6 —/ 157, T3 =0, T =0, I =av1-07 - Lo,
Plo=—/1-62 + 80, T3 =0, =0, I=—10-/152, (16
Tl =0, T3 =—w/1-02+30, T, =A6+\/‘§E, 'l =0.

Now, we are ready to calculate (Vy A)e; — (V,, A)U for 1 <i < 4.
On the one hand, using ¢; = Z‘}Zl aj; X and the preceding results (3.15) and (3.16),
direct calculations give the {U }J--components of (VyA)e; — (V,, A)U:

(VyA)er — (Ve, A)U X
(VuAes — (V, AYU — B X
(VyA)ez — (V; A)U X3 |’

(VyAyes — Ve, AU/ ),

where

ayy —app —apy/(1—0)/(1+0) —an/(1—0)/(1+0)
B = (g = |92 apn/(1=0)/(1+0) —apn/(0—-0)/(1+0)

Y a3 alg —ap/A+0)/01—=0) ai/A+0)/(T1-0) |’
aiy —ai3 a3/(I+60)/(1—=6) a/(1+6)/(1—-6)

U() 0 (@—MT3, —T{)  (@—Mrg
C=(C) = 0 U() (@—MT3 (=T —T)
T =T (=)l U (h — )35
(A=)}, L —a)TZ, (A — )T U

On the other hand, using the Codazzi equation (2.18), ¢; = Z‘}:] ajX; and (2.22),

s

another calculation for the {U}---components of (Vy A)e; — (V,; A)U can be carried out to
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obtain:
(VyA)er — (Vo AU Xi
VuA)er — (Ve, A)U X
EVZA;; - EVZA;U - PR (Xj ’
(VyA)ey — (Ve, A)U an X4
where

_Ma 2ab 2aba;p [ 1-0 2abay 1-6
3 41l 73 412 73 146 3 146

2ab 2ab 2abay; 1-0 _ 2aba;p [1-6
— (D) = 3 d12 737411 73 116 3 176
yre b, bg, —bas [146 baiz [146 ’
3413 3414 3\ 1-0 3 -0
b b _baiz [146 _ bays /146
—3414 3413 3V 1-0 3\ 1-0

8a2-3 ,  8a’=3, =~ (8a’—3ay [1-6 _(8a273>a12 1-6
n 412 T3 odi 12 146 12 16
3-8b2 b2—3 (802=3)a;p [1-0 (8172—3)1111
) 12 411 12 a P 1+6
= (Ejj) =

1—4a 1—4a (1—4a)a3 146 (1— 4a)al4 0
2 414 —Tp 413 2 -0 -0

_ 144a 1+4a (1+4a)ais 146 (l+4a)a13 146
2 413 — 3 du4 2 \1-0 2 =z

In this way, we obtain the equation BC = D + E. This can be written in equivalent form:
Cij = Y paix(Dyj + Eyj) for 1 < i, j < 4. Then, since by (3.16) we have

.—.—
+
Q}Q}

e

Ci1 —Cpn =0, Cip+Co1 =0, C33 —Cs4 =0, C34+ C43 =0,
it follows that L F = 0, where L = (a%l — a%z, a%S — a%4, ayiain, ajzdais), and

—2ab > —b* B2 —adH(1—-60)%  2ab(1 —0)?

P b a —a(l+6)? —b(1 +6)?
T 2?2 =0% 4ab  —4ab(1 —0)F 2% —a*)(1 —6)?
—2a 2b —2b(1 +6)? 2a(1 + 0)?

Now, direct calculation gives that det F = —6462(a® + b2)3

If det F = 0, then ¢ = 1 and this contradicts to 6 = - 2 5> € (0,1). If det F # 0, then
L = 0and thus a;; = ajp = a;3 = a4 = 0, which is also a contradiction.

In summary, we have shown that (iii)-(1) does not occur.

(ii1)-(2) 6 = 0.

In this case, we have J{V, N {U}} = V. Take a local orthonormal frame field {X,-};?-:1
of M such that

AX1 =aX, AXo =aXy, AX3 =AX3, AXqy=AXy, AXs = X5,
where X3 = J X1, X4 = J X2, X5 = U. It follows that
g(G(X1,X2), X)) =0, 1 <i <4; g(G(X1,X2).G(X1, X)) = 3.

Assume that X; = Zj’:l ajjej for 1 <i < 4.Then taking in (2.19) that (X, Y) = (X;, X)
foreach1 <i,j < 4, we can still get the equations from (3.9) up to (3.14) but with 6 = 0.
From (3.9) and (3.14) corresponding to 6 = 0, we get g(G (X1, X3), &) = 0. Then, by (3.10)
and (3.11), we obtain g(G (X1, X2),U) = 0.

It follows that G (X1, X») = 0, a contradiction to g(G (X1, X3), G(X1, X2)) = %
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>iii)-(3) 6 = 1.

In this case, both V, N {U }J- and V) are J-invariant. Then, it is easily seen that M satisfies
A¢p = ¢ A, and according to Theorem 4.1 of [ 16] once more we get as desired a contradiction.

(iv) (dim V,,dim V;) = (4, 1) on M.

In this case, we can take a local orthonormal basis {X; };.5=1 such that

AX|1 =AX, AX) =aXy, AXs=aX3, AXg=aXy4, AXs =aXs,
where X, = J X1, X4 = JX3, X5 = U. Then, as preceding we have
g(G(X1,X3),X) =0, 1 <i <4 [G(X;,X3)* = 1. (3.17)

Let {e; }1.5=1 be the orthonormal basis as described in (2.22) and assume, for some functions
m,n,u, v that X| = me; + ney + uez + ves, X3 = —ue| + vey + mez — neq. Then, by
definition, we have

Xy = —ney +mey —vez + ueq, X4 = —ve| — uey + nez + mey.

Taking in (2.19), respectively, (X, Y) = (X1, X3), (X1, X4), (X3, X2), (X4, X2), we get

2ehmv + 2c%nu = (L — 0)g(G(X1, §), X3), (3.18)
— 2 mu + 3c*nv = (. — )g(G(X1, §), X4), (3.19)
— %CQmu + %cznv =0, (3.20)
%cznu + %czmv =0. (3.21)

From these equations, we immediately obtain
8(G(X1,X3),U) =0, g(G(X1,X3),8)=0.

This together with (3.17) gives G (X1, X3) = 0, a contradiction to |G (X1, X3)2 = %

This finally completes the proof of Lemma 3.1. O
Lemma 3.2 The case dim® = 2 does not occur.

Proof Suppose on the contrary that dim ® = 2 does hold on M.

Then, we consider each possibility of the dimensions (dim V,,, dim Vj).

(1) (dim V,dim V;) = (1,4) on M.

In this case, we can easily show that M satisfies A¢ = ¢ A. As before by Theorem 4.1 in
[16], this is impossible.

(i1) (dim Vg, dim V;) = (2,3) on M.

In this case, we take a local orthonormal frame field { X i}? | of M such that

AX] = Ole, AX2 = )LX2, AX3 = )\X3, AX4 = )\X4, AX5 = 0(X5,

where X, = JX1, X4 = JX3, X5 = U. By (2.3)-(2.5), G(X1, &) is orthogonal to
Span{&, U, X1, X3}, so AG(X1,&) = AG(X1,§&). Then, taking X = X in (2.19), we
can get
(@ —Mg(G(X1,6).Y) = (&> —ar+ 1)g(X2,Y), VY € (U} (3.22)

Notice that g(X», X3) = g(X3, X4) = 0and o # A, s0(3.22) implies that G(X 1, &) = 0.
However, by (2.6) we have |G (X1, £)? = % This is a contradiction.

(iii) (dim Vg, dim V;) = (3,2) on M.

In this case, we take a local orthonormal frame field { X i}? 1 of M such that

AX| =aX), AXo =aXo, AX3 =AX3, AX4=2AX4, AX5 = X5,
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where X5 = U. Taking in (2.19) (X, Y) = (X1, X») gives g(¢ X, X») = 0. It follows that
J{Vy N{U}*} = V,. Then, we can choose a local orthonormal frame field {X } _; such that
X] X], Xz—.]X], X3 X7, X4—JX3, X5 U, andmoreover X],X3,X5€V
and X, X4 € V.. By 1dent1ty (2. 19) with (X, Y) equal to (Xz, X3) (X2, X4) respectively,
we have g(G(X2 5) X;) = g(G(X2 &), X4) = 0. This implies that G(X2 &) = 0 due to
the obvious fact G(X2 &) L Span {5 U, X1,X2}

However, by (2.6) we have |G(X2, £)? = 1 . This is also a contradiction.

@iv) (dim V,,dim V;) = (4,1) on M.

In this case, we take a local orthonormal frame field {X ,-}1.5:1 of M such that

AX| =AX, AXp) =aXy, AXs=aX3, AXg=aXy4, AXs =aXs,

where X, = JX1, X4 = JX3, X5 = U. By (2.3)-(2.5), G(X1, &) is orthogonal to
Span{&, U, X1, X3},s0 AG(X1,&) = aG(X1, §). Taking in (2.19) X = X, we get

(@ —Mg(G(X1,6).Y) = (&> —ar+ Dg(X2,Y), VY e (U} (3.23)

Then, similar as in case (ii), from (3.23), the fact g(X7, X3) = g(X2, X4) =0and o # A,
we obtain G(X1,&) =0.
However, by (2.6), |G (X1, é)l2 = % This is a contradiction. O

4 Examples of Hopf hypersurfaces in S x S3

As usual we denote S® (resp. S?) the set of the unitary (resp. imaginary) quaternions in
the quaternion space H. Then, in this short section, we can describe several of the simplest
examples of Hopf hypersurfaces in the NK 8 x 83.

Examples 4.1 For each 0 < r < 1, we define three families of hypersurfaces M, Mz(r) and
MS(V) in the NK 83 x S3 as below:

Ml(r). [(x Vi—r24rm) eSS x8$|xes, yeSZ]
M;'> = fz(M}”).

Remark 4.1 Among the preceding hypersurfaces M, (r) Mz(r) and M3r) of the NK §3 x 83,

M 1(r) s Mér) and M 3 ) have been carefully discussed, respectively, in Examples 5.1, 5.2 and 5.3
of [16]. As a matter of fact, all of them are Hopf hypersurfaces with three distinct constant

principal curvatures: @ = 0 (i.e., AU = 0) of multiplicity 1, 1 = 12;’ P o 23 \[2: of

Vi=r2 + V3-2r2
2r 2V3r
{U}* of these hypersurfaces are all preserved by the almost product structure P of the NK

S3 x §3, but P acts differently on their unit normal vector fields.

multiplicity 2, and g = of multiplicity 2. The holomorphic distributions

Examples 4.2 ForeachO < k,l < 1, k2 + 1% = 1, we can define three families of hypersur-
faces Mik’l), M(k’l) nd M(k D'in the NK 83 x 83 as below:

MY = {0, 1, y2, v3, 90) €8 x 8% [ x € 8%, yE 4 yF =2, Y3403 =12,

MED = 7 (D),
MED = Fy D),
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Remark 4.2 Direct calculations show that all of these three families of hypersurfaces are

Hopf ones, and they have five distinct constant principal curvatures: « = 0 (i.e., AU = 0),
3k—/9k2+3I2 3k++/9k2+312 —31—+/3k2+912 =31+/3k2+912 Qs
)»1 = %, )\.2 = —~_67[+’ )\.3 = 6k == s )\4 = + 6k + . Slmllarly,

the holomorphic distributions {U} of these hypersurfaces are all preserved by the almost
product structure P of the NK §* x 83, but P acts differently on their unit normal vector
fields.

Remark 4.3 Theorem 1.2 gives a characterization of the Hopf hypersurfaces M l(r), Mér) and

M;r) in the NK S? x S3. We expect that a similar interesting characterization of the Hopf
hypersurfaces Mik’l), Ms(k’l) and Mék’l) in the NK S x S§3 is possible, but at the moment it

is still not achieved.

5 The proof of Theorem 1.2

This last section is devoted to the proof of Theorem 1.2, which is given in two steps. In the
sequel, we assume that M is a Hopf hypersurface of the NK 8% x S with three distinct
principal curvatures «, A and 8 such that AU = «aU, and that P{U H ={U}. In particular,
(2.23) holds.

5.1 The principal curvatures and their multiplicities

Let Vi, V, and Vg denote the eigenspaces corresponding to the principal curvatures
o, A and B, respectively. By the assumption of having three distinct principal curvatures
and the continuity of the principal curvature functions, we know that the dimensions
(dim Vg, dim Vjy, dim Vg) remain unchanged on M, which, without loss of generality, have
four possibilities: (3, 1, 1), (2,2, 1), (1,3, 1) and (1, 2, 2).

First of all, we shall determine the multiplicities of the principal curvatures.

Lemma 5.1 The multiplicities of the three distinct principal curvature functions «, A, B can
only be 1,2 and 2, respectively.

Proof Suppose on the contrary that, for the multiplicities of the principal curvatures o, A
and B, one of the three possibilities (3, 1, 1), (2,2, 1), (1, 3, 1) does occur. Then, for each
possible case, we shall derive a contradiction by using Lemma 2.1.

(i) (dim Vi, dim V;, dim Vg) = (3,1, 1) on M.

We take a local orthonormal frame field {X; }?:] of M such that

AX1 =AX1, AXy, = BXo, AXs=aX3, AXa=aX4, X5=U.

Taking in (2.19) (X, Y) = (X3, Xa), we get g(¢ X3, X4) = 0, which implies that J{V, &
Vgl = Vo N {U}L. So we can further choose X3 = JX, and X4 = JX». Then, we easily
show that G(X1, X7) € Span{&, U}, and by (2.6), we have |G (X1, X2)|2 = %

Now, taking in (2.19) (X, Y) = (X1, X3), (X2, X1), (X2, X3), (X1, X2), respectively,
we obtain

@’ —ar=—¢, oF —ap =1, (5.1)
(@ —B)g(G(X1, X2),U) =0, Qa—i—p)g(G(Xi, X2),§) =0. (5.2)
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From (5.2), « — B # 0 and the preceding results, we see that g(G (X1, X2), &) # 0 and
A 4+ B = 2a. On the other hand, from (5.1) we get 202 —a(A 4+ B) = —%. But this is a
contradiction to A 4+ 8 = 2.

(ii) (dim Vg, dim Vy, dim Vg) = (2,2, 1) on M.

In this case, we can define a function 8 := |g(J X, ¥)| on M for unit vectors X € V,N{U}+
and Y € Vg. Since 0 < 6 < 1 and that our concern is only local, in order to prove that Case
(ii) does not occur, it is sufficient to show that the following three subcases do not occur on
M.

(ii)-(a)0 <6 < 1.

In this subcase, we have the decomposition JX = W + g(JX, Y)Y and 0 = W € V,.
Then, we can take a local orthonormal frame field {X; }1.5:1 of M such that

AX| =aX), AXy; = BXy, AX3 =1X3, AXa =AX4, Xs=U,
where X3 = (JX| —0X2)/v/1—02%, X4 = (X2 +6X)/~/1—0%2and 6 = g(J X1, X2).
It follows that G(X1, X») € Span{£, U} and, by (2.6), |G(X1,X2)|2 = (1 — 6%)/3.
Moreover, it is easily seen that with respect to the frame field {X;}>_,, all relations of (3.7)

hold.
Then, taking in (2.19) that (X, Y) = (X, X4) and making use of (3.7), we get

0=0-a)g(G(X1, X2), U).

It follows that g(G (X1, X2), U) = 0 and G(X 1, X») = ++/(1 — 02)/3&.

In case G(X1, X2) = —/ (1 — 62)/3 &, with respect to the normal Vector§ = —§&, we
have G (X1, X2) = /(1 — 62)/3 €, and the principal curvatures become & = —a, A = —2,
B = —B,and X1,X5 € Vg, Xy € Vﬁ, X3, X4 € V3. So it is sufficient to show that
G(X1. X2) = /(1 - 67)/3¢.

Taking in (2.19), respectively, (X, Y) = (X1, X2), (X1, X3), (X2, X4), (X3, X4), and
making use of (3.7), we have

= (a — ﬂ)\/ + (@® —ap)b, (5.3)

i=1

foz + 6(a x = %792, G4
A8 — 300 — ) — )0 + (ah +af — 208)V 1 — 62, (5.5)
—V3h = iy = Y2 (5.6)

From these equations, we can derive a contradiction. Indeed, from (5.4) and (5.6), we
have

Vil -1+ s = - (5.7)
It follows that o — A = HW 13(192‘;’ Then, from (5.4), (5.6) and (5.3) we get
o = —HOPEVITET 73+292¢m g = £Q=0216Y) 2167 V1-67+467
3(1-62) 3(1-62) 24304/ (1-62)(1-0246%)
Now, substituting o, A and g into (5.5), we get the contradiction VIZZ_ _ 0.

3V1-02+0%
(i)-(b) 6 = 1. B

In this subcase, both (V, N{U}1) @ Vg and V;, are J-invariant. We take a local orthonormal
frame field {X i}iS:I of M such that

AX| =aX1, AXy =BX2, AX3 =AX3, AXg=AX4, Xs=U,
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where X» = JX| and X4 = JX3. Then, G(X1, X3) € Span{&, U}, and by (2.6), we have
IG(X1, X3)|> = % Taking in (2.19) (X,Y) = (X1, X3) and (X1, X4), respectively, we
easily get (¢ — M)g(G(X1, X3),&) = (¢ — A)g(G (X1, X4),&) = 0. This together with
G(X1, X4) = —JG (X1, X3) implies that G(X1, X3) = 0, which is a contradiction.

@ii)-(c) 8 = 0.

In this subcase, J{(V, N{U}") & Vg} = Vj. Then, we can take a local orthonormal frame
field {X;}7_, of M such that

AX| =aXy, AXo =AXp, AX3 =AX3, AX4 =Xy, X5=U,

where X» = JX and X4 = JX3. Then, G(X, X3) € Span{&, U} and |G(X|, X3)PF=1
Taking in (2.19) (X, Y) = (X1, X3) and (X1, X4), respectively, we get

(@ —2)g(G(X1, X3),8) = (@ — B)g(G(X1, X4),§) = 0.

Then similar as the last subcase, we get G(X1, X3) = 0, which is a contradiction.
(iii) (dim Vi, dim Vj, dim Vg) = (1,3, 1) on M.
In this case, we can take a local orthonormal frame field {X; }?:1 of M such that

AX1 = BX1, AXo =AXo, AX3 =AX3, AXgy =21X4, X5=U,

where X, = J X1, X4 = JX3. Then G(X1, X3) € Span{§, U} and |G (X1, X3)|2 = %
Taking in (2.19) (X, Y) = (X1, X2), (X1, X3) and (X1, X4), respectively, we have

— & =ak+apf — 228, (5.8)
Qa =2 = B)g(G(X1, X3),8) = Qo — 1 — B)g(G(X1, X4),8) =0. (5.9)

Then, by (5.9) and the fact g(G (X1, X4), &) = g(—JG (X1, X3),&) = —g(G (X1, X3), U),
we get 2 — A — B = 0. This together with (5.8) gives the contradiction (A — ﬁ)2 = —%.
We have completed the proof of Lemma 5.1. O

Next, we shall determine the principal curvatures and show that they are constants. Since
we have the fact dim V,, = 1 and dim V, = dim Vg = 2, without loss of generality, we shall
assume that . > 8. Then, we can state our result as follows:

Lemma 5.2 All the three distinct principal curvaturev o, A and B are constants. More specif-

ically, we have « = 0, A = '12};1 and B = 2f9 1f0r90m60<9<1

Proof Tt is easily seen that |g(J X, Y)|, for an orthonormal basis {X, Y} of V,, defines a
well-defined function 6 on M satisfying 0 < 6 < 1. Since our concern is only local, in order
to prove Lemma 5.2, by using the continuity of the principal curvature functions and 6, we
are sufficient to consider the following three cases:

(1H)0<6 <1lonM.

In this case, we see that JVy # Vg and V} is not J-invariant. Then, we can take a local
orthonormal frame field {X; }?:l of M such thatf = g(J X, X3) and

AX1 =AX1, AXy2 =AXo, AX3 = X3, AXqy = BX4, AX5 = aXs, (5.10)

where X5 = U, X3 = ’%2, X4 = ”2]7\/%;‘1 Thus, G(X1, X») € Span{&, U} and, by

2.6), |G(X1, X2)|2 = l( 1 — 62). Moreover, it is easily seen that with respect to the frame
field {X; ) ;_1» all relations of (3.7) hold.
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Taking, in (2.19), (X, Y) = (X3, X4) and (X, Y) = (X, X;) for2 <i < 4, respectively,
and making use of (3.7), we have

—% =2(a —Mg(G(X1, X2), &) + 2x(a — 1), (5.11)
~V1-62= 9(%ﬁ)g(G(X1, X2), €) + (ah + af — 248)V1 — 62, (5.12)
0=Qa—Ar—pB)g(G(Xy, X2),U), (5.13)

6 — 2 — B)g(G(X1, X2),§) + 2B(8 — ). (5.14)

If 20 — A — B = 0, then together with (5.12) we derive a contradiction (A — ﬂ)2 = —%.

Hence, 2 — A — B # 0. Then from (5.13), we get g(G (X1, X2), U) = 0, and therefore,
we obtain G(X 1, X2) = £+/(1 — 62)/3 £. Without loss of generality, we shall assume that
G(X1, X2) = —/(1 —6%)/3&.

Actually, if it occurs G(X1, X2) = +/(1 — 62)/3 &, then G(X3, X4) = —/(1 - 02)/3¢

and g(J X3, X4) = —60 < 0. Now, with respect to the normal vector field é‘,: = —¢£, the

principal curvatures become & = —«, A= —p and B =—xi>B. Putting X1 = Xs,
_ _ JXi—6Xs v _ JXo+6X

Xo = —X4, X3 = WZ, X4 = \/Z]TI and X5 = U, then, with respect to the

orthonormal frame field {X 3
g(JXl, X2) =0 >0.

Having the assumption G(X1, X3) = —+/(1 —02%)/3&, Egs. (5.11), (5.12) and (5.14)
become

>_,, as assumed we have G(X1, X2) = —/(1 —62)/3& and

0 = 43 — V1 — 02 + 120 (A — a)6, (5.15)
—V1—62=2V30Qa — 1 — B) + 6(ah 4+ aff —208)v1 — 62, (5.16)
0 = 4V3(a — B)vV1 — 62 + 128(B — a)f. (5.17)

Then, solving A and B from (5.15) and (5.17), we obtain

/3(1-62 dar/3(1-62)—
)\+'8:3a9+39( 0)7 )\ﬂ:a (9)9.

120

2021 __1-20?
This combining with (5.16) gives a(a+/1 — 24+ = — NeT) ) = 0.Hence,o =0ora = PNET

In conclusion, we can solve the above equations to obtain two possibilities:

Case (1)-(i): ¢ =0, A= Y=+l g _ J1-6°—1,

2/36 230
Case (1)-(ii): & = 1-2¢2 A = 236246 B = 2-30°-60
0./3(1-62)" 204/3(1-62)° 204/3(1-62)

Before dealing with these two subcases in more details, we need some preparations.
Put Vi, X; = YT} X with T, = =T}, 1 <1, j, k < 5. First of all, we have

5
G(X1,8) =—Y TisX; + I X1.
i=1
On the other hand, the facts g(G (X1, X»),&) = —/(1 —62)/3 and g(G(X1, X2),U) =0
imply that G (X1, &) =/ #Xz — ‘/T§0X3. Hence, we obtain

Tls=0, T35 =210 — /52, T} =a/1-624+ L6, T =o0. (5.18)
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Similarly, calculating G (X;, &) for 2 <i < 4, we can further obtain
Tls = =20+ 152, T35=0, T3 =0, T =1/1-62+ L9,
I35 =—pV1 Bo, T3 =0, T =0, T =—po+/ 155, 19

2
[js=0, Tj= —ﬂM— 0. Tis =0 — 5. T =0.

Now, we calculate g((Vyx, A)X; — (VX A)X;, Xy)foreach 1 <i, j, k <4.

First, by using (2.18) we easily see that g((Vx A)Xj —(Vx;A)Xi, Xx) =0.

On the other hand, by using (5.10) we can calculate 0 = g((VX,A)Xj = (Vx; A)Xi, Xi)
to conclude that X1A = XoA = X38 = X4B = Othatis X;0 = 0for1 <i < 4, and
Fk —Flk—OfOI‘l €{1,2,3,4},j € {1,2} and k € {3, 4}.

Next, by definition, the above information of {Fl{‘j} and (3.7), we can get

0= g(G(X1, X2), X3) = g((Vx, /) X2, X3) =1 — 02 (I}, — T'},).

It follows that F34 = F12 Similarly, by calculating 0 = g(G(X;, X1), X4) for2 <i < 4,
we further get '3, = '3, I'y; = '3, and T§; = T'3,.

Moreover, by using (3.7) we have g(G(U, X1), X4) = —?, then direct calculation of
its left hand side gives
(T —T2)V1 =02 + (T + 3o = -2, (5.20)

Finally, from now on we assume that P X; = ijl pijXjforl <i <4,where p;; = pji
and, by the definition of X3 and X4, we have the following relations:

_ _ (pu+pn)f _ 921722—P11+292P11 _ 20pia
P23 = P14 Nl P33 = 1—02 V102’ (5 21)
(P13—p24)0 _ 20ps _ pn+o? pil '

P34 =T T P12, PS5 T g

Now, we come to discuss Case (1)-(i) and show that in this subcase 6 is constant.
For that purpose, we apply for the Codazzi equation (2.18) with (X, Y) = (U, X;) for
1 <i < 4, and then checking the results we obtain the following equations:

3UL — piib — a(piaf + pi3v/1 —62) =0, (5.22)
api16 — piab —apiay/1—62 =0, (5.23)
2ap146 — 1 — 2pisb + 2AT3, + 2apiV/1- 62 =0, (5.24)
Brd — prab —ap136 + apiy/1 — 62 =0, (5.25)
3UA — paob + ap1a6 — apaay/1 — 02 = 0, (5.26)
r3,V/3(1 —62) + bO[(p11 + p22)6 — P14M]

+ab(p1a — p126® + puby/'1—62) =0, (5.27)
2V/304, (07 — 1) — 0{0% — 1 + 2pyb(0* — 1)

+2a[paf(©® — 1) +v/1 = 62(pn + p116?)]} = 0, (5.28)
2p1b8(6% — 1) + V1 = 02[Q@p11b + pnb +3U 6> — puib —3UB]

+a(0* - D[p13 — 0(p2ab + plzm)] =0, (5.29)
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b(©* — D[(p2s — p13)0 + p1ov/'1 — 62 ]

+a[0V1=02(px + p116?) + pra(@* — 1] =0, (5.30)
2p1ab0(© — 1) + V1= 02[pb + 3U B + (p11b — 3U)6?
—a(6® — D[pas +6(p1av/1 — 62 — p136)] = 0. (5.31)
Calculating (5.22)—(5.26) and (5.29)+(5.31), respectively, we obtain
0= (p2 — p1)b +a[ = 2p126 + (p2a — p13)V1 - 62], (5.32)

0=a(l —0>)[(paa — p13)(1 +6%) +2p1263/1 - 62|
+b{4pab(©> — 1) + V1 —02[p — pui + Gpu + p2)0*]}.  (533)

Now, we claim that a # 0 holds on M.
Indeed, if otherwise, we assume a(z) = 0O for some z € M. Then, carrying calculations
below at z, we have b = +1 and, by (5.32), (5.33), (5.23) and (5.30), we have

pn—pu=pr2=pu—p3=0, pu= %. (5.34)

From (5.22) and (5.31), we obtain UL = —UB = %p“b and thus U(A + B) = 0. Then,

asA+ B = ‘%32 and 0 < 6 < 1, we get UO = 0 and thus UL = UB = p;; = 0. From
(5.34), we have p1 = p1o = p2 = p14 =0.

Finally, we apply for 0 = g(G(P X1, PX») + PG(Xy, X»), U). By direct calculation of
the right hand side, making use of the fact G (X, X3) = —/ # &,(3.7)and (5.21), we get

the contradiction /1 — 62 = 0, which verifies the claim.
As a # 0, from (5.23) we solve pj4 = %. Then, from (5.32), (5.33) and (5.30),
we obtain a matrix equation AB = 0, where

A = (p22 — p11, P12, P24 — P13),
b b(1 + 62 —a
B = 246 4b%642a%6(1-6%) _2bo

av'1 =62 a/1 —602(1 + 62%) b1 — 62

The fact det B = Lﬁ # 0 implies that p» — p11 = p12 = paa — p13 = 0. By
(5.22) and (5.31), we have UL = —UB = %(pub +api3v/1 —02). The fact 0 < 6 < 1

and A + 8 = V%f then implies that U6 = 0. This combining with X;A = X;8 = 0 for

1 <i < 4 shows that 6 and so that A and § are constants on M.
Moreover, from (5.22) up to (5.31), we can finally obtain:

_ ___pub _ _pub 3 _ 4 _ 0(=2pi1+av1-6?) 4 _ 3
pi3=—pg Pu= g T =Ty === i Isi1 =I5, =0. 535

Then, by >°7_; (p11)? = 1, we get (p11)? = a(1 — 6?).
Now, calculating the curvature tensor, we obtain

_ 5l 5 1 5 1 4p1 (1462 —av/1—6%(5+362)
g(R(X1, X3)X3, X1) =T'31I's53 — T'j335 — 355 = Pl 12::/@ . (5.36)

On the other hand, by Gauss equation (2.17) and the fact a? + b? =1, we have

2(1002—7-30%)—4 222
g(R(X1, X3)X3, X)) = SO0 3 02, (5.37)
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Comparing these two calculations, we get

(P11)*Q2 = 6%) +3a%(0% — 1) + api1vV1 —62(1 +6%) = 0.

Then, by using (p11)? = a%(1 — 6?), we finally get p1; = a+/1 — 62. It follows that, by
(5.20), (5.35) and the previous results about p;;, we have

pri=pn=—-p3=—pu=ayl—02 ppn=pyu=0,
P13 = poa = —b, p1a = —pr3 =ab, (5.38)

3 4 0 4 _ 2 1-62
F51—F52——T\/§v I's3=T5 — 3

Later, in Lemma 5.3, we will show that Case (1)-(ii) occurs only if 8 = % But this

implies that Case (1)-(ii) is actually a special situation of Case (1)-(i) with 8 = ‘/75

2)6 =1on M.

In this case, it is easy to see that M satisfies A¢p = ¢ A. According to Proposition 5.7 of
[16], the principal curvatures of M are « = 0, A = % and 8 = —%. This exactly shows
that expressions of the principal curvatures stated in Case (1)-(i) are valid also for 6 = 1.

3)6=00on M.

In this case, we choose a local orthonormal frame field {X; }le of M such that

AX| =AX1, AXy = BXo, AX3=AX3, AXy =Xy, X5=U,

where X, = JX| and X4 = JX3. Then G(X1, X3) € Span{¢, U} and |G (X1, X3)|? = %
Now, taking in (2.19) (X, Y) = (X1, X2), (X1, X3) and (X1, X4), respectively, we obtain

af + ok —20p = —¢, (5.39)

(@ =1)g(G(X1, X3),8) =0, Qa—21—pB)g(G(X1,X3),U)=0. (540

From (5.40), @ # X and |G(X1, X3)|* = L we get 2o — A — B = 0. This combining with

(5.39) gives the contradiction (A — 8)? = —
We have completed the proof of Lemma

u‘w\_w\

2. ]

I _ 2
Lemma 5.3 If Case (1)-(ii) in the proof of Lemma 5.2 does occur, then 0 = 5=,

Proof First of all, according to Lemma 2.2, « is constant. Hence, by the formulas for Case
(1)-(ii) of the proof of Lemma 5.2, also 8, A and B are constants. Now, since the local
orthonormal frame field {X l-}le of M satisfy (5.10), we apply for the Codazzi equation
(2.18) with (X, Y) = (U, X;) for 1 <i < 4. Then, by checking the results, as in Case (1)-(i)
we obtain Egs. (5.22), (5.23), (5.26) and (5.29)—(5.31) with UA = UB = 0. Moreover, we
have the following additional four equations:

0{2V/303 +0 — 2p13bv/1 — 62 + 2a[p11 (1 — 0%) + paby/1 —02]} =1 =0, (5.41)
V3TE, = prabV1 =62 + a[pin(1 —6%) — p136v/1 —62] =0, (5.42)

V3T, + (pi1 + p2)b0 — praby/1 — 0% +a[pia(1 — 6%) + pruby/1 —02] =0,
(5.43)

0{2v/3T%, + 0 — 2p2uby/1 — 02 +2a[ pay + 0(p116 — prav/1 — 02)]} — 1 =0. (5.44)
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It follows that (5.32) and (5.33) are still valid. Then, similar discussions as in dealing with
Case (1)-(i), we have

a#0, (pn)’ =a*(1 -6, pn=pi. p2=0, pi3=pu= — i b=
Moreover, by using Egs. (5.41)—(5.44), we can get

3 _ 4 _a72p1197u92 4 _ 3
5=, =" 55  Isi=T5=0.

Now, calculating the curvature tensor, we obtain

662 —4—36")—4p1160(62—2
g(R(X1, X3)Xq, X2) = T34T}5 — [31%, + T3 T2, = « a2,

116%2—-8—30%)—4p110(0%—2
8(R(X1, X3)X3, X1) = F§1F§3 - F?srés - Ffsré3 =« 123021]” ( .

On the other hand, by the Gauss equation (2.17) and the fact a® 4+ b*> = 1, we have

4 2024 42(2—-302)(1—02
g(R(X1, X3) X4, Xp) = Hp1) 6 4a"Q=307)(1-67)

1242(1-62)
4(p11)260% 261 —a? (1-6%)% (44362
g(R(X1, X3)X3, X) = 220 12a2)02[(192(—1) = .

Comparing these two calculations, respectively, we can obtain

(p11)%6* —ap162 — 0°)(1 - 6%) + a*(1 — 6°)* =0, (5.45)
(p11)%6%(6% = 2) —ap1162 — 6%)(1 — %) + 3a>(1 — 6%)> = 0. (5.46)

Now calculation (5.45)—(5.46) gives that
(p1)°0% = a’(1 - 0%)%,

[

and, by using the fact (pll)2 = a?(1 — 6?), we obtain 6 = >
This completes the proof of Lemma 5.3. m}

Based on Lemma 5.2, we can prove the following result for Hopf hypersurfaces which is
an interesting counterpart of Proposition 5.8 in [16].

Proposition 5.1 Let M be a Hopf hypersurface of the NK 83 x S with three distinct principal
curvatures and assume that the almost product structure P of M preserves the holomorphic

distribution, i.e., P{UY* = {U}*. Then either P€ = %S + g]f, or P& = %S - ‘/ngé, or
PE = —¢&.

Proof We first assume that0) < 6 < 1. Let {X; }1.5: | be as described by (5.10). Then, by using

(3.7), (5.38) and the fact G(X1, X2) = —/(1 —0?%)/3&, we can show that the equation
0=g(G(PX1, PX2)+ PG(Xq, X2), &) becomes equivalently

(1 —2a)(1+a)=0.

This implies the assertion that we have three possibilities for P&, namely,
(Ha=4andb=-L, a=Landb=, 3)a=—landb=0.
Next, if & = 1, then as stated before the hypersurface satisfies A¢p = ¢ A and the assertion
follows from Proposition 5.8 of [16]. O

For the sake of later’s purpose, we summarize the following conclusion that we have
established.
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Lemma54 For0 <6 < lwitha =0, A ==~ 12};'1 and f =~ 12}29_1 the vector P& has

three possibilities: 2?,—' + fJ?;‘ 2%‘ JS —&. For each of these cases, we have a local
orthonormal frame {X; }l » which is devcrlbed by (5.10), such that PX; = ijl Dij X
for 1 <i < 4, and {p;;} satisfy (5.38). Moreover, with respect to {X; }l |» the connection
coefficients {Flkj} satisfy (5.18), (5.19), (5.38), as well as the following relations:

Ff»‘j =0,ifie{l,2,3,4}, je{l,2}, ke {3,4}

(5.47)
3 1 4 2 4 2 4 2 4 3
[y =T, Iy =T, T3 =T3, Iy =T%;, I's; =1'5, =0.

5.2 Proof of Theorem 1.2

We get the proof of Theorem 1.2 as a direct consequence of three results concerning the
three possibilities for P& described in Proposition 5.1. First of all, we prove the following
result:

Theorem 5.1 Let M be a Hopf hypersurface of the NK S® x 83 which possesses three distinct
principal curvatures and satisfies P{UY = (U} on M. If P¢ = %E + ?J&, then, up to
isometries of type Fape, M is locally given by the embedding f, (0 < r < 1) in Theorem 1.2.

Proof We first assume that 0 < 6 < 1 and let {X; }1.5: | be as described by (5.10). Put

o=y - B xiy Xy, b5 =Xs5=U,
2224162 23/2+v/1-02
=Y Py, 0y, By, (5.48)
24/1-62 24/24/1-62
&y = 0 x,+ NIVI@y 5 0 x, - YIvi02y
V2241-07 V2 V24241-02 V2

Then, {éi}l.S: | is a local (non-orthonormal) frame field of M. We consider the following
decomposition of the tangent bundle of M: T M = Span{e;, e} & Span{es, e4, es}.
Using Lemma 5.4, we have

Vzej € Spanfey, ez, es} fori, j =1,2; Vge; € Span{es, e4, es} fori, j =3,4,5.
Moreover, by direct calculation, we can show that
lei,e;] € Span{e;, ex} fori, j = 1,2; [e;,e;] € Span{es, e4, es} fori, j =3,4,5.

It follows that both Span{e;, e>} and Span{es, es, es} are integrable distributions. Let M and
M, be the integral manifolds of Span{es, e4, es} and Span{e;, e»}, respectively. Note also
that now we have

2(Aé;, &) =0fori, j =3,4,5 g(A&,é) =05 fori,j=1,2.

So we have Vz,&; € TM; fori, j =3,4,5 and V;,é; = Ve; + h(e;, &) fori, j = 1,2,
where V is the Levi-Civita connection of M>, and h is the second fundamental form of the
submanifold M5 <> S x 3. Moreover, by direct calculations we can show that i(e;, e;) =

(M y 4 D g5,

S3 x S3, Whereas Mz is a totally umbilical submanifold of S3 x S3.

ij»i,j = 1,2. Hence, M is a totally geodesic submanifold of
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Applying for (2.12), we further see that M and M> have constant sectional curvature %

14262
40% >

. . 2 . .
with metric %go (resp. 1%{925'0)’ where g denotes the standard metric of constant sectional

and

respectively. Thus, M (resp. M») is locally isometric to S* (resp. S?) equipped

curvature 1 on S? (resp. 8?). In particular, M is locally diffeomorphic to the product manifold
S3 x 82,

By the identification of M with an open subset of 83 x S2, we can express the hypersurface
M by an immersion f = (p, ¢) with the parametrization (x, y) of S* x §? such that

f:8 xS —8 xS (x,3) - (px, ), qx, ).
From (2.10), P& = %S — ?U, (3.7), (5.38) and (5.48), it can be verified that

Qey =ey1, Qey=ep, Qez=—e3, Qes=—eq, QU =-U.

Then, by the definition of Q, it follows that dp, dg : T(S®> x §?) — T'S? have the following
properties:

d 0) = L@dfw) — Qd =d
[(p(v>,) 3(df () — Qdf (v)) = df (v), Vo e T x (pth).  (549)

(0, dg(v)) = $(df (v) + Qdf (v)) =0,
[ (dp(w),0) = 3(df (w) — Qdf (w)) =0,
0, dg(w)) = L(df (w) + Qdf (w)) = df (w),

The first equation of (5.50) shows that p depends only on the first entry x, and hence, it
can be regarded as a mapping from S to S3. From (5.49), we see that p : 8> — 83 is a local
diffeomorphism. Noting that the pull-back metric f*g restricted on 8> x {pt} is exactly % 80,
p is actually an isometry. By a re-parametrization of the preimage S°, we can assume that
px) =x.

Similarly, from the second equation in (5.49) we derive that ¢ depends only on the second
entry y; thus, ¢ is actually a mapping from S? to S3. As the second equation in (5.50) shows

that dq is of rank 2, then ¢ (S?) is a 2-dimensional submanifold in S3. Noting that the pull-
462

14262

immersed in S$* and, up to an isometry of S, we can assume that g(y) = +/1 —r2 + ry,

where r = \/% and y € 83 N ImH.

Hence, up to isometries of type F,pc, M is locally the image of the embedding f,, corre-
sponding to 0 < r < 1, as described in Theorem 1.2.

Next, we consider the case & = 1. As we mentioned earlier, in this case M satisfies
A¢p = ¢ A. Then, according to Theorem 5.9 of [16], M is locally given by the embedding f}
as described in Theorem 1.2.

This completes the proof of Theorem 5.1. O

Ywe T({pt} x S?). (5.50)

back metric f*g restricted on {pr} x 8% is go. It follows that S? is totally umbilical

Theorem 5.2 Let M be a Hopf hypersurface of the NK S? x 8% which possesses three distinct
principal curvatures and satisfies P{U}* = {U}* on M. If PE = %5 - @Jg, then, up to
isometries of type Fape, M is locally given by the embedding f/ (0 < r < 1) in Theorem 1.2.

Proof Given M, by using the isometry Fj, we obviously get another Hopf hypersurface
F1(M) of the NK S x S? which also possesses three distinct principal curvatures. From
Theorem 5.1 of [22], we know that the differential of the isometry ;| anticommutes with the
almost complex structure J, and commutes with the almost product structure P, that is,

dFioJ =—JodF;, dFioP =PodF.
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Noticing that §" := dF1(§) and U := —J&' = —d F; (U) are the unit normal vector field
and the structure vector field of F;(M). By using P& = %5 — “/TgJS, we have

PEg’

PdFi(§) =dF\P¢) = dj:'l(%é: _ §J§)
= LaFE) + LrdrE) = Y6+ Lrg

It follows that P{U’}+ = {U’}* holds on F|(M).

Noticing that, for any unitary quaternions a, b, ¢, the isometries F,p. and F; satisfy
(F1)? = id and F pe 0 Fi = F) 0 Fpae. Then, applying for Theorem 5.1 to the hypersurface
F1(M), we immediately conclude the proof of Theorem 5.2. O

Theorem 5.3 Let M be a Hopf hypersurface of the NK S® x 83 which possesses three distinct
principal curvatures and satisfies P{U} = {U}* on M. If P§€ = —&, then, up to isometries
of type Fape, M is locally given by the embedding f!' (0 < r < 1) in Theorem 1.2.

Proof Given M, by using the isometry J>, we get another Hopf hypersurface 7, (M) of the
NK S x S? which also possesses three distinct principal curvatures. From Theorem 5.2 of
[22], the differential of the isometry 7> satisfies the following relationship with J and P:

dFso] =—JodF, dFroP=(-iP+3IP)odF.

Noticing that §” := dF (&) and U” := —J&" = —dF»(U) are the unit normal vector
field and the structure vector field of 7, (M). By using P§ = —&, we have

PE" = PAF>(&) = —2dF> P(€) + /3T PdF>(§)
= 2dF>(€) + /3T PE" = 28" +/3JPE".

It follows that P§” = 1(¢” — V/3PJPE") = 1&" + %315”, and P{U"}*+ = (U} holds
on Fr(M).

Noticing also that, for any unitary quaternions a, b, ¢, the isometries F,5. and F; satisfy
(F2)? = id and Fype 0 Fo = F» 0 Fepa. Then, applying for Theorem 5.1 to the hypersurface
Fr(M), we immediately conclude the proof of Theorem 5.3. O

Finally, combining Proposition 5.1 and Theorems 5.1-5.3, we have completed the proof
of Theorem 1.2. o
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