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Abstract
We study the asymptotic behavior, as γ tends to infinity, of solutions for the homogeneous
Dirichlet problem associated with singular semilinear elliptic equations whose model is

−�u = f (x)

uγ
in �,

where � is an open, bounded subset of RN and f is a bounded function. We deal with the
existence of a limit equation under two different assumptions on f : either strictly positive
on every compactly contained subset of � or only nonnegative. Through this study, we
deduce optimal existence results of positive solutions for the homogeneousDirichlet problem
associated with

−�v + |∇v|2
v

= f in �.
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926 R. Durastanti

1 Introduction

In recent years, existence, uniqueness and regularity of nonnegative solutions of the following
semilinear singular problem have been widely studied:

⎧
⎨

⎩

−�u = f

uγ
in �,

u = 0 on ∂�.
(1.1)

Here,� is an open bounded subset ofRN , with N > 2, f is a nonnegative function belonging
to some Lebesgue space and γ > 0.

Existence and uniqueness of a classical solution u ∈ C2(�) ∩ C(�) of (1.1) are proved
in [19,39], when f is a positive Hölder continuous function in � and � is a smooth domain.
In the same framework, Lazer and McKenna in [29] prove that u ∈ W 1,2

0 (�) if and only if
γ < 3 and that if γ > 1, the solution does not belong to C1(�), while in [23], under the
weaker assumption that f is only nonnegative and bounded, Del Pino proves existence and
uniqueness of a positive distributional solution belonging to C1(�) ∩ C(�). These results
are generalized by Lair and Shaker in [28].

Existence of a positive distributional solution with data merely in L1(�) is proved by
Boccardo and Orsina in [8]. The authors show that this solution, if γ < 1, belongs to an
homogeneous Sobolev space larger than W 1,2

0 (�), if γ = 1, it belongs to W 1,2
0 (�) and,

finally, if γ > 1, it belongs to W 1,2
loc (�) (see Theorem 3.1). In the last case, the boundary

condition is assumed in a weaker sense, i.e., u
γ+1
2 ∈ W 1,2

0 (�).
Existence and regularity of solutions of (1.1) with data in suitable Lebesgue space or with

measure data are also studied in [11,12,17,18,26,35], while, in case of a nonlinear principal
part, we refer to [10,22,33]. We underline also the study of qualitative properties of solutions
of (1.1) contained in [13,24].

As concerns uniqueness of solutions of (1.1), the literature is more limited. If a solution
belongs to W 1,2

0 (�), uniqueness is proved in [7], while in [40] a necessary and sufficient

condition in order to have W 1,2
0 (�) solutions is shown. Moreover, we can find uniqueness

results of solutions out of finite energy space in [14,25,34].
We observe that if we perform in (1.1) the change in variable

v = uγ+1

γ + 1
,

we formally transform (1.1) into the quasilinear singular equation with singular and gradient
quadric lower-order term

⎧
⎨

⎩

−�v + γ

γ + 1

|∇v|2
v

= f in �,

v = 0 on ∂�.

(1.2)

Equation (1.2) is a particular case of the quasilinear singular equation
⎧
⎨

⎩

−�v + B
|∇v|2
vρ

= f in �,

v = 0 on ∂�,

(1.3)

where B and ρ are positive real numbers.
One usually says that the quadratic growth in ∇v of (1.3) is natural as this growth is

invariant under the simple change of variable w = F(v), where F is a smooth function. In
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Asymptotic behavior and existence of solutions for... 927

this case, Eq. (1.3) is also singular since the lower-order term is singular where the solution
is zero.

Problem (1.3) has been recently studied by several authors. Existence of classical solutions
is studied by Porru and Vitolo in [36], while existence of a positive solution v ∈ W 1,2

0 (�)

when f is bounded and strictly positive on every compactly contained subset of � and
0 < ρ ≤ 1 is contained in [2,4]. Moreover, if 0 < ρ < 1, Boccardo proves in [6] existence
of a positive weak solution under weaker assumptions on f , that is, f only nonnegative and

belonging to L

(
2∗
ρ

)′
(�).

As concerns the case ρ ≥ 1, existence of positive weak solutions is proved in [6,32] for

B < 1 if ρ = 1 and f ∈ L
2N
N+2 (�) is nonnegative in �, while in [3] existence is proved

for every B > 0 and for every ρ < 2 if the datum f ∈ L
2N
N+2 (�) is strictly positive on

every compactly contained subset of �. Moreover, existence of positive solutions in the
same framework of [3], under a weaker assumption on f , that is, f strictly positive on every
compactly contained subset of a neighborhood of ∂�, is proved in [16]. Nonexistence results
for positive solutions in W 1,2

0 (�) of (1.3) are given, if ρ > 2, in [3,43].
The study of the uniqueness of weak solutions of (1.3) is more limited in the literature.

We refer to [5] where uniqueness is proved if 0 < ρ ≤ 1 and to [15] for ρ ≥ 1. We underline
also the multiplicity result of weak solutions contained in [42].

Without the aim to be exhaustive, we also refer the reader to [20,27] in which the existence
of solutions of (1.3) is studied also in the presence of sign-changing data, while we refer to
[9,21,41] for the study of (1.3) in the parabolic case.

Looking at the results for (1.3), the case B = 1 and ρ = 1 is a borderline case, requiring
a stronger assumption on the datum in order to prove existence of positive weak solutions.
In this paper, we give an answer to the question whether this stronger assumption is really
necessary or whether it is only technical.

From now onwards, we mean by f strictly positive a function f strictly positive on every
compactly contained subset of �, that is, for every subset ω compactly contained in � there
exists a positive constant cω such that f ≥ cω > 0 almost everywhere in ω.

Since the case B = 1 and ρ = 1 can be seen as the limit case as γ tends to infinity of Eq.
(1.2), and since this equation is connected to Eq. (1.1), one can try to study problem (1.3), in
the borderline case B = 1 and ρ = 1, by looking at the asymptotic behavior, as γ tends to
infinity, of the solutions of (1.1) under the assumption that f is either nonnegative or strictly
positive.

In this paper, we prove, if f is strictly positive in �, letting γ tend to infinity, that there
is no limit equation to (1.1) and we find a positive solution to

⎧
⎨

⎩

−�v + |∇v|2
v

= f in �,

v = 0 on ∂� ,

(1.4)

recovering the existence result contained in [2–4].
If we assume f only nonnegative, more precisely zero in a neighborhood of ∂�, we prove

that there is a limit equation to (1.1) and we give a one-dimensional example providing that
the assumption f strictly positive cannot be relaxed in order to have a positive solution to
(1.4) as a limit of approximations.

Our results imply that the existence results contained in [2–4,16,32] are sharp.
The plan of the paper is the following: In Sect. 2, we give the definitions of solution to

our problems and we state the results that will be proved in the paper. In Sect. 3, we prove
a priori estimates for the solutions of (1.1) both from above and from below, that allow us
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928 R. Durastanti

to pass to the limit in (1.1) and (1.2) as γ tends to infinity. In Sect. 4, we pass to the limit in
(1.1) under the two different assumptions on f . In Sect. 5, we pass to the limit in (1.2), in
the case f strictly positive, obtaining the existence of positive solutions of (1.4). In Sect. 6,
we show, if f is only nonnegative, the one-dimensional example of nonexistence of positive
solutions to (1.4) obtained by approximation. To conclude, in Sect. 7 we present some open
problems.
Notations Let � be an open and bounded subset of RN , with N ≥ 1. We denote by ∂� its
boundary, by |A| the Lebesgue measure of a Lebesgue measurable subset A of RN , and we
define diam(�) = sup{|x − y| : x, y ∈ �}.

By Cc(�), we mean the space of continuous functions with compact support in � and by
C0(�) the space of continuous functions in � that are zero on ∂�. Analogously, if k ≥ 1,
Ck
c (�) (resp. Ck

0 (�)) is the space of Ck functions with compact support in � (resp. Ck

functions that are zero on ∂�).
If no otherwise specified, we will denote by C several constants whose value may change

from line to line. These values will only depend on the data (for instance C may depend on
�, N ), but they will never depend on the indexes of the sequences we will introduce.

Moreover, for any q > 1, q ′ will be the Hölder conjugate exponent of q , while for any
1 ≤ p < N , p∗ = Np

N−p will be the Sobolev conjugate exponent of p. We will also denote
by ε(n) any quantity such that

lim sup
n→∞

ε(n) = 0 .

We will use the following well-known functions defined for a fixed k > 0

Tk(s) = max(−k,min(s, k)) and Gk(s) = (|s| − k)+ sign(s),

with s ∈ R.
We also mention the definition of the Gamma function

Γ (z) =
∫ +∞

0
t z−1e−t dt , (1.5)

where z is a complex number with positive real part, recalling that Γ (1) = 1 and Γ

(
1

2

)

=
√

π .
Finally, we define φλ : R → R, with λ > 0, the following function

φλ(s) = s eλs2 . (1.6)

In what follows we will use that for every a, b > 0 we have, if λ >
b2

4a2
, that

a φ′
λ(s) − b |φλ(s)| ≥ a

2
. (1.7)

2 Main assumptions and statement of the results

Let M(x) be a matrix which satisfies, for some positive constants 0 < α ≤ β, for almost
every x ∈ � and for every ξ ∈ R

N the following assumptions:

M(x) ξ · ξ ≥ α|ξ |2 and |M(x)| ≤ β . (2.1)
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Asymptotic behavior and existence of solutions for... 929

Let γ > 0 be a real number. We consider the following semilinear elliptic problem with a
singular nonlinearity

⎧
⎪⎪⎨

⎪⎪⎩

−div(M(x)∇u) = f

uγ
in �,

u > 0 in �,

u = 0 on ∂�.

(2.2)

To deal with existence for solutions to problem (2.2), we give the following definition of
distributional solution contained in [8].

Definition 2.1 A function u in W 1,1
loc (�) such that

{
u ∈ W 1,1

0 (�) if γ < 1,

u
γ+1
2 ∈ W 1,1

0 (�) if γ ≥ 1,

is a distributional solution of (2.2) if the following conditions are satisfied:

∀ω ⊂⊂ � ∃ cω,γ : u ≥ cω,γ > 0 in ω ,

and
∫

�

M(x)∇u · ∇ϕ =
∫

�

f ϕ

uγ
, ∀ ϕ ∈ C1

c (�) .

We underline that, if γ > 1, the condition u
γ+1
2 ∈ W 1,1

0 (�) gives meaning to the boundary
condition of (2.2).

We start studying the asymptotic behavior of the sequence {un} of solutions to problem
(2.2), with γ = n. Our results are the following:

Theorem 2.2 Let f be a nonnegative L∞(�) function. Suppose that there exists ω ⊂⊂ �

such that f = 0 in �\ω, and such that for every ω′ ⊂⊂ ω there exists cω′ > 0 such that
f ≥ cω′ in ω′. Let {un} be a sequence of distributional solutions of

⎧
⎨

⎩

−div(M(x)∇un) = f (x)

unn
in �,

un = 0 on ∂�.

(2.3)

Then, {un} is bounded in L∞(�), so that it converges, up to subsequences, to a bounded
function u which is identically equal to 1 almost everywhere in ω. Furthermore, the sequence
{ f (x)/unn} is bounded in L1(�), and if μ is the ∗-weak limit in the sense of measures of
f (x)/unn, μ is concentrated on ∂ω, and u in W 1,2

0 (�) is the solution of
{

−div(M(x)∇u) = μ in �,

u = 0 on ∂�.
(2.4)

Theorem 2.3 Let f be a function belonging to L∞(�) such that for every ω ⊂⊂ � there
exists cω > 0 such that f ≥ cω in ω. Let {ωn} be an increasing sequence of compactly
contained subsets of � such that their union is �, and let un be the distributional solution of

⎧
⎨

⎩

−div(M(x)∇un) = f (x) χωn

unn
in �,

un = 0 on ∂�.

(2.5)
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930 R. Durastanti

Then, {un} is bounded in L∞(�), so that it converges, up to subsequences, to a bounded
function u, which is identically equal to 1 almost everywhere in �. Moreover, the sequence
{ f (x)χωn/u

n
n} is unbounded in L1(�), and there is no limit equation for u.

If M(x) ≡ I , we have that

{

vn = un+1
n

n + 1

}

is a sequence of distributional solutions to the

following problem
⎧
⎨

⎩

−�vn + n

n + 1

|∇vn |2
vn

= f (x) in �,

vn = 0 on ∂�.

(2.6)

To be complete, we give the definitions of distributional and weak solution for quasilinear
elliptic equations with singular and gradient quadratic lower-order term whose model is

⎧
⎨

⎩

−�v + B
|∇v|2

v
= f in �,

v = 0 on ∂�,

(2.7)

where B > 0.

Definition 2.4 A function v inW 1,2
0 (�) is a weak solution of (2.7) if the following conditions

are satisfied:

(i) v > 0 almost everywhere in �,

(ii)
|∇v|2

v
belongs to L1(�),

(iii) It holds
∫

�

∇v · ∇ϕ + B
∫

�

|∇v|2
v

ϕ =
∫

�

f ϕ , ∀ ϕ ∈ W 1,2
0 (�) ∩ L∞(�) .

Definition 2.5 A function v in W 1,1
0 (�) is a distributional solution of (2.7) if the following

conditions are satisfied:

(i) v > 0 almost everywhere in �,

(ii)
|∇v|2

v
belongs to L1(�),

(iii) It holds
∫

�

∇v · ∇ϕ + B
∫

�

|∇v|2
v

ϕ =
∫

�

f ϕ , ∀ ϕ ∈ C1
c (�) .

By passing to the limit in (2.6), we prove, in the case f strictly positive, the following
existence theorem of weak solution to problem (2.8).

Theorem 2.6 Let f be a L∞(�) function such that for every ω ⊂⊂ � there exists cω > 0

such that f ≥ cω in ω. Then,

{

vn = unn + 1

n + 1

}

is bounded in W 1,2
0 (�) ∩ L∞(�), so that it

converges, up to subsequences, to a bounded nonnegative function v which is a weak solution
of

⎧
⎨

⎩

−�v + |∇v|2
v

= f in �,

v = 0 on ∂�.

(2.8)
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Asymptotic behavior and existence of solutions for... 931

On the other hand, if f is zero in a neighborhood of ∂�, we show by a one-dimensional
explicit example that the function obtained as limit of our approximation is zero in a subset
of � with strictly positive measure. In other words, we will prove the following result.

Theorem 2.7 Let � = (−2, 2) and ω = (−1, 1). Let un in W 1,2
0 ((−2, 2)) be the weak

solution of
⎧
⎨

⎩

−u′′
n(t) = χ(−1,1)

unn
in (−2, 2) ,

un(±2) = 0 .
(2.9)

Let vn = un+1
n

n + 1
be a weak solution of

⎧
⎨

⎩

−v′′
n + n

n + 1

|v′
n |2
vn

= χ(−1,1) in (−2, 2),

vn(±2) = 0 ,

(2.10)

then {vn}weakly converges to a functionv inW 1,2
0 ((−2, 2))andv, belonging toC∞

0 ((−1, 1)),
is a classical solution of

⎧
⎨

⎩

−v′′ + |v′|2
v

= 1 in (−1, 1),

v(±1) = 0 .

(2.11)

Moreover, v(t) = 2

π2 cos2
(π

2
t
)
in (−1, 1) and v(t) ≡ 0 in [−2,−1] ∪ [1, 2].

Remark 2.8 It follows from Theorem 2.7 that if f is only nonnegative we cannot obtain by
approximation a positive solution of (2.8). This implies that the assumption f strictly positive
is necessary (and not only technical) to have positive solutions on the whole � to problem
(2.8). Hence, the existence results contained in [2–4,16,32] are optimal.

3 Estimates from above and from below

In [8], existence results for distributional solutions of (2.2) have been proved. To be more
precise, we have the following theorem in the case γ > 1.

Theorem 3.1 Let γ > 1, and let f be in L∞(�), with f ≥ 0 in �, f not identically zero.
Then, there exists a distributional solution u of (2.2), with u in W 1,2

loc (�)∩L∞(�). Moreover,
we can extend the class of test functions in the sense that

∫

�

M(x)∇u · ∇ϕ =
∫

�

f ϕ

uγ
, ∀ϕ ∈ W 1,2

0 (�) with compact support. (3.1)

Sketch of the Proof of Theorem 3.1 Following [8], let m in N and consider the approximated
problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−div(M(x)∇um) = f

(um + 1
m )γ

in �,

um > 0 in �,

um = 0 on ∂�.

(3.2)
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932 R. Durastanti

The existence of a solution um can be easily proved by means of the Schauder fixed point

theorem. Since the sequence gm(s) = 1

(s + 1
m )γ

is increasing inm, standard elliptic estimates

imply that the sequence {um} is increasing, so that um ≥ u1, and there exists the pointwise
limit u of um . Since (by the maximum principle) for every ω ⊂⊂ � there exists cω,γ > 0
such that u1 ≥ cω,γ in ω, it then follows that um (and so u) has the same property.

Choosing uγ
m as test function in (3.2), we obtain, using (2.1), that

4αγ

(γ + 1)2

∫

�

|∇u
γ+1
2

m |2 ≤ γ

∫

�

M(x)∇um · ∇um uγ−1
m =

∫

�

f uγ
m

(um + 1
m )γ

≤
∫

�

f .

Therefore, {u
γ+1
2

m } is bounded in W 1,2
0 (�). Choosing um ϕ2 as test function in (3.2), with ϕ

in C1
0 (�), we obtain, using again (2.1),

α

∫

�

|∇um |2 ϕ2 + 2
∫

�

M(x)∇um∇ϕ um ϕ ≤
∫

�

f um ϕ2

(um + 1
m )γ

.

Hence, if ω = {ϕ �= 0}, recalling that um ≥ cω,γ > 0 in ω, we have, by Young’s inequality,

α

∫

�

|∇um |2 ϕ2 ≤ α

2

∫

�

|∇um |2 ϕ2 + C
∫

�

|∇ϕ|2 u2m +
‖ f ϕ2‖

L∞(�)

cγ
ω,γ

∫

�

um .

Since um is bounded in L2(�) (recall that u
γ+1
2

m is bounded in W 1,2
0 (�), so that uγ+1

m is
bounded in L1(�) by Poincaré inequality, and that γ > 1), we thus have

∫

�

|∇um |2 ϕ2 ≤ C ,

so that the sequence {um} is bounded in W 1,2
loc (�). Let now k > 1 and choose Gk(um) as test

function in (3.2). We obtain, using (2.1),

α

∫

�

|∇Gk(um)|2 ≤
∫

�

f Gk(um)

(um + 1
m )γ

≤ 1

kγ

∫

�

f Gk(um) ,

so that

α

∫

�

|∇Gk(um)|2 ≤
∫

�

f Gk(um) , ∀k ≥ 1 .

Starting from this inequality, and reasoning as in Theorem 4.2 of [37], we can prove that um
is uniformly bounded in L∞(�), so that u belongs to L∞(�) as well.

Once we have the a priori estimates on um , we can pass to the limit in the approximate
equation with test functions ϕ in W 1,2

0 (�) with compact support; indeed,

lim
m→+∞

∫

�

M(x)∇um · ∇ϕ =
∫

�

M(x)∇u · ∇ϕ ,

since um is weakly convergent to u in W 1,2
loc (�), and

lim
m→+∞

∫

�

f ϕ

(um + 1
m )γ

=
∫

�

f ϕ

uγ
,

by the Lebesgue theorem, since um ≥ c{ϕ �=0},γ > 0 on the support of ϕ. ��
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Asymptotic behavior and existence of solutions for... 933

Since the formulation of distributional solution for (2.2) is not suitable for our purposes, we
are going to better specify the class of test functions which are admissible for the problem
(2.2) to obtain estimates from above for u. We start with the following theorem.

Theorem 3.2 The solution u of (2.2) given by Theorem 3.1 is such that:

(i) uγ+1 belongs to W 1,2
0 (�);

(ii)
∫

�

M(x)∇
( uγ+1

γ + 1

)
· ∇v ≤

∫

�

f v , ∀v ∈ W 1,2
0 (�) , v ≥ 0 ; (3.3)

(iii)

‖u‖
L∞(�)

≤ [C (γ + 1) ‖ f ‖
L∞(�)

] 1
γ+1 , (3.4)

for some constant C > 0, independent on γ .

Proof We begin by observing that, using the boundedness in L∞(�) of the sequence um of

solutions of (3.2), and the boundedness of u
γ+1
2

m in W 1,2
0 (�), the sequence u p

m is bounded in

W 1,2
0 (�) for every p ≥ γ+1

2 . In particular, {uγ+1
m } is bounded in W 1,2

0 (�). This yields that

uγ+1 belongs to W 1,2
0 (�) as well; i.e., i) is proved.

We now fix a positive ϕ in C1
0(�) and take uγ

m ϕ as test function in (3.2). We obtain

γ

∫

�

M(x)∇um · ∇um uγ−1
m ϕ +

∫

�

M(x)∇um · ∇ϕ uγ
m ≤

∫

�

f ϕ.

Dropping the first term (which is positive), we obtain

∫

�

M(x)∇
( uγ+1

m

γ + 1

)
· ∇ϕ ≤

∫

�

f ϕ .

Letting m tend to infinity, and using the boundedness of uγ+1
m in W 1,2

0 (�), we obtain

∫

�

M(x)∇
( uγ+1

γ + 1

)
· ∇ϕ ≤

∫

�

f ϕ , ∀ϕ ∈ C1
0(�) , ϕ ≥ 0 .

Since uγ+1 belongs to W 1,2
0 (�), we obtain by density

∫

�

M(x)∇
( uγ+1

γ + 1

)
· ∇v ≤

∫

�

f v , ∀v ∈ W 1,2
0 (�) , v ≥ 0 ,

which is (3.3). We now choose

v = Gk

( uγ+1

γ + 1

)
,

as test function in (3.3) (recall that u ≥ 0, so that v ≥ 0 as well). We obtain, setting
Aγ (k) = {uγ+1 ≥ (γ + 1) k} = {v ≥ 0},

∫

Aγ (k)
M(x)∇

( uγ+1

γ + 1

)
· ∇Gk

( uγ+1

γ + 1

)
≤

∫

Aγ (k)
f Gk

( uγ+1

γ + 1

)
.
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934 R. Durastanti

Recalling (2.1), we therefore have

α

∫

Aγ (k)

∣
∣
∣∇Gk

( uγ+1

γ + 1

)∣
∣
∣
2 ≤

∫

Aγ (k)
f Gk

( uγ+1

γ + 1

)
.

From this inequality, reasoning once again as in [37], we obtain that there exists C > 0 such
that

∥
∥
∥
uγ+1

γ + 1

∥
∥
∥
L∞(�)

≤ C ‖ f ‖
L∞(�)

,

which then yields (3.4). ��
Remark 3.3 We observe that if we also assume that ω = { f > 0} is compactly contained in

� in Theorem 3.1, then u belongs toW 1,2
0 (�) and

f

uγ
belongs to L1(�). As a matter of fact,

taking um as test function in (3.2), we have

α

∫

�

|∇um |2 ≤
∫

�

f um
(um + 1

m )γ
≤

‖ f ‖
L∞(�)

cγ−1
ω,γ

,

so that u belongs to W 1,2
0 (�). Moreover, using the Lebesgue theorem and that um ≥ cω,γ ,

we deduce that
f

uγ
m

strongly converges to
f

uγ
in L1(�). As a consequence, we can extend

the class of test functions for (3.1) to W 1,2
0 (�).

Remark 3.4 Under the assumptions of Remark 3.3, thanks to the results contained in [7], it
follows that u is the unique weak solution of (2.2).

From now on, γ = n, and we will denote by un the solution of (2.3); therefore, by the
results of Theorem 3.2, we have that un+1

n belongs to W 1,2
0 (�) ∩ L∞(�) and that

‖un‖
L∞(�)

≤ (C(n + 1)‖ f ‖
L∞(�)

)
1

n+1 ,

which in particular implies that

lim sup
n→+∞

‖un‖
L∞(�)

≤ 1 . (3.5)

We nowconsider the estimates frombelowon the sequence {un}.Wefirst need to enunciate
two technical lemmas that we will use during the proof of these estimates.

Lemma 3.5 Let m( j, r) : [0,+∞) × [0, R0) → [0,+∞) be a function such that m(·, r)
is nonincreasing and m( j, ·) is nondecreasing. Moreover, suppose that there exist k0 ≥ 0,
C, ν, δ > 0 and μ > 1 satisfying

m( j, r) ≤ C
m(k, R)μ

( j − k)ν(R − r)δ
∀ j > k ≥ k0, 0 ≤ r < R < R0.

Then, for every 0 < σ < 1, there exists d > 0 such that

m(k0 + d, (1 − σ)R0) = 0,

where dν = 2(ν+δ)
μ

μ−1Cm(k0, R0)
μ−1

σ δRδ
0

.
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Asymptotic behavior and existence of solutions for... 935

Proof See [38]. ��
Lemma 3.6 Let g : [0,+∞) → [0,+∞) be a continuous and increasing function, with
g(0) = 0, such that

t ∈ (0,+∞) �→ g(t)

t
is increasing and

∫ +∞ 1√
tg(t)

< +∞.

Then, for any C > 0 and δ ≥ 0, there exists a function ϕ : [0, 1] → [0, 1] depending on
g,C, δ with ϕ ∈ C1([0, 1]), √ϕ ∈ C1([0, 1]), ϕ(0) = ϕ′(0) = 0, ϕ(1) = 1, ϕ(σ) > 0 for
every σ > 0 and satisfying

tδ+1 ϕ′(σ )2

ϕ(σ)
≤ 1

C
tδg(t)ϕ(σ ) + 1, ∀ 0 ≤ σ ≤ 1, t ≥ 0.

Proof See [30], Lemma 1.1. ��
We are ready to prove the estimates from below.

Theorem 3.7 Let un be the solution of (2.3) given by Theorem 3.1, and let ω ⊂⊂ � be such
that for every ω′ ⊂⊂ ω there exists cω′ > 0 satisfying f ≥ cω′ in ω′. Then, there exists
Mω′ > 0 such that

un ≥ (n + 1)
1

n+1 e− M
ω′

n+1 in ω′. (3.6)

Proof Let ω′′ ⊂⊂ ω′ ⊂⊂ ω, by the assumptions we have that

mω′ = inf
x∈ω′ f (x) > 0 . (3.7)

Let η in C1
0(�) be such that

η(x) =
{
1 in ω′′,
0 in �\ω′.

We consider the function ϕ ∈ C1([0, 1]) given by Lemma 3.6, in correspondence of g(t) =
et − 1, δ = 1 and of an arbitrary constant C > 0. Define

ξ(x) = √
ϕ(η(x)) ∈ C1

0 (�) ,

zn = − log
( un+1

n

n + 1

)
,

and, for k > 0,

vn = Gk(z+n )

un
.

Note that vn ≥ 0 is well defined, since where z+n > k one has un �= 0. We have

∇ξ = ϕ′(η)

2
√

ϕ(η)
∇η . (3.8)

Since

∇zn = − (n + 1)∇un
un

,
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936 R. Durastanti

we obtain

∇vn = −∇un
u2n

Gk(z
+
n ) + 1

un
∇zn χAn (k) = −∇un

u2n
Gk(z

+
n ) − (n + 1)∇un

u2n
χAn (k) ,

where An(k) = {z+n ≥ k} = {Gk(z+n ) �= 0}. Therefore, since un belongs to W 1,2
loc (�) ∩

L∞(�) and it is locally positive, zn and vn belong to W 1,2
loc (�). Consequently, the positive

function vn ξ2 belongs to W 1,2
0 (�), has compact support and can be chosen as test function

in (3.1), with γ = n, to obtain

−
∫

An(k)
M(x)∇un · ∇un

Gk(z+n ) ξ2

u2n
−

∫

An(k)
M(x)∇un · ∇un

(n + 1) ξ2

u2n

+2
∫

An(k)
M(x)∇un · ∇ξ

Gk(z+n ) ξ

un
=

∫

An(k)

f Gk(z+n ) ξ2

un+1
n

.

Since

n + 1

un+1
n

= ezn ,

the previous identity can be rewritten as

− 1

n + 1

∫

An(k)
M(x)∇zn · ∇zn Gk(z

+
n ) ξ2 −

∫

An(k)
M(x)∇zn · ∇zn ξ2

−2
∫

An(k)
M(x)∇zn · ∇ξ Gk(z

+
n ) ξ =

∫

An(k)
f ez

+
n Gk(z

+
n ) ξ2 .

Since the first term is negative, we have, using (2.1) and (3.7), as well as the fact that
Gk(s+) ≤ s+, that

α

∫

An(k)
|∇zn |2 ξ2 + mω′

∫

An(k)
eGk (z+n )Gk(z

+
n ) ξ2 ≤ 2β

∫

An(k)
|∇zn ||∇ξ |Gk(z

+
n ) ξ .

Using Young’s inequality in the right-hand side, we have

2β
∫

An(k)
|∇zn ||∇ξ |Gk(z

+
n ) ξ ≤ α

2

∫

An(k)
|∇zn |2 ξ2 + 2β2

α

∫

An(k)
|∇ξ |2 Gk(z

+
n )2 ,

so that we have

α

2

∫

An(k)
|∇Gk(z

+
n )|2 ξ2 + mω′

∫

An(k)
eGk (z+n )Gk(z

+
n ) ξ2 ≤ 2β2

α

∫

An(k)
|∇ξ |2 Gk(z

+
n )2 .

Observing that

α

4
|∇(Gk(z

+
n )ξ)|2 ≤ α

2
|∇Gk(z

+
n )|2 ξ2 + α

2
|∇ξ |2 Gk(z

+
n )2 ,

we obtain

α

4

∫

An(k)
|∇(Gk(z

+
n )ξ)|2+mω′

∫

An(k)
eGk (z+n )Gk(z

+
n ) ξ2≤4β2 + α2

2α

∫

An(k)
|∇ξ |2 Gk(z

+
n )2 .
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Using that ξ = √
ϕ(η) and (3.8), we deduce

α

4

∫

An(k)
|∇(Gk(z

+
n )ξ)|2 + mω′

∫

An(k)
eGk (z+n )Gk(z

+
n ) ϕ(η)

≤ 4β2 + α2

8α
‖∇η‖2

L∞(�)

∫

An(k)
Gk(z

+
n )2

ϕ′(η)2

ϕ(η)
.

Applying Lemma 3.6, with t = Gk(z+n ), and choosing the constant C as

C = 4β2 + α2

4αmω′
‖∇η‖2

L∞(�)
,

we have

4β2 + α2

8α
‖∇η‖2

L∞(�)

∫

An(k)
Gk(z

+
n )2

ϕ′(η)2

ϕ(η)

≤ mω′

2

∫

An(k)
Gk(z

+
n ) (eGk (z+n ) − 1) ϕ(η) + 4β2 + α2

8α
‖∇η‖2

L∞(�)
|An(k) ∩ ω′| .

Hence, we obtain

α

4

∫

An(k)
|∇(Gk(z

+
n )ξ)|2 + mω′

2

∫

An(k)
eGk (z+n )Gk(z

+
n ) ϕ(η)

+ mω′

2

∫

An(k)
Gk(z

+
n ) ϕ(η) ≤ 4β2 + α2

8α
‖∇η‖2

L∞(�)
|An(k) ∩ ω′| .

Dropping the positive terms in the left-hand side, we have
∫

An(k)
|∇(Gk(z

+
n )ξ)|2 ≤ 4β2 + α2

2α2 ‖∇η‖2
L∞(�)

|An(k) ∩ ω′| .

Moreover, denoting with S the constant given by the Sobolev embedding theorem and recall-
ing that ξ ≡ 1 in ω′′, we deduce, for j > k > 0, that

( j − k)2 |An( j) ∩ ω′′| 2
2∗ ≤

(∫

An( j)∩ ω′′
|Gk(z

+
n )|2∗

) 2
2∗

≤
(∫

An(k)∩ ω′
|Gk(z

+
n )ξ |2∗

) 2
2∗ ≤ S2 4β2 + α2

2α2 ‖∇η‖2
L∞(�)

|An(k) ∩ ω′| .

Defining c
2
2∗
0 = S2 4β

2 + α2

2α2 , we have, for all ω′′ ⊂⊂ ω′ ⊂⊂ ω, that

|An( j) ∩ ω′′| ≤ c0

‖∇η‖2∗
L∞(�)

|An(k) ∩ ω′| 2∗2
( j − k)2∗ . (3.9)

Now we consider R0 = dist(ω′′, ω). Define

ωr = {x ∈ � : dist(x, ω′′) < r}
and

m(k, r) = |An(k) ∩ ωr | ,
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938 R. Durastanti

for every 0 < r < R0 and k > 0. Choosing 0 ≤ r < R < R0 and η such that ‖∇η‖
L∞(�)

≤
c1

R − r
and taking ω′′ = ωr and ω′ = ωR in (3.9), we deduce

m( j, r) ≤ c2
m(k, R)

2∗
2

( j − k)2∗
(R − r)2∗ ,

where c2 = c0 c2
∗

1 . From this inequality, it follows, applying Lemma 3.5, that there exists
Mω′ > 0 (independent on n) such that

‖z+n ‖
L∞(ω′)

≤ Mω′ .

Recalling the definition of zn in terms of un , we therefore have

un = (n + 1)
1

n+1 e− zn
n+1 ≥ (n + 1)

1
n+1 e− M

ω′
n+1 in ω′,

which is (3.6). ��
We conclude this section with the following remark:

Remark 3.8 As a consequence of estimates (3.5) and (3.6), we thus have

lim
n→+∞ un = 1 uniformly in ω′.

Repeating this argument for every ω′ contained in ω, we have that un converges to 1 on ω.

4 Proofs of Theorems 2.2 and 2.3

We start with the proof of Theorem 2.2, in which we recall that ω = { f > 0} is compactly
contained in �.

Proof of Theorem 2.2 We have already proved that

‖un‖
L∞(�)

≤ (C(n + 1)‖ f ‖
L∞(�)

)
1

n+1 , (4.1)

so that un is bounded in L∞(�). This implies that there exists u in L∞(�) such that un
*-weakly converges to u in L∞(�) and, by Remark 3.8, u ≡ 1 in ω. We are now going to
prove that the right-hand side of the equation in (2.3) is bounded in L1(�) uniformly in n. As
a matter of fact, if un is the solution of (2.3), from Theorem 3.1 and Remark 3.3, it follows

that un ∈ W 1,2
0 (�), un ≥ cω,n > 0 in ω and

f

unn
belongs to L∞(�). Then, we have, by the

results in [37], that

un(x) =
∫

�

G(x, y)
f (y)

unn(y)
dy , ∀x ∈ �,

where G(x, ·) is the Green function of the linear differential operator defined by the adjoint
matrix M∗(x) of M(x), i.e., the unique duality solution of

{
−div(M∗(x)∇G(x, ·)) = δx in �,

G(x, ·) = 0 on ∂�,
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where δx is the Dirac delta concentrated at x in �. It is well known (see, for example, [31])
that for every ω′ ⊂⊂ � there exists K > 0 such that

G(x, y) ≥ K

|x − y|N−2 , ∀x, y ∈ ω′ . (4.2)

Fix now x in �\ω, let ω′′ ⊂⊂ � be such that ω ⊂ ω′′ and x belongs to ω′′, and let K be
such that (4.2) holds. We then have

(C(n + 1)‖ f ‖
L∞(�)

)
1

n+1 ≥ un(x) =
∫

�

G(x, y)
f (y)

unn(y)
dy

≥
∫

�

K

|x − y|N−2

f (y)

unn(y)
dy

≥ K

diam(�)N−2

∫

ω

f (y)

unn(y)
dy .

Therefore, there exists M > 0 such that
∫

ω

f (x)

unn
=

∫

�

f (x)

unn
≤ M , (4.3)

i.e., the right-hand side of the equation in (2.3) is bounded in L1(�). Observe now that for
every ω′ ⊂⊂ ω there exists Mω′ such that

un(x) ≥ (n + 1)
1

n+1 e− M
ω′

n+1 , in ω′.

Therefore,

∫

ω′
f (x)

unn
≤

|ω′|e
nM

ω′
n+1 ‖ f ‖

L∞(�)

(n + 1)
n

n+1
,

so that

lim
n→+∞

∫

ω′
f (x)

unn
= 0, (4.4)

i.e., the right-hand side converges to zero in L1
loc(ω). Let now μ be the bounded Radon

measure such that

f (x)

unn
→ μ, in the ∗ -weak topology of measures.

Clearly, by the assumption on f , μ (�\ω) = 0, and, by (4.4), μ ω = 0, so that
μ = μ ∂ω. Moreover, by Remark 3.3, we can take un as test function in (2.3) and we
obtain, using (2.1), (4.1) and (4.3), that

∫

�

|∇un |2 ≤
∫

�

f (x) un
unn

≤ ‖un‖
L∞(�)

∫

�

f (x)

unn
≤ C ,

then un weakly converges to u in W 1,2
0 (�) as n tends to infinity. Recalling that, by Remark

3.3, un is the (unique) weak solution of (2.3), that is,
∫

�

M(x)∇un · ∇ϕ =
∫

�

f ϕ

unn
, ∀ϕ ∈ W 1,2

0 (�) , (4.5)

123



940 R. Durastanti

we obtain, letting n tend to infinity, that
∫

�

M(x)∇u · ∇ϕ =
∫

�

ϕ dμ , ∀ϕ ∈ C1
0 (�) , (4.6)

so that u is a distributional solution with finite energy of the limit problem (2.4). ��
Remark 4.1 We observe that un is also the unique duality solution of (2.3), i.e.,

∫

�

un g =
∫

�

f

unn
v , ∀g ∈ L∞(�) , (4.7)

where v ∈ W 1,2
0 (�) ∩ L∞(�) is the unique weak solution of

{
−div(M∗(x)∇v) = g in �,

v = 0 on ∂�.
(4.8)

This implies, letting n tend to infinity in (4.7) and using the standard results contained in
[37], that u is the unique duality solution of (2.4).

Now we prove Theorem 2.3. Here, let us recall that for every ω ⊂⊂ � there exists cω > 0
such that f ≥ cω inω and that {ωn} is an increasing sequence of compactly contained subsets
of � such that their union is �.

Proof of Theorem 2.3 Let un be the solution of (2.5). It follows, from the fact that f (x) χωn (x)

has compact support in� and usingRemark 3.3, that un belongs toW
1,2
0 (�) and

f (x) χωn (x)

unn
belongs to L1(�). Once again as a consequence of Theorem 3.2, we have that {un} is bounded
in L∞(�). Then, there exists u in L∞(�) such that un *-weakly converges to u in L∞(�).
Moreover, by Remark 3.8, we deduce that un uniformly converges to 1 in ω, for every

ω ⊂⊂ �, hence u ≡ 1 in �. If we assume that the sequence

{
f (x) χωn (x)

unn

}

is bounded

in L1(�), then it *-weakly converges to μ in the topology of measure. Repeating the same
arguments contained in Remark 4.1, we obtain

∫

�

u g =
∫

�

v dμ , ∀g ∈ L∞(�) ,

where v in W 1,2
0 (�) is the weak solution of (4.8). Then, u in L∞(�) is the duality solution

of (2.4), so that u belongs toW 1,1
0 (�). Since u ≡ 1 in �, there is a contradiction. Hence, the

right-hand side of (2.5) is not bounded in L1(�) and there cannot be any limit equation. ��

5 One-dimensional solutions and Proof of Theorem 2.6

First we prove a result that makes the link between a distributional solution of (2.3) and a
distributional solution with finite energy of (2.6) rigorous.

Proposition 5.1 Let f be a nonnegative function belonging to L∞(�). If un is a solution of

(2.3) given by Theorem 3.1, then vn = un+1
n

n + 1
is a distributional solution of (2.6) with finite

energy.
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Proof We already know, by Theorem 3.2, that un+1
n belongs toW 1,2

0 (�), so that vn belongs to

W 1,2
0 (�). With the same argument, we have that unn belongs toW

1,2
0 (�). Let ϕ be a function

in C1
c (�), we have that unnϕ is a function in W 1,2

0 (�) with compact support (ω = supp(ϕ)).
Then, we can take unnϕ as test function in (3.1) and we obtain that

∫

�

∇un · ∇ϕ unn + n
∫

�

∇un · ∇un u
n−1
n ϕ =

∫

�

f ϕ. (5.1)

If we rewrite (5.1), using that un ≥ cω,n in ω, we have
∫

�

∇
(
un+1
n

n + 1

)

· ∇ϕ + n
∫

�

|∇un |2 u2nn
un+1
n

ϕ =
∫

�

f ϕ.

Hence, by definition of vn , we deduce that
∫

�

∇vn · ∇ϕ + n

n + 1

∫

�

|∇vn |2
vn

ϕ =
∫

�

f ϕ,

that is, vn is a distributional solution with finite energy of (2.6). ��
Remark 5.2 We note that for every ω ⊂⊂ � we know, by Theorem 3.1, that un ≥ cω,n in ω.

Then, vn ≥ cn+1
ω,n

n + 1
in ω. Using this property and that vn has finite energy, we can extend the

class of test functions for (2.6) from C1
c (�) to W 1,2

0 (�) with compact support.

Now we study (2.3) in the one-dimensional case to better understand what happens, if f
is strictly positive, to un and to the related vn by passing to the limit as n tends to infinity.

Fix n > 3 in N. We consider (2.3) with � = (−R, R), R > 0, M(x) ≡ I and f ≡ 1 in
(−R, R) so that we have

⎧
⎨

⎩

−u′′
n = 1

unn
in (−R, R),

un(±R) = 0.
(5.2)

In order to study (5.2), we focus on the solutions yn of the following Cauchy problem
⎧
⎪⎪⎨

⎪⎪⎩

−y′′
n (t) = 1

ynn (t)
for t ≥ 0,

yn(0) = αn,

y′
n(0) = 0,

(5.3)

where αn is a positive real number that we will choose later. Defining wn = yn
αn

, we can

rewrite (5.3) as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−w′′
n (t) = 1

αn+1
n wn

n (t)
for t ≥ 0,

wn(0) = 1,

w′
n(0) = 0.

(5.4)

Since
1

αn+1
n sn

is Lipschitz continuous near s = 1, there exists a unique solution wn locally

near t = 0. It is easy, by a classical iteration argument, to extend the definition interval of wn

to [0, Tn), where Tn < +∞ is the first zero ofwn (i.e.,wn(Tn) = 0) when it occurs, otherwise
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942 R. Durastanti

Tn = +∞. Hence, wn is concave (w′′
n (t) < 0), decreasing (w′

n(t) < 0) and 0 < wn(t) ≤ 1
for t ∈ [0, Tn) and it belongs to C∞((0, Tn)).

Now multiplying the equation by w′
n(t), we have

−[w′
n(t)

2]′
2

= w′
n(t)

αn+1
n wn

n (t)
,

hence, integrating on [0, s], with 0 < s < Tn , and recalling that w′
n(0) = 0, we have

w′
n(s)

2 = 2

(n − 1)αn+1
n

(w1−n
n (s) − 1).

Since w′
n(s) < 0 we deduce

w′
n(s) = −

√
2

(n − 1)αn+1
n

(w1−n
n (s) − 1)

1
2 , (5.5)

we can divide (5.5) by (w1−n
n (s) − 1)

1
2 and integrate on [0, t], with 0 ≤ t < Tn , to obtain

∫ t

0

w′
n(s)

(w1−n
n (s) − 1)

1
2

ds = −
√

2

(n − 1)αn+1
n

t . (5.6)

Setting r = wn(s) in the first integral of (5.6) and recalling that wn(0) = 1, we have

∫ 1

wn(t)

r
n−1
2

(1 − rn−1)
1
2

dr =
√

2

(n − 1)αn+1
n

t .

Once again we can perform the change of variable h = 1 − rn−1 to deduce

∫ 1−wn−1
n (t)

0

1

h
1
2 (1 − h)

n−3
2(n−1)

dh =
√
2(n − 1)

αn+1
n

t . (5.7)

Define In(t) :=
∫ 1−wn−1

n (t)

0

1

h
1
2 (1 − h)

n−3
2(n−1)

dh for t ≥ 0, then In(0) = 0 and In is a

continuous positive and increasing function in [0, Tn), so that In(t) ≤ In(Tn). Thanks to the
results in [1], we obtain

In(Tn) =
∫ 1

0

1

h
1
2 (1 − h)

n−3
2(n−1)

dh = √
π

Γ
(
1
2 + 1

n−1

)

Γ
(

n
n−1

) , (5.8)

where Γ (s) is defined in (1.5). Thus, we can extend In(t) in [0, Tn] and it is uniformly
bounded for every n ∈ N and t ∈ [0, Tn]. Moreover, from (5.8) and computing (5.7) for
t = Tn , we have

Tn =
√

π αn+1
n

2(n − 1)

Γ
(
1
2 + 1

n−1

)

Γ
(

n
n−1

) . (5.9)

We observe that Tn and αn are such that if αn tends to infinity also Tn tends to infinity.
Recalling that we want a solution for (5.2) that is zero if t = R, imposing Tn = R for every
n in N we find that

123



Asymptotic behavior and existence of solutions for... 943

αn =
⎛

⎝
2R2 (n − 1) Γ 2

(
n

n−1

)

π Γ 2
(
1
2 + 1

n−1

)

⎞

⎠

1
n+1

. (5.10)

Hence, with this value of αn , wn(R) = 0 for every n in N and wn belongs to C2((0, R)).
Thanks to the initial condition w′

n(0) = 0, we can extend wn to an even function w̃n on
[−R, R] in the following way

w̃n(t) =
{

wn(t) for t ∈ [0, R],
wn(−t) for t ∈ [−R, 0) .

So w̃n belongs to C2
0 ((−R, R)) and is the classical solution of

⎧
⎨

⎩

−w̃′′
n (t) = 1

αn+1
n w̃n

n (t)
for t ≥ 0,

w̃n(±R) = 0 .

(5.11)

Setting un(t) = αn w̃n(t) for t in [−R, R] we have that un belongs to C2
0 ((−R, R)) and is

the classical solution of (5.2). This implies that vn(t) = un(t)n+1

n + 1
is a classical solution (in

C2
0 ((−R, R))) of

⎧
⎨

⎩

−v′′
n + n

n + 1

|v′
n |2
vn

= 1 in (−R, R),

vn(±R) = 0,
(5.12)

that is, (2.6) in the one-dimensional case. Multiplying Eq. (5.12) by vn and integrating
by parts on (−R, R), we obtain that {vn} is bounded in W 1,2

0 ((−R, R)). By definition of

vn , this implies that {w̃n+1
n } is bounded in W 1,2

0 ((−R, R)). Using the Rellich–Kondrachov
theorem, we deduce that there exist a subsequence, still indexed by w̃n+1

n , and a function
g : (−R, R) → [0, 1] in C0((−R, R)) such that w̃n+1

n uniformly converges to g in (−R, R).
We want to make g explicit.

By definition of w̃n , it follows that

lim
n→∞ wn−1

n (t) = lim
n→∞

(
wn+1
n (t)

) n−1
n+1 = g(t) ,

uniformly in (0, R). Combining (5.7) and (5.10), we obtain

∫ 1−wn−1
n (t)

0

1

h
1
2 (1 − h)

n−3
2(n−1)

dh =
√

π

R

Γ
(
1
2 + 1

n−1

)

Γ
(

n
n−1

) t . (5.13)

Passing to the limit in (5.13) as n tends to infinity, we obtain the explicit expression of g.
Indeed, we have, by Lebesgue theorem and from well-known result of integral calculus, that

2 arcsin(
√
1 − g(t)) = lim

n→∞

∫ 1−wn−1
n (t)

0

1

h
1
2 (1 − h)

n−3
2(n−1)

dh

= lim
n→∞

√
π

R

Γ
(
1
2 + 1

n−1

)

Γ
(

n
n−1

) t = π

R
t .
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944 R. Durastanti

It follows that

g(t) = 1 − sin2
( π

2R
t
)

= cos2
( π

2R
t
)

.

So g is an even C∞ function defined on R, in particular on [−R, R].
Fix now t in (−R, R). We want to prove that w̃n(t) tends to 1 as n tends to infinity. We

assume, by contradiction, that

lim
n→∞ w̃n(t) = β < 1.

Defining ε := 1 − β

2
, we deduce, for n large enough, that w̃n(t) ≤ 1 − ε so that

w̃n+1
n (t) ≤ (1 − ε)n+1,

and, letting n tend to infinity, we obtain cos2
( π

2R
t
)

= 0. Since t �= ±R, we find a contra-

diction; then w̃n(t) tends to 1, as n tends to infinity, for every t in (−R, R).
Now we return to problem (5.2) recalling that un(t) = αn w̃n(t). From (5.10) and using

that w̃n(t) tends to 1, as n tends to infinity, for t in (−R, R), it follows that

lim
n→∞ un(t) = 1, ∀t ∈ (−R, R).

This result is exactly the one-dimensional version of Remark 3.8. From (5.10), we deduce
that

vn(t) =
2R2 (n − 1) Γ 2

(
n

n−1

)

π (n + 1) Γ 2
(
1
2 + 1

n−1

) w̃n+1
n (t),

so that we have that there exists a limit function v : [−R, R] → R such that

v(t) = lim
n→∞ vn(t) = 2R2

π2 cos2
( π

2R
t
)

.

After a little algebra, we obtain that v is a classical solution of
⎧
⎨

⎩

−v′′ + |v′|2
v

= 1 in (−R, R),

vn(±R) = 0,

that is, (2.8). Thus, we have proved Theorem 2.6 in the one-dimensional case.
Finally, we prove Theorem 2.6 in the N -dimensional case; here, we recall that f is strictly

positive.

Proof of Theorem 2.6 Let un be the solution of (2.3) given by Theorem 3.1. It follows from
Proposition 5.1 that vn are distributional solutions of (2.6).

By assumption for every ω ⊂⊂ �, there exists a positive constant cω such that f ≥ cω.
This implies, by Theorem 3.7, that

un ≥ (n + 1)
1

n+1 e− Mω
n+1 ,

then

vn ≥ e−Mω , ∀ ω ⊂⊂ �, (5.14)
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with Mω a positive constant depending only on ω. So vn is locally uniformly positive.
Moreover, by Theorem 3.2, we have that vn belongs to W 1,2

0 (�) and

‖vn‖
L∞(�)

≤ C‖ f ‖
L∞(�)

,

where C is a positive constant.
Choosing a nonnegative ϕ belonging to C1

c (�) as test function in (2.6) and dropping the
nonnegative integral involving the quadratic gradient term, we deduce that

∫

�

∇vn · ∇ϕ ≤
∫

�

f ϕ . (5.15)

As a consequence of the density of C1
c (�) in W 1,2

0 (�), we can extend (5.15) for every

nonnegative ϕ in W 1,2
0 (�). Choosing vn as test function and using Hölder’s inequality and

the Sobolev embedding theorem, we obtain
∫

�

|∇vn |2 ≤
∫

�

f vn ≤ ‖ f ‖
L

2N
N+2 (�)

‖vn‖
L2∗ (�)

≤ S‖ f ‖
L

2N
N+2 (�)

‖vn‖
W 1,2

0 (�)
,

where S is the Sobolev constant. Hence, {vn} is bounded in W 1,2
0 (�). Thus, up to a subse-

quence, it follows that there exists v belonging to W 1,2
0 (�) ∩ L∞(�) such that

vn → v weakly in W 1,2
0 (�) and weakly-* in L∞(�),

vn → v strongly in Lq(�), ∀ q < +∞, and a.e. in �.
(5.16)

In order to pass to the limit in (2.6), we first prove that vn strongly converges to v inW 1,2
loc (�),

that is

lim
n→+∞

∫

�

|∇(vn − v)|2ϕ = 0, ∀ ϕ ∈ C1
c (�) with ϕ ≥ 0 . (5.17)

We consider the function φλ(s) defined in (1.6), and choosing φλ(vn − v)ϕ as test function
in (2.6), we obtain

∫

�

∇vn · ∇(vn − v) φ′
λ(vn − v) ϕ +

∫

�

∇vn · ∇ϕ φλ(vn − v)

+ n

n + 1

∫

�

|∇vn |2
vn

φλ(vn − v)ϕ =
∫

�

f φλ(vn − v) ϕ.

It follows from (5.16) and using Lebesgue theorem that

lim
n→+∞

∫

�

∇vn · ∇ϕ φλ(vn − v) = 0 and lim
n→+∞

∫

�

f φλ(vn − v) ϕ = 0.

Thus,
∫

�

∇vn · ∇(vn − v) φ′
λ(vn − v) ϕ + n

n + 1

∫

�

|∇vn |2
vn

φλ(vn − v)ϕ = ε(n). (5.18)

Moreover, setting ωϕ = supp(ϕ) and using (5.14), we deduce that

n

n + 1

∫

�

|∇vn |2
vn

φλ(vn − v)ϕ ≥ − n

n + 1

∫

�

|∇vn |2
vn

|φλ(vn − v)|ϕ

≥ − eMωϕ

∫

�

|∇vn |2 |φλ(vn − v)| ϕ,
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946 R. Durastanti

so that
∫

�

∇vn · ∇(vn − v) φ′
λ(vn − v) ϕ − eMωϕ

∫

�

|∇vn |2 |φλ(vn − v)| ϕ = ε(n). (5.19)

We can add the following term to (5.19)

−
∫

�

∇v · ∇(vn − v) φ′
λ(vn − v) ϕ

and, noting that by (5.16) this quantity tends to 0 letting n go to infinity, we obtain
∫

�

|∇(vn − v)|2 φ′
λ(vn − v) ϕ − eMωϕ

∫

�

|∇vn |2 |φλ(vn − v)| ϕ = ε(n). (5.20)

Since using once again (5.16) we have
∫

�

|∇vn |2 |φλ(vn − v)| ϕ ≤ 2
∫

�

|∇(vn − v)|2 |φλ(vn − v)| ϕ

+ 2
∫

�

|∇v|2 |φλ(vn − v)| ϕ = 2
∫

�

|∇(vn − v)|2 |φλ(vn − v)| ϕ + ε(n) ,

we deduce that
∫

�

|∇(vn − v)|2
{
φ′

λ(vn − v) − 2eMωϕ |φλ(vn − v)|
}

ϕ = ε(n).

Choosing λ ≥ e2Mωϕ , thanks to (1.7) we have that {φ′
λ(vn − v) − 2eMωϕ |φλ(vn − v)|} ≥ 1

2
,

hence (5.17) holds and

vn → v strongly in W 1,2
loc (�). (5.21)

Now we pass to the limit in (2.6) with test functions ϕ belonging to W 1,2
0 (�) ∩ L∞(�) with

compact support. We have, by (5.17), that

lim
n→+∞

∫

�

∇vn · ∇φ =
∫

�

∇v · ∇ϕ,

and, using (5.21), (5.14) with ω = supp(ϕ) and Lebesgue theorem, we deduce

lim
n→+∞

n

n + 1

∫

�

|∇vn |2
vn

ϕ =
∫

�

|∇v|2
v

ϕ,

so that
∫

�

∇v · ∇ϕ +
∫

�

|∇v|2
v

ϕ =
∫

�

f ϕ , (5.22)

for all ϕ in W 1,2
0 (�) ∩ L∞(�) with compact support.

Let ϕ be a nonnegative function in W 1,2
0 (�) ∩ L∞(�). Let {ϕm} in C1

c (�) be a sequence

of nonnegative functions that converges to ϕ strongly in W 1,2
0 (�). Taking ϕm ∧ ϕ, which

belongs to W 1,2
0 (�) ∩ L∞(�) with compact support, as test function in (5.22), we obtain

∫

�

|∇v|2
v

(ϕm ∧ ϕ) =
∫

�

f (ϕm ∧ ϕ) −
∫

�

∇v · ∇(ϕm ∧ ϕ) . (5.23)
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Since ϕm ∧ ϕ strongly converges to ϕ in W 1,2
0 (�), we have

lim
m→+∞

∫

�

{

f (ϕm ∧ ϕ) −
∫

�

∇v · ∇(ϕm ∧ ϕ)

}

=
∫

�

f ϕ −
∫

�

∇v · ∇ϕ . (5.24)

Moreover,
|∇v|2

v
(ϕm ∧ϕ) is a nonnegative function that converges to

|∇v|2
v

ϕ almost every-

where in �. Applying Fatou’s lemma on the left-hand side of (5.23) and using (5.24), we
deduce that

∫

�

|∇v|2
v

ϕ ≤ lim inf
m→+∞

∫

�

|∇v|2
v

(ϕm ∧ ϕ) =
∫

�

f ϕ −
∫

�

∇v · ∇ϕ ,

so that
|∇v|2

v
ϕ belongs to L1(�). Since

|∇v|2
v

(ϕm ∧ϕ) ≤ |∇v|2
v

ϕ, by Lebesgue theorem,

we have

lim
m→+∞

∫

�

|∇v|2
v

(ϕm ∧ ϕ) =
∫

�

|∇v|2
v

ϕ . (5.25)

As a consequence of (5.24) and (5.25), we obtain
∫

�

∇v · ∇ϕ +
∫

�

|∇v|2
v

ϕ =
∫

�

f ϕ , ∀ ϕ ≥ 0 in W 1,2
0 (�) ∩ L∞(�) . (5.26)

Furthermore, taking
Tε(v)

ε
as test function in (5.26) and dropping a positive term, we deduce

∫

�

|∇v|2
v

Tε(v)

ε
≤

∫

�

f
Tε(v)

ε
. (5.27)

Applying Fatou’s lemma on the left-hand side of (5.27) and noting that Tε(v) ≤ ε, we have
∫

�

|∇v|2
v

≤ lim inf
ε→0

∫

�

|∇v|2
v

Tε(v)

ε
≤

∫

�

f ,

so
|∇v|2

v
belongs to L1(�). Since we canwrite each ϕ ∈ W 1,2

0 (�)∩L∞(�) as the difference

between its positive and its negative part, we trivially deduce that (5.26) holds for all ϕ ∈
W 1,2

0 (�) ∩ L∞(�), so that v is a weak solution of (2.8). ��

Remark 5.3 We note that we can also consider test functions only belonging to W 1,2
0 (�)

in (5.26). Indeed, let ϕ be in W 1,2
0 (�), then Tk(ϕ+) is a positive function belonging to

W 1,2
0 (�) ∩ L∞(�) that strongly converges to ϕ+ in W 1,2

0 (�) as k tends to infinity. Taking
Tk(ϕ+) as test function in (5.26) and letting k tend to infinity, by Lebesgue theorem and
Beppo Levi theorem, we deduce

∫

�

∇v · ∇ϕ+ +
∫

�

|∇v|2
v

ϕ+ =
∫

�

f ϕ+ . (5.28)

In the same way, we obtain
∫

�

∇v · ∇ϕ− +
∫

�

|∇v|2
v

ϕ− =
∫

�

f ϕ− , (5.29)

so that subtracting (5.29) to (5.28)wehave that (5.26) holds for everyϕ belonging toW 1,2
0 (�).
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948 R. Durastanti

Remark 5.4 To prove that {vn} is bounded in W 1,2
0 (�) and (5.16), we only used that f is

nonnegative and belongs to L∞(�).

6 Proof of Theorem 2.7

Here, we prove Theorem 2.7. We fix n > 3 in N.

Proof of Theorem 2.7 First, we study the behavior of the weak solution of (2.9) given by
Theorem 3.1. In order to study un , we use the construction of one-dimensional solutions
done in the previous section, in which we have proved that there exists a function wn in
C2((0, Tn)) classical solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−w′′
n (t) = 1

αn+1
n wn

n (t)
in (0, Tn),

wn(0) = 1,

w′
n(0) = 0,

(6.1)

where Tn is the first zero of wn . We recall that 0 < wn(t) < 1, wn is concave (w′′
n (t) < 0)

and decreasing (w′
n(t) < 0) for every t in (0, Tn). Moreover, we have obtained that

w′
n(t) = −

√
2

(n − 1)αn+1
n

(w1−n
n (t) − 1)

1
2 , (6.2)

and, by integrating, that

Sn(1 − wn−1
n (t)) :=

∫ 1−wn−1
n (t)

0

1

h
1
2 (1 − h)

n−3
2(n−1)

dh =
√
2(n − 1)

αn+1
n

t , (6.3)

for every t in [0, Tn) so that Sn : [0, 1) → [0, Sn(1)) is a nonnegative, continuous and
strictly increasing function. Recalling (5.8), we have that Sn(1) = In(Tn), that is uniformly
bounded, and thus, we can extend Sn in 1 to have Sn : [0, 1] → [0, Sn(1)]. Then, there exists
the inverse function S−1

n : [0, Sn(1)] → [0, 1]. Furthermore, we recall that

Tn =
√

π αn+1
n

2(n − 1)

Γ
(
1
2 + 1

n−1

)

Γ
(

n
n−1

) . (6.4)

In order to have 1 < Tn < +∞ for every n we can choose αn = (cn(n − 1))
1

n+1 , with cn a
positive constant such that

cn >
2Γ 2

(
n

n−1

)

π Γ 2
(
1
2 + 1

n−1

) =: cn , ∀ n in N. (6.5)

Now we consider the following Cauchy problem
⎧
⎪⎪⎨

⎪⎪⎩

−y′′
n (t) = χ(0,1)

cn(n − 1)ynn (t)
for t ≥ 0 ,

yn(0) = 1,

y′
n(0) = 0.

(6.6)
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For every t in (0, 1), we have that (6.1) and (6.6) are the same problem, so that there exists
yn(t) ≡ wn(t) classical solution of (6.6) in (0, 1). Since y′′

n (t) = 0 for every t ≥ 1, we
deduce that yn(t) = yn(1) + y′

n(1)(t − 1) = wn(1) + w′
n(1)(t − 1) in [1, 2). It follows from

(6.2) and by the definition of αn that

w′
n(1) = −

√
2

cn(n − 1)2
(w1−n

n (1) − 1)
1
2 . (6.7)

Since we want that yn(2) = 0 for every n in N, we look for cn such that w′
n(1) = −wn(1).

With a little algebra, it follows from (6.7) and (6.3) that is possible if and only if, for every
fixed n, we have

wn+1
n (1) = 2

cn(n − 1)2
(1 − wn−1

n (1)) = 2

cn(n − 1)2
S−1
n

(√
2

cn

)

. (6.8)

By Lemma 6.2, there exists a sequence {cn} such that (6.8) holds for every n; hence, we have
that yn belonging to C1((0, 2)) is such that

yn(t) ≡ wn(t) in [0, 1] , yn(t) = wn(1)(2 − t) in (1, 2] , y′
n(0) = yn(2) = 0 . (6.9)

We want that wn(t) ≤ yn(t) in [0, Tn]. This is true if and only if Tn ≤ 2. If, by contradiction,
Tn > 2, we havewn(t) ≡ yn(t) in [0, 1] and−y′′

n (t) < −w′′
n (t) in (1, 2], so that, byw′

n(1) =
y′
n(1), we deduce wn(t) < yn(t) in (1, 2]. It follows from yn(2) = 0 that 0 < wn(2) < 0,

which is a contradiction. Then, we obtain Tn ≤ 2, wn(t) ≤ yn(t) in [0, Tn] and, by (6.4),
that

cn ≤
8Γ 2

(
n

n−1

)

π Γ 2
(
1
2 + 1

n−1

) =: cn , ∀ n in N . (6.10)

Thus, {cn} is bounded and, up to subsequences, there exists a positive real number c∞ such
that

2

π2 = lim
n→+∞ cn ≤ c∞ := lim

n→+∞ cn ≤ lim
n→+∞ cn = 8

π2 ,

and, respectively,

1 ≤ T∞ := lim
n→+∞ Tn = π

√
c∞
2

≤ 2 .

As shown in the previous section, it follows from (6.3) that

lim
n→+∞ wn+1

n (t) = cos2
(

π

2 T∞
t

)

and lim
n→+∞ wn(t) = 1, for t ∈ (0, T∞) . (6.11)

Now we suppose that T∞ > 1. Fix β = T∞ − 1

2
> 0, so that 1 + β < T∞. We know that

for n large enough

wn(1 + β) ≤ yn(1 + β) = wn(1)(1 − β) .

By passing to the limit, as n tends to infinity and using (6.11), we obtain 1 ≤ 1− β, that is,

β ≤ 0. This is a contradiction, then T∞ = 1 and, therefore, c∞ = 2

π2 .
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Recalling that yn(t) ≡ wn(t) in (0, 1) and using, once again, (6.11) we have

lim
n→+∞ yn+1

n (t) = cos2
(π

2
t
)

and lim
n→+∞ yn(t) = 1 , for t ∈ (0, 1) . (6.12)

It follows from (6.8) and using that yn(1) = wn(1) for every n that

lim
n→+∞ yn+1

n (1) = 0 and lim
n→+∞ yn(1) = 1 , (6.13)

hence, by (6.9), we obtain that yn+1
n (t) = wn(1)n+1(2 − t)n+1 and that

lim
n→+∞ yn+1

n (t) = 0 and lim
n→+∞ yn(t) = (2 − t) , for t ∈ (1, 2] . (6.14)

Therefore, by the initial condition y′
n(0) = 0, we can extend yn to an even function defined

in (−2, 2) as follows

ỹn(t) =
{

(cn(n − 1))
1

n+1 yn(t) for t ∈ [0, 2],
(cn(n − 1))

1
n+1 yn(−t) for t ∈ [−2, 0),

so that ỹ belonging to C1
0 ((−2, 2)) is a weak solution of (2.9). By Remark 3.4, there is a

unique weak solution of (2.9), hence ỹn(t) ≡ un(t) for every t in (−2, 2) and n in N.

Moreover, by Proposition 5.1, setting vn(t) = un+1
n (t)

n + 1
, we have that vn in C1

0 ((−2, 2))

is a weak solution of (2.10) and, by Remark 5.4, that there exists a function v such that vn
weakly converges to v inW 1,2

0 ((−2, 2)) and almost everywhere in (−2, 2). As a consequence
of (6.12), (6.13) and (6.14), we deduce that

v(t) =
⎧
⎨

⎩

2

π2 cos2
(π

2
t
)

for t ∈ (−1, 1),

0 for t ∈ [−2,−1] ∪ [1, 2],
so that v belongs to C1

0(−2, 2) ∩ C∞
0 (−1, 1). Furthermore, with a little algebra, it follows

that v is a classical solution of (2.11). ��
Remark 6.1 From the proof of Theorem 2.7, we deduce that un pointwise converges to u
defined as follows

u(t) =

⎧
⎪⎨

⎪⎩

(2 − t) for t ∈ [1, 2],
1 for t ∈ (−1, 1),

(2 + t) for t ∈ [−2,−1].
Moreover, by Theorem 2.2, un weakly converges to u inW

1,2
0 ((−2, 2)). Hence, we have that

u′(t) =

⎧
⎪⎨

⎪⎩

−1 for t ∈ (1, 2),

0 for t ∈ (−1, 1),

1 for t ∈ (−2,−1),

and u is a distributional solution of
{

−u′′ = −δ−1 + δ1 in (−2, 2),

u(±2) = 0 ,

so that we have completely recovered the results of Theorem 2.2.
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To be complete, we show the technical lemma that we needed to prove the theorem.

Lemma 6.2 Let c belong to (c0,+∞), with c0 =
2Γ 2

(
n

n−1

)

π Γ 2
(
1
2 + 1

n−1

) . Letwc(t) be the classical

solution of
⎧
⎪⎪⎨

⎪⎪⎩

−w′′
c (t) = 1

c(n − 1)wn
c (t)

for t ≥ 0,

wc(0) = 1,

w′
c(0) = 0.

(6.15)

Let Tc be the first zero of wc. Then, there exists a unique c̃ in (c0,+∞) such that Tc̃ > 1 and

wn+1
c̃ (1) = 2

c̃(n − 1)2
S−1
c̃

(√
2

c̃

)

, (6.16)

where Sc : [0, 1] → [0, Sc(1)] is defined as

Sc(1 − wn−1
c (t)) :=

∫ 1−wn−1
c (t)

0

1

h
1
2 (1 − h)

n−3
2(n−1)

dh ,

for t in [0, Tc].
Proof It follows from the proof of Theorem 2.7 that if c > c0 then there existswc(t) classical
solution of (6.15) in [0, Tc], with Tc > 1.

Now we define F : (c0,+∞) → R as

F(c) = wn+1
c (1) − 2

c(n − 1)2
S−1
c

(√
2

c

)

.

It is obvious that wc(t) is continuous on (c0,+∞) for every t in [0, Tc), so that F is contin-
uous. Fix c0 < c1 < c2. Recalling that

Tc =
√

π c

2

Γ
(
1
2 + 1

n−1

)

Γ
(

n
n−1

) ,

we deduce Tc1 < Tc2 . Moreover, we state that wc1(t) < wc2(t) for every t in (0, Tc1 ].
Indeed, since −w′′

c1(t) > −w′′
c2(t) near t = 0 and using the initial conditions, we obtain

that wc1(t) < wc2(t) near t = 0. If, by contradiction, there exists s in (0, Tc1) such that
wc1(s) = wc2(s) we have that w

′
c1(s) ≥ w′

c2(s). We know, by (6.2), that

w′
c1(s) = −

√
2

(n − 1)2c1
(w1−n

c1 (s) − 1)
1
2 < −

√
2

(n − 1)2c2
(w1−n

c1 (s) − 1)
1
2 = w′

c2(s) ,

which is a contradiction. Hence, we have thatwc(t) is monotone increasing in c. This implies
that F also is monotone increasing in c. By letting c tend to the boundary of (c0,+∞) and
recalling that

lim
c→c0

wn+1
c (1) = 0 and lim

c→+∞ wn+1
c (1) = 1 ,
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we deduce

lim
c→c0

F(c) = − 2

c0(n − 1)2
S−1
c0

(√
2

c0

)

< 0 and lim
c→+∞ F(c) = 1.

Applying Bolzano’s theorem, we obtain that there exists c̃ such that F(c̃) = 0, that is, (6.16).
Since F is monotone increasing, c̃ is unique. ��

7 Open problems

We are now studying the nonexistence of positive solutions of (2.8) in the N -dimensional
case with f only nonnegative. More precisely, we assume that f is a nonnegative L∞(�)

function and that there exists ω ⊂⊂ � such that f = 0 in �\ω and such that for every
ω′ ⊂⊂ ω there exists cω′ > 0 such that f ≥ cω′ in ω′.

We observe that from Remark 6.1 it follows that u, given by Theorem 2.7, is a classical
solution of

⎧
⎪⎨

⎪⎩

−u′′ = 0 in (−2,−1) ∪ (1, 2) ,

u(±1) = 1 ,

u(±2) = 0 .

Our conjecture is that it is true also for N > 1. More precisely, we think that the following
result holds.

Conjecture 7.1 Let u be the function given by Theorem 2.2, with M(x) ≡ I . Then, u is a
classical solution of

⎧
⎪⎨

⎪⎩

−�u = 0 in �\ω,

u = 1 on ∂ω,

u = 0 on ∂�.

With a similar idea, we think that Theorem 2.7 holds for N > 1.

Conjecture 7.2 Let un be the solution of (2.3) given by Theorem 3.1, with M(x) ≡ I . Let
{

vn = un+1
n

n + 1

}

be the sequence of solutions of (2.6). Then, {vn} is bounded in W 1,2
0 (�) ∩

L∞(�), so that it converges, up to subsequences, to a bounded nonnegative function v.
Moreover, v is a weak solution of

⎧
⎨

⎩

−�v + |∇v|2
v

= f in ω,

v = 0 on ∂ω,

and v ≡ 0 in �\ω.
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