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Abstract
We consider a notion of conservation for the heat semigroup associated with a generalized
Dirac Laplacian acting on sections of a vector bundle over a noncompact manifold with
a (possibly noncompact) boundary under mixed boundary conditions. Assuming that the
geometry of the underlying manifold is controlled in a suitable way and imposing uniform
lower bounds on the zero-order piece (Weitzenböck potential) of the Dirac Laplacian, and on
the endomorphism defining the mixed boundary condition, we show that the corresponding
conservation principle holds. A key ingredient in the proof is a domination property for the
heat semigroup which follows from an extension to this setting of a Feynman–Kac formula
recently proved by the author de Lima (Pac J Math 292(1):177–201, 2018) in the context
of differential forms. When applied to the Hodge Laplacian acting on differential forms
satisfying absolute boundary conditions, this extends previous results byVesentini (AnnMath
Pura Appl 182:1–19, 2003) and Masamune (Atti Accad Naz Lincei Rend Lincei Mat Appl
18(4):351–358, 2007) in the boundaryless case. Along the way, we also prove a vanishing
result for L2 harmonic sections in the broader context of generalized (not necessarily Dirac)
Laplacians. These results are further illustrated with applications to the Dirac Laplacian
acting on spinors and to the Jacobi operator acting on sections of the normal bundle of a free
boundary minimal immersion.

Keywords Heat conservation principle · Generalized Dirac Laplacians · Mixed boundary
conditions · Feynman–Kac formula · Reflected Brownian motion

Mathematics Subject Classification 58J35 · 58J32 · 58J65

The author has been partially supported by CNPq/Brazil Grant 311258/2014-0 and by
FUNCAP/CNPq/PRONEX Grant 00068.01.00/15.

B Levi Lopes de Lima
levi@mat.ufc.br

1 Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici, R. Humberto Monte,
s/n, Fortaleza, CE 60455-760, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-019-00910-4&domain=pdf
http://orcid.org/0000-0001-8046-3571


998 L. L. de Lima

1 Introduction and statement of themain result

Throughout this note, we consider a noncompact, oriented Riemannian manifold (X , g) of
dimension n ≥ 2. We assume that X carries a (possibly noncompact) boundary Σ , on which
an inwardly oriented unit normal vector ν is globally defined. Also, we assume that X is
geodesically complete in the sense that any geodesic avoiding Σ is defined for all time. We
denote by dX the intrinsic distance on X , by ∇ the Levi–Civita connection on tensors on X
and by B = −∇ν the shape operator of Σ .

Let E → X be a Riemannian (or Hermitean) vector bundle endowed with a fiber metric
〈 , 〉 and a compatible connection, still denoted by ∇. Recall that a generalized Laplacian
acting on sections of E is a second-order elliptic operator given by

Δ = ∇∗∇ + W ,

where ∇∗∇ is the Bochner Laplacian associated with ∇ and W ∈ Γ (X ,End(E)) is a point-
wise selfadjoint bundle endomorphism. We will refer to W as the Weitzenböck operator or
potential. Also, we denote the standard functional spaces of sections of E by L p(X , E), etc.

In the presence of Σ , we need to attach to Δ suitable boundary conditions of elliptic type.
Here, we adopt a certain class of mixed boundary conditions which are determined by an
orthogonal decomposition

E|Σ = F+ ⊕ F−
corresponding to the eigenbundles of a selfadjoint involution I ∈ Γ (X ,End(E|Σ)) and a
pointwise selfadjoint endomorphism S ∈ Γ (Σ,End(F+)); see Sect. 3. Also, we assume
throughout the text that both

W ∈ L2
loc(X ,End(E)) and S ∈ L2

loc(Σ,End(F+))

are uniformly bounded from below. These requirements are better stated in terms of the
functions

w : X → R, w(x) = inf|φ|=1
〈W (x)φ, φ〉, (1)

and
σ : Σ → R, σ (x) = inf|φ|=1

〈S(x)φ, φ〉. (2)

Assumption 1 There exist constants c1, c2 > −∞ such that w ≥ c1 and σ ≥ c2.

Under this assumption and imposing mixed boundary conditions as above, Δ admits a
natural selfadjoint extension which we denote by ΔW ,S . Hence, we may apply the spectral
theorem to define the corresponding heat semigroup

e− 1
2 tΔW ,S : L2(M, E) → L2(M, E), t > 0.

In this setting, we denote by DS(E) the space of compactly supported, smooth sections of E
meeting the given mixed boundary conditions. Also, ( , ) will denote the standard L2 pairing
between sections of E .

We need a further specialization on the structure of Δ. Recall that a Dirac operator on
E is a first-order differential operator such that D2 is a generalized Laplacian. We then say
that Δ = D2 is a generalized Dirac Laplacian. We note that the existence of D is equivalent
to requiring that E is a Dirac bundle with respect to which D is the corresponding Dirac
operator [25, Proposition 11.1.7]. In particular, we have the Leibniz rule

D(ξ · φ) = Dcξ · φ + ξ · Dφ, (3)
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Heat conservation for generalized Dirac Laplacians on… 999

for φ ∈ Γ (X , E), ξ ∈ Γ (X ,Cl(T X)), where Cl(T X) is the Clifford bundle of (X , g), the dot
is Clifford multiplication and Dc is the Dirac operator on Cl(T X), viewed as a Dirac bundle
over itself under left Clifford multiplication [21, Chapter II, Example 5.8]. In this setting, we
define HD(E) to be the space of D-harmonic sections (i.e., sections η satisfying Dη = 0)
and meeting the given mixed boundary conditions.

The definition below is motivated by [23,32], where it is discussed in the context of
differential forms on boundaryless manifolds.

Definition 1 We say that the heat conservation principle holds for ΔW ,S , the natural selfad-
joint extension of a generalized Dirac Laplacian Δ = D2 as above, if the equality

(
e− 1

2 tΔW ,S φ, η
)

= (φ, η) , t > 0, (4)

holds for any φ ∈ DS(E) and any η ∈ HD(E) ∩ L∞(X , E).

Thismeans that bounded D-harmonic sections are preserved by the heat semigroup.When
E is the trivial line bundle, Δ = Δ0, the (nonnegative) Laplacian acting on functions, and we
impose Neumann boundary conditions, this boils down to requiring that X is stochastically
complete (with respect to normally reflected Brownian motion); see Sect. 2 for a discussion
of this point. Thus, Definition 1 is a straightforward generalization of amuch studied property
of a natural diffusion process on manifolds with boundary.

Our main result provides a simple criterium for the validity of this principle. For technical
reasons, we need to control the geometry of the underlying manifold (X , g) both at infinity
and around the boundary. Thus, throughout the text, we assume that the following holds.

Assumption 2 The Ricci tensor Ric is bounded from below and

– Either Σ is convex (i.e., B ≥ 0);
– Or

1. B is bounded;
2. there exists r0 > 0 such that the geodesic collar map

Λr0 : [0, r0) × Σ → X , Λr0(r , x) = expx (rν),

is a diffeomorphism onto its image;
3. the sectional curvature is uniformly bounded from above on the image of Λr0 .

This kind of assumption appears in [33, Section 3.2.3]. As proved in [33, Theorem 3.2.9],
it leads to an integrability result for the exponentiated boundary local time associated with
reflected Brownian motion; see Theorem 3. Another useful consequence of Assumption 2 is
that X is stochastically complete in the sense that the sample paths of the reflected Brownian
motion remain in X for any positive time; see Theorem 2.

With this terminology at hand, we can state our main result.

Theorem 1 If (X , g) satisfies Assumption 2 and a generalized Dirac Laplacian Δ = D2

acting on sections of E → X satisfies Assumptions 1, then the heat conservation principle
holds for ΔW ,S.

This paper is organized as follows. In Sect. 2, we review the properties of Brownian
motion and Brownian bridge in the reflected case and in Sect. 3, we discuss mixed boundary
conditions. The proof of Theorem 1 is included in Sect. 5 and makes use of a Feynman–
Kac formula (Theorem 5), which allows us to obtain a path integral representation for the

heat kernel associated with e− 1
2 tΔW ,S (Theorem 6). This is a key step in establishing the
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1000 L. L. de Lima

corresponding semigroup domination property (Theorem 7 and Corollary 2). We stress that
the proof of this fundamental property applies to any generalized Laplacian Δ satisfying
Assumption 1, with no need to require it to be a Dirac Laplacian; see Remark 2. In particular,
we are able to obtain a vanishing result in this rather general setting (Corollary 1). Finally,
in Sect. 6, we discuss applications of our results to certain generalized Laplacians appearing
in geometry, namely, the Hodge Laplacian acting on differential forms, the Dirac Laplacian
acting on spinors and the Jacobi operator acting on sections of the normal bundle of a free
boundary minimal submanifold.

Finally, we mention that a preliminary version of this article, with a sketch of the proof
of our main result in the context of the Hodge Laplacian, has been published in [7].

2 Preliminary results on reflected Brownianmotion

In this section, we collect a few technical results on the reflected Brownian motion on the
underlying Riemannian manifold (X , g). Besides reviewing the stochastic notions needed in
the sequel, this is intended to justify the claim in the introduction that Definition 1 can be
viewed as a natural generalization of X being stochastically complete with respect to this
diffusion process. We then discuss the associated reflected Brownian bridge, which happens
to be a key ingredient in establishing a path integral representation for the heat semigroup

e− 1
2 tΔW ,S .
Let Xx

t be reflected Brownianmotion starting at x ∈ X [1,5,19,20,33]. This is a continuous
stochastic process driven by − 1

2Δ0, where Δ0 is the (nonnegative) Laplacian acting on
bounded functions satisfying Neumann boundary condition along Σ .1 Recall that Xt = π X̃t ,
where π : PSO(X) → X is the principal bundle of oriented orthonormal frames and X̃t is the
horizontal reflected Brownian motion starting at some x̃ ∈ π−1(x), whose antidevelopment
is the standard Brownian motion bt in R

n . Formally, X̃t satisfies the stochastic differential
equation

dX̃t =
n∑

i=1

Hi (̃Xt ) ◦ dbi
t + ν†(̃Xt )dλt , (5)

where {Hi }n
i=1 are the fundamental horizontal vector fields on PSO(X), the dagger means

the standard equivariant lift (scalarization) of tensor fields on X to PSO(X) and λt is the
boundary local time associated with Xt . We recall that λt is a nondecreasing process which
only increases when the Brownian path hits the boundary.

In general, Xt might fail to be a Markov process. More precisely, let X̂ = X ∪ {∞} be the
one-point compactification of the pair (X ,Σ) and define

e(x) = inf{t ≥ 0;Xx
t = ∞}, x ∈ X .

For obvious reasons, e is called the extinction time of Xt . Now, the Markov property for Xt

might not hold precisely because the process might be explosive in the sense that e �≡ +∞.
This somewhat annoying explosiveness property can be reformulated in analytical terms as

follows. A version of the Feynman–Kac formula in this setting says that the (local) semigroup
generated by − 1

2Δ0 is given by
(
e− 1

2 tΔ0 f
)

(x) = Ex [ f (Xx
t )χ{t<e(x)}], (6)

1 Thus, our sign convention is so that Δ0 = −d2/dx2 on R.

123



Heat conservation for generalized Dirac Laplacians on… 1001

where Ex is the expectation associated with the law Px of Xx
t , f ∈ L2(X) ∩ L∞(X) satisfies

Neumann boundary condition and χ is the indicator function. It follows that t �→ e− 1
2 tΔ0

is a positive preserving, contraction semigroup on the space of all such functions, so by
interpolation, it can be extended as a contraction semigroup to L p(X), 1 ≤ p ≤ ∞. Thus,
we may apply (6) with f = 1, the function identically equal to 1, in order to get

(
e− 1

2 tΔ01
)

(x) = P[t < e(x)]. (7)

So in general, we have e− 1
2 tΔ01 ≤ 1 and being explosive means precisely that e− 1

2 tΔ01 �≡ 1
for some (and hence any) t > 0. This means that constant functions are not preserved by the
semigroup.

Another way of expressing this sub-Markov property of Xt relies on the well-known fact
that the semigroup action can be represented by convolution against a smooth kernel. More
precisely,

(
e− 1

2 tΔ0 f
)

(x) =
∫

X
K0(t; x, y) f (y)dX y,

where K0 is the Neumann heat kernel, that is, the fundamental solution of the initial value
problem associated with the heat operator

L = ∂

∂t
+ 1

2
Δ0

with Neumann boundary condition along Σ . Thus, by (7) in general we have
∫

X
K0(t; x, y)dX y ≤ 1,

andwe see once again that in the explosive case the strict equality holds for some t > 0. Thus,
in general, we are not allowed to interpret K0 as a transition probability density function for
Xt .

The following well-known proposition summarizes the discussion above. Here, ( , )0 is
the standard L2 pairing on functions.

Proposition 1 The following are equivalent:

1. Xt is nonexplosive in the sense that e ≡ +∞;
2. For some/any t > 0 and any x ∈ X, K0(t; x, ·) is a probability density function on X.

3. For some/any t > 0, e− 1
2 tΔ01 = 1;

4. For some/any t > 0, (e− 1
2 tΔ0 f , 1)0 = ( f , 1)0, for any compactly supported function f

on X satisfying Neumann boundary condition.

We now recall a standard terminology.

Definition 2 If any of the conditions in Proposition 1 happens, then we say that X is stochas-
tically complete.

The validity of this property means that the desired probabilistic interpretation for K0

has been restored so that Xt is turned into a genuine Markov process. Equivalently, constant
functions are preserved by the associated semigroup. Also, in view of item (4), we see that
X being stochastically complete is equivalent to the heat conservation principle holding for
Δ0. This provides the link between this classical notion and our Definition 1.

It is not hard to exhibit examples of noncompact, geodesically complete manifolds which
fail to be stochastically complete; see [13] for a rather complete survey in the boundaryless
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case. On the other hand, a celebrated criterium due to Gregor’yan [13, Theorem 9.1], which
certainly can be adapted to our setting, provides a sufficient condition for stochastic com-
pleteness in terms of volume growth. However, from our viewpoint, it is natural to consider
instead the following test which involves imposing curvature bounds both in the interior and
along the boundary. In the boundaryless case, where only the lower bound on the Ricci tensor
is required, this is due to Yau [34].

Theorem 2 If Assumption 2 is satisfied, then X is stochastically complete.

Proof See Remark 4 for a simple proof based on the semigroup domination property proved
in Sect. 4. ��

As already mentioned, Assumption 2 also yields an integrability result for the boundary
local time λt . Clearly, we may assume that the lower bound for B, say κ , is negative.

Theorem 3 [33, Theorem 3.2.9] If Assumption 2 holds then for any p ∈ [1,+∞), there exist
K (p)
1 , K (p)

2 > 0 such that

Ex [e−pκλt ] ≤ K (p)
1 eK (p)

2 t ,

for all t ≥ 0 and x ∈ X.

We now turn to the so-called reflected Brownian bridge associated with Xt ; see [6,
Appendix A] for details. For each t > 0 and x, y ∈ X , this is the process Xs;x,y , 0 ≤ s ≤ t ,
which starts at x , follows the reflected Brownian motion Xx

s and is further conditioned to hit
y in time t . At least for 0 ≤ s < t , it is immediate to check that its law Pt;x,y satisfies

dPt;x,y

dPx
|Gs = K0(t − s;Xx

s , y)

K0(t; x, y)
, (8)

where Gs is the standard filtration associated with Xt . It then follows that the reflected Brow-
nian bridge is just reflected Brownian motion with an added drift involving the logarithmic
derivative of K0. In particular, Xs;x,y is a Pt;x,y-semimartingale in the range 0 ≤ s < t . It is
crucial in applications to be able to extend this property to s = t .

Proposition 2 If Assumption 2 holds, then reflected Brownian bridge Xs;x,y is a Pt;x,y-
semimartingale in the whole interval [0, t].
Proof We only sketch the proof, as it follows by adapting standard results in the available
literature for the boundaryless case. First, as explained in [33, Section 3.2.3], Assumption 2
implies that, by eventually passing to a conformally deformed metric, we may assume Σ is
convex. This guarantees that any two points in X can be joined by at least one minimizing
geodesic. By using standard comparison theory, this implies that, at least locally, we have
at our disposal the usual package of geometric bounds, which includes the Bishop–Gromov
inequality, the doubling volume property and Gaussian bounds for K0, where the controlling
constants entering in theses estimates depend only on the local geometry; see [15, Appendix
A]. We then argue as in [15, Appendix B] to obtain a localized gradient estimate for log K0,
which adapts an argument in [2]. With this information at hand, we can easily establish local
estimates of the types

D1t−n/2e−D2
dX (x,y)2

t ≤ K0(t; x, y) ≤ D3t−n/2e−D4
dX (x,y)2

t ,

and

|∇ log K0(t; x, y)| ≤ D5
(
t−1/2 + t−1dX (x, y)

)
,
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Heat conservation for generalized Dirac Laplacians on… 1003

where the constants D j only depend on the local geometry of X ; cf. [15, Proposition 2.8].
From this point, we may proceed as in the proof of [15, Theorem 2.7] to check that the
following localized inequality holds:

Et;x,y

[∫ t

0

∣∣∇ log K0(t − s;Xs;x,y, y)
∣∣ ∣∣∇ f (Xs;x,y)

∣∣ ds

]
< +∞,

where Et;x,y is the expectation associated with Pt;x,y and the compactly supported function
f is supposed to satisfy Neumann boundary conditions in case supp f ∩Σ �= ∅. As explained
in [15], this suffices to complete the proof. ��

3 Mixed boundary conditions for generalized Laplacians

Rather complete studies of elliptic boundary conditions for generalized Laplacians, including
the delicate issue of the existence and explicit computation of the corresponding heat kernel
asymptotics, can be found in the available literature; see [3,12,14], for instance. Here, we
single out a class of such boundary conditions which suffices for the applications we have in
mind.

We start with a pointwise selfadjoint involution I ∈ Γ (X ,End(E|Σ)), which we extend
to a collared neighborhood of Σ so that ∇νI = 0. Let

Π± = 1

2
(I ± I)

be the corresponding projections onto the eigenbundles F± = Π±E|Σ of I. Clearly,
∇νΠ± = Π±∇ν .

Now, take a pointwise selfadjoint endomorphism S ∈ Γ (Σ,End(F+)) and extend it to E|Σ
by declaring that S = 0 on F−. We may assume that the extension of S to the collared
neighborhood, still denoted S, satisfies ∇ν S = 0. It then follows that

SΠ± = Π±S.

Definition 3 A section φ ∈ Γ (E) satisfies mixed boundary conditions if its restriction to Σ ,
still denoted φ, satisfies

Π+(∇ν − S)φ = 0, Π−φ = 0. (9)

The qualification “mixed” of course is due to the fact that this kind of boundary condition
is Dirichlet in the F−-direction and Robin in the F+-direction. This seems to be the largest
class of local elliptic boundary conditions to which the stochastic methods in Sect. 4 apply;
see Remark 1 below. The relevance of mixed boundary conditions in quantum field theory is
explained in [3,31].

For the next proposition, recall that DS(E) is the space of smooth, compactly supported
sections satisfying (9).

Proposition 3 If a generalized Laplacian Δ satisfies Assumption 1 with S as in (9), then the
bilinear form

Q : DS(E) × DS(E) → R, Q(φ, η) =
∫

X
〈Δφ, η〉dX ,

is symmetric and bounded from below.

123



1004 L. L. de Lima

Proof By adding a sufficiently large positive multiple of the identity to S, we may assume
that c2 ≥ 0. Recall that the Bochner Laplacian is locally given by

∇∗∇ = −
n∑

i=1

(
∇ei ∇ei − ∇∇ei ei

)
.

By choosing the orthonormal frame {ei } so that ∇ei e j = 0 at the given point and defining a
vector field Z on M by 〈Z , Y 〉 = 〈∇Y φ, η〉, we have

div Z =
∑

i

ei 〈∇ei φ, η〉 = −〈∇∗∇φ, η〉 + 〈∇φ,∇η〉,

so that ∫

M
〈∇∗∇φ, η〉 dM =

∫

M
〈∇φ,∇η〉 dM +

∫

Σ

〈∇νφ, η〉 dΣ, (10)

But
∫

Σ

〈∇νφ, η〉 dΣ =
∫

Σ

〈∇ν(Π+φ + Π−φ),Π+η + Π−η〉dΣ

=
∫

Σ

〈Π+∇νφ,Π+η〉dΣ

=
∫

Σ

〈Π+(∇ν − S)φ,Π+η〉dΣ +
∫

Σ

〈Π+Sφ,Π+η〉dΣ,

so that

Q(φ, η) =
∫

X
〈∇φ,∇η〉dX +

∫

X
〈Wφ, η〉dX +

∫

Σ

〈Sφ, η〉dΣ. (11)

From this, it is immediate that Q is both symmetric and bounded from below. ��

Let us take W and S as in Theorem 1. Thus, Proposition 3 applies and the quadratic
form Q, which is associated with the densely defined unbounded operator Δ : DS(E) ⊂
L2(X , E) → L2(X , E), is closable and its closure, whose domain is contained in H1(X , E),
is still given by (11). It is in this sense that the Friedrichs extension of Δ, denoted ΔW ,S ,
satisfies the given mixed boundary conditions. In particular, we may appeal to the spectral
theorem to canonically construct the associated heat semigroup

e− 1
2 tΔW ,S : L2(X , E) → L2(X , E), t > 0.

In particular, if φ ∈ DS(E) then φt = e− 1
2 tΔR,S φ solves the corresponding heat equation:

∂φt

∂t
+ 1

2
ΔW ,Sφt = 0, lim

t→0
φt = φ, Π+(∇ν − S)φt = 0, Π−φt = 0. (12)

Of course, it is precisely this semigroup that appears in Definition 1.

Remark 1 Themost general kind of (differential) boundary conditions for generalized Lapla-
cians takes the form

Aφ = 0, Cφ +
n−1∑
j=1

E j∇e j φ + E∇νφ = 0, (13)

123



Heat conservation for generalized Dirac Laplacians on… 1005

where {e j } is a local orthonormal frame along Σ and the coefficients (capital letters) are
locally defined matrices acting on the components of φ and ∇e j φ. In this setting, the so-
called Lopatinskij–Shapiro ellipticity condition reduces to verifying that the C-linear map

b(ξ,z)φ =
(

Aφ(
i
∑

j E jξ j −√|ξ |2 − z E
)

φ

)

is an isomorphismonto its image for any (0, 0) �= (ξ, z) ∈ T ∗Σ×K,whereK = C−(0,+∞)

andweuse here an appropriate branch for the square root; see [12, Lemma1.4.8].As expected,
the matrix C plays no role here, since only the symbol of the differential term in the second
condition in (13) really matters. The usage of stochastic methods in Sect. 4, which relies on
certain curvature-driven multiplicative functionals, forces us to choose the coefficients so
as to eliminate the tangential derivatives in (13) while still keeping ellipticity. Given these
constraints, we are basically led to set A = Π−, C = −Π+S, E = Π+ and E j = 0 as in
Definition 3, so that

b(ξ,z)φ =
(

Π−φ

−√|ξ |2 − z Π+φ

)
,

is an isomorphism indeed. Notice that this latter assertion only depends on the existence of
the involution I, which determines the complementary projections Π±. In particular, we see
that the selfadjoint endomorphism S only plays a role in assuring that the quadratic form Q
in Proposition 3 is symmetric.

4 The semigroup domination property

In this section, we prove the main technical result in the paper, namely, the domination

property for the heat semigroup e− 1
2 tΔW ,S introduced in the previous section. The crucial

point here is to make sure that e− 1
2 tΔW ,S φ ∈ L1(X , E) whenever φ ∈ DS(E), with an

exponential bound on the norm of the corresponding linear map depending on the lower
bounds imposed on W and S; see Corollary 4.2. A key ingredient in the proof is a Feynman–
Kac formula generalizing a previous result in [5] for differential forms, from which a path
integral representation for the associated heat kernel follows.

Remark 2 As already observed, all the results in this section hold true for any generalized
(not necessarily Dirac) LaplacianΔW ,S satisfying Assumption 1 and defined over a manifold
whose geometry is controlled as in Assumption 2. This latter hypothesis is used to make sure
that Theorem 3, which provides an exponential bound for the expectation of the boundary
local time, is valid. It is tempting to ask whether Theorem 3 still holds if the requirements in
Assumption 2 are weakened to uniform lower bounds for the Ricci tensor of g and the shape
operator of Σ .

Let Xt = Xx
t , t ≥ 0, be reflected Brownian motion on X starting at some x . Since

Assumption 2 is taken for granted, by Theorem 2, we know that X is stochastically complete
(with respect to Xt ). In view of Proposition 1, this means that Xt is nonexplosive, so the
sample paths Xx

t remain in X for all time.
Although this is not strictly required in the following, for simplicity, we assume that E is

tensorial in the sense that it is associated with some orthogonal representation ρ of SOn , the
rotation group in dimension n. As a consequence, any section φ ∈ Γ (X , E) can be identified
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1006 L. L. de Lima

to its ρ-equivariant lift φ† : PSO(X) → V , where V is the representation space of ρ. Also,
the heat operator L in (12) lifts to

L† = ∂

∂t
+ 1

2
Δ

†
W ,S,

where

Δ
†
W ,S = ∇∗∇† + W †,

and

∇∗∇† = −
n∑

i=1

L2
Hi

is the horizontal Bochner Laplacian. Here, L is Lie derivative. Also, the boundary conditions
in (9) lift to

Π
†
+(Lν† − S†)φ† = 0, Π

†
−φ† = 0.

The advantage of lifting everything in sight to PSO(X) is that, when doing computations in the
framework of Itô’s stochastic calculus, we may work on the trivial vector bundle RN → R

n ,
N = rank E , where the antidevelopment of X̃t lives (as already mentioned, this happens
to be the standard Brownian motion bt in R

n); see [9,18,20] for details on this so-called
Eells–Elworthy–Malliavin approach to diffusions on manifolds.

We use this formalism to obtain a stochastic representation for the action of the heat

semigroup e− 1
2 tΔW ,S on DS(E); see Theorem 5 below. We start by observing that for each

W ∈ L2
loc(M,End(E)) and S ∈ L2

loc(Σ,End(E|Σ)), we may consider the pathwise solution
MW ,S,t ∈ End(RN ) of

dMW ,S,t + MW ,S,t

(
1

2
W †(̃Xt )dt + S†(̃Xt )dλt

)
= 0, MW ,S,0 = I ; (14)

see [8]. Note that the inverse process M−1
W ,S,t satisfies

dM−1
W ,S,t −

(
1

2
W †(̃Xt )dt + S†(̃Xt )dλt

)
M−1

W ,S,t = 0, M−1
W ,S,0 = I . (15)

For each ε > 0 and S as above defining mixed boundary conditions, let us set

Sε = S + ε−1Π−.

Notice that
(Sε)†φ† = S†φ†, φ ∈ DS(E). (16)

Also, in the following, ‖ ‖ is the operator norm in End(RN ).

Proposition 4 If Assumption 1 holds and if ε > 0 satisfies ε−1 ≥ c2, then

‖MW ,Sε ,t‖ ≤ exp

(
−1

2

∫ t

0
w(̃Xs)ds −

∫ t

0
σ (̃Xs)dλs

)
,

where w and σ are given by (1) and (2), respectively.
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Proof The key point here is to make sure that the righthand side does not depend on ε, so it
can be further estimated solely in terms of the lower bounds on W and S. Following [19], we
observe that it suffices to prove the result for M•

W ,Sε ,t , where the bullet means transposition.

Take v ∈ R
N and set f (t) = |M•

W ,Sε ,tv|2. Then

d f (t) = −2v•MW ,Sε ,t

(
1

2
W †(̃Xt )dt + (Sε)†(̃Xt )dλt

)
M•

W ,Sε ,tv

≤ − f (t)
(
w(̃Xt )dt + 2σ (̃Xt )dλt

)
,

and the result follows after integration. ��
The following proposition is a key technical ingredient in our argument. It allows us to

establish a Feynman–Kac formula for e− 1
2 tΔW ,S under the more restrictive assumption that

W and S are uniformly bounded, i.e., bounded from above and below; see Theorem 4 below.

Proposition 5 Take W and S as above, with both being uniformly bounded and with S defining
mixed boundary conditions. Then, as ε → 0, MW ,Sε ,t converges in L2 to an adapted, right-
continuous process Mt with left limits. Furthermore,

MtΠ
†
−(̃Xt ) = 0, (17)

whenever X̃t ∈ π−1Σ .

Proof This has been first proved in [19] for 1-forms, i.e., E = ∧1T ∗ X , W = Ric and S = B,
under the assumption that X is compact. It has been observed in [5] that the same proof
works for p-forms on a noncompact manifold with bounded geometry in the sense of [29];
hence, using the notation in Subsection 6.1, in this case, we take E = ∧pT ∗ X , W = Rp and
S = Bp . As a careful analysis of the original proof confirms, the same argument still works
fine if more generally X has controlled geometry in the sense of Assumption 2, so that the
integrability result in Theorem 3 holds, and both W and S are uniformly bounded. We leave
the details to the interested reader. ��

Now, let φ ∈ DS(E)), so that φ†
t = e− 1

2 tΔ†
W ,S φ† is the solution to

L†φ
†
t = 0, lim

t→+∞ φ
†
t = φ†, Π

†
+(Lν† − S†)φ

†
t = 0, Π

†
−φ

†
t = 0. (18)

Then a simple application of Itô’s formula to the process MW ,Sε ,tφ
†
T −t (̃Xt ), 0 ≤ t ≤ T , yields

in the limit ε → 0 the following fundamental Feynman–Kac formula, which generalizes [5,
Theorem 5.2].

Theorem 4 Assume that W and S are as above, with both being uniformly bounded and with
S defining mixed boundary conditions. Then

φ
†
t (̃x) = Ex̃ (Mtφ

†(̃X
x
t )). (19)

Equivalently,

(e− 1
2 tΔW ,S φ)(x) = Ex (Mt Jtφ(Xx

t )), (20)

where Jt is the (reversed) stochastic parallel transport acting on sections of E and we use
the standard identification φ† = Jtφ.
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Proof With the help of (5), Itô’s formula gives

dMW ,Sε ,tφ
†
T −t (̃X

x
t ) =

〈
MW ,Sε ,tLH φ

†
T −t (̃X

x
t ), dbt

〉
− MW ,Sε ,t L†φ

†
T −t (̃X

x
t )dt

+MW ,Sε ,t

(
Lν† − S† − ε−1Π

†
−
)

φ
†
T −t (̃X

x
t )dλt ,

where LH = (LH1 , . . . ,LHn ). Due to (18), both the second term and the term involving ε−1

on the righthand side vanish. Sending ε → 0 and using Proposition 5, we end up with

dMtφ
†
T −t (̃X

x
t ) =

〈
MtLH φ

†
T −t (̃X

x
t ), dbt

〉

+MtΠ
†
+
(Lν† − S†)φ†

T −t (̃X
x
t )dλt ,

where the insertion of Π
†
+ in the last term is justified by (17). Again by (18), this reduces to

dMtφ
†
T −t (̃X

x
t ) =

〈
MtLH φ

†
T −t (̃X

x
t ), dbt

〉
,

thus showing that Mtφ
†
T −t (̃X

x
t ) is a (local) martingale. The result now follows by equating

expectations of this process at t = 0 and t = T . ��
Our aim now is to extend the Feynman–Kac formula (20) to the case in which R and S

are merely assumed to be bounded from below; see Theorem 5 below. For this, we rely on
the results above to implement an approximation scheme adapted from [16]; see also [8] for
similar arguments.

We start with a comparison estimate holding in the general context of solutions of (14). In
order to simplify the notation in the following, we sometimes write w(t) = w(̃Xt ), W1(t) =
W1(̃Xt ), etc. Also, recall that N = rank E .
Proposition 6 For each t > 0, we have the pathwise estimate

‖MW1,S1,t − MW2,S2,t‖ ≤ e
∫ t
0

(
1
2 ‖W1(s)‖ds+‖S1(s)‖dλs

)
+2
∫ t
0

(
1
2 ‖W2(s)‖ds+‖S2(s)‖dλs

)

×
∫ t

0

(
1

2
‖W1(s) − W2(s)‖ds + ‖S1(s) − S2(s)‖dλs

)
.

Proof From (14) and (15),

d
(

M−1
W2,S2,t

MW1,S1,t

)
= M−1

W2,S2,t

×
(
1

2
(W2(t) − W1(t)) dt + (S2(t) − S1(t)) dλt

)
MW1,S1,t ,

so that

MW1,S1,t = MW2,S2,t

+MW2,S2,t

∫ t

0
M−1

W2,S2,s

(
1

2
(W1(s) − W2(s)) dt + (S1(s) − S2(s)) dλs

)
MW1,S1,s .

Thus,

‖MW1,S1,t − MW2,S2,t‖ ≤ ‖MW2,S2,t‖
×
∫ t

0
‖M−1

W2,S2,s
‖‖MW1,S1,s‖

(
1

2
‖W1(s) − W2(s)‖ ds + ‖S1(s) − S2(s)‖ dλs

)
.

The result now follows since we can easily estimate the norms ‖MWi ,Si ,t‖ and ‖M−1
Wi ,Si ,t

‖ in
the indicated way via Gronwall’s inequality. ��
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Now, we will be able to implement the approximation scheme. So, we consider W and S,
both bounded from below. Define a sequence {Wi } by setting Wi = min{W , i Id} fiberwise
and similarly for {Si }. It follows that Wi and Si are uniformly bounded and ‖Wi (x) −
W (x)‖ → 0 and ‖Si (x) − S(x)‖ → 0 as i → +∞, x ∈ X . Also, the convergences are
monotone nondecreasing in the obvious sense. Moreover, as a result of this procedure, we
see that any φ ∈ DS(E) can be written as φ = limi→+∞ φi , φi ∈ DSi (E).

Proposition 7 For each t > 0 and ε > 0, we have the pathwise convergence

lim
i→+∞ ‖MWi ,Sε

i ,t − MW ,Sε ,t‖ = 0

Proof From Proposition 6 and the nondecreasing monotone convergence,

‖MWi ,Sε
i ,t − MW ,Sε ,t‖ ≤ e

3
∫ t
0

(
1
2 ‖W (s)‖ds+‖Sε (s)‖dλs

)

×
∫ t

0

(
1

2
‖Wi (s) − W (s)‖ds + ‖Si (s) − S(s)‖dλs

)
.

Consider w = ‖W‖ ∈ L2
loc(X) and sε = ‖Sε‖ ∈ L2

loc(Σ). It is well known that for any
t > 0 and almost every path Xx

s , we have
∫ t

0
|w(Xx

s )|ds < +∞ and
∫ t

0
|sε(Xx

s )|dλs < +∞.

Thus,

‖MWi ,Sε
i ,t − MW ,Sε ,t‖ ≤ Ct,ε

∫ t

0

(
1

2
‖Wi (s) − W (s)‖ds + ‖Si (s) − S(s)‖dλs

)
,

and the result follows by dominated convergence. ��
Proposition 8 For each ε > 0,

lim
i→+∞Ex‖MWi ,Sε

i ,t − MW ,Sε ,t‖2 = 0.

Proof Let { f1, . . . , fN } be an orthonormal frame locally trivializing E and set Z ε
i,t =

MWi ,Sε
i ,t − MW ,Sε ,t . We have

d‖Z ε
i,t fα‖2 = −2

〈
Z ε

i,t

(
1

2
(W (t) − Wi (t))dt + (S(t) − Si (t))dλt

)
fα, Z ε

i,t fα

〉

≤ −2

(
1

2
w(i)(t)dt + σ (i)(t)dλt

)
‖Z ε

i,t fα‖2,

where W − Wi ≥ w(i)Id and S − Si ≥ σ (i)Id. Recalling that the convergences Wi → W and
Si → S aremonotone nondecreasing,wemay assume that bothw(i) and σ (i) are nonnegative,
so d‖Z ε

i,t fα‖2 ≤ 0 and hence ‖Z ε
i,t‖2 ≤ 1. The result then follows from Proposition 7 and

dominated convergence. ��
We know from Proposition 5 that for each i , MWi ,Sε

i ,t converges in L2 to a process, say
Mi,t , as ε → 0. Moreover, by Theorem 4, this leads to a Feynman–Kac formula, namely,

(
e− 1

2 tΔWi ,Si φ
)

(x) = Ex
[
Mi,t Jtφ(Xx

t )
]
, φ ∈ DSi (E). (21)
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Now set E(2)
x ‖Mi,t − M j,t‖ = (Ex‖Mi,t − M j,t‖2)1/2, etc. Then, Proposition 8 and the

triangle inequality

E
(2)
x ‖Mi,t − M j,t‖ ≤ E

(2)
x ‖Mi,t − MWi ,Sε

i ,t‖
+E

(2)
x ‖MWi ,Sε

i ,t − MW j ,Sε
j ,t

‖ + E
(2)
x ‖MW j ,Sε

j ,t
− M j,t‖

imply that {Mi,t }i is Cauchy in L2, so it converges as i → +∞ to a process, say Mt .
Passing the limit in (21) and making use of a standard result on the monotone convergence
of quadratic forms [22, Theorem 3.18], we obtain a Feynman–Kac formula for the heat

semigroup e− 1
2 tΔW ,S .

Theorem 5 If Assumption 1 holds, then
(
e− 1

2 tΔW ,S φ
)

(x) = Ex
[Mt Jtφ(Xx

t )
]
, φ ∈ DS(E). (22)

This immediately yields a path integral representation for the heat kernel KW ,S of

e− 1
2 tΔW ,S .

Theorem 6 We have

KW ,S(t; x, y) = K0(t; x, y)Et;x,y [Mt Jt ] , (23)

where here Jt is the stochastic parallel transport along the (reversed) reflected Brownian
bridge path joining y to x.

Proof If φi ∈ DSi (E), then

Mi,t Jtφi (Xx
t ) =

∫

X
KWi ,Si (0;Xx

t , y)Mi,t Jtφi (y)dX y .

By taking expectation and using (8) and Proposition 2,

Ex
[
Mi,t Jtφi (Xx

t )
] =

∫

X
K0(t; x, y)

⎛
⎝Ex

⎡
⎣K ⊗N2

0 (0;Xx
t , y)

K0(t; x, y)
Mi,t Jtφi (y)

⎤
⎦
⎞
⎠ dX y

=
∫

X
K0(t; x, y)Et;x,y

[
Mi,t Jtφi (Xt;x,y)

]
dX y,

so after passing the limit, we get

Ex
[Mt Jtφ(Xx

t )
] =

∫

X
K0(t; x, y)Et;x,y

[Mt Jtφ(Xt;x,y)
]
dX y, φ ∈ DS(E).

On the other hand, from (22), we have

Ex
[Mt Jtφ(Xx

t )
] =

∫

X
KW ,S(t; x, y)φ(y)dX y .

Since Xt;x,y = y and φ is arbitrary, the result follows. ��
Finally, we can establish the semigroup domination property for KW ,S .

Theorem 7 If Assumption 1 holds, then there exist C1, C2 > 0 such that
∥∥KW ,S(t; x, y)

∥∥ ≤ C1e
C2t K0(t; x, y), (24)

for any t > 0, x, y ∈ X and φ ∈ DS(E).
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Proof It suffices to prove that
∣∣∣∣
∫

X

∫

X

〈
KW ,S(t; x, y), φ(x) ⊗ ψ(y)

〉
dXxdX y

∣∣∣∣ ≤ C1e
C2t

×
∫

X
K0(t; x, y)|φ(x)||ψ(y)|dXxdX y,

where φ,ψ ∈ DS(E), and then send φ ⊗ ψ → δ⊗N

x ⊗ δ⊗N

y . For this, first note that
∣∣∣∣
∫

X

∫

X

〈
KW ,S(t; x, y), φ(x) ⊗ ψ(y)

〉
dXxdX y

∣∣∣∣

≤
∫

X

∣∣∣∣
∫

X

〈
KW ,S(t; x, y)φ(x)dXx , ψ(y)

〉∣∣∣∣ dX y

=
∫

X

∣∣∣∣
∫

X
K0(t; x, y)

〈
Et;x,y[Mt Jtφ(x)]dXx , φ(y)

〉∣∣∣∣ dX y,

where we used (23) in the last step. On the other hand, since Jt is an isometry, Proposition 4
implies

∣∣∣Et;x,y[MWi ,Sε
i ,t Jt ]

∣∣∣ ≤ CN e
− 1

2 c1,i t |Et;x,y[e−c2,i λt ]|,
where c1,i Id and c2,i Id are lower bounds for Wi and Si , respectively. By sending ε → 0, we
get

∣∣Et;x,y[Mi,t Jt ]
∣∣ ≤ CN e

− 1
2 c1,i t |Et;x,y[e−c2,i λt ]|.

Clearly, we may assume that c1,i → c1 and c2,i → c2 as i → +∞ and that c2 < 0, so after
taking the limit in i , we may apply Theorem 3 and the ensuing discussion with c2 ≥ pκ for
some p ∈ [1,+∞) to get

∣∣Et;x,y[Mt Jtφ(x)]∣∣ ≤ C1e
C2t |φ(x)|,

for C1 = CN K (p)
1 and C2 = −c1/2+ K (p)

2 . This clearly proves the integral inequality above
and completes the proof. ��
Corollary 1 If we may take c2 = 0, then

∥∥KW ,S(t; x, y)
∥∥ ≤ C1e

− 1
2 c1t K0(t; x, y).

In particular, if c1 > −λ0, where λ0 is the bottom of the spectrum of Δ0, then H(E) ∩
L2(X , E) = {0}, where H(E) = kerΔW ,S is the space of harmonic sections.

Proof If c2 = 0, then Et;x,y[e−c2λt ] ≤ 1 and it is clear from the proof above that we may
take C2 = −c1/2, so the estimate on ‖KW ,S‖ follows. From this, the vanishing result can be
easily obtained by means of a well-known argument [10,28]. ��
Corollary 2 There exist C1, C2 > 0 such that

∥∥∥e− 1
2 tΔW ,S φ

∥∥∥
L1(X ,E)

≤ C1e
C2t ‖φ‖L1(X ,E) , (25)

for any t > 0 and φ ∈ DS(E).
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Proof From (24), we have

∣∣∣
(
e− 1

2 tΔW ,S φ
)

(x)

∣∣∣ =
∣∣∣∣
∫

X
KW ,S(t; x, y)φ(y)dX y

∣∣∣∣

≤ C1e
C2t
∫

X
K0(t; x, y)|φ(y)|dX y

= C1e
C2t (e− 1

2 tΔ0 |φ|)(x),

and after integration, we obtain
∥∥∥e− 1

2 tΔW ,S φ

∥∥∥
L1(X ,E)

≤ C1e
C2t
∥∥∥e− 1

2 tΔ0 |φ|
∥∥∥

L1(X)
≤ C1e

C2t ‖φ‖L1(X ,E) ,

where in the last step, we used that e− 1
2 tΔ0 defines a contraction on L1(X). ��

As we shall see below, this semigroup domination property is going to play a key role in
the proof of our main result.

5 The proof of Theorem 1

In this section, we present the proof of Theorem 1 following the lines of the argument in
[23]. We start with a useful integral identity.

Proposition 9 Let φ ∈ DS(E) and ξ ∈ Dom(ΔW ,S). Then, for any t > 0,

(
e− 1

2 tΔW ,S φ − φ, ξ
)

= −1

2

∫ t

0

∫

X

〈
e− 1

2 τΔW ,S φ,ΔW ,Sξ
〉
dXdτ. (26)

Proof We compute:

(
e− 1

2 tΔW ,S φ − φ, ξ
)

=
∫

X

〈
e− 1

2 tΔW ,S φ − e− 1
2 0ΔW ,S φ, ξ

〉
dX

=
∫ t

0

∫

X

〈
∂τ e− 1

2 τΔW ,S φ, ξ
〉
dXdτ

(12)= − 1

2

∫ t

0

∫

X

〈
ΔW ,Se− 1

2 τΔW ,S φ, ξ
〉
dXdτ

= − 1

2

∫ t

0

∫

X

〈
e− 1

2 τΔW ,S φ,ΔW ,Sξ
〉
dXdτ,

where we used Proposition 3 in the last step. ��
We now take a sequence of smooth, compactly supported functions hi on X such that

0 ≤ hi ≤ hi+1 ≤ 1, hi → 1 as i → +∞ and ∂hi/∂ν = 0 along Σ .

Proposition 10 If Assumption 2 is satisfied, then

ζi (x) =
∫ +∞

0
e−t
∫

X
K0(t; x, y)hi (y)dX ydt, x ∈ X ,

is smooth and satisfies: a) ζi → 1; b) 1
2Δ0ζi = hi − ζi → 0; and c) ∂ζi/∂ν = 0 along Σ .
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Proof In fact, we only use that X is stochastically complete by Theorem 2. By Proposition 1,
(2), we have

ζi (x) − 1 =
∫ +∞

0
e−t
∫

X
K0(t; x, y) (hi (y) − 1) dX ydt,

from which a) follows easily. Also,

1

2
Δ0ζi (x) =

∫ +∞

0
e−t
∫

X

1

2
Δ0K0(t; x, y)hi (y)dX ydt

= −
∫

X

(∫ +∞

0
e−t ∂

∂t
K0(t; x, y)dt

)
hi (y)dX y

= −
∫

X

(
−K0(0; x, y) +

∫ +∞

0
e−t K0(t; x, y)dt

)
hi (y)dX y,

which yields b). The proof of c) is obvious. ��
We now have all the ingredients needed in the proof of Theorem 1. Indeed, take φ as in

Definition 1 and ξ = ζiη, where η is as inDefinition 1. Since ∂ζi/∂ν = 0, ζiη ∈ Dom(ΔW ,S).
Also, since η ∈ HD(E), we may use (3) to check that D(ζiη) = Dcζi · η, so that

ΔW ,S(ζiη) = D2
c ζi · η = (Δ0ζi )η.

Hence, from Proposition 9 and Corollary 2, we get for each t > 0,

∣∣∣
(
e− 1

2 tΔW ,S φ − φ, ζiη
)∣∣∣ ≤ 1

2
‖Δ0ζi‖L∞(X)‖η‖L∞(X ,E)

∫ t

0

∥∥∥e− 1
2 τΔW ,S φ

∥∥∥
L1(X ,E)

dτ

≤ C1

2
‖Δ0ζi‖L∞(X)‖η‖L∞(X ,E)‖φ‖L1(X ,E)

∫ t

0
eC2τdτ.

By sending i → +∞, Proposition 10 guarantees that the righthand side goes to 0. Since
ζiη → η, we obtain (4), which completes the proof of Theorem 1.

6 Some examples

In this section, we indicate a few applications of our results to some generalized Laplacians
appearing in geometry. As always, we assume that Assumption 2 is satisfied by the base
manifold (X , g).

6.1 The Hodge Laplacian

For 0 ≤ p ≤ n, we denote byAp(X) = Γ (X ,∧pT ∗ X) the space of differential p-forms on
X . Let d be the exterior differential acting on forms and d� = ±�d� be the co-differential,
where � is the Hodge star operator.

Recall that the Hodge Laplacian acting on p-forms is given by

Δp = (d + d�)2 = dd� + d�d. (27)

This is a generalized Laplacian due to the so-called Weitzenböck decomposition, namely,

Δp = ∇∗∇p + Rp,
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where ∇∗∇p is the Bochner Laplacian associated with the standard Levi–Civita connec-
tion on ∧pT ∗M and Rp is the Weitzenböck operator, a (pointwise) selfadjoint element in
Γ (X ,End(∧pT ∗ X))whose local expression depends on the curvature tensor of (X , g) [28].
We note that R1 = Ric. Also, recall that the Clifford bundle Cl(T X) may be viewed as a
Dirac bundle over itself under left Clifford multiplication. Moreover, under the standard vec-
tor bundle identification ∧T ∗ X = Cl(T X), one has Dc = d + d∗ [21, Chapter II, Theorem
5.12], so Δp is a generalized Dirac Laplacian by (27).

To implement boundary conditions in this setting, we note that, given α ∈ Ap(X), its
restriction to Σ decomposes into its tangential and normal components, namely,

α = αt + αn. (28)

Definition 4 We say that a p-form α is absolute if αn = 0 and (dα)n = 0.

In turns out that the differential condition in Definition 4 can be expressed in terms of the
shape operator B = −∇ν of Σ . To see this, extend B to T M |Σ by declaring that Bν = 0
and then extend this further to ∧pT ∗ X |Σ as the selfadjont operator Bp given by

(Bpα)(e1, . . . , ep) =
∑

i

α(e1, . . . , Bei , . . . , ep),

where {ei } is a local orthonormal frame. Notice that Bp preserves the decomposition given
by (28). More precisely, if Πt and Πn denote the orthogonal projections onto the tangential
and normal factors, respectively, with the corresponding orthonormal bundle decomposition
∧pT X |Σ = Ft ⊕Fn, then Bp commutes with both projections. In particular, if α is absolute
then Bpα ∈ Γ (Σ,Ft).

If we choose ei so that Be j = κ j e j , j = 1, . . . , n−1,where κ j are the principal curvatures
of Σ , it is immediate to check that

(Bpα)(e j1 , . . . , e jp ) =
(∑

k

κ jk

)
α(e j1 , . . . , e jp ), α ∈ Γ (Ft),

which shows that the sums in the brackets are the eigenvalues of Bp|Ft . The remarks above
allow us to redefine Bp so that Bp|Fn = 0.

The next result shows that absolute boundary conditions are of mixed type.

Proposition 11 [5, Proposition 5.1] A differential p-form α is absolute if and only if

Πt(∇ν − Bp)α = 0, Πnα = 0. (29)

This discussion shows that if we take F+ = Ft , F− = Fn and S = Bp , and of course if
we assume that both Rp and Bp are bounded from below, then the general setting in Sects. 3

and 4 applies here. In particular, we have the corresponding heat semigroup e− 1
2 tΔRp ,Bp at

our disposal.
To rephrase Theorem 1 in this setting, we attach to the curvature invariants above the

functions

r(p) : X → R, r(p)(x) = inf|α|=1
〈Rp(x)α, α〉,

and

κ(p) : Σ → R, κ(p)(x) = inf
1≤ j1<···< jp≤n−1

κ j1(x) + · · · + κ jp (x).
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With this notation at hand, we can state the main result of this subsection, which is a straight-
forward application of Theorem 1.

Theorem 8 If Assumption 2 is satisfied and for some 1 ≤ p ≤ n − 1 we have r(p) ≥ c1 for
some c1 > −∞, then the heat conservation principle holds for ΔRp,Bp .

Proof Use that κ(p) ≥ c2 > −∞ because B is bounded from below in view of Assumption 2.
��

Corollary 3 If Assumption 2 is satisfied, then the heat conservation principle holds for ΔR1,B.

Proof CombineTheorem8withTheorem2 and observe that here both lower bounds r(1) ≥ c1
and σ(1) ≥ c2 already follow from Assumption 2. ��

Remark 3 From Corollary 1, we obtain a vanishing result for absolute L2 harmonic p-forms
under the assumptions that c1 > −λ0 and Σ is (weakly) p-convex in the sense that

inf
x∈Σ

κ(p)(x) ≥ 0.

This strengthens [5, Theorem 5.3], where the result was obtained under the assumption that
X has bounded geometry.

Remark 4 A simpler variant of the argument leading to Theorem 1, which dispenses with
Proposition 10, yields a proof of Theorem 2. We first note that by geodesic completeness,
we may assume that ‖dhi‖L∞(X ,∧1T ∗ X) → 0. Thus, using (26) with φ = f a function as in
item (4) of Proposition 1 and ξ = hi , we have

(
e− 1

2 tΔ0 f − f , hi

)
0

= −1

2

∫ t

0

∫

X

〈
e− 1

2 τΔ0 f ,Δ0hi

〉
dXdτ

= −1

2

∫ t

0

∫

X

〈
e− 1

2 τΔ0 f , d∗dhi

〉
dXdτ

= −1

2

∫ t

0

∫

X

〈
de− 1

2 τΔ0 f , dhi

〉
dXdτ

= −1

2

∫ t

0

∫

X

〈
e− 1

2 τΔR1,B d f , dhi

〉
dXdτ,

here we assume that t < e, the extinction time of Xt . It follows from Corollary 2 applied to
1-forms that

∣∣∣
(
e− 1

2 tΔR1,B f − f , hi

)
0

∣∣∣ ≤ 1

2
‖dhi‖L∞(X ,∧1T ∗ X)

∫ t

0

∥∥∥e− 1
2 τΔR1,B d f

∥∥∥
L1(X ,∧1T ∗ X)

dτ

≤ C1

2
‖dhi‖L∞(X ,∧1T ∗ X)‖d f ‖L1(X ,E)

∫ t

0
eC2τdτ.

By sending i → +∞, we then recover item (4) in Proposition 1 for some t > 0, which
proves Theorem 2. Note that in order to avoid circularity in the argument, it is crucial here
not using the functions ζi in Proposition 10. Finally, we observe that the argument above is
a concrete manifestation of an abstract reasoning in [4, Theorem 3.2.6].
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6.2 The Dirac Laplacian

Let X be a spinc manifold and fix a spinc structure. In [5, Section 5], it is proved a Feynman–

Kac formula for the semigroup e− 1
2 tΔ associated with the Dirac LaplacianΔ = D2, where D

is theDirac operator actingon spinors associatedwith ametric g on X and aunitary connection
on the auxiliary complex line bundle U . This formula was established under the assumption
that the pair (X ,Σ) has bounded geometry and by imposing suitable boundary conditions on

spinors along Σ . As a consequence, a semigroup domination result for e− 1
2 tΔ was derived in

this setting. We now show that more generally, i.e., under Assumption 2, we may also derive

a semigroup domination inequality for e− 1
2 tΔ under suitable mixed boundary conditions. As

a consequence, we will show that the corresponding heat conservation principle for Δ holds.
Let SX = PSpinc (X)×ζ V be the spin bundle of X , where ζ is the complex spin representa-

tion [11,21]. Thus, PSpinc (X) is a Spinc
n-principal bundle double covering PSO(X)× PU1(X),

where PU1(X) is the U1-principal bundle associated with U → X , so the Levi–Civita con-
nection on T X induces a metric connection on SX , still denoted∇. The corresponding Dirac
operator D : Γ (X ,SX) → Γ (X ,SX) is locally given by

Dψ =
n∑

i=1

γ (ei )∇ei ψ, ψ ∈ Γ (X ,SX),

where {ei }n
i=1 is a local orthonormal frame and γ : T X → End(SX) is the Clifford prod-

uct by tangent vectors. In this setting, the Dirac Laplacian operator Δ = D2 satisfies the
Lichnerowicz decomposition

Δ = ∇∗∇ + R, R = �

4
+ 1

2
γ (iΘ), (30)

where � is the scalar curvature of X and iΘ is the curvature 2-form of the given unitary
connection on F . Clearly, this is a generalized Dirac Laplacian.

In the presence of the boundary, we must also consider the restricted spin bundle SX |Σ .
By defining the restricted Clifford product and the restricted connection by

γ ᵀ(X)ψ = γ (X)γ (ν)ψ, X ∈ Γ (Σ, T Σ), ψ ∈ Γ (Σ,SX |Σ),

and

∇ᵀ
Xψ = ∇Xψ − 1

2
γ ᵀ(B X)ψ, (31)

respectively, where as usual B = −∇ν is the shape operator of Σ , then SX |Σ becomes a
Dirac bundle over Cl(T X |Σ) [17,24]. The associated Dirac operator Dᵀ : Γ (Σ,SX |Σ) →
Γ (Σ,SX |Σ) is

Dᵀ =
n−1∑
j=1

γ ᵀ(e j )∇ᵀ
e j

,

where the frame has been adapted so that en = ν.
To see the relevance of this tangential Dirac operator, assume Be j = κ j e j , where κ j are

the principal curvatures of Σ . It follows that

Dᵀ = H

2
+

n−1∑
j=1

γ (e j )∇e j ,
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where H = tr B is the mean curvature. Hence, D = −γ (ν)D is given by

D = Dᵀ + ∇ν − H

2
. (32)

We now specify mixed boundary conditions in this setting. We start with an involutive
endomorphism I ∈ Γ (X |Σ,SX), whichwe extend to a collared neighborhood ofΣ such that
∇νI = 0. Let Π± be the corresponding projections and set F± = Π±SX |Σ . In particular,
∇νΠ± = Π±∇ν . We now recall a notion introduced in [5].

Definition 5 We say that the tangential Dirac operator Dᵀ intertwines the projections if
Π± Dᵀ = DᵀΠ∓.

If this compatibility condition between Dᵀ and Π± holds and ψ, η ∈ Γ (Σ,F+), then
〈Dᵀψ, η〉 = 0 and hence, by (32),

〈Dψ, η〉 =
〈(

∇ν − H

2

)
ψ, η

〉

=
〈
Π+

(
∇ν − H

2

)
ψ, η

〉
(33)

Thus, we may proceed as in the proof of Proposition 3 to get
∫

Σ

〈∇νψ, η〉dΣ =
∫

Σ

〈Dψ, η〉 dΣ +
∫

Σ

H

2
〈ψ, η〉dΣ

=
∫

Σ

〈
Π+

(
∇ν − H

2

)
ψ, η

〉
dΣ +

∫

Σ

H

2
〈ψ, η〉dΣ.

If we think of H as an endomorphism Ĥ of SX |Σ such that Ĥ = H Id on F+ and Ĥ = 0
on F− and impose the mixed boundary conditions

Π+
(

∇ν − Ĥ

2

)
ψ = 0, Π−ψ = 0, (34)

then for compactly supported spinors ψ and η satisfying these conditions, we see that the
bilinear form associated with Δ satisfies

Q(ψ, η) =
∫

X
〈∇ψ,∇η〉dX +

∫

X
〈Rψ, η〉dX + 1

2

∫

Σ

〈Ĥψ, η〉dΣ.

Clearly, this is symmetric and bounded from below ifR and H are uniformly bounded from
below. It follows from (30) and Assumption 2 that R is bounded from below if and only if
so does iΘ . Moreover, H is always bounded from below. Thus, as an immediate application
of Theorem 1, we obtain the main result of this subsection.

Theorem 9 Let X be a spinc manifold satisfying Assumption 2 and assume that iΘ is bounded
from below. Then, the heat conservation principle holds for Δ.

We note that examples of boundary conditions satisfying (34) include both chirality and
MIT bag boundary conditions; see Remarks 5.1 and 5.2 in [5].

Remark 5 From Corollary 1, we obtain a vanishing result for L2 harmonic spinors satisfying
the given boundary conditions if we further assume that R ≥ c > −λ0 and Σ is mean
convex (H ≥ 0). This strengthens [5, Theorem 5.5], where the result was obtained under the
assumption that X has bounded geometry.
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6.3 The Jacobi operator on free boundaryminimal immersions

Let (X , g) be a noncompact Riemannian manifold of dimension n > n and with boundary
Σ . Let Ψ : (X , g) � (X , g) be a noncompact isometric immersion with boundary Σ =
X ∩Σ . If T X⊥ is the normal bundle of X ,B ∈ Γ (X ,Hom(T X ⊗ T X , T X⊥)) is the second
fundamental form of X . Also, we denote by R the curvature tensor of (X , g).

Any compactly supported vector fieldU ∈ Γ (X , T X |X )which is admissible in the sense
that it is tangent to Σ along Σ gives rise to a one-parameter family of isometric immersions
t ∈ (−ε, ε) �→ Ψt : (X , gt ) � (X , g), ε > 0, such that Ψ0 = Ψ and

∂Ψt

∂t
|t=0 = U .

We then say that U is the variational field associated with the variation Ψt . A direct compu-
tation gives the first variation of the area functional

(
δ(X ,g)Area

)
(U ) = d

dt
Area(Xt , gt )|t=0

along a variational field U . We have

(
δ(X ,g)Area

)
(U ) = −

∫

X
〈H, U 〉dX −

∫

Σ

〈U , ν〉dΣ, (35)

whereH = traceB is the mean curvature vector and ν is the inward pointing unit co-normal
vector along Σ .

Definition 6 We say that X is a free boundary minimal immersion if it is a critical point for
the functional Area under compactly supported variations.

By (35), this means thatH = 0 along X (this is the minimality condition) and 〈U , ν〉 = 0
along Σ for any U . This latter condition means that Σ meets Σ orthogonally (this is the free
boundary condition). Notice that this implies that ν is normal to Σ . In particular, it makes
sense to consider Bν

Σ
, the shape operator of Σ in the direction of ν.

If (X , g) is a free boundary minimal immersion, it is natural to compute the second
variation of the area along admissible variational fields U and V as above. The result is

(
δ2(X ,g)Area

)
(U , V ) =

∫

X
〈JU , V 〉dX −

∫

Σ

〈(
∇⊥

ν + Bν

Σ

)
U , V

〉
dΣ. (36)

Here, ∇⊥ is the normal connection on T X⊥ and the Jacobi operator is given by

J = ∇∗∇⊥ − W,

where ∇∗∇⊥ is the Bochner Laplacian associated with ∇⊥, W = R + B, B = B ◦ B• ∈
Γ (X ,End(T X⊥)) and R ∈ Γ (X ,End(T X⊥)) is given by

〈RU , V 〉 =
n∑

i=1

〈RU ,ei ei , V 〉.

Since W is clearly selfadjoint, J is a generalized Laplacian. But notice that it is not a
generalized Dirac Laplacian, so a heat conservation principle corresponding to Theorem 1
does not necessarily hold here; however, see Remark 8.
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As a consequence of (36), any Morse-theoretic notion involving this variational problem
(like index, nullity, etc.) should be addressed by imposing to variational fields the Robin-type
boundary condition (

∇⊥
ν + Bν

Σ

)
U = 0. (37)

In particular, Jacobi fields, i.e., solutions of JU = 0, should be studied under this boundary
condition. We refer to [30] for details.

Remark 6 Note that, strictly speaking, (37) is ofmixed type. Indeed, in the language of Sect. 3,
it is obtained by taking I = Id, so that Π+ = Id and Π− = 0, and S = −Bν

Σ
.

Now, by (10), we can rewrite (36) as
(
δ2(X ,g)Area

)
(U , V ) =

∫

X

(
〈∇⊥U ,∇⊥V 〉 − 〈WU , V 〉

)
dX −

∫

Σ

〈Bν

Σ
U , V 〉dΣ.

Hence, the bilinear form

Q(U , V ) =
∫

X
〈JU , V 〉dX

is given by

Q(U , V ) =
∫

X

(
〈∇⊥U ,∇⊥V 〉 − 〈WU , V 〉

)
dX +

∫

Σ

〈∇⊥
ν U , V 〉dΣ

=
∫

X

(
〈∇⊥U ,∇⊥V 〉 − 〈WU , V 〉

)
dX +

∫

Σ

〈(∇⊥
ν + Bν

Σ
)U , V 〉dΣ

−
∫

Σ

〈Bν

Σ
U , V 〉dΣ.

Thus, Q is symmetric and bounded from below if we assume that the variational fields U
and V satisfy (37) and impose lower bounds of the type

− W ≥ c1Id, −Bν

Σ
≥ c2Id. (38)

Under these assumptions, all the results in Sect. 4 hold for J−W,−Bν

Σ
. In particular, the fol-

lowing vanishing result, corresponding to Corollary 1, holds true.

Theorem 10 Under the conditions above, assume that c1 > −λ0 and c2 = 0 in (38). Then,
X carries no L2 Jacobi field satisfying (37).

Example 1 Let X be the exterior of an open geodesic ball in hyperbolic space Hn , so that Σ
is the geodesic sphere bounding this ball. Now take any totally geodesic submanifold passing
through the center of the ball and take X to be the portion of this submanifold outside the
ball. Then, Theorem 10 clearly applies to the free boundary minimal submanifold X .

Remark 7 We note that the proof of the domination property in this setting is substantially
simplified in the sense that we can get rid of the parameter ε > 0 appearing in Sect. 4. In
fact, this kind of simplification will take place whenever, in the notation of Section 3, we
take I = Id as in Remark 6. To see this, take φ satisfying (18) with Π+ = Id and Π− = 0
and directly apply Itô’s formula to MW ,S,tφ

†
T −t (̃Xt ) (no mention to ε) as in the proof of

Theorem 4, where we assume that both W and S are uniformly bounded. We end up with
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dMW ,S,tφ
†
T −t (̃X

x
t ) =

〈
MW ,S,tLH φ

†
T −t (̃X

x
t ), dbt

〉
− MW ,S,t L†φ

†
T −t (̃X

x
t )dt

+MW ,S,t
(Lν† − S†)φ†

T −t (̃X
x
t )dλt ,

and since the last two terms vanish, MW ,S,tφ
†
T −t (̃Xt ) is found to be a martingale. In this way,

we obtain a proof of the Feynman–Kac formula in Theorem 4 without having to appeal to
the rather technical ε−1-perturbation in Propositions 4 and 5. From this point, we may use
the approximation scheme to remove the upper bounds on W and S just as we did in Sect. 4.

Remark 8 Let (X , g) as above be a Kähler manifold and assume that the free boundary
minimal submanifold X ⊂ X of dimension n/2 is Lagrangian in the sense that Ω|X = 0,
where Ω is the underlying symplectic form. The map that to each normal vector u ∈ T X⊥

x
associates the 1-form αu = ιuΩ ∈ T ∗ X defines a bundle isomorphism between T X⊥ and
T ∗ X , so that to each admissible variation vector field U ∈ Γ (X , T X⊥) there corresponds a
1-form αU ∈ A1(X). If we assume further that X is a Ricci flat, Kähler–Einstein manifold,
then under this identification, we have J = Δ1, the Hodge Laplacian acting on 1-forms [26,
Proposition 4.1]. In particular, by Sect. 6.1, J is a generalized Dirac Laplacian. Recalling
thatΔ1 = ∇∗∇+Ric and that Assumption 2 already implies that Ric is bounded from below,
an application of Theorem 1 gives the following result: if −Bν

Σ
is bounded from below, then

the heat conservation principle holds for J .
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