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Abstract
In a measure space (X ,A, μ), we consider two measurable functions f , g : E → R, for
some E ∈ A. We prove that the property of having equal p-norms when p varies in some
infinite set P ⊆ [1,+∞) is equivalent to the following condition:

μ({x ∈ E : | f (x)| > α}) = μ({x ∈ E : |g(x)| > α}) for all α ≥ 0.

Keywords Lebesgue integrable functions · Lp-norms · Mellin transform
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1 Introduction

We consider a measure space (X ,A, μ) and two measurable functions f , g : E → R, for
some E ∈ A. The aim of this paper is to characterize the property of having equal p-norms
when p belongs to a sequence P = (p j )

∞
j=1 of distinct real numbers p j ≥ 1.

Before stating our main results, let us recall the standard notation for the norms inLp(E):

‖ f ‖p =
(∫

E
| f |p dμ

) 1
p

if 1 ≤ p < +∞, ‖ f ‖∞ = ess sup
E

| f |.

Moreover, for a measurable function f : E → R, we write

{ f > α} = {x ∈ E : f (x) > α}, μ( f > α) = μ({ f > α}).
Here is our main result.

Theorem 1 Suppose f , g ∈ Lp(E) for all p ≥ 1, and P = (p j )
∞
j=1 is a sequence of distinct

real numbers p j ≥ 1. Suppose also that at least one of the following two conditions holds:

a) P has an accumulation point in (1,+∞) ;
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956 G. Klun

b) f , g ∈ L∞(E) and

∞∑
j=1

p j − 1

(p j − 1)2 + 1
= +∞. (1)

Then the following two statements are equivalent:

i) ‖ f ‖p = ‖g‖p for all p ∈ P ;
ii) μ(| f | > α) = μ(|g| > α) for all α ≥ 0.

Observe that, if lim j p j = +∞, then (1) is equivalent to

∞∑
j=1

1

p j
= +∞.

Notice moreover that, in this case, if we drop the boundedness hypothesis on f and g, the
result is no longer true, as we will show with a counterexample in Sect. 4. Theorem 1 applies
for example if

P = { j ∈ N, j ≥ 100} , P =
{
1 + 1√

j
: j ∈ N\{0}

}
, or P =

{
2 + 1

j
: j ∈ N\{0}

}
.

On the contrary, the set P = {
j2 : j ∈ N\{0}} is not admissible, since in this case the series

in (1) converges.
It can be seen, as a consequence of the Chebyshev inequality, that i i) implies the identity

‖ f ‖p = ‖g‖p , for all p ∈ [1,+∞), and for any functions f , g ∈ Lp(E). Hence, the main
interest of our result will be in proving that i) implies i i).

The paper is organized as follows. In Sect. 2, we recall some results in measure theory
and complex analysis. Section 3 is devoted to the proof of Theorem 1 by the use of the
“Full Müntz Theorem in C[0, 1]”, elementary complex analysis and the Mellin transform. In
Sect. 4, we construct the counterexample to the conclusion of Theorem 1 if the boundedness
hypothesis on f and g is dropped in b). In the last section, we provide some complementary
results and final remarks.

2 Some preliminaries for the proof

We will need the following preliminary results.

Lemma 2 Suppose P = (p j )
∞
j=1 is a sequence of distinct real numbers p j ≥ 1 satisfying

(1) and having at most 1 as a finite accumulation point. If ϕ ∈ L1[0, 1] satisfies∫ 1

0
ϕ(x)x p−1 dx = 0 for all p ∈ P, (2)

then ϕ(x) = 0 for almost every x ∈ [0, 1].
Proof By the assumptions given on P , one of the following two cases occurs:

(b1) P has a strictly increasing subsequence (p jk )k such that

p jk → +∞ and
∞∑
k=1

1

p jk
= +∞ ;
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On functions having coincident p-norms 957

(b2) P has a strictly decreasing subsequence (p jk )k such that

p jk → 1 and
∞∑
k=1

(p jk − 1) = +∞.

With no loss of generality, we may replace P by the subsequence p jk , in either case.
Suppose that (b1) holds; then by (2) we have

∫ 1

0
ϕ(x)x p1−1x p−p1 dx = 0.

By the “Full Müntz Theorem in C[0, 1]” given in [1, Theorem 2.1] the linear span
of {x p−p1 , p ∈ P} is a dense subset in C0[0, 1] because in this case

∑
p∈P

p − p1
(p − p1)2 + 1

= +∞,

by (1). Hence, for any h ∈ C0[0, 1] we have:
∫ 1

0
ϕ(x)x p1−1h(x) dx = 0.

Extend ϕ ≡ 0 outside [0, 1]. Let χε be a family of mollifying kernels on R (as shown for
example in the article [3] or [9, Chapter 9.2]). Then picking h(x) = χε(x − y) and setting
k(x) = ϕ(x)x p1−1 we obtain:

∫ 1

0
k(x)h(x) dx =

∫
R

k(x)χε(x − y) dx = (k ∗ χε)(y) = 0 for every y ∈ R.

Now, by [9, Chapter 9, Theorem 9.6],

k ∗ χε → k in L1[0, 1].
Consequently, (2) holds if and only if ϕ = 0 almost everywhere.
If case (b2) holds then we can define a sequence of functions ( f j ) j by

f j (x) = ϕ(x)x p j−1.

The sequence ( f j ) j converges to ϕ pointwise. Moreover, choosing σ(x) = |ϕ(x)|, we obtain
that σ ∈ L1 and

| f j (x)| ≤ σ(x) for all x ∈ [0, 1] and all j ∈ N, j ≥ 1.

By the Dominated Convergence theorem, we obtain that
∫ 1

0
ϕ(x) dx = lim

j→∞

∫ 1

0
ϕ(x)x p j−1 dx = 0.

Consequently we can suppose, without losing in generality, that 1 belongs to P and the proof
proceeds as before applying the “Full Müntz Theorem in C[0, 1]” [1, Theorem 2.1]. �


Remark 3 If f ∈ Lp(E) for all p ≥ 1, let μ f : (0,+∞) → R be defined by

μ f (t) = μ (| f | > t) .
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958 G. Klun

It is well known that μ f is a monotone nonincreasing function, continuous from the right,
and that ∫

E
| f |pdμ = p

∫ +∞

0
μ f (t)t

p−1dt,

for every p ∈ [1,+∞), cf. [9, Theorem 5.51]. Note in particular that μ f ∈ L1(0,+∞).

To deal with the first part of Theorem 1, namely when case a) holds, we have to recall
some tools in complex analysis. The Mellin transform of a function υ(t) is defined as

{Mυ}(z) = F(z) =
∫ ∞

0
υ(t)t z−1dt, z ∈ C,

whenever the integral exists for at least one value z0 of z (cf. [8,10,11]).

Lemma 4 Let υ : [0,+∞) → R be a function such that

υ(t) t z−1 ∈ L1([0,+∞)) f orall z ≥ 1.

Then Mυ is analytic in S = {w ∈ C : �(w) > 1}.
Proof Let γ : [0, 1] → C be a triangle in S and let 	(s, z) = υ(s)sz−1. Then,

∫
γ

F =
∫

γ

(∫ +∞

0
	(s, z) ds

)
dz =

∫ 1

0

(∫ +∞

0
	(s, γ (t))γ ′(t) ds

)
dt,

with γ ′(t) defined for all but three points t ∈ [0, 1]. Observe that
∫

γ

|F | =
∫ 1

0

(∫ +∞

0
|	(s, γ (t))γ ′(t)| ds

)
dt ≤

∫ 1

0

(∫ +∞

0
|υ(s)||sγ (t)−1| |γ ′(t)| ds

)
dt .

Being γ a triangle, |γ ′(t)| is constant on every side and then there exists C1 such that
|γ ′(t)| < C1 for all t ∈ [0, 1] where the tangent vector is defined. Let R > 0 be such that
Supp(γ ) ⊆ B(0, R). Then,

|sγ (t)−1| = s�[γ (t)−1] ≤ sR+1,

and so∫ 1

0

(∫ +∞

0
|υ(s)||sγ (t)−1| |γ ′(t)| ds

)
dt ≤ C1

∫ 1

0

(∫ +∞

0
|υ(s)sR+1| ds

)
dt .

By hypothesis, υ(s)s p is Lebesgue integrable for all p ≥ 0, so

C1

∫ 1

0

(∫ +∞

0
|υ(s)sR+1| ds

)
dt ≤ C1CR < +∞.

Then, by Fubini-Tonelli Theorem,
∫

γ

F=
∫

γ

(∫ +∞

0
	(s, z) ds

)
dz=

∫ +∞

0

(∫
γ

	(s, z) dz

)
ds =

∫ +∞

0

(∫
γ

υ(s)sz−1 dz

)
ds.

But now υ(s)sz−1 is a holomorphic function of z, and then by the Cauchy integral theorem∫
γ

υ(s)sz−1 dz = 0,
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On functions having coincident p-norms 959

and then ∫
γ

F = 0,

for every triangular path. Consequently, by Morera’s theorem for triangles (see for example
[2]), F(s) is holomorphic on {w ∈ C : �(w) > 1}. �


3 Proof of Theorem 1

Being f and g in Lp(E) for every p ∈ [1,+∞), the functions

t → μ
(
| f | > t

1
p

)
and t → μ

(
|g| > t

1
p

)

are finite almost everywhere, the function

I(p) =
∫
E

[ | f |p − |g|p ]
dμ

is well defined and finite for every p ∈ [1,+∞), and

I(p) =
∫
E

(| f |p − |g|p)dμ
=

∫ +∞

0

[
μ(| f |p > t) − μ(|g|p > t)

]
dt=

∫ +∞

0

[
μ

(
| f | > t

1
p

)
−μ

(
|g| > t

1
p

)]
dt .

Substituting z = t
1
p , the integral becomes

I(p) = p
∫ +∞

0

[
μ(| f | > z) − μ(|g| > z)

]
z p−1 dz = p

∫ +∞

0
ϕ(z)z p−1 dz, (3)

where

ϕ(z) = μ(| f | > z) − μ(|g| > z).

Notice that ϕ : [0,+∞) → R is continuous from the right and that

‖ f ‖p = ‖g‖p ⇔ I(p) = 0.

Suppose a) holds. Being ϕ : [0,+∞) → R the difference of two monotone functions, it
is differentiable almost everywhere, and hence continuous almost everywhere. Moreover,
it is of bounded variation on [a,+∞) for all a > 0 and then of bounded variation in a
neighborhood of each y ∈ (0,+∞). Notice that the integral in the right-hand side of (3) is
the Mellin transform of ϕ, hence

I(p) = 0 ⇔ {Mϕ}(p) = 0.

By [10, Chapter 6.9, Theorem 28], for every c ∈ (1,+∞),

1

2
[ϕ(x + 0) + ϕ(x − 0)] = 1

2π i
lim

T→+∞

∫ c+iT

c−iT
{Mϕ}(p)x−p dp, (4)

where

ϕ(x + 0) = lim
t→x+ ϕ(t) and ϕ(x − 0) = lim

t→x− ϕ(t).

123



960 G. Klun

By Lemma 4, Mϕ is holomorphic on {w ∈ C : �(w) > 1}. But
{Mϕ}(p) = 0 for all p ∈ P,

and, by a), P has an accumulation point in {w ∈ C : �(w) > 1}. Then, by the identity
theorem of complex analytic functions,

Mϕ ≡ 0 on {w ∈ C : �(w) > 1}.
The inversion formula (4) then becomes

1

2
[ϕ(x + 0) + ϕ(x − 0)] = 1

2π i
lim

T→+∞

∫ c+iT

c−iT
0 · x−p dp = 0.

Being ϕ(x) continuous almost everywhere, we have that ϕ(x) = 0 for almost every x . The
conclusion easily follows.

Assume now that b) holds and that P has no accumulation points in (1,+∞). If ‖ f ‖∞ = 0
or ‖g‖∞ = 0, then either i) or i i) imply that f = g = 0 almost everywhere, and the result
is achieved. Without loss of generality, we can suppose ‖ f ‖∞ ≤ ‖g‖∞ = 1. Indeed,

‖ f ‖p = ‖g‖p ⇔ ‖ f ‖p
p = ‖g‖p

p

⇔
∫
E
‖g‖p∞

( | f |
‖g‖∞

)p

dμ =
∫
E
‖g‖p∞

( |g|
‖g‖∞

)p

dμ

⇔
∫
E

( | f |
‖g‖∞

)p

dμ =
∫
E

( |g|
‖g‖∞

)p

dμ.

In this case,

I (p) =
∫ 1

0
ϕ(z)z p−1 dz,

and ϕ ∈ L1[0, 1]. By Lemma 2, we have that I(p) = 0 for all p ∈ P if and only if ϕ(z) = 0
for almost every z ∈ [0, 1]. By the right continuity, we conclude. �


4 Construction of the counterexample

In this section, we want to show that, in general, the boundedness hypothesis on f and g in
Theorem 1, when b) holds, cannot be removed. In the first part, we give some definitions to
set the problem in a more general frame, then we develop the counterexample. Precisely, we
will firstly build a continuous function ϕ defined on the positive real semiaxis and orthogonal
to every monomial (and for linearity to every polynomial). Then, we will prove that this
function is continuous and it is of bounded variation on [0,+∞). So, it can be written as
the difference of two strictly decreasing functions; their inverses are the functions we are
looking for. To conclude we show, as corollaries of independent interest, that modifying a bit
this function ϕ firstly we can make it smooth, and secondly it could be orthogonal to every
rational power of x , with fixed denominator. For an in-depth analysis of this argument, see
e.g., [5,7].

Lemma 5 The function ϕ : [0,+∞) → R defined as

ϕ(x) = e− 4√x sin
(

4
√
x
)
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On functions having coincident p-norms 961

is such that ∫ +∞

0
xnϕ(x) dx = 0 for all n ∈ N.

Proof This result was already known by Stieltjes that gave it in his work on continuous
fractions [6, page 105]. For the convenience of the reader, we sketch a self-contained proof
relying only on elementary complex analysis.
Set

In =
∫ +∞

0
xne−(1−i)xdx .

Being |xne−(1−i)x | = xne−x , we have that the integral In is well defined for all n. Moreover,
letting z = 1 − i , performing the change of variables zx = y we obtain:

In =
∫ +∞

0
xne−(1−i)x dx =

∫ +∞

0
xne−zx dx = z−n−1

∫
γ

yne−y dy,

where γ is the half-line starting at the origin, containing the point 1−i . Consider the triangular
path TN in the complex plane joining the points 0, N , N − i N . Being yne−y analytic over
the interior of TN the integral along TN is 0. Moreover:∣∣∣∣

∫ N−i N

N
yne−y dy

∣∣∣∣ =
∣∣∣∣
∫ N

0
(N − i t)ne−N+i t dt

∣∣∣∣ ≤
∫ N

0
|N 2 + t2| n2 e−N dt → 0,

and so ∫ N

0
yne−y dy +

∫ N−i N

N
yne−y dy +

∫ 0

N−i N
yne−y dy = 0.

Then, passing to the limit for N tending to +∞, the first term tends to �(n + 1), the second
term tends to 0, and the third tends to −zn+1 In hence:

In = z−n−1�(n + 1) = z−n−1n!.
Then,

In = n! · (1 − i)−n−1 = n! · (1 + i)n+1 · 2−n−1 =

= n! ·
[

(1 + i)√
2

]n+1

· 2−n−1 · 2 n+1
2 = n! · e (n+1)iπ

4 · 2− n+1
2 .

So,

I4p+3 ∈ R for all p ∈ N,

and then

� (
I4p+3

) = 0 for all p ∈ N,

so that

0 = �(I4p+3) =
∫ +∞

0
x4p+3e−x�(ei x ) dx =

∫ +∞

0
x4p+3e−x sin(x) dx for all p ∈ N.

Letting x = u
1
4 , we arrive to∫ +∞

0
u pe− 4√u sin( 4

√
u) du = 0 for all p ∈ N.
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962 G. Klun

The function

ϕ(x) = e− 4√x sin( 4
√
x)

has the requested properties. �


Lemma 6 The function ϕ defined in Lemma 5 belongs to BV ([0,+∞)).

Proof Observe preliminarily that ϕ(0) = 0 and ϕ tends to 0 at infinity; moreover,

ϕ′(x) = e− 4√x cos
(

4
√
x
)

4x3/4
− e− 4√x sin

(
4
√
x
)

4x3/4
=

√
2e− 4√x

4x3/4
sin

(π

4
− 4

√
x
)

,

and so

ϕ′(x) = 0 ⇔
√
2e− 4√x

4x3/4
sin

(π

4
− 4

√
x
)

= 0 ⇔ 4
√
x = π

4
+ kπ for k ∈ N.

The second derivative of ϕ is given by

ϕ′′(x) = e− 4√x
(
3 sin

(
4
√
x
) − (

2 4
√
x + 3

)
cos

(
4
√
x
))

16 x7/4
.

Letting

xn =
(π

4
+ nπ

)4
,

we see that (ϕ′′(xn))n has alternating signs, since

ϕ′′(xn) = (−1)n+1 256
√
2e

π
(
−

(
n+ 1

4

))

(4πn + π)6
.

So, the total variation of ϕ is the series of variations between each stationary point. Writing
R

+ = {x ∈ R : x ≥ 0}, we have
VR+(ϕ) =

∑
n≥0

|ϕ(xn+1) − ϕ(xn)|

=
∑
n∈2N

|ϕ(xn+1) − ϕ(xn)| +
∑

n∈2N+1

|ϕ(xn+1) − ϕ(xn)|

=
∑
n∈N

|ϕ(x2n+1) − ϕ(x2n)| +
∑
n∈N

|ϕ(x2n+2) − ϕ(x2n+1)|

=
∑
n∈N

∣∣∣∣ − e− 1
4π(8n+5)

√
2

− e− 1
4π(8n+1)

√
2

∣∣∣∣ +
∑
n∈N

∣∣∣∣e
− 1

4π(8n+9)

√
2

+ e− 1
4π(8n+5)

√
2

∣∣∣∣

= e− π
4 (eπ + 1)√
2 (eπ − 1)

.

We are now ready to construct the counterexample. Define

φ(t) = P(t,+∞) + 1

(t + 1)
, ψ(t) = N (t,+∞) + 1

(t + 1)
,
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On functions having coincident p-norms 963

where P(t,+∞) and N (t,+∞) are, respectively, the positive and the negative variation of
ϕ on (t,+∞). The functions φ and ψ are positive, strictly decreasing, bounded and achieve
their maximum in 0. Moreover,

lim
t→+∞ φ(t) = lim

t→+∞ ψ(t) = 0,

and

φ(t) − ψ(t) = ϕ(t).

Restricting the codomain ofφ to (0, φ(0)] and that ofψ to (0, ψ(0)] , we obtain two invertible
functions

φ̂ : [0,+∞) → (0, φ(0)], ψ̂ : [0,+∞) → (0, ψ(0)].

Moreover, their inverses are also nonnegative decreasing functions. Define

f = φ̂−1 : (0, φ(0)] → [0,+∞), g = ψ̂−1 : (0, ψ(0)] → [0,+∞),

and notice that

lim
x→0+ f (x) = lim

x→0+ g(x) = +∞.

Extend f and g to all R by setting them equal to 0 outside their domain, and call them f̃ and
g̃. These are the functions we are looking for. Indeed, we will now prove that μ(| f̃ | > α)

does not coincide with μ(|g̃| > α) for a.e. α ≥ 0. By contradiction suppose that

μ(| f̃ | > α) = μ(|g̃| > α) for a.e. α ≥ 0.

Being f̃ and g̃ nonnegative and being their level sets coincident with those of f and g, we
have

μ( f > α) = μ(g > α) for a.e. α ≥ 0.

But f and g are monotonically strictly decreasing, so { f > α} = [0, f −1(α)) and {g >

α} = [0, g−1(α)), hence

f −1(α) = g−1(α) for a.e. α ≥ 0.

Being f −1 = φ and g−1 = ψ ,

φ(α) = ψ(α) for a.e. α ≥ 0.

Recall then the definition of φ and ψ to obtain

P(α,+∞) + 1

(α + 1)
= N (α,+∞) + 1

(α + 1)
for a.e. α ≥ 0,

so

P(α,+∞) = N (α,+∞) for a.e. α ≥ 0,

and then

ϕ(α) = P(α,+∞) − N (α,+∞) = 0 for a.e. α ≥ 0,

finding a contradiction. The proof is then completed. �


123



964 G. Klun

In the following corollary, we want to extend Lemma 5 to find a continuous function
orthogonal to every fractional power of x with fixed denominator.

Corollary 7 Fix q ∈ N\{0}. There exists a continuous function ϕq : (0,+∞) → R, not
identically equal to 0, such that∫ +∞

0
x

n
q ϕq(x) dx = 0 for all n ∈ N.

Proof Define In as before. We have∫ +∞

0
x4p+3e−x sin(x) dx = 0 for all p ∈ N.

Letting x = u
1
4q we arrive to∫ +∞

0
u

p
q e− 4q√u sin( 4q

√
u) u

1−q
q du = 0 for all p ∈ N.

The function

ϕ(x) = e− 4q√x sin( 4q
√
x) x

1−q
q

is the one we were looking for. �

The aim of the subsequent lemma is to show that, if we multiply the functions ϕ(x) and

ϕq(x), found, respectively, in Lemma 5 and Corollary 7, by a suitable power of x , we obtain
two new functions that maintain the same property of orthogonality but are arbitrarily regular.
We achieve this result applying Faà di Bruno’s formula.

Lemma 8 Let w ∈ C∞(R) and 0 < α < 1. Then the function gn : [0,+∞) → R,

gn(x) = xnw(xα),

is of class Cn on [0,+∞), with g( j)
n (0) = 0 for all j = 0, 1, 2, . . . , n.

Proof A central tool of this proof will be Faà di Bruno’s formula that we will recall briefly.
Let w and u be Cm real-valued functions such that the composition w ◦ u is defined; then
(w ◦ u)(x) is of class Cm and for x > 0 we have

(w ◦ u)( j)(x) = j !
j∑

k=1

[
w(k)(u(x))

k!
∑

h1+···+hk= j

u(h1)(x)

h1! · · · u
(hk )(x)

hk !
]
,

or

(w ◦ u)( j)(x) =
∑

k1+2k2+···+ jk j= j

j !
k1! · · · k j ! w(k1+···+k j )(u(x)) ·

(
u′(x)
1!

)k1

·
(
u′′(x)
2!

)k2

· · ·
(
u( j)(x)

j !

)k j

.

For a proof of this formula look at [4]. We have that

g( j)
n (x) =

j∑
h=0

(
j

h

)
n(n − 1) · · · (n − h + 1)xn−h [

w(xα)
](n−h)

,

and each term of this sum is of the form

C xn−h[w(xα)](n−h), (5)
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On functions having coincident p-norms 965

where C is a real number depending on j, h and n. Now we use the Faà di Bruno’s formula
to express the derivatives of w. In our case u(x) = xα and so

u(h)(x) = (α)h x
α−h where (α)h = α(α − 1) · · · (α − h + 1).

Consequently

u(h1)(x) · · · u(hk )(x) = (α)h1(α)h2 · · · (α)hk x
α−h1xα−h2 · · · xα−hk ,

and if h1 + · · · + hk = j,

u(h1)(x) · · · u(hk )(x) = C(h1, . . . hk)x
kα− j .

So, applying Faà di Bruno’s formula to (5), each term has the form

xn−h
n−h∑
k=1

Ckw
(k)(xα) · xkα−(n−h) =

n−h∑
k=1

Ckw
(k)(xα) · xkα.

To conclude observe that

g( j)
n (x) =

j∑
k=1

C ′
kw

(k)(xα) xkα,

and apply the theorem on the limit of the derivative. �


As a consequence of Lemma 8, we have that the function ϕ : [0,+∞) → R in the
statement of Lemma 5 can be chosen to be arbitrarily regular (but not C∞). For example,
taking

ϕ(x) = e− 4√x sin( 4
√
x)xn, n ∈ N,

by Lemma 8 choosing w(x) = e−x sin(x) and α = 1
4 , we see that ϕ(x) is of class Cn . The

same reasoning choosing the same w and α = 1
4q allows to conclude that also the function

ϕq is of class Cn if multiplied by xn+1.

5 Final remarks

As a direct consequence of Theorem 1, we have the following.

Corollary 9 Supposeμ(E) < +∞, f ∈ Lp(E) for all p ≥ 1 and P = (p j )
∞
j=1 is a sequence

of distinct real numbers p j ≥ 1. Let C be a nonnegative constant, and suppose that either
a) or b) holds. Then, the following two conditions are equivalent:

i)

(
1

μ(E)

) 1
p ‖ f ‖p = C for all p ∈ P ;

ii) | f (x)| = C for a.e. x ∈ E .

Indeed, Theorem 1 applies taking as g a constant function.
Theorem 1 remains valid assuming the existence of an accumulation point of P in (0, 1]

and supposing f , g ∈ Lp(E) for all p > 0. In this case, ‖ f ‖p is formally defined as before,
although this is not a norm anymore. To prove this, first notice that, without loss of generality,
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we can always assume that f , g ≥ 0 . Let δ ∈ (0, 1] be an accumulation point of P . For all
p ∈ P ∩ (

δ
2 , 2

)
,

∫
E

| f |pdμ =
∫
E

|g|pdμ ⇔
(∫

E
| f δ

2 |
2p
δ dμ

) δ
2p

=
(∫

E
|g δ

2 |
2p
δ dμ

) δ
2p

⇔ ‖ f
δ
2 ‖ 2p

δ
= ‖g δ

2 ‖ 2p
δ
.

The set P̃ = { 2p
δ

: p ∈ P ∩ (
δ
2 , 2

)} is contained in (1,+∞) and has an accumulation point
there. We can now apply the second part of Theorem 1 to find that

μ(| f δ
2 | > α) = μ(|g δ

2 | > α) for all α ≥ 0,

and so μ(| f | > α) = μ(|g| > α) for all α ≥ 0.
In the last part of this section, we consider the special case of �p spaces and show that

Theorem 1 can be generalized in this setting. We recall that, for a sequence A = (an)n , the
�p norms are defined as follows:

‖A‖p =
( ∞∑
n=0

|an |p
) 1

p

, ‖A‖∞ = sup
n

|an |.

Here is our result.

Theorem 10 Let A = (an)n and B = (bn)n be two sequences of real numbers in �1. If
P = (p j )

∞
j=1 is a sequence of distinct real numbers p j ≥ 1 having an accumulation point

in (1,+∞] and
‖A‖p = ‖B‖p for all p ∈ P,

then the sequences

|A| = (|an |)n and |B| = (|bn |)n
can be obtained one from the other by permutation, appending or removing some zeroes.

Proof Suppose that the accumulation point is finite. Choose X = N, A = P(N) and μ the
counting measure. By Theorem 1, we have that

# (|A| > α) = # (|B| > α) for all α ≥ 0.

Without loss of generality, we can suppose that an, bn > 0 for all n ∈ N. Being (an)n
and (bn)n absolutely convergent, we can rearrange them in such a way that A and B are
nonincreasing without modifying the �p norms, thus obtaining Â = (ân)n and B̂ = (b̂n)n ,
respectively. Clearly

# (A > α) = #
(
Â > α

)
and # (B > α) = #

(
B̂ > α

)
.

If ân = b̂n for all n, then the theorem is proved. Assume by contradiction that Â �= B̂ and
let n̄ be the smallest index such that ân̄ �= b̂n̄ . Suppose for instance that ân̄ > b̂n̄ and choose

α = ân̄ + b̂n̄
2

.
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With this choice, we have

#
(
Â > α

)
≥ n̄ > #

(
B̂ > α

)
,

a contradiction. Suppose now that +∞ is the only accumulation point of P . We have that

lim
j

‖ Â‖p j = ‖ Â‖∞ = â0,

and similarly for B̂, obtaining that â0 = b̂0. Define Â1 = (ân)n≥1 and B̂1 = (b̂n)n≥1 and
notice that:

‖ Â1‖p j
p j =

∞∑
n=0

â
p j
n − â

p j
0 = ‖ Â‖p j

p j − â
p j
0 = ‖B̂‖p j

p j − b̂
p j
0 = ‖B̂1‖p j

p j ,

and consequently ‖ Â1‖p j = ‖B̂1‖p j for all j . By the same reasoning, we will obtain that

lim
j

‖ Â1‖p j = ‖ Â1‖∞ = â1,

and the same for B̂1, to obtain â1 = b̂1. Proceeding by induction, we conclude that Â = B̂.
�


Notice that, choosing for example p j = j ! for all j ≥ 1, the condition ‖ Â‖p j = ‖B̂‖p j

for all j implies that Â = B̂, but in this case the series in (1) converges. Notice moreover
that Theorem 10 remains valid if 1 is the only accumulation point of P , supposing that (1)
holds.

Let us show with an example that, even if μ(E) is finite, condition (1) could not be
necessary for the conclusion of Theorem 1. Let X = {0}, A = P(X) and μ the counting
measure. Let P = ( j2) j≥1 and let f , g : {0} → R two measurable functions. Suppose
moreover ‖ f ‖ j2 = ‖g‖ j2 for all j ≥ 1. Without losing in generality, we can assume that
f (0) = α0 ≥ 0 and g(0) = β0 ≥ 0. Then,

‖ f ‖ j2 = α0 and ‖g‖ j2 = β0 for all j ≥ 1, (6)

and consequently α0 = β0. However, condition (1) is not fulfilled.
The problem of the necessity of condition (1) remains open, e.g., when X = R and μ is

the Lebesgue measure.
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