
Annali di Matematica Pura ed Applicata (1923 -) (2020) 199:969–984
https://doi.org/10.1007/s10231-019-00908-y

The ciconia metric on the tangent bundle
of an almost Hermitian manifold

R. Albuquerque1

Received: 9 May 2019 / Accepted: 11 September 2019 / Published online: 19 September 2019
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer
Nature 2019

Abstract
We find a new class of invariant metrics existing on the tangent bundle of any given almost
Hermitian manifold. We focus here on the case of Riemannian surfaces, which yield new
examples of Kählerian Ricci-flat manifolds in four real dimensions.
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1 A new invariant metric

1.1 Introduction

This article brings to light a new geometric structure associated with any given almost Her-
mitian manifold (M, g, J ).

We define an almost Hermitian structure on T M , adding to the theory of the geometry of
tangent bundles, for which the underlying metric generalises both the Sasaki and the Yano
metrics with weights. Indeed, here a new invariant symmetric tensor is exhibited, ‘ga’, which
combines with the well-known geometry of Riemannian fibre bundles.

The literature on similar structures does not refer our invariant construction. Comparison
with recent studies on special metrics on tangent bundles, like those originating from g-
natural, Calabi, Eguchi–Hanson, Gibbons–Hawking or Taub–NUTmetrics, cf. [1,3–6,8–10],
will show that a ciconia metric stands quite unique in the field of Riemannian structures on
vector bundles. For instance, the well-known SU(2)-holonomy Stenzel metric on TS2 , which
is a special case of Eguchi–Hanson metric, cannot be realised as a ciconia metric since the
zero section is there a Lagrangian submanifold, cf. [10].
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Any orientable two-dimensional Riemannian manifold M , any two real functions f , h
and any complex function a on M , such that f h − |a|2 �= 0, give rise to a new example.
Therefore, we have a new class of pseudo-Riemannian and Riemannian geometries. We
concentrate on the lowest possible dimension, much more being due to be researched. The
curvature of ciconia metrics, for example, stands as an open question in the general setting.
It would be quite important to analyse the case of a Kähler manifold base.

1.2 The diagonal structure of the tangent manifold

It is widely known that the total space of the tangent bundle of any given Ck differentiable
manifold M carries the structure of a Ck−1 differentiable manifold of twice the dimension
of M . It is also very well known the existence of a pseudo-Riemannian structure on the
same total space, the so-called Sasaki metric, when the base manifold is endowed with a
pseudo-Riemannian structure.

The purpose of the present article is to introduce a more general invariant construction,
which is natural to almost Hermitian geometry in any dimension. We shall start our study
later-on with the analysis of the two-dimensional case.

Let π : T M −→ M denote the tangent bundle of a smooth Riemannian manifold (M, g).
We denote by TM the total space of such vector bundle with structure group GL(m,R), where
m = dim M . In order to swiftly present the main results, we let ∇ denote the Levi–Civita
connection of M (though any other metric connection would be interesting to consider as
well). The natural vertical tangent bundle to TM , this is, V := ker dπ , admits a tautological
section U defined by Uu = u ∈ Tπ(u)M . Then the well-established theory proves two
identifications: first, that V = π�T M and, second, that H∇ := ker(π�∇·U ) defines a vector
bundle and a complement to V . Indeed, we have, ∀X ∈ T TM ,

π�∇XU = Xv

(using the canonical notation for the projections). The horizontal distribution H∇ is then also
identified isomorphically with π∗T M , via (dπ)| : H∇ −→ π∗T M , as vector bundles over
TM .

With the canonical splitting, T TM := T (TM ) = H∇ ⊕V 	 π∗T M ⊕π�T M , comes the
notion of amirror map B of T TM . This is the endomorphism which sends a horizontal vector
to the respective vertical lift and sends any vertical vector to 0. Then we have the notion of
adapted frame on TM , which is a horizontal lift of a frame on M together with or followed
by its mirror in V .

Adapted frames on the manifold TM yield the structural group reduction GL(m,R) ↪→
GL(2m,R). The representation of the smaller subgroup follows from the diagonal inclusion
in the larger. Such is the peculiar feature of the geometry of tangent vector bundles. An
immediate consequence, e.g. is that the reduction to the diagonal subgroup is carried through
GL+(2m,R). Hence, the tangent manifold is always orientable, independently of M .

Recall T M −→ M is a vector bundle associatedwith the principal frame bundle FM −→
M . Now, given the connection ∇, the vector bundle T TM −→ TM can be associated with
π∗FM −→ TM with the same structure group: T TM = π∗FM ×GL(m,R) (Rm ⊕ R

m).
For any tensor field on M , we write π∗ to denote a pullback or horizontal lift to TM , and

write π� to denote a vertical lift. Regarding nomenclature, the vector field U is also known
as the Liouville vector field and S = B tU as the geodesic spray.

We shall intensely use the following associated linear connection on TM . We denote by
∇∗ the direct sum of the pullback connections π∗∇ on both sides of the canonical splitting of
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The ciconia metric on the tangent bundle… 971

T TM . In particular, we find ∇∗B = 0. Indeed, we obtain a linear connection on the manifold
TM , satisfying, ∀X ∈ T TM , Y ∈ XM ,

∇∗
Xπ∗Y = π∗(∇dπ(X)Y ), ∇∗

Xπ�Y = π�(∇dπ(X)Y ).

Now, introducing the Riemannian structure (M, g), we may consider the frames on M
which are orthonormal, and proceed with a further reduction to the principal bundle which
has O(m) as structure Lie group. A reduction to (O(m)) of the original structure group of
T TM follows, as before, from the existence of adapted frames and from the natural diagonal
inclusion

O(m) ↪→ O(m) × O(m) ⊂ GL(2m,R). (1)

Finally, we are ready for the presentation of a new idea on TM .
One may study product metrics on any total spaces of pseudo-Riemannian vector bundles

over pseudo-Riemannian manifolds, of any rank, through ‘H+V’ decomposition of their
tangent bundle, cf. [2,4]. However, in such cases the structure group corresponds in general
with the product of two Lie groups. Even so, as we shall do below, one may still include
weights on horizontal and on vertical directions.

On tangent spaces, the so-called g-natural metrics have not ceased to being studied ever
since the Sasaki metric was first found. References [1–3,8,9] and others thereinmay guide the
interested reader. Several Riemannian metrics of different types on TM have been discovered
in the latest decades, in the breadth of ideas such as those described in [6].

1.3 The new almost Hermitianmetric

Regarding the reduction to O(m) on the tangent manifold, which has now become clear,
a new metric structure is admissible without further imposing any restrictions on the base
manifold. As explained earlier, we stress this new structure is impossible to reproduce on
other vector bundle manifolds.

Taking any isomorphism A ∈ End (T TM ) symmetric for the canonical (Sasaki) metric,
one may define another metric on the same manifold by (π∗g ⊕ π�g)(A · , · ). In particular,
we consider the following symmetric bilinear-form:

g f ,a,h = f π∗g + ga + hπ�g (2)

where f and h are real functions, f , h : TM −→ R, and ga is defined by

ga(x
h, yv) = π�g(a(xh), yv)

= π∗g(xh, at(yv)),
(3)

∀u ∈ TM , ∀x, y ∈ Tπ(u)M , with a an endomorphism of T TM such that a(xv) = at(xh) = 0.
Still there is more to this example, because it coincides with the general case.

Proposition 1.1 Any Riemannian structure given by (π∗g⊕π�g)(A · , · ) is compatible with
the reduction to the structure group O(m) if and only if it is of the above type (2).

Indeed, the metric being defined independently of the choice of adapted frame is the same as
A being invariant for the diagonal representation. Equivalently, with respect to the canonical
splitting of T TM , there exists a vector bundle morphism a : H∇ −→ V , commuting with
the O(m)-representation, and there exist functions f , h as above such that

A =
[
f 1m at

a h1m

]
. (4)
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972 R. Albuquerque

The result follows from the next Lemma, which further determines all possible a.

Lemma 1.1 A symmetric linear map A from the Euclidean space Rm ⊕ R
m onto itself com-

mutes with the diagonal representation of SO(m), respectivelyO(m), if and only if there exist
f , h ∈ R and a linear map a : Rm → R

m in the centraliser subgroup of SO(m), respectively
O(m), in gl(m,R) such that A has the shape of (4).

Moreover, in the case of O(m), then a = b1m for some b ∈ R, and in the case of SO(m)

then two cases are possible:

(i) for m = 2, we have a = b + ic =
[
b −c
c b

]
with b, c ∈ R (i = √−1);

(ii) for m > 2, we have a = b1m for some b ∈ R.

Proof The first part is trivial: writing A as a four blocks symmetric matrix, then A commutes

with

[
o
o

]
, ∀o ∈ O(m), if and only if it is of the desired shape. For the second part,

the centraliser subgroup of the orthogonal group in gl(m,R) is easily determined from Lie
algebra theory. The exception in the case oriented and m = 2 is immediate. �

Clearly, the canonical or Sasaki metric corresponds with the bilinear-form g1,0,1. And the
identity map a = 1m corresponds to the morphism B restricted to horizontals.

Proposition 1.2 Let �= f h − |a|2. Then the metric g f ,a,h is:

(i) positive definite if and only if f > 0 and �> 0;
(ii) negative definite if and only if f < 0 and �> 0;
(iii) of signature (m,m) if and only if f < 0 and �< 0, or f = 0 and a �= 0, or f > 0 and

�< 0; in other words, if and only if �< 0.

No other signatures may occur.

Proof Recall |a|2 = b2 + c2. Notice for case m > 2, then c = 0 and thus, with
f �= 0 or h �= 0, it is trivial to find the sequence of minors of A in (4). That is,

f , f 2, . . . , f m, . . . , f m(h − b2
f )k = f m�k

f k
, . . . , ∀1 ≤ k ≤ m. For m = 2 and any c,

the sequence of minors of A is f , f 2, f �,�2. Due to the shape of the matrix, the signa-
ture (m,m) is the only remaining complementary to definite signature. If f = h = 0 and
m > 2, the case is trivial. For m = 2, we consider an adapted frame u1, u2, u3, u4 with
ga(u2, u4) = ga(u1, u3) = b, −ga(u2, u3) = ga(u1, u4) = c and all other products vanish-
ing, and moreover, without loss of generality, we assume b �= 0. Then a (2, 2)-orthonormal
frame is found through the orthogonal frame v1 = u1 + u3, v2 = u2 + u4,

v3 = b − c

2
(u1 + u4) − b + c

2
(u2 + u3), v4 = b + c

2
(u1 − u4) + b − c

2
(u2 − u3).

The identities ga(v1, v1) = ga(v2, v2) = 2b, ga(v3, v3) = ga(v4, v4) = −b(b2 + c2)
follow. �

Of all the metrics defined on a tangent manifold, the g-natural metrics are the most studied
in the literature, cf. [3,8,9]. For instance, recall the pseudo-Riemannian metric g0,1m ,0 was
essentially found by Yano, cf. [1,5,8,9]. The g-natural metrics in general do coincide with
the metric g f ,a,h when we do not enter in the details of case m = 2; in general, for m > 2,
we have a = b1m . Therefore, we shall not focus on the general dimension case.

We assume from now on that the manifold M is orientable, so that we may start from an
SO(m) structure, and thus consider case (i) in Lemma 1.1.
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The ciconia metric on the tangent bundle… 973

Definition 1.1 Given the smooth functions f , h, b, c : TM −→ R and letting a = b + ic,
the new g-natural metric from (2) shall be called a ciconia metric.

The ciconia1metric matrix on an adapted orthonormal frame is given by⎡
⎢⎢⎣

f b c
f −c b

b −c h
c b h

⎤
⎥⎥⎦ . (5)

We notice that all the metrics considered are compatible with the canonical liftπ∗ J⊕π� J
of any metric compatible almost complex structure J on M . This holds simply because J is
a vector bundle isometry! In particular, in dimension 2, the metric is compatible with natural
90 degree rotation. This last remark proves to be extremely helpful, as we shall see in the
next section.

The previous findings also show we may proceed with analogous definition of a ciconia
metric on the total space of the tangent bundle of any given almost Hermitian, i.e. U(m/2)-
manifold, for any even m. The shape of (5) arising from a unitary frame remains, since the
centraliser of the unitary group in gl(m,R) is {b1m/2 + ic1m/2 : b, c ∈ R}.
Theorem 1.1 The ciconia metric on the tangent manifold of any almost Hermitian manifold
is itself almost Hermitian.

Leaving aside the trivial endomorphisms a, the definition of the metric g f ,a,h is entirely
new in the literature, when c �= 0.

1.4 Equations of ciconia metric

The best way to grasp the geometry of ciconia metrics seems to be by referring to isothermal
coordinates. Recall every Riemannian surface M with Hölder continuous metric is locally
conformal to the Euclidean plane, thus providing the isothermal coordinates. We proceed
with these sufficiently general hypotheses, which include analytic spaces. Or rather let us
assume we have a smooth metric g on M given locally by

g = λ dzdz, (6)

for some real smooth function λ > 0 and complex coordinates z = x + iy on an open subset
U ⊂ M .

We identify TzM with T 1,0
z M = C∂z , both restricted to the set U . This linear map is

defined by ∂x �−→ ∂z, ∂y �−→ i∂z where we denote ∂x = ∂
∂x and ∂z = ∂

∂z = 1
2 (∂x − i∂y).

We shall also require ∂z = ∂z . Clearly, the metric g satisfies

λ = g(∂x , ∂x ) = g(∂y, ∂y) = 2g(∂z, ∂z). (7)

With the usual abbreviation ∇z = ∇∂z , we may certainly write ∇z∂z = �1∂z + �2∂z
and, due to vanishing torsion, write ∇z∂z = ∇z∂z = �3∂z + �4∂z , for some complex-valued
functions �1, . . . , �4 on U . Since ∇ is a real operator, ∇z∂z = �2∂z + �1∂z as well as
�4 = �3. This leads to the following Proposition.

1 We use the name ciconia (from the Latin for stork) inspired by (5) and the migrant bird species, abundant
in three continents and believed to have an exceptional sense of orientation.
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974 R. Albuquerque

Proposition 1.3 The Levi–Civita connection of g is given by

∇zdz = −�dz, ∇zdz = 0, (8)

� := �1 = 1

λ

∂λ

∂z
, �2 = �3 = �4 = 0. (9)

Let us also recall the formulae for the curvature and sectional curvature of M are given,
respectively, by

R∇(∂z, ∂z)∂z = ∇z∇z∂z − ∇z∇z∂z = −∂�

∂z
∂z = −∂2 log λ

∂z∂z
∂z, (10)

K = g(R∇(∂z, ∂z)∂z, ∂z)

g(∂z, ∂z)2
= −2

λ

∂�

∂z
= −2

λ

∂2 log λ

∂z∂z
. (11)

Next we consider the open subset TU = π−1(U) ⊂ TM . We have trivialising coordinates

TU = {(z, w) : z ∈ U, w ∈ C} (12)

and hence, writing w = s + i t, s, t ∈ R, we have the tautological vector field

U(z,w) = s∂s + t∂t = w∂w + w∂w. (13)

Clearly, isothermal coordinates z onM are compatiblewith an induced integrable complex
structure, which is unique up to orientation if M is orientable. Transition maps between
isothermal coordinates are indeed holomorphic, as it is easy to prove. This implies that the
tangent bundle T M −→ M inherits a complex structure from M and the structure of a
holomorphic vector bundle. In particular, TM becomes a holomorphic manifold, cf. [7].

It follows that ∂w generates the vertical +i-eigenvectors or (1, 0)-vectors in (T TU )C.
Now we recall the pullback connection ∇∗ and search for a generator of the horizontal
+i-eigenbundle.

Proposition 1.4 We have (H∇
(z,w))

1,0 = CX where

X = ∂z − w�∂w. (14)

Proof We may assume X = ∂z + ε∂w, for some ε ∈ C, is a generator of (H∇)1,0. Thus
satisfying ∇∗

XU = 0. By construction, we have B(π∗∂z) = ∂w . And therefore

∇∗
X (w∂w + w∂w) = ε∂w + wB∇∗

Xπ∗∂z + wB∇∗
Xπ∗∂z

= ε∂w + wB(�π∗∂z)
= (ε + w�)∂w

yields the result. �
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The ciconia metric on the tangent bundle… 975

In particular we see X = π∗∂z is the horizontal lift of ∂z . Of course, ∂w is the vertical. Next,
we find a (1, 0)-form over TU such that η(∂w) = 1, η(X) = 0. Clearly,2

η = w�dz + dw. (15)

We remark that dη(0,2) = 0 yields the holomorphic structure of the manifold TM .

Proposition 1.5 The Sasaki metric g1,0,1 over TU = U × C coincides with λ(dzdz + ηη).
More precisely, π∗g = λ dzdz and π�g = λ ηη.

Next we compute a few derivatives for later purposes. First, as above and by trivial reasons,
we have

∇∗
z ∂w = �∂w, ∇∗

z ∂w = ∇∗
z ∂w = 0, ∇∗

w∂w = ∇∗
w∂w = 0. (16)

Then
∇∗
z ∂z = ∇∗

z (π
∗∂z + w�∂w)

= �π∗∂z + w
∂�

∂z
∂w + w�2∂w

= �∂z + w
∂�

∂z
∂w

(17)

and, in the same way,

∇∗
z ∂z = w

∂�

∂z
∂w, ∇∗

z ∂z = w
∂�

∂z
∂w. (18)

Easy enough,
∇∗

w∂z = �∂w, ∇∗
w∂z = 0. (19)

Proposition 1.6 We have

∇∗
z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dz

dz

dw

dw

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�dz

0

−w ∂�
∂z dz − �dw

−w ∂�
∂z dz

∇∗
w

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dz

dz

dw

dw

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

0

−�dz

0

. (20)

Checking ∇∗(λ dzdz) = ∇∗π∗g = 0, as expected, is now a simple exercise.
Regarding the vertical part, we start by

∇∗
z η = ∇∗

z (w�dz + dw) = w
∂�

∂z
dz − w�2dz − w

∂�

∂z
dz − �dw = −�η. (21)

Further, we find

∇∗
z η = ∇∗

z (w�dz + dw) = w
∂�

∂z
dz − w

∂�

∂z
dz = 0,

∇∗
wη = �dz − �dz = 0, ∇∗

wη = ∇∗
wη = 0.

(22)

2 We have the following result concerning transition functions.
Proposition. Let (U1, z1) denote another complex chart of M defined on an open subset U1 with non-empty
intersection with U . Consider the corresponding chart (z1, w1) of TM . Then:

∂

∂z1
= ∂z

∂z1

∂

∂z
, w1 = ∂z1

∂z
w, λ1 =

∣∣∣∣ ∂z

∂z1

∣∣∣∣
2
λ, �1 = ∂z

∂z1
� + ∂z1

∂z

∂2z

∂z12
, η1 = ∂z1

∂z
η.

Certainly the 1-form η is a covariant tensor and thus transforms like a tensor. However, η is defined on two
complex dimensions. The third and the last identity hence yield the main result of Sect. 1.3, i.e. that λ dzη is
a well-defined global tensor.
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976 R. Albuquerque

And thus the identity ∇∗(λ ηη) = ∇∗π�g = 0 follows, again just as expected.
We remark that the torsion of the metric connection ∇∗ is proportional to π∗R∇U .
The ciconia metric with weights f , a, h ∈ C∞(TM ;C), where f , h are real, may now be

introduced in coordinates:

g f ,a,h = λ

2
( f dz · dz + a dz · η + a η · dz + h η · η). (23)

We use momentarily α · β = α ⊗ β + β ⊗ α, so that for instance g = λ
2 dz · dz. Notice the

middle term ga = λ
2 (a dz · η + a dz · η) is also parallel for ∇∗ when a is constant: indeed,

by (20–22),
∇∗(λ dz · η) = 0 and ∇∗(λ η · dz) = 0. (24)

This is just as predicted by the theory: the invariance of ga under the diagonal representation
of SO(2) = U(1) and the reduction of ∇∗ as a linear connection on TM , as mentioned, in
general with torsion. As observed in Sect. 1.2, every ciconia metric g f ,a,h defined on TM is
compatible with the underlying holomorphic structure.

2 First developments

2.1 Kählerian and pseudo-Kählerian ciconia metrics

Let us recall that a pseudo-Hermitian structure or metric on a complex manifold is given by
a C-linear map (the complex structure on T 0,1 is multiplication by −i , so that −iu = iu)

H : T 1,0 ⊗ T 0,1 −→ C such that H(v, u) = H(u, v), ∀u ∈ T 1,0, v ∈ T 0,1. (25)

On a chart (z j ) j=1,...,dim M , a pseudo-Hermitian metric appears as
∑

h jkdz j ⊗ dzk with
h jk = hkj . Then H is compatible with the complex structure and the same is true for the real
and imaginary parts of H . The real part�H is the associated pseudo-Riemannian metric and
minus the imaginary part −�H = �(i H) is the associated symplectic 2-form.

Resuming with the analysis of a given ciconia metric on the complex manifold TM , let us
consider the pseudo-Hermitian structure Ha given locally by

Ha = λa dz ⊗ η + λa η ⊗ dz. (26)

Ha is the pseudo-Hermitian structure associatedwith ga introduced in (3). Indeed, g0,a,0 from
(23) agrees with ga = �Ha = (Ha + Ha)/2. Now we have the symplectic form ga(i , )

−�Ha = iλ

2
(a dz ⊗ η + a η ⊗ dz − a dz ⊗ η − a η ⊗ dz)

= iλ

2
(a dz ∧ η − a dz ∧ η).

(27)

Finally, we have the symplectic 2-form of a ciconia metric g f ,a,h :

ω f ,a,h = iλ

2
( f dz ∧ dz + a dz ∧ η + a η ∧ dz + h η ∧ η). (28)
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The ciconia metric on the tangent bundle… 977

Proposition 2.1 ω f ,a,h is closed if and only if

⎧⎪⎨
⎪⎩

∂h

∂z
= ∂a

∂w
+ w�

∂h

∂w
∂ f

∂w
+ w�

∂a

∂w
= ∂a

∂z
+ wh

∂�

∂z
.

(29)

Proof Since η = w�dz + dw, η = w�dz + dw, we find

η ∧ η = |w|2|�|2dz ∧ dz + w�dz ∧ dw − w�dz ∧ dw + dw ∧ dw,

dη = �dw ∧ dz − w
∂�

∂z
dz ∧ dz,

dη = �dw ∧ dz + w
∂�

∂z
dz ∧ dz.

Then

−2iω f ,a,h = ( f λ + hλ|w|2|�|2 + aλw� + aλw�)dz ∧ dz + (aλ + hλw�)dz ∧ dw

+(−aλ − hλw�)dz ∧ dw + hλdw ∧ dw

= λ( f + hww�� + aw� + aw�)dz ∧ dz +
(
aλ + hw

∂λ

∂z

)
dz ∧ dw

−
(
aλ + hw

∂λ

∂z

)
dz ∧ dw + hλdw ∧ dw.

Now, recalling λ is positive and depends only on z,

−2idω f ,a,h =
= λ

(
∂ f

∂w
+ ∂h

∂w
ww�� + hw�� + ∂a

∂w
w� + ∂a

∂w
w� + a�

)
dz ∧ dz ∧ dw

+ λ

(
∂ f

∂w
+ ∂h

∂w
ww�� + hw�� + ∂a

∂w
w� + a� + ∂a

∂w
w�

)
dz ∧ dz ∧ dw

−
(

∂a

∂z
λ + a

∂λ

∂z
+ w

∂h

∂z

∂λ

∂z
+ hw

∂2λ

∂z∂z

)
dz ∧ dz ∧ dw

−
(

∂a

∂w
λ + w

∂h

∂w

∂λ

∂z
+ h

∂λ

∂z

)
dz ∧ dw ∧ dw

−
(

∂a

∂z
λ + a

∂λ

∂z
+ w

∂h

∂z

∂λ

∂z
+ hw

∂2λ

∂z∂z

)
dz ∧ dz ∧ dw

−
(

∂a

∂w
λ + w

∂h

∂w

∂λ

∂z
+ h

∂λ

∂z

)
dz ∧ dw ∧ dw

+
(

∂h

∂z
λ + h

∂λ

∂z

)
dz ∧ dw ∧ dw +

(
∂h

∂z
λ + h

∂λ

∂z

)
dz ∧ dw ∧ dw.

Thus ω f ,a,h is closed if and only if the following system is satisfied:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂h
∂z λ − ∂a

∂w
λ − w ∂h

∂w
∂λ
∂z = 0

λ
( ∂ f

∂w
+ ww�� ∂h

∂w
+ w��h + w� ∂a

∂w
+ w� ∂a

∂w
+ a�

)
= ∂a

∂z λ + a ∂λ
∂z + w ∂h

∂z
∂λ
∂z + hw ∂2λ

∂z∂z .
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Equivalently,⎧⎨
⎩

∂h
∂z = ∂a

∂w
+ w� ∂h

∂w

∂ f
∂w

+ w��h + w� ∂h
∂z + w� ∂a

∂w
+ a� = ∂a

∂z + a� + w ∂h
∂z � + hw ∂2λ

∂z∂z
1
λ
.

Since

∂�

∂z
= ∂

∂z

(
∂λ

∂z

1

λ

)
= ∂2λ

∂z∂z

1

λ
− ��,

another substitution in the previous equation yields the result. �


TM is always a complex analytic manifold associated with the Riemann surface M ,
endowed with a smooth Riemannian structure. With respect to the Gray–Hervella classi-
fication of Hermitian 4-manifolds, one may only distinguish further the metrics which are
Kähler or pseudo-Kähler. It is well known the condition for these is the same: dω f ,a,h = 0.

Two sets of C-valued functions on TM are worth considering in order to reduce the
indeterminacy of (29). The first set, C∞

U,π , is the set of functions which are the pullback
by π of functions on M , i.e. functions which depend only on z. The second set, denoted
C∞
r2

= C∞[0,+∞[(C), where r2 = r2(u) = g(u, u) = λ|w|2, u ∈ TM , is the set of functions

ϕ on π−1(U) which depend only of r2 and have derivatives ϕ′, ϕ′′, . . . at 0 (n.b.: we let
ϕ′ = dϕ/dr2).

Let us find first which ciconia metrics are Kähler, separately from the pseudo-Kähler. By
Proposition 1.2, this means that f , h are real and f , f h − |a|2 > 0. Recall from (11) the
notation by K for the Gauss curvature of (M, g).

Theorem 2.1 Suppose a given ciconia metric g f ,a,h is Kähler with weight functions of any
of the two types above. We have that:

(i) if f , a, h ∈ C∞
M,π , then K = 0, a is holomorphic and h is constant;

(ii) if f , h ∈ C∞
M,π and a ∈ C∞

r2
, then K = 0 and a, h are constant;

(iii) if f , a ∈ C∞
M,π and h ∈ C∞

r2
, then K = 0 and a is holomorphic;

(iv) if a, h ∈ C∞
M,π and f ∈ C∞

r2
, then f (r2) = f1r2 + f0, K = − 2 f1

h , h, f0, f1 are
constant and a is holomorphic;

(v) if f ∈ C∞
M,π and a, h ∈ C∞

r2
, then K = 0 and a is constant;

(vi) if a ∈ C∞
M,π and f , h ∈ C∞

r2
, then K = − 2 f ′

h and a is holomorphic;

(vii) if h ∈ C∞
M,π and f , a ∈ C∞

r2
, then f (r2) = f1r2 + f0, K = − 2 f1

h , a, h, f0, f1 are
constant;

(viii) if f , a, h ∈ C∞
r2
, then K = − 2 f ′

h and a is constant.

Reciprocally, any of the conditions above imply the metric is Kähler.

Proof We give some starting details of the proof and leave the others to the reader. Since
r2 = π�g(U ,U ), where U is the tautological section, applying ∇∗ we find dr2(x) =
2π�g(U ,∇∗

xU ) = λ(η⊗η+η⊗η)(w∂w +w∂w, xv) = λ(wη+wη)(x), ∀x ∈ T (TM ); this
is just a coherent, albeit complicated, way of proving a formula for dr2 where r2 = λww.
Immediately, any function ϕ ∈ C∞

r2
satisfies

∂ϕ

∂w
= ϕ′λw,

∂ϕ

∂z
= ϕ′ ∂λ

∂z
ww.
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These imply ∂ϕ
∂z = w�

∂ϕ
∂w

. Using this either on a, on h, or on both, the proof continues with
the analysis of the system for dω f ,a,h = 0 in Proposition 2.1.

We show case (vi) since this is the most exemplary of all 23 cases and since it is the
hardest to see. We have ∂a

∂w
= ∂a

∂w
= 0. For f or h functions of r2 = λ|w|2, we have the seen

identities

∂ f

∂w
= f ′λw,

∂ f

∂z
= f ′ ∂λ

∂z
|w|2

which imply ∂ f
∂z = w�

∂ f
∂w

.
System (29) hence becomes equivalent to a single equation:

f ′λw = ∂a

∂z
+ wh

∂�

∂z
. (∗)

Then differentiating this equation with respect to w yields f ′′λ2w2 = w2h′λ∂�
∂z , ∀w ∈ C,

i.e. f ′′λ = h′ ∂�
∂z . Differentiating with respect to w yields

f ′′λ2|w|2 + f ′λ = h
∂�

∂z
+ |w|2λh′ ∂�

∂z
.

With the input of the previous identity, we find f ′λ = h ∂�
∂z . This is the desired equation

−2 f ′ = Kh. Looking up again on (*), we find the desired result ∂a
∂z = 0. The previous

conclusions also follow immediately fromw = 0 in (*), but we wish to avoid such argument.
�


The result is indeed global, although the system of PDE is local. Notice we end up with
the following two inclusion diagrams

(ii) ⇒ (i) ⇒ (iii) ⇐ (v) (vii) ⇒ (iv) ⇒ (vi) ⇐ (viii). (30)

In sum, each and every of the above cases is described by (iii) or (vi).
We observe, as supplement of case (iv) of the Theorem, that if K > 0, then we have

f1 < 0, f0 > 0, r2 ∈ [0,− f0
f1

[ and so the ciconia metric is defined only on a disc bundle
and is non-complete (on the fibres the metric is Euclidean because h is constant); if K = 0,
then f = f0 and a is bounded (hence constant if M is compact); finally, if K < 0, then we
deduce f1 > 0. Now we also observe case (iii) returns to case (i) once we ask that f h − |a|2
should be a constant: because h cannot vary along the fibres. Hence, the following example
is surprisingly interesting here.

Proposition 2.2 For any open set U ⊂ C and any a ∈ C∞
U holomorphic in z, the Hermitian

metric on U × C

H = (1 + |a|2)dz ⊗ dz + adz ⊗ dw + adw ⊗ dz + dw ⊗ dw (31)

is Kähler and flat.

Proof We give two proofs. For the first, we just notice the biholomorphism

F(z, w) =
(
z, w +

∫
a(z)dz

)

from TU = U × C with the given metric H onto itself with the canonical metric. Finding
such isometric biholomorphism just conforms with the classification of Hermitian symmetric
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domains. A second proof goes as follows. Recalling the unique associated Hermitian connec-
tion on T TU → TU whose (0, 1)-part coincides with ∂ is given by ω̃t = (∂H)H−1, where
H is the Hermitian metric matrix on a holomorphic frame, cf. [7, Chap. I, §4)], we then have

ω̃t =
[
a ∂a

∂z dz
∂a
∂z dz

0 0

] [
1 −a

−a 1 + |a|2
]

=
[
0 ∂a

∂z dz
0 0

]
. (32)

The connection is torsion-free when the metric is Kähler, which is the case as deduced before
and can be immediately checked. In other words, the Hermitian metric gives the Levi–Civita
connection. Since ∂ω̃ is the curvature (1,1)-form, the result follows. �


We may construct the following singular spaces. Let us take the Weierstrass ℘-function
in the z complex plane with period lattice �1 and let �2 be another fixed lattice in the w

plane. Then the metric from Proposition 2.2, with a(z) = ℘(z), descends partially to the
toric manifold C/�1 × C/�2. Unfortunately, it is not defined on the �1 × C/�2, since �1

is the pole set of ℘.
The next result is true for trivial reasons. The purpose is to notice the possibilities of case

(vi) in Theorem 2.1 are stricter than it is shown.

Proposition 2.3 In all cases in Theorem 2.1, the curvature K is constant.

Proof For case (vi) and (viii), since K is independent of r2, we have Kh′ + 2 f ′′ = 0. Then

0 = ∂(Kh + 2 f ′)
∂z

= ∂K

∂z
h + Kh′ ∂λ

∂z
|w|2 + 2 f ′′ ∂λ

∂z
|w|2 = ∂K

∂z
h.

Since h > 0, the result follows. �

Ciconiametrics which are pseudo-Kähler, i.e. with holonomy inU(1, 1), may be found via

the same restricting hypothesis as above.Theweight functions nowsatisfymerely f h−|a|2 <

0.

Theorem 2.2 A ciconia metric g f ,a,h with weight functions of the two types above is pseudo-
Kähler if f , a, h satisfy any of the conditions (i–viii) in Theorem 2.1, with h �= 0, or any of
the following when h = 0 identically:

(ix) if a ∈ C∞
M,π , then f ∈ C∞

M,π and a is holomorphic;
(x) if a ∈ C∞

r2
, then f , a are constant.

The proof is immediate. There is more choice for K on pseudo-Kähler metrics, as we shall
see next.

Corollary 2.1 Let f , h be constants and let a ∈ C∞
M,π ∪ C∞

r2
.

(i) The ciconia metric g f ,a,h is Kähler if and only if f , f h − |a|2 > 0, a ∈ C∞
M,π is

holomorphic and K = 0.
(ii) For any a ∈ C∞

M,π non-vanishing and holomorphic, g f ,a,0 is pseudo-Kähler.

Clearly, in most situations of case (i), we end up with a constant. We recall the metric
g0,1,0 was known to K. Yano. The special ciconia metrics introduced here deserve a more
detailed study, regarding the questions of geodesics, completeness, curvatures, complex and
Lagrangian submanifolds, which cannot be pursued here.

A last important remark regards the case of previously seen ciconia metrics. Suppose
φ : M −→ M is an isometry of the base (M, g). It is proved in [2] that, given any pair of
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The ciconia metric on the tangent bundle… 981

functions f , h ∈ C∞
r2
, then the induced map φ∗ : TM −→ TM is an isometry for the metric

g f ,0,h . Supposing now, moreover, that we have a function a ∈ C∞
M,π , then we find that φ∗ is

an isometry for the ciconia metric g f ,a,h if and only if

dφz ◦ az = aφ(z) ◦ dφz . (33)

Indeed, a may be seen as a vector bundle morphism along φ. The proof is easy, combining
the result in [2, Theorem 1.3] with Definition (3).

2.2 Kählerian Ricci-flat ciconia metric

Here we assume the given metric g f ,a,h on TM is positive definite. Recalling the notation
�= f h − |a|2, we thus have f ,�> 0. Since TM is a Hermitian manifold with Hermitian
metric

H = λ
(
f dz ⊗ dz + a dz ⊗ η + a η ⊗ dz + h η ⊗ η

)
(34)

we may use the well-known formula for the Ricci-form, the closed (1, 1)-form

ρ = i∂∂ log det H . (35)

Proposition 2.4 We have
ρ = 2Kπ∗ω + i∂∂ log � . (36)

Proof By invariance of the unitary structure,wemayapply the type (1, 0) framefieldπ∗∂z, ∂w

from Proposition 1.4 and therefore deduce that det H = λ2 �. Combining with (11) and
π∗ω = iλ

2 dz ∧ dz, the result follows. We notice that

H = λ
(
f + h|w|2|�|2 + 2�(aw�)

)
dz ⊗ dz + λ(a + hw�) dz ⊗ dw

+ λ(a + hw�) dw ⊗ dz + λh dw ⊗ dw

so det H is also confirmed from the matrix of H on the holomorphic frame ∂z, ∂w. �

Following the well-known theory of Hermitian manifolds, we say that TM is Kähler–Einstein
if ρ = S

4 ω f ,a,h , for some S ∈ R\0. For obvious reason, the space is said to be Ricci-flat if
ρ = 0. Returning to the formula in the proof of Proposition 2.1, we deduce the next result.

Proposition 2.5 The equations for an Einstein metric g f ,a,h, with Einstein constant S/4, are
equivalent to the following local system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2 log �
∂w∂w

= −λSh

8
,

∂2 log �
∂z∂w

= −λS

8
(a + hw�),

λK − ∂2 log �
∂z∂z

= λS

8
( f + aw� + aw� + h|w|2|�|2).

(37)

Let TM\M denote the complement of the zero section.

Theorem 2.3 For any Riemann surface (M, g) and every set of smooth functions f , a, h on
TM such that f > 0 and f h − |a|2 = 1

r4
, the ciconia metric g f ,a,h on the open manifold

TM\M is Ricci-flat.
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982 R. Albuquerque

Proof Since r2 = λww, then ∂∂ log r−4 = −2(∂2z,z log λ)dz∧dz = λK dz∧dz. Substituting
this result in (36) yields ρ = 0. �


In fact, the solution 1/r4 is found when we factor out � by a function of r2. It is unique,
in this way, for the Ricci-flat ciconia metric. Hence, we may always write �= ψ/r4, out of
the zero section, and study the system (37) with 0 in the place of K and ψ in the place of �.

The next result is an improvement in the previous,meetingwith thewell-knownproblemof
finding examples of complete Kähler Ricci-flat manifolds. We construct almost Calabi–Yau
spaces, giving evidence to the irrevocable role of the weight-function a.

Theorem 2.4 Let (M, g) be an oriented compact Riemann surface of constant Gauss cur-
vature K = −1, 0 or 1. For any 0 ≤ ε<ε2, let us denote by Z = Zε1,ε2 the submanifold
Z = {u ∈ TM : ε1 < r2 < ε2}, open in TM, where r2 = g(u, u). Given the following
conditions on a constant c0 ∈ R and on ε1, ε2, f , a, h, the respective ciconia metrics g f ,a,h

on the manifold Z are Kähler and Ricci-flat:

(i) if K = 0, we consider Z0,+∞ with

f (r2) = f > 0 constant, a �= 0 constant, h(r2) = |a|2
f

+ 1

f r4
(38)

and then the metric is complete.
(ii) if K = 1, we let Z = Z0, 1

c0
, for any c0 > 0, and take

f (r2) =
√
1 − c0r2

r
, a = 0, h(r2) = 1

r3
√
1 − c0r2

; (39)

and then the associated metric space may be completed to Z\M.
(iii) also if K = 1, we let Z = Z0,β+ , where ∀c0 ∈ R

β+ =
−c0 +

√
c20 + 4|a|2

2|a|2 , (40)

and let

f = 1

r

√
−|a|2r4 − c0r2 + 1, a �= 0 constant, h = |a|2r4 + 1

r3
√−|a|2r4 − c0r2 + 1

, (41)

so that the associated metric space structure on Z\M is complete.
(iv) if K = −1, we let Z = Zβ+,+∞ with β+ as above and take

f = 1

r

√
|a|2r4 + c0r2 − 1, a �= 0 constant, h = |a|2r4 + 1

r3
√|a|2r4 + c0r2 − 1

, (42)

implying the associated metric space structure on Z is complete.

Reciprocally, the above are all the Cauchy-complete solutions arising from the conditions
found in Theorems 2.1 and 2.3, up to conformal change.

Proof We wish to solve equation f h − |a|2 = 1/r4 with the functions found in Theorem
2.1, since these yield Kähler metrics. By analysis of each solution, we find f , h ∈ C∞

r2
and

also a constant. And so case (vi) in that Theorem leads the only way forward. Even for the
flat base M , in case (iii), this yields f (z)h(r2) − |a(z)|2 = 1/r4 for the usual coordinates,
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and then by computing a few derivatives we get that f and a are constants. Hence, we are
bound to study case (vi), which implies constant Gauss curvature on the base, cf. Proposition
2.3. Since K = −2 f ′/h, we shall first study K = 0. We find f > 0 constant and then

h(r2) = |a|2
f + 1

f r4
. The metric is complete if the distance to the boundary is infinite. To

obtain this, we let a �= 0. Since M is compact, the distance may be read on the fibres of Z .
Taking a radial curve with g-unit velocity on a fibre, we find, respectively, the ciconia metric
length from the zero section to some point or from some point to the boundary at infinity (we
need a �= 0):∫

0
(h(r2))

1
2 dr ∼

∫
0

1

r2
dr = +∞,

∫ +∞
(h(r2))

1
2 dr ∼

∫ +∞
1 dr = +∞,

as we wished, proving (i) in the present result.
Now let us assume K �= 0. Recalling the derivative ′ is with respect to r2, we find the

identity

2 f ′ f
K

+ (|a|2r2)′ = (
1

r2
)′.

The general solution, with c0 ∈ R, and the respective h are thus

f 2(r2) = −K (|a|2r4 + c0r2 − 1)

r2
, h(r2) = |a|2r4 + 1

r4 f
. (∗)

We see first the case a = 0. If K = −1, we must have c0r2 − 1 > 0 because f > 0. Thus
c0 > 0 and we must restrict to the domain r2 > 1/c0. However, h = 1/r3

√
c0r2 − 1 is not

complete in the direction of infinity. If K = 1, we may have c0 < 0 and 0 < r < +∞.
Again h is not of infinite length on the fibres. We may also consider c0 > 0 and restrict to
0 < r2 < 1/c0. Then the determining distances are

∫
0
h

1
2 dr ∼

∫
0

1

r
3
2

dr = +∞,

∫ √
1
c0
h

1
2 dr ∼

∫ √
1
c0 1

(1 − √
c0r)

1
4

dr < +∞.

Hence, the associated metric space may be completed in the sense of Cauchy sequences to
the outer boundary, i.e. not including the zero section. With this, we prove (ii).

Finally, let us suppose the constant a �= 0. For any c0 ∈ R, we let

β± =
−c0 ±

√
c20 + 4|a|2

2|a|2 .

Hence, β− < 0 < β+ and |a|2r4 + c0r2 − 1 = |a|2(r2 − β−)(r2 − β+). Looking up on our
general solutions (*), we see first the case K = 1. Then we have only 0 < r2 < β+ and the
singular points of h will be again in the extremes of the interval. We find

∫
0
h

1
2 dr ∼

∫
0

1

r
3
2

dr = +∞,

∫ √
β+

h
1
2 dr ∼

∫ √
β+ 1

(
√

β+ − r)
1
4

dr < +∞

For K = −1, we must have r2 > β+. The determining distances to the boundary are∫
√

β+
h

1
2 dr ∼

∫
√

β+

1

(r − √
β+)

1
4

dr < +∞,

∫ +∞
h

1
2 dr ∼

∫ +∞ 1

r
1
2

dr = +∞,

showing any Cauchy sequence converges on the space r2 ≥ β+. �
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984 R. Albuquerque

The SU(2)-holonomy spaces found above are all non-compact and, the majority, are not
geodesically complete. Metric space completions for complex manifolds with boundary are
interesting in their own. The present examples of true Kählerian and Ricci-flat metrics, the
analytical properties of Calabi–Yau manifolds, remain.
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