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Abstract
This note introduces a class of nonlinear Neumann problems on balls expanding with the
radii tending toward infinity. Performing singular perturbation arguments, we establish the
corresponding concentration phenomenon and refined asymptotic expansionswith the precise
first two-order terms. In doing so, we obtain the nontrivial boundary structure of solutions
with effects coming from the nonlinear Neumann boundary condition and the boundarymean
curvature varied with expanding domains.
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1 Introduction

This work is motivated by some stationary reaction–diffusion models and electrochemistry
models in a reactor of macroscopic length scale involving nonlinear adsorption process on
the surface [2,6,11,15,18]. In such a situation, the region for a chemical substance to diffuse
across is much larger compared with a reaction process [3,5,19].

Mathematically, one considers the related differential equations with nonlinear Neumann
boundary conditions in expanding domains, where the nonlinear source describes the absorp-
tion process, and the boundary effect is associated with the adsorption process; see, e.g.,
[16]. Here, the expanding domain means that the diameter of a large domain keeps increas-
ing toward infinity. Such expanding domains may formally approach the entire space, the
half space or an unbounded exterior domain. However, due to the nonlinear boundary effect,
the asymptotic behavior of solutions varied with the expanding domain is totally different
from the entire solutions. Since the domain keeps getting large, let us imagine in mind firstly
that as the domain boundary expands out with the same distance along the outward nor-
mal direction, the corresponding solutions asymptotically vary with the expanding domain,
and its asymptotics remains to be strongly affected by nonlinear boundary conditions [1,4].
Essentially, such a phenomenon can be investigated under appropriate scales related to the
diameter of the domain. Accordingly, the problem is equivalently transformed into singularly
perturbed equations in finite domains. For the large domain with diameter tending to infinity,
an important issue arises about the optimal upper bounds and the asymptotic behavior of
solutions with respect to the domain geometry.

To basically understand the influence of expanding domains on solutions, we focus on
the domain BR a ball of large radius R � 1 centered at the origin in R

N , N ≥ 2. We shall
investigate a class of semilinear elliptic equations which are more general than models in
[16]. The model reads

∇ · (ααα(|x |)∇u(x)) = βββ(|x |) f (u(x)) in BR, (1.1)

∂u

∂�ν (x) = ηηη(u(x)) on ∂ BR, (1.2)

where ∇ and ∇· are the gradient and the divergence operators, respectively. |x | denotes the
standard N -dimensional Euclidean norm, �ν = �ν(x) is the unit outward normal vector to ∂ BR

at x , ∂
∂�ν is the unit outward normal derivative, and functions f and ηηη admit the following

assumptions:

(A1) f ∈ C1,τ
loc (R) with τ ∈ (0, 1), inf

R

f ′ > 0 and f (θ0) = 0 for some θ0 ∈ R.

(A2) ηηη ∈ C1,τ
loc (R) is monotonically decreasing and strictly positive in R.

Equation (1.1) has many practical applications in the fields of physics, chemistry and
biology, where ααα characterizes the diffusion, βββ is regarded as a spatially inhomogeneous
reaction term for the absorption f , and ηηη admitting (A2) models a degradation process in BR

which is compensated by adsorption through ∂ BR . For a simplified case ααα ≡ 1 and βββ ≡ 1,
we refer the reader to [16, (2a) and (2b)] for a typical model obeying assumptions (A1) and
(A2). In this work, ααα and βββ are treated in more general settings as follows:
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Nontrivial boundary structure in a Neumann problem on balls… 1125

(A3) ααα ∈ C2,τ
loc ([0,∞)) andβββ ∈ C1,τ

loc ([0,∞)) are bounded above and have positive infima,
and

βββ(r)r N−1 is increasing to r > 0.

Moreover, for αααR(r) := ααα(r)χ[0,R](r) and βββ R(r) := βββ(r)χ[0,R](r) restricted in the
domain [0, R] with sufficiently large R, there exists k∗ ∈ (0, 1) independent of R
such that

lim
R→∞ sup

r∈[k∗ R,R)

(
R
(∣∣ααα′

R(r)
∣∣+ ∣∣βββ ′

R(r)
∣∣)+ R2|ααα′′

R(r)|
)

∈ (0,∞). (1.3)

As an example in (A3), we introduce a smooth functionαααR = αααχ[0,R] satisfying property
(1.3) with ααα(r) = k∗ for r ∈ [0, k∗ R], ααα(r) ∈ [k∗, 1] for r ∈ [k∗ R, k R], and ααα(r) = 1 for
r ∈ [k R,∞), where k∗ ∈ (0, 1) and k > 1 are constants independent of R.

For (1.1), one naturally considers the boundary condition ααα(|x |) ∂u
∂�ν (x) = ηηη(u(x)). Here,

we use (1.2) since ααα is a positive constant on ∂ BR . In the related issues, some previous
works have been traced back to [4,16]. Let us mention [4,16], where the optimal bounds for
solutions of (1.1)–(1.2) with ααα ≡ 1 and βββ ≡ 1 have been investigated. However, at the best
of our knowledge, only partial results for the structure of solutions have been obtained. One
of main difficulties lies on unknown boundary behavior of u and ∂u

∂�ν which interact with each
other in the nonlinear boundary condition (1.2).

Starting with an interior estimate, we prove that for any R0 ∈ (0, R),

max
BR0

(
|u(x) − θ0| +

( |x |
R

)N−1

|∇u(x)|
)

≤ L0e−M0(R−R0), (1.4)

whereL0 andM0 are positive constants independent of R and R0 [cf. (2.6)]. As a consequence,
u behaves as a flat core (converges to θ0 exponentially) in any compact subset K of BR

as dist(∂K , ∂ BR)
R→∞−−−−→ ∞. Since θ0 does not satisfy the boundary condition (1.2), u

is nontrivial near the boundary. To deal with the boundary asymptotics, one can observe
that under the scale x = Rx̃ , (1.1) becomes a singularly perturbed model in the domain
B1 := {̃x ∈ R

N : |̃x | < 1} with a parameter 1
R2 → 0, and on the boundary ∂ B1, the

outward normal derivative in (1.2) has a parameter 1
R → 0 [see, e.g., (2.17) and Equation

(2.19)–(2.20)]. Hence, the singularity of |∇u| near ∂ BR introduces additional difficulties
when trying to implement the standard technique of matching asymptotic expansions that do
work for singularly perturbed semilinear elliptic problems. In this work, we are devoted to
refined boundary asymptotics of u as R � 1. We propose a new analysis technique based on
arguments in [7,10,12–14,17] and [9, Proposition 2]. For the fist situation, we assume that
the perturbation of βββ(R)

ααα(R)
− μ0 with respect to R � 1 is sufficiently small in the sense

lim
R→∞ R

(
βββ(R)

ααα(R)
− μ0

)
= 0, (1.5)

whereμ0 is a positive constant independent of R. Then, the boundary asymptotic expansions
at each boundary point xbd ∈ ∂ BR can be formally depicted as follows [see (2.7)–(2.9] for
the rigorous versions):

u(xbd)
R�1≈ p0 +

∫ p0

θ0

√
F(t) − F(θ0)

F(p0) − F(θ0)
dt

μ0
f (p0)

ηηη(p0)
− ηηη′(p0)

(
N − 1

R
+ ααα′(R)

2ααα(R)
+ βββ ′(R)

2βββ(R)

)
, (1.6)
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1126 C.-C. Lee

∂u

∂�ν (xbd)
R�1≈ ηηη(p0) +

ηηη′(p0)
∫ p0

θ0

√
F(t) − F(θ0)

F(p0) − F(θ0)
dt

μ0
f (p0)

ηηη(p0)
− ηηη′(p0)

(
N − 1

R
+ ααα′(R)

2ααα(R)
+ βββ ′(R)

2βββ(R)

)
,

(1.7)

where a
R�1≈ b means R(a − b) → 0 as R → ∞, and

F(t) =
∫ t

0
f (s) ds (1.8)

is the primitive of f , and p0 > θ0 is uniquely determined byηηη(p0) = √
2μ0(F(p0) − F(θ0))

[cf. (2.10)]. It is clear that even if R is large, u is strongly influenced by the nonlinear effect
of (1.2) on the boundary. We stress that the asymptotics (1.6) and (1.7) are obtained under

assumption (1.5), i.e., βββ(R)
ααα(R)

R�1≈ μ0. In light of (1.6) and (1.7), solutions asymptotically
expand as the radius of the domain BR tends to infinity, and ααα, ααα′, βββ, βββ ′, ηηη, ηηη′ and the
curvature 1

R have significant influence on the structure of solutions. Note also that even if
|xbd| = R → ∞, both u(xbd) and ∂u

∂�ν (xbd) remain finite and positive. Hence, u forms a
boundary layer with the concentration phenomenon near the boundary ∂ BR . The rigorous
boundary asymptotic expansions of u and ∂u

∂�ν will be presented in Theorem 2.1. For an
application of such asymptotics, we refer the reader to Corollary 2.2. To describe the related
boundary concentration phenomena of the solution u via a theoretical perspective, we show
that R(u(x)−θ0) and R|∇u(x)|2 weakly converge toDiracmeasures concentrating at infinity
as R tends toward infinity. Such phenomena will be described in Theorem 2.3.

Despite the crucial roles of μ0 and p0 in asymptotics (1.6) and (1.7), assumption (1.5)
implies that the perturbation of βββ(R)

ααα(R)
with respect to μ0 is actually rather small than the

curvature of ∂ BR as R is sufficiently large. To study further the influence of small perturbation
of βββ(R)

ααα(R)
−μ0 on asymptotic expansions of u(xbd) and ∂u

∂�ν (xbd), we shall consider the situation

lim inf R→∞ R
∣∣∣βββ(R)
ααα(R)

− μ0

∣∣∣ > 0 instead of (1.5). In the final Sect. 4, we will establish the

corresponding boundary asymptotic expansions in Corollary 4.1 which aremore complicated
than (1.6) and (1.7). As an application of Corollary 4.1, we focus particularly on the case

lim
R→∞

βββ(R)

ααα(R)
= μ0 and lim

R→∞ Rτ∗
∣∣∣∣
βββ(R)

ααα(R)
− μ0

∣∣∣∣ ∈ (0,∞) for some τ∗ > 0. (1.9)

For doing so, the effects of boundary curvature 1
R and the perturbation of βββ(R)

ααα(R)
− μ0 on

boundary asymptotics of u and ∂u
∂�ν will be classified via three situations τ∗ ∈ (0, 1), τ∗ = 1

and τ∗ ≥ 1. Such a result can be found in Remark 3.

2 Statement of themain results

The associated energy functional of (1.1)–(1.2) is defined by

E[v] =
∫

BR

ααα(|x |)
2

|∇v|2 + βββ(|x |)F(v) dx − ααα(R)

∫

∂ BR

∫ v

θ0

ηηη(t) dt dσx , v ∈ H1(BR).

Let us fix R > 0. Since min
R

F = F(θ0) [by (A1)], together with (A2)–(A3) we verify

that E is bounded below over H1(BR). Thus, applying the standard direct method to E , one
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Nontrivial boundary structure in a Neumann problem on balls… 1127

immediately obtains the existence of weak solutions to (1.1)–(1.2). Thanks again to (A1)–
(A3), for each fixed R > 0 we can further follow the standard argument consisting of the
maximum principle and the elliptic regularity theorem [cf. [8]] to show that (1.1)–(1.2) has
a unique solution u ∈ C1(BR) ∩ C∞(BR) satisfying u(x) ≥ θ0, ∀x ∈ BR . In particular, the
uniqueness implies that u(x) = UUU(|x |) is radially symmetric in BR , where UUU is the unique
solution of

(
r N−1ααα(r)UUU′(r)

)′ = r N−1βββ(r) f (UUU(r)) , r ∈ (0, R), (2.1)

UUU′(0) = 0, UUU′(R) = ηηη(UUU(R)), (2.2)

and satisfies

UUU(r) ≥ θ0 in [0, R]. (2.3)

This along with (A1) yields f (UUU(r)) ≥ 0 in [0, R]. Notice also that ααα(r) and βββ(r) are
positive in (0, R). SinceUUU solves (2.1) and satisfiesUUU′(0) = 0, we know that r N−1ααα(r)UUU′(r)

is increasing to r and, consequently,

UUU′(r) ≥ 0 in [0, R]. (2.4)

Accordingly, u is monotonically increasing in the sense that u(x) ≥ u(y) if |x | ≥ |y|. It
should also be mentioned that u is stable since the second variation of E[u] with respect to
compactly supported smooth perturbations ξ is nonnegative, i.e.,

Qu[ξ ] :=
∫

BR

ααα(|x |)|∇ξ |2 + βββ(|x |) f ′(u)ξ2 dx

− ααα(R)

∫

∂ BR

ηηη′(u)ξ2 dσx ≥ 0, ∀ ξ ∈ C1
c(BR)

[trivially due to (A1)–(A3)].

2.1 Boundary structure and concentration phenomena

The main goal of this work is to establish asymptotic behavior of solution UUU as R goes to
infinity. Later on we will prove that both UUU and UUU′ are uniformly bounded in [0, R] for all
R > 0. To establish the refined asymptotics, asymptotic expansions of ααα(R) and βββ(R) with
respect to R � 1 are required. In what follows, we continue along the relation (1.3) to further
assume that as R → ∞, βββ(R)

ααα(R)
approaches a positive constant μ0 in the sense described in

(1.5), i.e.,

βββ(R)

ααα(R)
= μ0 + o(1)

R
, as R � 1, (2.5)

where o(1) denotes the quantity approaching zero as R goes to infinity. The first result
is about an interior estimate of UUU and UUU′ and refined, precise asymptotics for UUU(R) and
UUU′(R). Particularly, the boundary asymptotic expansions involve the domain geometry and
the behavior of ααα′(R) and βββ ′(R).

Theorem 2.1 (Interior and boundary asymptotics).Assume (A1)–(A3). For N ≥ 2 and R > 0,
let UUU ∈ C1((0, R]) ∩C∞((0, R)) be the unique solution of (2.1)–(2.2). Then, UUU is monoton-
ically increasing in [0, R]. As R � 1,UUU is strictly convex near the boundary, and there exist
positive constants L0 and M0 independent of R such that for r ∈ [0, R],
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1128 C.-C. Lee

|UUU(r) − θ0| +
( r

R

)N−1 |UUU′(r)| ≤ L0e−M0(R−r). (2.6)

Moreover, if (2.5) is satisfied, then the boundary asymptotics of UUU(R) and UUU′(R) involving
the effects of ααα′(R), βββ ′(R) and the curvature 1

R are depicted as

UUU(R) = p0 + C0HHH(R) + o(1)

R
, (2.7)

UUU′(R) = ηηη(p0) + ηηη′(p0)C0HHH(R) + o(1)

R
, (2.8)

where
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C0 =
(

μ0
f (p0)

ηηη(p0)
− ηηη′(p0)

)−1 ∫ p0

θ0

√
F(t) − F(θ0)

F(p0) − F(θ0)
dt,

HHH(R) = N − 1

R
+ 1

2

(
ααα′(R)

ααα(R)
+ βββ ′(R)

βββ(R)

)
.

(2.9)

Here, p0 > θ0 is uniquely determined by the nonlinear algebraic equation

ηηη(p0) = √2μ0(F(p0) − F(θ0)), (2.10)

and F is defined in (1.8).

Note that C0 is a positive coefficient independent of R [cf. (A1) and (A2)]. The uniqueness
of equation (2.10) is trivially due to the fact that ηηη is a decreasing function and F is strictly
increasing in (θ0,∞) [by (A1) and (A2)].

Equations (2.7) and (2.8) provide fruitful information for the effects ofααα andβββ onboundary
asymptotics of UUU. It should be mentioned a case

N − 1

R
+ 1

2

(
ααα′(R)

ααα(R)
+ βββ ′(R)

βββ(R)

)
= o(1)

R
as R � 1;

for example, ααα(r) = N−1
R (R − r) + 1 and βββ(r) = μ0ααα(r) for r ∈ [0, R]. Then, we have

UUU(R) = p0 + o(1)

R
and UUU′(R) = ηηη(p0) + o(1)

R
,

and conclude that the effect of the domain size on solutionUUU is inconspicuous. Let us consider
another special case where ααα(r)βββ(r) is a constant value as r ≥ r0 for some r0 > 0. Then, as
R � 1, (2.9) impliesHHH(R) = N−1

R . In this case, UUU(R) andUUU′(R) are indeed varied with the
boundary curvature, but the effect of ααα and βββ on UUU(R) and UUU′(R) is quite slight.

We shall also stress the importance of second-order terms of (2.7) and (2.8). Note that
max[0,R]U

UU = UUU(R) ∼ p and UUU′(R) ∼ ηηη(p0) as R � 1. When ηηη′(p0) < 0 [cf. (A2)], by the

second-order terms of (2.7) and (2.8) one further gets

N − 1

R
+ 1

2

(
ααα′(R)

ααα(R)
+ βββ ′(R)

βββ(R)

)
> 0 as R � 1⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒⇐⇒ UUU(R) > p0 and

UUU′(R) < ηηη(p0) as R � 1.

In particular, ifααα(r) = α1 andβββ(r) = β1 are constants as r is close to R, then for sufficiently
large R,HHH(R) = N−1

R , andUUU(R) > p0 and 0 < UUU′(R) < ηηη(p0). Moreover, some monotone
properties for boundary asymptotics of UUU(R) and UUU′(R) with respect to ααα′(R), βββ ′(R) and
the sufficiently large radius R of the domain BR are stated as follows:
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Corollary 2.2 Under the same hypotheses as in Theorem 2.1, let αααi ∈ C2,τ
loc ([0,∞)) and

βββ i ∈ C1,τ
loc ([0,∞)) satisfy (A3). Then, we have

(I) Let UUUαααi ,βββi be the unique solution of (2.1)–(2.2) with (R,ααα,βββ) = (Ri ,αααi ,βββ i ), i =
1, 2, where 1 < R1 < R2 and sup

R1�1

R2

R1
< ∞. If βββi (Ri )

αααi (Ri )
satisfies (2.5) and

(
ααα′
1(R1)

ααα1(R1)
+ βββ ′

1(R1)

βββ1(R1)

)
−
(

ααα′
2(R2)

ααα2(R2)
+ βββ ′

2(R2)

βββ2(R2)

)
= o(1)

R1
.

Then, as R1 is sufficiently large, there hold

UUUααα1,βββ1(R1) > UUUααα2,βββ2(R2) > θ0 and 0 < UUU′
ααα1,βββ1

(R1) ≤ UUU′
ααα2,βββ2

(R2).

Moreover, when ηηη′(p0) < 0, we have 0 < UUU′
ααα1,βββ1

(R1) < UUU′
ααα2,βββ2

(R2) as 1 � R1 <

R2.
(II) Let ŨUUαααi ,βββi be the unique solution of (2.1)–(2.2) in (0, R) with (ααα,βββ) = (αααi ,βββ i ),

i = 1, 2. Assume further that

βββ1(R)

ααα1(R)
and

βββ2(R)

ααα2(R)
are posi tive constants independent o f R,

and one of the following assumptions holds:

(i)
βββ1(R)

ααα1(R)
<

βββ2(R)

ααα2(R)
;

(ii)
βββ1(R)

ααα1(R)
= βββ2(R)

ααα2(R)
,
ααα′
1(R)

ααα1(R)
+ βββ ′

1(R)

βββ1(R)
>

ααα′
2(R)

ααα2(R)
+ βββ ′

2(R)

βββ2(R)
and ηηη′(p0) < 0,

then ŨUUααα1,βββ1(R) > ŨUUααα2,βββ2(R) > θ0 and 0 < ŨUU
′
ααα1,βββ1

(R) < ŨUU
′
ααα2,βββ2

(R) as R � 1.

A discussion on Corollary 2.2(II) is stated as follows:

Remark 1 It seems that the standard comparison is difficult to imply Corollary 2.2(II). Let
us consider another situation that αααi and βββ i satisfy

βββ1(r)

ααα1(r)
≤ βββ2(r)

ααα2(r)
and

ααα′
1(r)

ααα1(r)
≥ ααα′

2(r)

ααα2(r)
, ∀ r ∈ [0, R]. (2.11)

Then, applying the standard PDE comparison to (2.1)–(2.2) and using (2.3)–(2.4), one obtains
ŨUUααα1,βββ1 ≥ ŨUUααα2,βββ2 ≥ θ0 in [0, R]. In particular, if ŨUUααα1,βββ1 �= ŨUUααα2,βββ2 at an interior point,
then ŨUUααα1,βββ1(R) > ŨUUααα2,βββ2(R) > θ0. This is the same as the corresponding result in Corol-
lary 2.2(II), but the conditions (i) and (ii) are far weaker than condition (2.11).

Let us return to Theorem 2.1 which establishes refined asymptotics of UUU(R) and UUU′(R)

under a strong assumption (2.5). It should be stressed that if βββ(R)
ααα(R)

→ μ0 but it does not satisfy

(2.5), then the effect of the perturbation of βββ(R)
ααα(R)

− μ0 cannot be ignored. We will establish

asymptotics of UUU(R) and UUU′(R) involving the effect of the perturbation of βββ(R)
ααα(R)

− μ0 in
Sect. 4; see (4.3)–(4.4).

To see the concentration phenomenon of UUU near the boundary r = R as R → ∞, let us
introduce a Dirac measure δ∞ defined in the interval of nonnegative extended real numbers,
which satisfies δ∞(r) = 0 for r ∈ (0,∞) and

∫∞
0 δ∞(r) dr = 1. We focus on the behavior

of UUU in the region (k∗ R, R) and define

δR(UUU−θ0)(r) =
{

R(UUU(r) − θ0), for r ∈ (k∗ R, R),

0, for r ∈ [0, k∗ R] ∪ [R,∞),
(2.12)
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1130 C.-C. Lee

and

δRUUU′2(r) =
{

RUUU′2(r), for r ∈ (k∗ R, R),

0, for r ∈ [0, k∗ R] ∪ [R,∞),
(2.13)

where k∗ is defined in (A3). The following theorem confirms that δR(UUU−θ0) and δRUUU′2 behave
as Dirac measures at infinity in the following weak sense:

δR(UUU−θ0)

R→∞−−−−−⇀
(

1√
μ0

∫ p0

θ0

t − θ0√
2(F(t) − F(θ0))

dt

)
δ∞,

δRUUU′2
R→∞−−−−−⇀

(√
μ0

∫ p0

θ0

√
2(F(t) − F(θ0)) dt

)
δ∞.

Theorem 2.3 (Boundary concentrations). Under the same hypotheses as in Theorem 2.1, as
R → ∞, for any r ∈ [0,∞), there hold

δR(UUU−θ0)(r) → 0 and δRUUU′2(r) → 0 as R → ∞, (2.14)

and

lim
R→∞

∫ ∞

0
δR(UUU−θ0)(r) dr = 1√

μ0

∫ p0

θ0

t − θ0√
2(F(t) − F(θ0))

dt, (2.15)

lim
R→∞

∫ ∞

0
δRUUU′2(r) dr = √

μ0

∫ p0

θ0

√
2(F(t) − F(θ0)) dt . (2.16)

Remark 2 We shall stress that (2.15) is well defined. Indeed, by (A1) it is easy to obtain

1

p0 − θ0

∫ p0

θ0

t − θ0√
2(F(t) − F(θ0))

dt ∈
[(

max[θ0,p0]
f ′
)−1/2

,

(
min[θ0,p0]

f ′
)−1/2

]
.

2.2 A significant idea

To study the asymptotic behavior of UUU as R → ∞, we consider a change of variables

ε = 1

R
→ 0+, s = εr ∈ (0, 1], uε(s) = UUU(r), αε(s) = ααα(r), βε(s) = βββ(r). (2.17)

In what follows, we use the symbol

D := d

ds

for the derivative with respect to the variable s rather than ′ to avoid the notation confusion
with the prime notation ′ for the derivative with respect to the variable r . Then, we have

(Duε)(s) = ε−1UUU′(r) = RUUU′(r), (Dαε)(s) = Rααα′(r), (Dβε)(s) = Rβββ ′(r), (2.18)

and (2.1)–(2.2) is equivalent to the following singularly perturbed equationwith small param-
eter ε:

ε2
(

(D2uε)(s) +
(

N − 1

s
+ (Dαε)(s)

αε(s)

)
(Duε)(s)

)

= βε(s)

αε(s)
f (uε(s)), s ∈ (0, 1), (2.19)
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(Duε)(0) = 0, ε(Duε)(1) = ηηη(uε(1)). (2.20)

Hence, Equation (2.1) in the domain (0, R) with R → ∞ becomes a singularly perturbed
equation (2.19) with ε ↓ 0 in a finite domain (0, 1). To deal with asymptotics of uε , one can
multiply (2.19) by Duε and make simple calculations to obtain a first-order ODE

ε2

2

(
(Duε)(s))

2 − βε(s)

αε(s)
F(uε(s))

)

= −
∫ s

k∗

[
ε2
(

N − 1

t
+ (Dαε)(t)

αε(t)

)
((Duε)(t))

2 + F(uε(t))D
(

βε(t)

αε(t)

)]
dt

+ Ck∗,ε , s ∈ [k∗, 1], (2.21)

with

Ck∗,ε = ε2

2
((Duε)(k

∗))2 − βε(k∗)
αε(k∗)

F(uε(k
∗)), (2.22)

where D
(

βε

αε

)
:= d

dt

(
βε

αε

)
and F is defined in (1.8). In particular, (2.21) together with the

boundary condition (2.20) implies

− 1

2

(
ηηη(uε(1))

)2 + βε(1)

αε(1)
F(uε(1))

=
∫ 1

k∗

[
ε2
(

N − 1

t
+ (Dαε)(t)

αε(t)

)
((Duε)(t))

2 + F(uε(t))D
(

βε(t)

αε(t)

)]
dt − Ck∗,ε .

(2.23)

We will show that the right-hand side of (2.23) tends to zero as ε ↓ 0. Its precise leading
term plays a key role in the asymptotics of uε(1).

The remainder of the paper proceeds as follows: In the next section, we will establish the
interior and gradient estimate of uε in Lemmas 3.1 and 3.2, which give the precise leading
order term of the expression in the right-hand side of (2.23). In particular, by (2.5), (2.17)
and (2.23), we obtain

(ηηη(uε(1)))
2 = 2μ0 (F(uε(1)) − F(θ0)) + oε(1) as ε ↓ 0. (2.24)

As will be mentioned later on, the interior estimate (3.1) and the gradient estimate (3.2) show

that if lim
ε↓0

1 − sε

ε
= ∞, there still hold uε(sε) → θ0 and (Duε)(sε) → 0 exponentially as ε

goes to zero. Furthermore, in Theorem 3.3, we combine (2.23) with (3.26)–(3.27) to establish
the precise leading order terms of (2.24) as follows [see (3.37) also]:

1

ε

(
−1

2
(ηηη(uε(1)))

2 + μ0 (F(uε(1)) − F(θ0))

)

= √
μ0

(
(N − 1) + (Dαε)(1)

2αε(1)
+ (Dβε)(1)

2βε(1)

)∫ p0

θ0

√
2(F(t) − F(θ0)) dt + oε(1),

which will determine the precise first two-order terms of uε(1) and (Duε)(1) with respect
to small ε > 0. We shall highlight here that Theorem 3.3 plays a key role in the proof of
the main theorems. The proof of Theorems 2.1 and 2.3 and Corollary 2.2 will be stated in
Sect. 3.3. To see the effect of the perturbation of βββ(R)

ααα(R)
around μ0 on solution asymptotics, in

the final Sect. 4 we replace the strong assumption (2.5) with lim inf R→∞ R(
βββ(R)
ααα(R)

−μ0) > 0
which includes the situation (1.9). Then, we establish in Corollary 4.1 the precise effect of
βββ(R)
ααα(R)

− μ0 on asymptotics of UUU(R) and UUU′(R).
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3 Proof of themain results

In this section, we first investigate asymptotics for solutions uε of Eq. (2.19)–(2.20) and
establish the corresponding boundary gradient asymptotic expansions as ε tends to zero. Such
asymptotics play a crucial role in the asymptotic expansions of UUU and UUU′ as R approaches
infinity. In Sect. 3.3, we shall complete the proof of Theorems 2.1 and 2.3 and Corollary 2.2.

3.1 Interior estimates

To go further, let us state some properties which can be obtained directly from (A1)–(A3),
(2.3), (2.4) and (2.17)–(2.20).

(P1) As ε > 0 is sufficiently small, we have

αε(s)

βε(s)
≥ 1

2
lim

R→∞ inf[0,R]
ααα(r)

βββ(r)
and

βε(s)

αε(s)
≥ 1

2
lim

R→∞ inf[0,R]
βββ(r)

ααα(r)
, ∀ s ∈ [0, 1].

Henceforth, we set C1 := 1

2
min

{
lim

R→∞ inf[0,R]
ααα(r)

βββ(r)
, lim

R→∞ inf[0,R]
βββ(r)

ααα(r)

}
> 0. This

along with (A3) gives

min
s∈[0,1]

αε(s)

βε(s)
≥ C1, min

s∈[0,1]
βε(s)

αε(s)
≥ C1 as 0 < ε � 1.

(P2) As ε > 0 is sufficiently small,

sup
s∈[k∗,1]

(
|(Dαε)(s)|

αε(s)
+ |(Dβε)(s)|

βε(s)
+
∣∣(D2αε)(s)

∣∣
α2

ε (s)

)
≤ C2,

where k∗ ∈ (0, 1) is defined in (A3) and C2 is a positive constant independent of ε.
(P3) uε − θ0 and Duε are nonnegative in [0, 1]. Moreover, by (A1) we have

f ′(uε(s)) ≥ C3 and f (uε(s))(uε(s) − θ0) ≥ C3(uε(s) − θ0)
2, ∀ s ∈ [0, 1],

where C3 is a positive constant independent of ε.
(P4) By (1.2) and (A2), we have

ε−1ηηη

(
max[0,1] uε

)
≤ (Duε)(1) ≤ ε−1ηηη(θ0).

(P5) By (2.19) and uε ≥ θ0, we have

D
(

s N−1αε(s)(Duε)(s)
)

= s N−1βε(s) f (uε(s)) ≥ 0, ∀ s ∈ (0, 1).

Hence, s N−1αε(s)(Duε)(s) is increasing to s ∈ [0, 1].
Moreover, we have the following estimates of uε and Duε with respect to sufficiently small
ε > 0.

Lemma 3.1 Assume that (A1)–(A3) hold. For ε > 0 and αε and βε satisfying (2.17), let
uε ∈ C1((0, 1]) ∩ C∞((0, 1)) be the unique solution of (2.19)–(2.20). Then, there exist
positive constants ε∗ and M∗ independent of ε such that as 0 < ε < ε∗,

0 ≤ uε(s) − θ0 ≤ 2(uε(1) − θ0)e
− M∗

ε
(1−s), (3.1)
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and

0 ≤ s N−1αε(s)(Duε)(s) ≤ 2

ε
αε(1)ηηη(θ0)e

− M∗
ε

(1−s), (3.2)

for s ∈ [0, 1].
Proof We first deal with the estimate of uε(s) − θ0. Multiplying (2.19) by uε(s) − θ0 and
using (P1) and (P3), we obtain

ε2
(

(D2uε)(s) +
(

N − 1

s
+ (Dαε)(s)

αε(s)

)
(Duε)(s)

)
(uε(s) − θ0) ≥ C1C3(uε(s) − θ0)

2.

(3.3)

One can further check that, for s ∈ [k∗, 1],
(

(D2uε)(s) +
(

N − 1

s
+ (Dαε)(s)

αε(s)

)
(Duε)(s)

)
(uε(s) − θ0)

= 1

2
D2((uε(s) − θ0)

2) − (D(uε(s) − θ0))
2

+
(

N − 1

s
+ (Dαε)(s)

αε(s)

)
(D(uε(s) − θ0)) (uε(s) − θ0)

≤ 1

2
D2((uε(s) − θ0)

2) + 1

4

(
N − 1

k∗ + C2

)2

(uε(s) − θ0)
2. (3.4)

Here, we have used (P2), (P3) and uε(s) ≥ θ0 to deal with the last inequality of (3.4).
Combining (3.3) with (3.4), one finds

ε2D2((uε(s) − θ0)
2) ≥

[
2C1C3 − ε2

2

(
N − 1

k∗ + C2

)2
]

(uε(s) − θ0)
2

≥ C1C3(uε(s) − θ0)
2, s ∈ [k∗, 1], (3.5)

as

0 < ε ≤ √2C1C3

(
N − 1

k∗ + C2

)−1

.

Consequently, applying the standard PDE comparison theorem to (3.5), we may arrive at the
estimate

0 ≤ uε(s) − θ0 ≤ (uε(1) − θ0)

(
e−

√
C1C3
2ε (s−k∗) + e−

√
C1C3
2ε (1−s)

)
, ∀ s ∈ [k∗, 1]. (3.6)

Now we shall refine the estimate (3.6). Firstly, we assume s ∈ [ k∗+1
2 , 1], i.e., s − k∗ ≥ 1− s.

Then, (3.6) implies

0 ≤ uε(s) − θ0 ≤ 2(uε(1) − θ0)e
−

√
C1C3
2ε (1−s). (3.7)

On the other hand, for s ∈ [0, k∗+1
2 ], by the property (Duε)(s) ≥ 0 and (3.6) we have

0 ≤ uε(s) − θ0 ≤uε

(
k∗ + 1

2

)
− θ0 ≤ 2(uε(1) − θ0)e

−
√

C1C3
4ε (1−k∗)

≤ 2(uε(1) − θ0)e
− (1−k∗)

√
C1C3

4ε (1−s). (3.8)
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It therefore follows from (3.7) and (3.8) that

0 ≤ uε(s) − θ0 ≤ 2(uε(1) − θ0)e
− (1−k∗)

√
C1C3

4ε (1−s), ∀ s ∈ [0, 1]. (3.9)

Now we shall deal with the estimate of Duε . Multiplying (2.19) by s N−1αε(s) and taking
the derivative of the expression with respect to the variable s, one arrives at

ε2D2
(

s N−1αε(s)(Duε)(s)
)

= D
(

s N−1βε(s)
)

f (uε(s)) + s N−1βε(s) f ′(uε(s))(Duε)(s).

(3.10)

To deal with the left-hand side of (3.10), we first notice D
(
s N−1βε(s)

) ≥ 0 [by (A3)].
Thanks to (P1) and (P3), we arrive at a differential inequality

ε2D2
(

s N−1αε(s)(Duε)(s)
)

≥ C3

(
inf

s∈[0,1]
βε(s)

αε(s)

)(
s N−1αε(s)(Duε)(s)

)

≥ C1C3s N−1αε(s)(Duε)(s), in (0, 1). (3.11)

Applying the standard PDE comparison theorem to (3.11) and using (P4) immediately give

0 ≤ s N−1αε(s)(Duε)(s) ≤ αε(1)ηηη(θ0)

ε

(
e−

√
C1C3
ε

s + e−
√

C1C3
ε

(1−s)
)

. (3.12)

Along with the fact that s N−1αε(s)(Duε)(s) is increasing to s [see (P5)], we may follow the
similar argument as in (3.6)–(3.9) to obtain

0 ≤ s N−1αε(s)(Duε)(s) ≤ 2

ε
αε(1)ηηη(θ0)e

− (1−k∗)
√

C1C3
2ε (1−s). (3.13)

Let us set M∗ = (1−k∗)
√

C1C3
4 . Then, (3.1) and (3.2) follow from (3.9) and (3.13), respectively.

This completes the proof of Lemma 3.1. ��

The following result states the uniform boundedness of uε and the leading order terms of
uε(1) and (Duε)(1) with respect to 0 < ε � 1.

Lemma 3.2 Under the same hypotheses as in Lemma 3.1, max[0,1] uε = uε(1) is uniformly
bounded as ε > 0 is sufficiently small. In particular, as ε ↓ 0, for each s ∈ [0, 1) independent
of ε, |uε(s) − θ0| + ε|(Duε)(s)| → 0 exponentially, and

uε(1) → p and ε(Duε)(1) → ηηη(p0), (3.14)

where p is the unique root of (2.10). Moreover,
∣∣∣∣∣ε(Duε)(s) −

√
2βε(s)

αε(s)
(F(uε(s)) − F(θ0))

∣∣∣∣∣ ≤ C̃ε1/2, f or s ∈ [k∗, 1], (3.15)

where C̃ is a positive constant independent of ε.

Proof We first claim lim sup
ε↓0

uε(1) < ∞. Integrating (3.2) over the interval (k∗, 1), one

obtains

(k∗)N−1
(
min[k∗,1] αε

)
(uε(1) − uε(k

∗)) ≤ αε(1)ηηη(θ0)

M∗ .
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Along with (3.1), one arrives at

uε(1) − αε(1)ηηη(θ0)

M∗(k∗)N−1 min[k∗,1] αε

≤ uε(k
∗) ≤ θ0 + 2(uε(1) − θ0)e

− M∗
ε

(1−k∗).

Because M∗ > 0, k∗ < 1 and αε(1)
min[k∗,1] αε

is uniformly bounded to 0 < ε � 1 [by (A3) and

(P1)], the above inequality implies

lim sup
ε↓0

uε(1) ≤ θ0 + αε(1)ηηη(θ0)

M∗(k∗)N−1 min[k∗,1] αε

< ∞. (3.16)

Since uε(1) is uniformly bounded as 0 < ε � 1, and θ0 ≤ uε(s) ≤ uε(1), we immediately
obtain the uniform boundedness of uε as 0 < ε � 1. Moreover, (3.1) can be improved by

0 ≤ uε(s) − θ0 ≤ Lεe− M∗
ε

(1−s), (3.17)

as 0 < ε � 1, where

Lε := 1 + θ0 + αε(1)ηηη(θ0)

M∗(k∗)N−1 min[k∗,1] αε

. (3.18)

Note that Lε is uniformly bounded to ε > 0. Consequently, by (3.1) and (3.17), we show
that for each s ∈ [0, 1) independent of ε, both |uε(s) − θ0| and ε|(Duε)(s)| decay to zero
exponentially as ε approaches zero.

To prove (3.14), we shall obtain the precise leading order terms of uε(1) and (Duε)(1)
with respect to small ε. Let us first deal with the terms in the right-hand side of (2.23). Firstly,
by (P2) and (3.2) one may check that, as 0 < ε � 1,

∫ 1

k∗
ε2
(

N − 1

t
+ (Dαε)(t)

αε(t)

)
((Duε)(t))

2dt

≤
∫ 1

k∗

(
N − 1

t
+ (Dαε)(t)

αε(t)

)(
αε(1)ηηη(θ0)

t N−1αε(t)

)2 (
e− M∗

ε
t + e− M∗

ε
(1−t)

)2
dt

≤ 2

M∗

⎛
⎜⎝ αε(1)ηηη(θ0)

(k∗)N−1 min[k∗,1] αε

⎞
⎟⎠

2 (
N − 1

k∗ + C2

)
ε := C4ε. (3.19)

Note that C4 is a positive constant independent of ε due to (A3) and (2.18). Next, we shall
claim

∫ 1

k∗
F(uε(t))D

(
βε(t)

αε(t)

)
dt − Ck∗,ε ∼ F(θ0)

βε(1)

αε(1)
, as 0 < ε � 1.

By using (1.8), (2.22) (P1)–(P3), (3.2) and (3.17), we have
∣∣∣∣
∫ 1

k∗
F(uε(t))D

(
βε(t)

αε(t)

)
dt − Ck∗,ε − F(θ0)

βε(1)

αε(1)

∣∣∣∣

≤
∣∣∣∣Ck∗,ε + βε(k∗)

αε(k∗)
F(θ0)

∣∣∣∣+
∣∣∣∣
∫ 1

k∗
F(uε(t))D

(
βε(t)

αε(t)

)
dt − F(θ0)

(
βε(1)

αε(1)
− βε(k∗)

αε(k∗)

)∣∣∣∣

≤
∣∣∣∣Ck∗,ε + βε(k∗)

αε(k∗)
F(θ0)

∣∣∣∣+
∫ 1

k∗
|F(uε(t)) − F(θ0)|

∣∣∣∣D
(

βε(t)

αε(t)

)∣∣∣∣ dt
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≤ C5

(
e− M∗

ε
k∗ + e− M∗

ε
(1−k∗)

)
+ C2

(
1 + max

t∈[0,1]
αε(t)

βε(t)

)
f (uε(1))

∫ 1

k∗
(uε(t) − θ0)dt

≤ C5

(
e− M∗

ε
k∗ + e− M∗

ε
(1−k∗)

)
+ C6ε, (3.20)

as 0 < ε � 1, where C5 is a positive constant independent of ε, and C6 can be any large
positive constant satisfying

C6 >
2C2

M∗ lim sup
ε↓0

{
Lε

(
1 + max

t∈[0,1]
αε(t)

βε(t)

)
f (Lε + θ0)

}
.

Here, we have used (2.22), (3.2) and (3.17) to get
∣∣∣∣Ck∗,ε + βε(k∗)

αε(k∗)
F(θ0)

∣∣∣∣ ≤ C5

(
e− M∗

ε
k∗ + e− M∗

ε
(1−k∗)

)
(3.21)

which verifies the last second line of (3.20). Combining (2.23) with (3.20) yields

(ηηη(uε(1)))
2 − 2βε(1)

αε(1)
(F(uε(1)) − F(θ0))

ε↓0−→ 0. (3.22)

On the other hand, by (2.5) and (2.17), we have βε(1)
αε(1)

→ μ0 as ε ↓ 0. Note that F is strictly
increasing in (θ0,∞). Since uε(1) ≥ θ0 and ηηη > 0 is a decreasing function [cf. (A2)], we
obtain limε↓0 uε(1) = p which uniquely solves (2.10). Moreover, by this with the boundary
condition (2.20), we have limε↓0 ε(Duε)(1) = ηηη(p0). Therefore, we obtain (3.14).

It remains to prove (3.15). Let s ∈ [k∗, 1]. Following the similar arguments as in (3.19)
and (3.20), we can get estimates

∫ s

k∗
ε2
(

N − 1

t
+ (Dαε)(t)

αε(t)

)
((Duε)(t))

2dt ≤ C7

(
N − 1

k∗ + C2

)
ε (3.23)

and ∣∣∣∣
∫ s

k∗
F(uε(t))D

(
βε(t)

αε(t)

)
dt − Ck∗,ε − F(θ0)

βε(s)

αε(s)

∣∣∣∣ ≤ C8ε, (3.24)

as 0 < ε � 1, where C7, C8 > 0 independent of s and ε. Then, by (2.21) and (3.23)–(3.24),
we arrive at ∣∣∣∣ε2 ((Duε)(s))

2 − 2βε(s)

αε(s)
(F(uε(s)) − F(θ0))

∣∣∣∣ ≤ C̃2ε (3.25)

with a positive constant C̃ independent of s and ε. Since (Duε)(s) ≥ 0 and F(uε(s)) ≥ F(θ0),
∀s ∈ [0, 1] [see (P3)], together with (3.25) we immediately get (3.15) and complete the proof
Lemma 3.2. ��

3.2 Boundary asymptotics with precise first two-order terms

Recall that (3.19) and (3.20) imply

sup
0<ε�1

ε

∫ 1

k∗

∣∣∣∣
N − 1

s
+ (Dαε)(s)

αε(s)

∣∣∣∣ ((Duε)(s))
2 ds < ∞,

sup
0<ε�1

1

ε

∣∣∣∣
∫ 1

k∗
F(uε(t))

(
D
(

βε

αε

))
(t) dt − Ck∗,ε − F(θ0)

βε(1)

αε(1)

∣∣∣∣ < ∞.
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To obtain the structure of the solution uε , we further establish their precise leading order terms
which play a crucial role in the refined asymptotics of uε(1) and (Duε) (1). The asymptotics
are stated as follows:

Theorem 3.3 Under the same hypotheses as in Lemma 3.1, for ε>0 sufficiently small, we have

ε

∫ 1

k∗

(
N − 1

s
+ (Dαε)(s)

αε(s)

)
((Duε)(s))

2ds

= √
μ0

(
(N − 1) + (Dαε)(1)

αε(1)

)∫ p0

θ0

√
2(F(t) − F(θ0)) dt + oε(1), (3.26)

and

1

ε

(∫ 1

k∗
F(uε(s))D

(
βε(s)

αε(s)

)
ds − Ck∗,ε − F(θ0)

βε(1)

αε(1)

)

= 1

2αε(1)

(
(Dβε)(1)√

μ0
− √

μ0(Dαε)(1)

)∫ p0

θ0

√
2(F(t) − F(θ0)) dt + oε(1), (3.27)

where oε(1) denotes the quantity approaching zero as ε ↓ 0.

Proof Let us fix a number τa ∈ (0, 1) independent of ε. By (P1) and (P2), we obtain

sup
s∈[1−ετa ,1]

∣∣∣∣
(Dαε)(s)

αε(s)
− (Dαε)(1)

αε(1)

∣∣∣∣ ≤ ετa sup
[1−ετa ,1]

∣∣∣∣D
(
Dαε

αε

)∣∣∣∣

≤
(

C2
2 + C2 sup

[1−ετa ,1]
αε

)
ετa

ε↓0−→ 0, (3.28)

sup
s∈[1−ετa ,1]

∣∣∣∣
βε(s)

αε(s)
− βε(1)

αε(1)

∣∣∣∣ ≤ ετa sup
[1−ετa ,1]

∣∣∣∣D
(

βε

αε

)∣∣∣∣

≤
(
1 + 1

C1

)
C2ε

τa
ε↓0−→ 0. (3.29)

Hence, for 0 < ε � 1, we consider a decomposition
∫ 1

k∗
ε2
(

N − 1

s
+ (Dαε)(s)

αε(s)

)
((Duε)(s))

2ds

=
∫ 1−ετa

k∗
ε2
(

N − 1

s
+ (Dαε)(s)

αε(s)

)
((Duε)(s))

2dt

+
∫ 1

1−ετa
ε2
[(

N − 1

s
+ (Dαε)(s)

αε(s)

)
−
(

(N − 1) + (Dαε)(1)

αε(1)

)]
((Duε)(s))

2ds

+ ε2
(

(N − 1) + (Dαε)(1)

αε(1)

)∫ 1

1−ετa
((Duε)(s))

2ds. (3.30)

Using the gradient estimate (3.2) and (3.28), we may follow the similar argument as in (3.19)
to ∣∣∣∣∣

∫ 1−ετa

k∗
ε2
(

N − 1

s
+ (Dαε)(s)

αε(s)

)
((Duε)(s))

2 dt

∣∣∣∣∣

≤ 2

(
N − 1

k∗ + C2

)
⎛
⎜⎝ αε(1)ηηη(θ0)

(k∗)N−1 min[k∗,1] αε

⎞
⎟⎠

2 ∫ 1−ετa

k∗

(
e− 2M∗

ε
s + e− 2M∗

ε
(1−s)

)
ds
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1138 C.-C. Lee

(due to τa ∈ (0, 1)) ≤ C9

(
N − 1

k∗ + C2

)
εe−2M∗ετa−1 � ε as 0 < ε � 1,

and
∣∣∣∣
∫ 1

1−ετa
ε2
[(

N − 1

s
+ (Dαε)(s)

αε(s)

)
−
(

(N − 1) + (Dαε)(1)

αε(1)

)]
((Duε)(s))

2 ds

∣∣∣∣

≤ C10ε
τa

∫ 1

1−ετa
ε2((Duε)(s))

2 ds � ε as 0 < ε � 1,

where C9 and C10 are positive constants independent of ε.
To deal with the last term of (3.30), let us rewrite (3.15) as

ε(Duε)(s) =
√
2βε(s)

αε(s)
(F(uε(s)) − F(θ0)) + γε(s) and |γε(s)| ≤ C̃ε1/2, ∀ s ∈ [k∗, 1].

(3.31)

Then, by (3.29) and (3.31) one may check that

ε

∫ 1

1−ετa
((Duε)(s))

2 ds

=
∫ 1

1−ετa

(√
2βε(s)

αε(s)
(F(uε(s)) − F(θ0)) + γε(s)

)
(Duε)(s)ds

=
√

βε(1)

αε(1)

∫ uε (1)

uε (1−ετa )

√
2(F(t) − F(θ0)) dt + oε(1)

=
√

βε(1)

αε(1)

{∫ θ0

uε (1−ετa )

+
∫ p0

θ0

+
∫ uε (1)

p

}√
2(F(t) − F(θ0)) dt + oε(1)

=
√

βε(1)

αε(1)

∫ p0

θ0

√
2(F(t) − F(θ0)) dt + oε(1). (3.32)

Here, we have used the following three estimates to deal with (3.32):
∣∣∣∣
∫ 1

1−ετa
γε(s)(Duε)(s)ds

∣∣∣∣ ≤ C̃ε1/2
∫ 1

1−ετa
(Duε)(s)ds ≤ C̃ε1/2(uε(1) − θ0) � ε1/2,

∣∣∣∣∣
∫ 1

1−ετa

√
2

(
βε(s)

αε(s)
− βε(1)

αε(1)

)
(F(uε(s)) − F(θ0))(Duε)(s)ds

∣∣∣∣∣

(by (3.29)) ≤
√
2

(
1 + 1

C1

)
C2ε

τa/2 (F(uε(1)) − F(θ0)) (uε(1) − θ0) � ετa/2,

and
∣∣∣∣∣

{∫ θ0

uε (1−ετa )
+
∫ uε (1)

p

}√
F(t) − F(θ0) dt

∣∣∣∣∣

(by (3.14) and (3.17)) ≤ √F(uε(1)) − F(θ0)
(|uε(1 − ετa ) − θ0| + |uε(1) − p|) ε↓0−→ 0.

Since βε(1)
αε(1)

→ μ0 as ε ↓ 0, (3.32) immediately implies (3.26).
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Nontrivial boundary structure in a Neumann problem on balls… 1139

Now we shall prove (3.27). From the first three lines of (3.20), we obtain

1

ε

∣∣∣∣
(∫ 1

k∗
F(uε(s))D

(
βε(s)

αε(s)

)
ds − Ck∗,ε − F(θ0)

βε(1)

αε(1)

)

−
∫ 1

k∗
(F(uε(s)) − F(θ0))D

(
βε(s)

αε(s)

)
ds

∣∣∣∣ �
1

ε

(
e− M∗

ε
k∗ + e− M∗

ε
(1−k∗)

)
ε↓0−→ 0,

(3.33)

Hence, by (3.31) and (3.33), one finds

1

ε

(∫ 1

k∗
F(uε(s))D

(
βε(s)

αε(s)

)
ds − Ck∗,ε − F(θ0)

βε(1)

αε(1)

)

= 1

ε

∫ 1

k∗

√
F(uε(s)) − F(θ0) (ε(Duε)(s) − γε(s))

√
αε(s)

2βε(s)
D
(

βε(s)

αε(s)

)
ds + oε(1)

=
∫ 1

k∗

√
F(uε(s)) − F(θ0) (Duε)(s)

√
αε(s)

2βε(s)
D
(

βε(s)

αε(s)

)
ds + oε(1). (3.34)

Here, we have used (P1)–(P2), |γε(s)| ≤ C̃ε1/2 and the interior estimate (3.17) to verify

1

ε

∣∣∣∣∣
∫ 1

k∗

√
F(uε(s)) − F(θ0) γε(s)

√
αε(s)

2βε(s)
D
(

βε(s)

αε(s)

)
ds

∣∣∣∣∣� 1.

On the other hand, notice that
√

αε(s)
2βε(s)

D
(

βε(s)
αε(s)

)
∈ C0,τ

loc ([0,∞)). Thus, by (P1) and (P2), we

have
∣∣∣∣∣

√
αε(s)

2βε(s)
D
(

βε(s)

αε(s)

)
−
√

αε(1)

2βε(1)
D
(

βε(1)

αε(1)

)∣∣∣∣∣ ≤ C11|s − 1|τ ,

where C11 is a positive constant independent of ε. Let us also recall (Duε)(s) ≥ 0 and
τ ∈ (0, 1). Hence, following the similar argument as in (3.32) arrives at the precise leading
order term of the expansion in the last line of (3.34):

∫ 1

k∗

√
F(uε(s)) − F(θ0) (Duε)(s)

√
αε(s)

2βε(s)
D
(

βε(s)

αε(s)

)
ds

=
∫ 1

1−ε1/2

√
F(uε(s)) − F(θ0) (Duε)(s)

√
αε(s)

2βε(s)
D
(

βε(s)

αε(s)

)
ds + oε(1)

=
√

αε(1)

2βε(1)
D
(

βε(1)

αε(1)

)∫ 1

1−ε1/2

√
F(uε(s)) − F(θ0) (Duε)(s) ds + oε(1)

= 1

αε(1)

(√
αε(1)

2βε(1)
(Dβε)(1) −

√
βε(1)

2αε(1)
(Dαε)(1)

)

×
∫ uε (1)

uε (1−ε1/2)

√
F(t) − F(θ0) dt + oε(1)
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1140 C.-C. Lee

= 1

αε(1)

(√
αε(1)

2βε(1)
(Dβε)(1) −

√
βε(1)

2αε(1)
(Dαε)(1)

)

×
∫ p0

θ0

√
F(t) − F(θ0) dt + oε(1). (3.35)

Since βε(1)
αε(1)

= μ0 + oε(1), by (3.34) and (3.35), we obtain (3.27) and complete the proof of
Theorem 3.3. ��

Thanks to Theorem 3.3, now we shall establish the precise first two-order terms of uε(1)
and (Duε)(1) with respect to sufficiently small ε. Note that by (2.5) and (2.17), we have

1

ε

(
βε(1)

αε(1)
− μ0

)
� 1, as 0 < ε � 1. (3.36)

Combining (2.23) with (3.26)–(3.27), one may obtain

− (ηηη(uε(1)))2

2
+ βε(1)

αε(1)
(F(uε(1)) − F(θ0))

= ε
√

μ0

(
(N − 1) + (Dαε)(1)

αε(1)

)(∫ p0

θ0

√
2(F(t) − F(θ0)) dt + oε(1)

)

+ ε

2αε(1)

(
(Dβε)(1)√

μ0
− √

μ0(Dαε)(1)

)

×
(∫ p0

θ0

√
2(F(t) − F(θ0)) dt + oε(1)

)

= ε
√

μ0

(
(N − 1) + (Dαε)(1)

2αε(1)
+ (Dβε)(1)

2βε(1)

)

×
(∫ p0

θ0

√
2(F(t) − F(θ0)) dt + oε(1)

)
. (3.37)

The next task at hand is to deal with the first two terms of uε(1) and (Duε)(1). By (3.14),
we obtain

uε(1) = p + qε with lim
ε↓0 qε = 0. (3.38)

Combining the boundary condition (2.20) with (3.38) gives the asymptotics

ε(Duε)(1) = ηηη(p0) + qεηηη
′(p0)(1 + oε(1)). (3.39)

On the other hand, by (2.10) and (3.38), we have, for 0 < ε � 1, that

− 1

2
(ηηη(uε(1)))

2 + βε(1)

αε(1)
(F(uε(1)) − F(θ0))

= −1

2

[
ηηη(p0) + qεηηη

′(p0)(1 + oε(1))
]2

+ βε(1)

αε(1)
[F(p0) − F(θ0) + qε f (p0)(1 + oε(1))]

= qε

[−ηηη(p0)ηηη
′(p0) + μ0 f (p0) + oε(1)

]

+
(

βε(1)

αε(1)
− μ0

)
(F(p0) − F(θ0)). (3.40)
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Nontrivial boundary structure in a Neumann problem on balls… 1141

As a consequence, by (2.10), (3.36), (3.37) and (3.40) one may check that

qε

ε
= (−ηηη(p0)ηηη

′(p0) + μ0 f (p0))
−1
[√

μ0

(
(N − 1) + (Dαε)(1)

2αε(1)
+ (Dβε)(1)

2βε(1)

)

×
∫ p0

θ0

√
2(F(t) − F(θ0)) dt + 1

ε

(
βε(1)

αε(1)
− μ0

)
(F(p0) − F(θ0))

]
+ oε(1)

=
(

(N − 1) + (Dαε)(1)

2αε(1)
+ (Dβε)(1)

2βε(1)

)
∫ p0

θ0

√
F(t) − F(θ0)

F(p0) − F(θ0)
dt

−ηηη′(p0) + μ0
f (p0)

ηηη(p0)

+ oε(1). (3.41)

Here, we have used (3.36) to verify the second equality. By (3.38) and (3.41), it yields the
precise first two-order terms of uε(1) with respect to small ε:

uε(1) = p0 + εC0

(
(N − 1) + (Dαε)(1)

2αε(1)
+ (Dβε)(1)

2βε(1)
+ oε(1)

)
, (3.42)

where C0 =
(
−ηηη′(p0) + μ0

f (p0)
ηηη(p0)

)−1 ∫ p0
θ0

√
F(t)−F(θ0)

F(p0)−F(θ0)
dt is defined in Theorem 2.1.

Finally, (3.39) and (3.41) imply

(Duε)(1) = ηηη(p0)

ε
+ ηηη′(p0)C0

(
(N − 1) + (Dαε)(1)

2αε(1)
+ (Dβε)(1)

2βε(1)

)
+ oε(1). (3.43)

3.3 Completion of the proofs

Proof of Theorem 2.1 The monotonic increase of UUU follows immediately from (2.4). To deal
with the convexness of UUU as R � 1, let us recall (2.19), (P2), (P3) and Lemma 3.1. Firstly,
we choose kε ∈ [k∗, 1) such that uε(kε) = θ0+p0

2 ∈ (θ0, p0). Then, by (3.17) and (3.18) we

have 0 <
p0−θ0

2 ≤ Lεe− M∗
ε

(1−kε ) with 0
ε↓0←− ε log p−θ0

2Lε
≤ −M∗(1 − kε) < 0, implying

k∗ < 1 + ε

M∗ log
p0 − θ0

2Lε

≤ kε < 1 as 0 < ε � 1. (3.44)

Moreover, we have min[kε ,1] uε ≥ (θ0 + p0)/2 for any ε > 0. Hence, by (2.19), (P2), (P3)
and (3.44) we obtain, for sufficiently small ε > 0, that

ε2(D2uε)(s) ≥ −ε2

(
N − 1

k∗ + sup
[k∗,1]

∣∣∣∣
(Dαε)

αε

∣∣∣∣
)

(Duε)(s) +
(

inf[k∗,1]
βε(s)

αε(s)

)
f (uε(k

∗))

≥ −ε2
(

N − 1

k∗ + C2

)
(Duε)(s) + C1 f (

θ0 + p

2
) ≥ C1

2
f

(
θ0 + p

2

)
> 0

since limε↓0 sup
[k∗,1]

ε(Duε) < ∞. As a consequence,

(D2uε)(s) > 0 in [kε, 1] as 0 < ε � 1.

This along with (2.17) gives UUU′′ > 0 in [̃kR, R] as R � 1, where k̃R := k1/R R (= kε R)

admits

R + 1

M∗ log
p − θ0

2Lε

≤ k̃R < R.
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Hence, we obtain the convexness of UUU near the boundary r = R as R � 1.
It remains to deal with (2.6). By (2.17)–(2.18), (3.2) and (3.17), one arrives at

0 ≤
( r

R

)N−1
UUU′(r) ≤ 2ηηη(θ0)ααα(R)

min[0,R]α
αα

e−M∗(R−r),

0 ≤ UUU(r) − θ0 ≤ Lεe−M∗(R−r),

for r ∈ [0, R]. Consequently, we prove (2.6) with M0 = M∗ and L0 = 2ηηη(θ0)max[0,R] ααα(
min[0,R] ααα

)−1 + sup0<ε�1 Lε which are positive constants independent of R. Finally, by
(2.17), (2.18), (3.42) and (3.43), we immediately obtain (2.7) and (2.8). Therefore, we com-
plete the proof of Theorem 2.1. ��

Proof of Corollary 2.2 Corollary 2.2(I) follows directly from (2.7)–(2.9) so we omit the proof.
We are now in a position to prove Corollary 2.2(II). Assume firstly that (i) is satisfied. Setting
μi = βββi (R)

αααi (R)
, i = 1, 2, which are independent of R, we denote pi = p(μi ) the unique root of

(2.10) with μ0 = μi , i = 1, 2. Notice that F(p0) is strictly increasing to p0 ∈ (θ0,∞) and
ηηη(p0) is decreasing to p0 ∈ (θ0,∞) [see (A1) and (A2)]. Hence, from (2.10) it is easy to
check that p0 = p0(μ0) is strictly decreasing to μ0 > 0. As a consequence, the assumption
μ1 < μ2 implies

p1 > p2 > θ0 and 0 < ηηη(p1) < ηηη(p2).

Accordingly, the leading order terms in (2.7) and (2.8) immediately imply

ŨUUααα1,βββ1(R) > ŨUUααα2,βββ2(R) > θ0 and 0 < ŨUU
′
ααα1,βββ1

(R) < ŨUU
′
ααα2,βββ2

(R) as R � 1.

Now we assume that (ii) is satisfied. Then, as R → ∞, by (2.7) we know that ŨUUααα1,βββ1(R)

and ŨUUααα2,βββ2(R) have the same leading order term, and by (2.8), ŨUU
′
ααα1,βββ1

(R) and ŨUU
′
ααα2,βββ2

(R)

have the same leading order term. Due to the fact that the second and third conditions in (ii)
exactly appear in the second-order terms of (2.7) and (2.8), a simple comparison immediately
shows ŨUUααα1,βββ1(R) > ŨUUααα2,βββ2(R) > θ0 and 0 < ŨUU

′
ααα1,βββ1

(R) < ŨUU
′
ααα2,βββ2

(R) as R � 1. Therefore,
we complete the proof of Corollary 2.2(II). ��

Proof of Theorem 2.3 It suffices to prove

lim
R→∞ R

∫ R

k∗ R
(UUU(r) − θ0) dr = 1√

μ0

∫ p0

θ0

t − θ0√
2(F(t) − F(θ0))

dt,

lim
R→∞ R

∫ R

k∗ R
UUU′2(r) dr =√

μ0

∫ p0

θ0

√
2(F(t) − F(θ0)) dt,

which are equivalent to claiming

lim
ε↓0

∫ 1

k∗
uε(s) − θ0

ε
ds = 1√

μ0

∫ p0

θ0

t − θ0√
2(F(t) − F(θ0))

dt, (3.45)

lim
ε↓0 ε

∫ 1

k∗
(Duε)

2(s) ds =√
μ0

∫ p0

θ0

√
2(F(t) − F(θ0)) dt, (3.46)

respectively. Firstly, by following the similar argument as the proof of (3.26), (3.46) can be
obtained straightforwardly so we omit the detailed proof. It remains to prove (3.45).
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Nontrivial boundary structure in a Neumann problem on balls… 1143

To deal with (3.45), we first consider the decomposition
∫ 1

k∗
uε(s) − θ0

ε
ds =

{∫ 1−ετa

k∗
+
∫ 1

1−ετa

}
uε(s) − θ0

ε
ds,

where τa ∈ (0, 1) has already been used in the proof of Theorem 3.3. Due to the interior
estimate (3.17), we have

∣∣∣∣∣
∫ 1−ετa

k∗
uε(s) − θ0

ε
ds

∣∣∣∣∣� 1, as 0 < ε � 1. (3.47)

Utilizing (3.15) and following the similar argument as the proof of (3.27), we can deal with
the second integral as follows:
∫ 1

1−ετa

uε(s) − θ0

ε
ds =

∫ 1

1−ετa

uε(s) − θ0√
2βε(s)
αε(s)

(F(uε(s)) − F(θ0)) + oε(1)
(Duε)(s) ds

= 1√
μ0

∫ 1

1−ετa

uε(s) − θ0√
2 (F(uε(s)) − F(θ0)) + oε(1)

(Duε)(s) ds + oε(1)

= 1√
μ0

∫ uε (1)

uε (1−ετa )

t − θ0√
2 (F(t) − F(θ0)) + oε(1)

dt + oε(1)

= 1√
μ0

∫ p0

θ0

t − θ0√
2 (F(t) − F(θ0))

dt + oε(1). (3.48)

Here, we have used (3.29), uε(1) → p, uε(1 − ετa ) → θ0 and the fact that∫ p0
θ0

t−θ0√
2(F(t)−F(θ0))

dt is finite [cf. Remark 2] to verify (3.48). Therefore, (3.45) follows from
(3.47)–(3.48). The proof of Theorem 2.3 is done. ��

4 Final remark: how strongly does the small perturbation of ˇ̌̌(R)
˛̨̨(R)

affect
the boundary structure ofUUU?

In Theorem 2.1, we have established refined asymptotics of UUU(R) and UUU′(R) under a strong
assumption (2.5). The situation shows that, on the boundary asymptotics of UUU, the effect of
the perturbation of βββ(R)

ααα(R)
−μ0 with respect to R � 1 is far smaller than the effect of boundary

curvature 1
R since

∣∣∣βββ(R)
ααα(R)

− μ0

∣∣∣� |HHH(R)| ∼ 1
R as R � 1.

With regard to the small perturbation of βββ(R)
ααα(R)

−μ0, particularly for including its significant
effect on boundary structure of UUU, we shall pay attention to the situation

lim
R→∞

βββ(R)

ααα(R)
= μ0 and lim inf

R→∞ R

∣∣∣∣
βββ(R)

ααα(R)
− μ0

∣∣∣∣ > 0. (4.1)

The main difference between (2.5) and (4.1) comes from the fact that (4.1) implies

|HHH(R)| �
∣∣∣∣
βββ(R)

ααα(R)
− μ0

∣∣∣∣ as R � 1. (4.2)

Accordingly, the perturbation of βββ(R)
ααα(R)

around μ0 plays a crucial role in asymptotic behaviors
of UUU(R) and UUU′(R) and is undoubtedly not to be ignored. Note also that (4.1) includes (1.9).
Hence, (3.36) is no longer satisfied, and the asymptotic expansions of UUU(R) and UUU′(R) are
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more complicated than the corresponding results in Theorem 2.1. Such a result is stated as
follows:

Corollary 4.1 Under the hypotheses as in Theorem 2.1, we replace (2.5) with (4.1). Then, as
R � 1, we have

UUU(R) = p0 +
√

F(p0) − F(θ0)

μ0 f (p0) − ηηη(p0)ηηη′(p0)

(
βββ(R)

ααα(R)
− μ0

)
+ C0HHH(R) + o(1)

R
, (4.3)

UUU′(R) =ηηη(p0) + ηηη′(p0)

( √
F(p0) − F(θ0)

μ0 f (p0) − ηηη(p0)ηηη′(p0)

(
βββ(R)

ααα(R)
− μ0

)
+ C0HHH(R)

)

+ o(1)

R
. (4.4)

Proof The argument is similar to (3.41)–(3.43), wherewe should note that the second equality
of (3.41) is obtained from (3.36) [which is equivalent to (2.5)]. Note also that (2.10) and the
first equality of (3.41) still hold under assumption (4.1). Since (4.1) cannot imply (3.36), we
shall use the first equality of (3.41) and (2.10) to obtain that, as ε = 1

R → ∞,

qε = 1

R

(
−ηηη′(p0) + μ0

f (p0)

ηηη(p0)

)−1 [(
(N − 1) + (Dαε)(1)

2αε(1)
+ (Dβε)(1)

2βε(1)

)

×
∫ p0

θ0

√
F(t) − F(θ0)

F(p0) − F(θ0)
dt + 1√

2μ0ε

(
βε(1)

αε(1)
− μ0

)
+ oε(1)

]

=
√

F(p0) − F(θ0)

μ0 f (p0) − ηηη(p0)ηηη′(p0)

(
βββ(R)

ααα(R)
− μ0

)
+ C0HHH(R) + o(1)

R
. (4.5)

As a consequence, by (2.17)–(2.18), (3.42)–(3.43) and (4.5), we get (4.3) and (4.4) and end
the proof of Corollary 4.1. ��

At the end of this note, we take a holistic viewpoint to answer the question on the title of
this section.

Remark 3 To see the effect of βββ(R)
ααα(R)

− μ0 on asymptotics of UUU, we may assume βββ(R)
ααα(R)

− μ0 =
μ∗ R−τ∗ withμ∗ �= 0 and τ∗ > 0.We stress that different τ∗ results in the various asymptotics
of UUU. More precisely, by (4.3)–(4.4) we have

|UUU(R) − p0| + |UUU′(R) − ηηη(p0)| � R−min{1,τ∗} as R � 1.

Moreover,

• If 0 < τ∗ < 1, then
∣∣∣βββ(R)
ααα(R)

− μ0

∣∣∣� |HHH(R)| and

UUU(R) = p0 + μ∗
√

F(p0) − F(θ0)

μ0 f (p0) − ηηη(p0)ηηη′(p0)

1

Rτ∗ + o(1)

Rτ∗ ,

UUU′(R) =ηηη(p0) + μ∗ηηη′(p0)
√

F(p0) − F(θ0)

μ0 f (p0) − ηηη(p0)ηηη′(p0)

1

Rτ∗ + o(1)

Rτ∗ .

Note also that if μ∗ < 0 (resp., > 0), there holds UUU(R) < p0 (resp., > p0) and
UUU′(R) > ηηη(p0) (resp., < ηηη(p0)) as R � 1.
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• If τ∗ = 1, then
∣∣∣βββ(R)
ααα(R)

− μ0

∣∣∣ ∼ |HHH(R)| and

UUU(R) = p0 +
(

μ∗
√

F(p0) − F(θ0)

μ0 f (p0) − ηηη(p0)ηηη′(p0)

1

R
+ C0HHH(R)

)
+ o(1)

R
,

UUU′(R) =ηηη(p0) + ηηη′(p0)

(
μ∗

√
F(p0) − F(θ0)

μ0 f (p0) − ηηη(p0)ηηη′(p0)

1

R
+ C0HHH(R)

)
+ o(1)

R
.

• If τ∗ > 1, then
∣∣∣βββ(R)
ααα(R)

− μ0

∣∣∣� |HHH(R)| and

UUU(R) = p0 + C0HHH(R) + o(1)

R
,

UUU′(R) =ηηη(p0) + ηηη′(p0)C0HHH(R) + o(1)

R
.
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