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Abstract
In this paper, wemainly propose improvements of the logarithmic difference lemma formero-
morphic functions in several complex variables and then investigate meromorphic solutions
of partial difference equations from the viewpoint of Nevanlinna theory.
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1 Introduction

It is well known that the celebrated binomial function Cn
m = n!

(n−m)!m! (1 ≤ m ≤ n) having
the relation

Cn
m = Cn−1

m−1 + Cn−1
m (1)

in the early history of mathematics, which was known to Shijie Zhu in China in 1303. The
functional relation (1) is an example of partial difference equationswhichwas developed only
after the eighteenth century. Discrete analogues of equations of mathematical physics have
always been of great interest to scholars. For instances, Courant et al. [14,15] discussed alge-
braic problems of a very much simpler structure by replacing the differentials by difference
quotients on some (say rectilinear) mesh. Azmy and Protopopescu [1] investigated various
aspects of the dynamics of a discrete reaction–diffusion system. Young [48] introduced itera-
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tive methods to solve partial difference equations. Although partial difference equations such
as (1) appear well before partial differential equations, it has not drawn as much attention
as their continuous counterparts. Renewed interest has, however, been picking up momen-
tum during the last sixty years among mathematician, physicists, engineers and computer
scientists. For many examples of partial difference equations and its background, we see
[10,16,17]. If the continuous counterparts of (1) are considered, then we find an interesting
phenomenon that the entire function f (z1, z2) = ez1+z2 on C2 is a nontrivial solution of the
partial difference equation

f (z1, z2) = f (z + c1, z2 + c2) + f (z1, z2 + c2),

where c1, c2 are values in C
2 such that ec1+c2 + ec2 = 1. Motivated by this, it is worth

considering entire or meromorphic solutions of partial difference equations.
As early as over 30 years ago, several initial results on the existence of meromorphic

solutions of some complex difference equations have been obtained by Bank, Kaufman,
Shimomura, Yanagihara and other researchers. Later on, the researches in this field were
developed slowly, almost in a state of stagnation. Until recent ten years, Nevanlinna theory
(especially the difference analogues such as logarithmic derivative lemma, Tumura–Clunie
theorem, etc.) has been used as a powerful tool to investigate complex difference equations,
and thus, it becomes an interesting andhot direction. For this background,we see [7,12,20,49].

As far as we know, however, there are very little of results on solutions of complex partial
difference equations by using Nevanlinna theory. In 2012, Korhonen [30] firstly obtained
the difference version of logarithmic derivative lemma (shortly, we may say logarithmic
difference lemma) for meromorphic functions on C

m with hyperorder strictly less than 2
3 ,

and then used it to consider a class of partial difference equations in the same paper. In
[4], Cao and Korhonen improved the logarithmic difference lemma to the case where the
hyperorder is strictly less than one. Meanwhile, Wang [43] considered some kinds of partial
q-difference equations.

The main purpose of this paper is to improve the logarithmic difference lemma in Nevan-
linna theory and use it to study complex partial difference equations, basically focusing
on linear partial difference equations, nonlinear partial difference equations, difference
counterpart of Tumura–Clunie theorem concerning partial difference equations. We first
introduce some basic notations and definitions as follows. Let z = (z1, . . . , zm) ∈ C

m with
‖z‖2 = ∑m

j=1 |z j |2. Define the differential operators d = ∂ + ∂ and dc = ∂−∂
4π i . For a

meromorphic function f on C
m, let ν0f −a be the zero divisor of f − a. Set n(t, 1

f −a ) =
∫
suppν0f −a∩Bm (t) ν0f −a(z)(dd

c‖z‖2)m−1 if m ≥ 2; and n(t, 1
f −a ) = ∑

|z|≤t ν
0
f −a(z) if m = 1,

where Bm(t) = {z : ‖z‖ ≤ t}. Denote by N (r , 1
f −a ) = ∫ r

1
n(r , 1

f −a )dt

t the counting func-
tions of zeros of f −a on complex vector spaceCm, bym(r , f ) the proximity function of f
defined asm(r , f ) = ∫

∂Bm (r) log
+ | f (z)| σm(z)where σm(z) = dc log ‖z‖2∧(ddc‖z‖2)m−1

and log+ x = max{log x, 0}. Then the Nevanlinna characteristic function of f is defined as
T (r , f ) = N (r , f ) + m(r , f ). Then the first main theorem is said that

T

(

r ,
1

f − a

)

= T (r , f ) + O(1)

for anyvaluea ∈ C∪{∞}.Ameromorphic function f canbe also seen as a holomorphic curve
from C

m into P1(C) with a reduced representation f = ( f0, f1), where f0 and f1 are entire
function on C

m without common zeros. The Cartan characteristic function is defined by
T f (r) = ∫

∂Bm (r) logmax{| f0(z)|, | f1(z)|}σm(z) − ∫
∂Bm (1) logmax{| f0(z)|, | f1(z)|}σm(z).
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The two characteristic functions have the relation T f (r) = T (r , f ) + O(1). The defect
δ f (a) of zeros of f − a is defined as

δ f (a) = 1 − lim sup
r→∞

N
(
r , 1

f −a

)

T (r , f )
.

The order ρ( f ) and hyperorder ρ2( f ) of f are defined, respectively, by

ρ( f ) = lim sup
r→∞

log T (r , f )

log r
,

and

ρ2( f ) = lim sup
r→∞

log log T (r , f )

log r
.

We assume that the readers are familiar with the basic notations and results on Nevanlinna
theory formeromorphic functions in several complex variables (see, for example, [18,40,41]).

The logarithmic difference lemma of several complex variables in Nevanlinna theory will
play the key role in studying meromorphic solutions of complex partial difference equations,
as does as the logarithmic derivative lemma of several complex variables in investigating
solutions of complex partial differential equations [27,36,37]. Let c ∈ C

m \ {0}. Motivated
by the ideas of [6,49], we continue to propose an improvement of the logarithmic difference
lemma for meromorphic functions in several complex variables [4,30] (Theorem 2.1) that

m

(

r ,
f (z + c)

f (z)

)

= o (T (r , f )) (2)

holds for all r possible outside of a set E with zero upper density measure, provided that the
growth of the meromorphic function f on C

m satisfies

lim sup
r→∞

log T (r , f )

r
= 0 (3)

(which implies that the hyperorder is rather than just strictly less than one). This is also
an extension of [20,21,49] from one variable to several variables. Then from it, we get the
relation

T (r , f (z + c)) = T (r , f ) + o(T (r , f )), (r /∈ E), (4)

under the assumption of (3). We will also show the explicit expression of o(T (r , f )) in the
logarithmic difference lemma for the special case whenever f is of finite order as (Theorem
2.4)

m

(

r ,
f (z + c)

f (z)

)

= O
(
rρ( f )−1+ε

)
, (5)

and thus obtain the relation

T (r , f (z + c)) = T (r , f ) + O(rρ( f )−1+ε) (6)

for any ε(> 0). This is an extension of Chiang and Feng [12] from one variable to several
variables.

In terms of the above results on the logarithmic difference lemma, we can consider mero-
morphic solutions of partial difference equations. Since there are too many kinds of partial
difference equations, we cannot systematically and completely investigate solutions of partial
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difference equations. In this paper, we will focus on some typical models of partial difference
equations. For the discrete potential Korteweg–de Vries (KdV) equations

Xi+1
j+1 = Xi

j + Zi
j

Xi+1
j − Xi

j+1

in [42], we can firstly consider the nonlinear partial difference equation

f (z1 + c1, z2 + c2) = f (z1, z2) + A(z1, z2)

f (z1, z2 + c2) − f (z1 + c1, z2)
(7)

where c1, c2 ∈ C \ {0}, and A(z1, z2) is a nonzero meromorphic function on C
2 such that

T (r , A) = o(T (r , f )) (or say, A is a small function with respect to f ). In fact, we will obtain
(Theorem 3.1) that any nontrivial meromorphic solution of Eq. (7) with assumption (3) must
satisfy δ f (0) > 0. We also consider the Fermat-type nonlinear partial difference equation

1

f m(z1 + c1, z2 + c2)
+ 1

f m(z1, z2)
= A(z1, z2) f

n(z1, z2),

or

1

f m(z1 + c1, z2 + c2)
+ 1

f m(z1 + c1, z2)
+ 1

f m(z1, z2 + c2)
= A(z1, z2) f

n(z1, z2),

and prove that any nontrivial meromorphic solution f with δ f (∞) > 0 satisfies

lim supr→∞
log T (r , f )

r > 0, provided that A is a small functionwith respect to f (seeTheorem
3.2). Furthermore, we will prove the difference versions of the well-known Tumura–Clunie
theorem in several complex variables which is a powerful tool for studying complex (partial)
differential equations (see, for example, [27,28,33,38]).

There are many models of partial linear difference equations (see [10]), such as the two-
level discrete heat equation

uij+1 = auij−1 + buij + cuij+1,

the nonsymmetric partial difference functional equation

ux+t,y − 2ux,y + ux−t,y

t2
= ux,y+s − 2ux,y + ux,y−s

s2
,

and the steady-state discrete Laplace equation

um−1,n + vm+1,n + um,n−1 + um,n+1 − 4um,n = 0.

These equations impel us to study general linear homogeneous partial difference equations

An(z) f (z + cn) + · · · + A1(z) f (z + c1) + A0(z) f (z) = 0, (8)

where A0, . . . , An are meromorphic functions on Cm and c1, . . . , cn ∈ C
m \ {0}. According

to the logarithmic difference lemma for finite order, we will obtain (Theorem 3.3) that any
nontrivial meromorphic solution f of (8) satisfies ρ( f ) ≥ ρ(Ak) + 1, whenever one tran-
scendental meromorphic coefficient Ak (k ∈ {0, 1, . . . , n}) dominates the growths of all the
meromorphic coefficients. Motivated by the model of the discrete or finite Poisson equation
(see [10])

ui, j+1 + ui+1, j + ui, j−1 + ui−1, j − 4ui, j = gi j ,
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we also consider the linear nonhomogeneous partial difference equations

An(z) f (z + cn) + · · · + A1(z) f (z + c1) + A0(z) f (z) = F(z), (9)

wheremeromorphic coefficients A0, . . . , An, F(�≡ 0) onCm are small functions with respect
to meromorphic solutions f . We will prove (Theorem 3.4) that if a meromorphic solution f
of (9) satisfies the assumption of lim supr→∞

log T (r , f )
r = 0, then we have δ f (0) = 0.

This paper is organized as follows: Three forms of the logarithmic difference lemma for
meromorphic functions in several complex variables are proved in Sect. 2. By them, the
relations of N (r , f ) ∼ N (r , f (z + c)) and T (r , f ) ∼ T (r , f (z + c)) are given in the same
section. In Sect. 3, we firstly consider nonlinear partial difference equations coming from the
discrete potential KdV equation and the Fermat equation and then study general partial linear
difference equations. Difference analogues of Tumura–Clunie theorem concerning partial
difference polynomials are also investigated in Sect. 3. Finally, we obtain an improvement
of Korhonen’s result for a class of complex partial difference equations by our logarithmic
difference lemma. Some examples are given to show that the results of nonlinear partial
difference equations or the linear partial difference equations are sharp.

2 Logarithmic difference lemma in several complex variables

In this section, to solve meromorphic solutions of partial difference equations, we mainly
study the logarithmic difference lemma of several complex variables of Nevanlinna theory. In
2006, Halburd–Korhonen [20, Theorem 2.1] and Chiang–Feng [12] obtained independently
the difference version of logarithmic derivative lemma (shortly say, logarithmic difference
lemma) for meromorphic functions with finite order on the complex plane. In 2014, Halburd
et al. [21, Theorem 5.1] extended it to the case for hyperorder strictly less than one. In the
high-dimensional case, Korhonen [30, Theorem 3.1] gave a logarithmic difference lemma
for meromorphic functions in several variables of hyperorder strictly less that 2/3. In 2016,
Cao and Korhonen [4] improved it to the case for meromorphic functions with hyperorder
< 1 in several variables. Very recent, Zheng and Korhonen [49] improve the condition to
the case when the meromorphic function f on the plane satisfies lim supr→∞

log T (r , f )
r = 0

(rather than just hyperorder strictly less than one), which is usually called minimal type.
In fact, they proved a version of the subharmonic functions for the logarithmic difference
lemma. Here, we improve and extend the known results on logarithmic difference lemma
directly for meromorphic functions of one and several complex variables by using a growth
lemma for nondecreasing positive logarithmic convex function due to Zheng and Korhonen,
but avoiding the subharmonic function theory. A tropical version of logarithmic derivative
lemma due to Cao and Zheng [6] was obtained very recently.

Theorem 2.1 Let f be a nonconstant meromorphic function on Cn, and let c ∈ C
n \ {0}. If

lim sup
r→∞

log T (r , f )

r
= 0, (10)

then

m

(

r ,
f (z + c)

f (z)

)

+ m

(

r ,
f (z)

f (z + c)

)

= o (T (r , f ))
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for all r /∈ E, where E is a set with zero upper density measure E, i.e.,

densE = lim sup
r→∞

1

r

∫

E∩[1,r ]
dt = 0.

Remark 2.1 (i). We note that condition (10) implies that ρ2( f ) ≤ 1 and the equality can
possibly take place. In fact, assume that (10) holds, then there exists r0 > 0 such that
for any r > r0, we have log T (r , f ) < r and thus ρ2( f ) ≤ 1. Moreover, whenever f is
taken to satisfy, for example, T (r , f ) = exp{ r

(log r)m } where m ≥ 1, one can easily get
both (10) and ρ2( f ) = 1. Hence, Theorem 2.1 is an improvement of all the difference
version of the logarithmic derivative lemma in several variables obtained before.

(ii). By the new version of the logarithmic difference lemma, all the second main theorem
and Picard-type theorem for meromorphic mappings from C

m into complex projective
spaces Pn(C) obtained in [3,4,30] (including also [5,21,31,44]) can be improved under
the assumption of (10).

Before giving the proof, we show the following lemma proved recently by Zheng and
Korhonen, by which they obtained an improvement of difference version of logarithmic
derivative lemma for meromorphic functions of one variable under assumption (10). This
lemma is an improvement of a result on growth properties of nondecreasing continuous
real functions ([20, Lemma 2.1] and [21]). Here the properties of real logarithmic convex
functions are considered. Note that the characteristic function T (r , f ) and counting function
N (r , f ) for a meromorphic function on C

n are satisfying the properties of nondecreasing
positive, logarithmic convex, continuous function for r .

Lemma 2.1 [49, Lemma 2.1] Let T (r) be a nondecreasing positive function in [1,+∞) and
logarithmic convex with T (r) → +∞(r → +∞). Assume that

lim inf
r→∞

log T (r)

r
= 0. (11)

Set

φ(r) = max
1≤t≤r

{
t

log T (t)

}

.

Then given a constant δ ∈ (0, 1
2 ), we have

T (r) ≤ T (r + φδ(r)) ≤
(
1 + 4φδ− 1

2 (r)
)
T (r), r /∈ Eδ,

where Eδ is a subset of [1,+∞) with the zero lower density. And Eδ has the zero upper
density if (11) holds for lim sup .

Remark 2.2 Note that φδ(r) → ∞ and φδ− 1
2 (r) → 0 as r → ∞ in Lemma 2.1. Then for

sufficiently large r , we have φδ(r) ≥ h for any positive constant h. Hence,

T (r) ≤ T (r + h) ≤ T (r + φδ(r)) ≤ (1 + ε)T (r), r /∈ E,

where E is a subset of [1,+∞) with the zero lower density.

The following lemma was obtained by Korhonen [30]. Since the assumption of f (0) �=
0,∞ for a meromorphic function f of one variable in [30, Lemma 5.1] can be omitted when
the Poisson–Jensen formula is used, it does not matter with [30, Lemma 5.2]. Thus, we delete
it in the statement.
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Lemma 2.2 [30, Lemma 5.2] Let f be a nonconstant meromorphic function in C
n, let c =

(c1, . . . , cn) ∈ C
n, let 1

4 < δ < 1, and denote c̃ j = (0, . . . , 0, c j , 0, . . . , 0). Then there
exists a nonnegative constant C(δ), depending only on δ, such that

∫

∂Bn(r)
log+

∣
∣
∣
∣
f (z + c̃ j )

f (z)

∣
∣
∣
∣ σn(z)

≤ 8π |c j |δC(δ)

δ(1 − δ)

(
R

r

)2n−2 n f (R,∞) + n f (R, 0)

r δ

+4π |c j |
1 − δ

(
R

r

)2n−2 (
R

R − (r + |c j |)
) (

R

R − r

)1−δ m f (r ,∞) + m f (r , 0)√
R2 − r2

for all R > r + |c j | > |c j |.
Now we give the proof of our version of logarithmic difference lemma.

Proof of Theorem 2.1 By the definition of counting function, we have

n f (r ,∞) + n f (r , 0) ≤ R

R − r

(

N (R, f ) + N

(

R,
1

f

))

for all R > r . Then it follows by Lemma 2.2 and the first main theorem that there exists a
positive constant K1, depending only on c j = (0, . . . , 0, c j , 0, . . . , 0) and δ

′ ∈ ( 14 , 1), such
that

m(r ,
f (z + c̃ j )

f (z)
) =

∫

∂Bn(r)
log+

∣
∣
∣
∣
f (z + c̃ j )

f (z)

∣
∣
∣
∣ σn(z) (12)

≤ K1K2(r , R)

(

T (R, f ) + log
1

| f (0)|
)

for all R > r + |c j | > |c j |, where

K2(r , R) =
(
R

r

)2n−2 (
1

R − (r + |c j |)
)

⎛

⎝ R√
R2 − r2

(
R

R − r

)1−δ
′

+ 1

r δ
′

⎞

⎠ .

Under the assumption of (10). Take R = (r + |c j |) + (r+|c j |)δ
(log T (r+|c j |, f ))δ , δ ∈ (0, 1

2 ). Then

for sufficiently large r ,

1

R − (r + |c j |) =
(
log T (r + |c j |, f )

r + |c j |
)δ

= o(1),

R

r
= 1 + |c j |

r
+ (r + |c j |)δ

r
)

1

(log T (r + |c j |, f ))δ
= o(1)

and

R√
R2 − r2

(
R

R − r

)1−δ
′

=
R
r√

R
r − 1

(
R
r

R
r − 1

)1−δ
′

= o(1).

Combining these with (12),

m

(

r ,
f (z + c̃ j )

f (z)

)

≤ o(1)

(

T (R, f ) + log
1

| f (0)|
)

(13)
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for all sufficiently large r . Moreover, under assumption (10), it follows from Lemma 2.1 that
for any ε

′
> 0 and φ(r) = r+|c j |

log T (r+|c j |, f ) ,

T (R, f ) ≤ (1 + ε
′
(r))T (r + |c j |, f ) ≤ (1 + ε

′
(r))2T (r , f )

holds for all r /∈ E1 where densE1 = 0. Hence, (13) yields

m(r ,
f (z + c̃ j )

f (z)
) =

∫

∂Bn(r)
log+

∣
∣
∣
∣
f (z + c̃ j )

f (z)

∣
∣
∣
∣ σn(z) = o (T (r , f )) (14)

for all r possibly outside the set E1 with densE1 = 0.
Now for any c ∈ C

n, it can be written as c = c̃1 + · · · + c̃n . Take c̃0 = 0. Since

f (z + c)

f (z)

= f (z + (c1, . . . , cn))

f (z + (c1, . . . , cn−1, 0))
· f (z + (c1, . . . , cn−1, 0))

f (z + (c1, . . . , cn−2, 0, 0))
· · · f (z + (c1, 0, . . . , 0))

f (z + (0, . . . , 0))

= f (z + ∑n
j=0 c̃ j )

f (z + ∑n−1
j=0 c̃ j )

· f (z + ∑n−1
j=0 c̃ j )

f (z + ∑n−2
j=0 c̃ j )

· · · f (z + ∑1
j=0 c̃ j ))

f (z + c̃0)
,

we get from (14) that

m(r ,
f (z + c)

f (z)
) =

n∑

j=1

o

⎛

⎝T

⎛

⎝r , f

⎛

⎝z +
j−1∑

k=0

c̃k

⎞

⎠

⎞

⎠

⎞

⎠ (15)

for all r possibly outside the set E1 with densE1 = 0.
Next, we assert that

T (r , f (z + c)) = T (r , f ) + o(T (r , f )) (16)

for any c = (c1, c2, . . . , cn) and for all r possibly outside a set F with dens(F) = 0. In fact,
by the first main theorem and (10), we have

lim sup
r→∞

log N (r , f )

r
≤ lim sup

r→∞
log T (r , f )

r
= 0.

Then by Lemma 2.1, we get that

N (r + h, f ) = (1 + o(1))N (r , f ) (17)

holds for any constant h(> 0) independently on r and all r /∈ E2 with densE2 = 0. Hence,
it follows from (14) and (17) that

T (r , f (z + c̃ j ) = m(r , f (z + c̃ j )) + N (r , f (z + c̃ j ))

≤ m

(

r ,
f (z + c̃ j )

f (z)

)

+ m(r , f ) + N (r + |c̃ j |, f )

= m

(

r ,
f (z + c̃ j )

f (z)

)

+ m(r , f ) + N (r , f ) + o(N (r , f ))

= T (r , f ) + o(T (r , f ))
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for all r possibly outside the set E1 ∪ E2 with dens(E1 ∪ E2) = 0. Thus, it deduces that

T (r , f (z + c)) ≤ T (r , f (z + (c1, . . . , cn−1, 0))) + o(T (r , f (z + (c1, . . . , cn−1, 0))))

≤ T (r , f (z + (c1, . . . , cn−1, 0))) + o(T (r , f (z + (c1, . . . , cn−2, 0, 0)))
...

≤ T (r , f (z + (c1, 0, . . . , 0))) + o(T (r , f ))

≤ T (r , f ) + o(T (r , f ))

for all r possibly outside the set F = E1 ∪ E2 with densF = 0. Note that f (z) = f ((z +
c) − c)). Then we get the assertion.

Therefore, the theorem is obtained immediately from (15) and (16). ��
From the proof of Theorem 2.1, we have assertion (16). Since the relation between

T (r , f (z)) and T (r , f (z + c)) is very useful to study solutions of complex difference equa-
tions, we here rewrite it as a theorem.

Theorem 2.2 Let f be a nonconstant meromorphic function on Cn with

lim sup
r→∞

log T (r , f )

r
= 0,

then

T (r , f (z + c)) = T (r , f ) + o(T (r , f ))

holds for any constant c ∈ C
n \ {0} and all r /∈ E with densE = 0.

If using the Hinkkanen’s Borel-type growth lemma but not Lemma 2.1, we can obtain
another form of the logarithmic difference lemma as follows. A tropical version is also given
by Cao and Zheng [6] at the same time.

Theorem 2.3 Let f be a nonconstant meromorphic function on Cn, and let c ∈ C
n \ {0}. If

lim sup
r→∞

log T (r , f )(log r)ε

r
= 0, (18)

for any ε(> 0), then

m

(

r ,
f (z + c)

f (z)

)

+ m

(

r ,
f (z)

f (z + c)

)

= o (T (r , f ))

for all r /∈ E, where E is a set with
∫
E

dt
t log t < +∞ which implies E with zero upper

logarithmic density measure, i.e.,

densE = lim sup
r→∞

1

log r

∫

E∩[1,r ]
dt

t
= 0.

The next lemma is the Hinkkanen’s Borel-type growth lemma (or see also a similar lemma
[11, Lemma 3.3.1].

Lemma 2.3 [25, Lemma4] Let p(r) and h(r) = ϕ(r)/r are positive nondecreasing functions
defined for r ≥ � > 0 and r ≥ τ > 0, respectively, such that

∫ ∞
�

dr
p(r) = ∞ and

∫ ∞
τ

dr
ϕ(r) <
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∞.Let u(r) be a positive nondecreasing function defined for r ≥ r0 ≥ � such that u(r) → ∞
as r → ∞. Then if C is real with C > 1, we have

u(r + p(r)

h(u(r))
) < Cu(r)

whenever r ≥ r0, u(r) > τ, and r /∈ E where

∫

E

dr

p(r)
≤ 1

h(w)
+ C

C − 1

∫ ∞

w

dr

ϕ(r)
< ∞

and w = max{τ, u(r0)}.

Proof of Theorem 2.3 In Lemma 2.3, we take

u(r) = T (r , f ), p(r) = r log r ,

and

h(r) = ϕ(r)

r

where ϕ(r) = r log r(log log r)1+ε with ε > 0. Then, it is obvious that
∫ ∞
�

dr
p(r) = ∞ and

∫ ∞
τ

dr
ϕ(r) < ∞ for r ≥ � > 0 and r ≥ τ > 0. Let

R := (r + |c j |) + p(r + |c j |)
(r + |c j |)h(T f (r + |c j |))

= (r + |c j |) + (r + |c j |) log(r + |c j |)
log T f (r + |c j |)(log log T f (r + |c j |))1+ε

.

Note that

T (R, f ) = T

(

(r + |c j |) + (r + |c j |) log(r + |c j |)
log T f (r + |c j |)(log log T f (r + |c j |))1+ε

, f

)

.

Applying Lemma 2.3, we have

T (R, f ) ≤ CT (r + |c j |, f ) (19)

for all r possibly outside a set E1 satisfying

E1 := {r ∈ [r0,∞) : T (R, f ) ≥ CT (r + |c j |, f )}

where
∫

E1

dt

p(t)
=

∫

E1

dt

t log t

≤ 1

logw(log logw)1+ε
+ C

C − 1

∫ ∞

w

dt

t log t(log log t)1+ε

< +∞.
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This gives

logdensE1 = lim sup
r→∞

1

log r

∫

E1∩[1,r ]
dt

t

≤ lim sup
r→∞

∫
E1∩[1,log r ]

dt
t

log r
+ lim sup

r→∞

∫

E1∩[log r ,r ]
dt

t log t

≤ lim sup
r→∞

log log r

log r
+ 0 = 0.

Under condition (18), we get that for any ε
′
> 0 and sufficiently large r ,

log T (r + |c j |, f )(log(r + |c j |))ε
r + |c j | < ε

′
. (20)

Since (18) implies ρ2( f ) ≤ 1 according to Remark 2.1(i), we have

log log T (r + |c j |, f )

log(r + |c j |) ≤ 1 + ε
′′

(21)

for any ε
′′

> 0 and sufficiently large r . Then (20) and (21) give that for sufficiently large r ,

1

R − (r + |c j |) = log T (r + |c j |, f )(log log T (r + |c j |, f ))1+ε

(r + |c j |) log(r + |c j |)

= log T (r + |c j |, f )(log(r + |c j |))ε
r + |c j |

(
log log T (r + |c j |, f )

log(r + |c j |)
)1+ε

≤ ε
′
(1 + ε

′′
)1+ε,

R

r
= 1 + |c j |

r
+

(

1 + |c j |
r

)
log(r + |c j |)

log T (r + |c j |, f )(log log T (r + |c j |, f ))1+ε

= 1 + |c j |
r

+
(

1 + |c j |
r

)

× 1

(log(r + |c j |))ε log T (r + |c j |, f )
(
log log T (r+|c j |, f )

log(r+|c j |)
)1+ε

= o(1)

and

R√
R2 − r2

(
R

R − r

)1−δ
′

=
R
r√

R
r − 1

(
R
r

R
r − 1

)1−δ
′

= o(1).

Combining these with (12) and (19),

m(r ,
f (z + c̃ j )

f (z)
) ≤ o(1)

(

T (r + |c j |, f ) + log
1

| f (0)|
)

(22)

for all r possibly outside a set E1 with
∫
E1

dt
t log t < +∞.

By (19), we also have

T

(

r + r log r

log T (r , f )(log log T (r , f ))1+ε
, f

)

≤ CT (r , f )
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for all r /∈ E1. It follows from (20) and (21) that

log T (r , f )(log r)ε

r
< ε

′

and

log log T (r , f )

log r)
≤ 1 + ε

′′
.

Thus, it yields that

r log r

log T (r , f )(log log T (r , f ))1+ε
→ ∞

as r → ∞. Then we have

r + |c j | ≤ r + r log r

log T (r , f )(log log T (r , f ))1+ε

for sufficiently large r . Hence,

T (r + |c j |, f ) ≤ T (r + r log r

log T (r , f )(log log T (r , f ))1+ε
, f ) ≤ CT (r , f ) (23)

for all r /∈ E1. Therefore, we get from (22) and (23) that Eq. (14) is still valid for r possibly
outside the set E1. Using as the same reason as in the proof of Theorem 2.1 to get (15), we
then get immediately the conclusion of the theorem from (15) and Theorem 2.2. ��

In the proof of Theorem 2.3, we do not know how to improve condition (18) by (10)
whenever using the Hinkkanen’s Borel-type growth lemma (Lemma 2.3). The difficulty we
met is how to give well-defined functions p(r) and ϕ(r) when applying Lemma 2.3. After
finished this paper, we learn that Korhonen–Tohge–Zhang–Zheng [32, Lemma 3.1] recently
obtained a similar result on the logarithmic difference lemma for meromorphic functions in
one variable under the assumption of

log T (r , f ) ≤ r

(log r)2+ν
(24)

for any ν(> 0). It is easy to see that this assumption (24) is stronger than (18). Hence,
Theorem 2.3 (and thus Theorem 2.1) is an improvement and extension of their result.

For study on the solutions of complex partial difference equations, we next prove another
form of the logarithmic difference lemma for meromorphic functions with finite order in
several complex variables. This is an extension of [12, Corollary 2.5] from one variable to
several variables.

Theorem 2.4 Let f be a nonconstant meromorphic function on C
n and let c ∈ C

n \ {0}. If
f is of finite order, then

m

(

r ,
f (z + c)

f (z)

)

+ m

(

r ,
f (z)

f (z + c)

)

= O
(
rρ( f )−1+ε

)

holds for any ε(> 0).

Proof Since f is of finite order, T (r , f ) ≤ rρ( f )+ε holds for any ε > 0. Take R = 2r . Then,
it follows from (12) that

m(r ,
f (z + c̃ j )

f (z)
) = O(rρ( f )−1+ε).
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For any c ∈ C
n which can be written as c = c̃1 + · · · + c̃n . Take c̃0 = 0. Since

f (z + c)

f (z)

= f (z + (c1, . . . , cn))

f (z + (c1, . . . , cn−1, 0))
· f (z + (c1, . . . , cn−1, 0))

f (z + (c1, . . . , cn−2, 0, 0))
· · · f (z + (c1, 0, . . . , 0))

f (z + (0, . . . , 0))

= f (z + ∑n
j=0 c̃ j )

f (z + ∑n−1
j=0 c̃ j )

· f (z + ∑n−1
j=0 c̃ j )

f (z + ∑n−2
j=0 c̃ j )

· · · f (z + ∑1
j=0 c̃ j ))

f (z + c̃0)
,

we then get that

m(r ,
f (z + c)

f (z)
)

= O
(
rρ( f )−1+ε + rρ( f (z+∑1

j=0 c̃ j ))−1+ε + · · · + rρ(( f (z+∑n−1
j=0 c̃ j ))−1+ε

)
. (25)

The assumption ρ( f ) < ∞ implies that we can get from Theorem 2.2 that ρ( f ) = ρ( f (z+∑1
j=0 c̃ j )) = · · · = ρ( f ((z + ∑n−1

j=0 c̃ j ))) = ρ( f (z + c)). Therefore, the conclusion of this
theorem is true. ��

By Lemma 2.1, one can get that N (r + |c|, f ) = N (r , f ) + o(N (r , f )) for r /∈
E with densE = 0 under the assumption of lim supr→∞

log N (r , f )
r = 0. Note that

N (r , f (z + c)) ≤ N (r + |c|, f ) by the definition of counting function. Hence, provided
that lim supr→∞

log N (r , f )
r = 0, we have

N (r , f (z + c)) = N (r , f ) + o(N (r , f )) (26)

for r /∈ E .Below, we get amore explicit relationship between N (r , f (z+c)) and N (r , f ) for
finite convergence exponent of poles (and thus true also for finite order). This is an extension
of [12, Theorem 2.2] from one variable to several variables.

Theorem 2.5 Let the convergence exponent of poles of a meromorphic function f on C
n is

finite, i.e.,

λ

(
1

f

)

:= lim sup
r→∞

log N (r , f )

log r
< ∞,

then for any c ∈ C
n \ {0},

N (r , f (z + c)) = N (r , f ) + O(rλ( 1
f )−1+ε

)

holds for any ε > 0. The λ( 1
f ) can be changed by ρ( f ) whenever f is of finite order.

Proof Set ‖c‖ = √|c1|2 + · · · + |cm |2. Sine λ( 1
f ) < ∞, it is enough to take the same

method due to Zheng and Korhonen [49, pp. 15–16] to obtain that

N (r + ‖c‖, f ) = N (r , f ) + O(rλ( 1
f )−1+ε

)

holds for any ε > 0. The original proof is owing to Chiang and Feng [12, Theorem 2.2] by
the definition of Riemann–Stieltjes integral for counting functions. (In fact, they proved this
lemma for meromorphic functions of one variable.) On the other hand, it is obvious that

N (r , f (z + c)) ≤ N (r + ‖c‖, f )
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by the definition of counting function. Hence, we get that

N (r , f + c) ≤ N (r , f ) + O(rλ( 1
f )−1+ε

)

and thus

N (r , f ) ≤ N (r , f + c) + O(rλ( 1
f +c )−1+ε

)

holds for any ε > 0. The assumption λ( 1
f ) < ∞ implies that we can get from (26) that

λ( 1
f ) = λ( 1

f (z+c) ). Therefore,

N (r , f + c) = N (r , f + c) + O(rλ( 1
f )−1+ε

)

holds for any ε > 0. Obviously, the λ( 1
f ) can be changed by the order of f from the above

discussion whenever f is of finite order. ��

Finally in this section, we give the explicit relation T (r , f (z + c)) ∼ T (r , f ) for a
meromorphic function with finite order. This is an extension of [12, Theorem 2.1].

Theorem 2.6 If a meromorphic function f on C
n is of finite order, then

T (r , f (z + c)) = T (r , f ) + O(rρ( f )−1+ε)

for any c ∈ C
n \ {0} and for any ε > 0.

Proof By Theorems 2.4 and 2.5, we have

T (r , f (z + c)) = m(r , f (z + c)) + N (r , f (z + c))

≤ m

(

r ,
f (z + c)

f (z)

)

+ m(r , f ) + N (r , f ) + O(rρ( f )−1+ε)

= T (r , f ) + O(rρ( f )−1+ε).

This implies

T (r , f ) ≤ T (r , f (z + c)) + O(rρ( f (z+c))−1+ε).

Since ρ( f ) < ∞, it follows from Theorem 2.2 that ρ( f (z+c)) = ρ( f ).Hence, the theorem
is proved. ��

3 Partial difference equations

In this section, we will consider meromorphic solutions of partial difference equations by
making use of our results on logarithmic difference lemma. Recall that a meromorphic func-
tion g is said to be a small function with respect to another meromorphic function f if
T (r , g) = o(T (r , f )). For example, constant functions are small with respect to rational
functions, and finite-order meromorphic functions are small with respect to infinite-order
meromorphic functions. A meromorphic solution w on C

n of a partial difference equation
(or even a general form of functional equation) is called admissible if all coefficients {a j } of
the equation are small functions with respect to w.

123



Logarithmic difference lemma in several complex variables and… 781

3.1 Some nonlinear partial difference equations

Let us start with the discrete KdV equation [26] of the form Xi+1
j+1 = Xi

j + 1
Xi

j+1
− 1

Xi+1
j

. Since

this form is not very convenient, its potential form Xi+1
j+1 = Xi

j +
Zi
j

Xi+1
j −Xi

j+1
was studied (see

[42]). Motivated by the discrete potential KdV equation, we consider the partial difference
equation as follows.

Theorem 3.1 Let c1, c2 ∈ C \ {0}. Let f be a nontrivial meromorphic solution of the partial
difference equation

f (z1 + c1, z2 + c2) = f (z1, z2) + A(z1, z2)

f (z1, z2 + c2) − f (z1 + c1, z2)
, (27)

where A(z1, z2) is a nonzero meromorphic function on C2 which is small with respect to the
solution f , that is T (r , A) = o(T (r , f )). If δ f (0) > 0, then

lim sup
r→∞

log T (r , f )

r
> 0.

Proof Assume that a nontrivial meromorphic solution f satisfies the condition of
lim supr→∞

log T (r , f )
r = 0. Since A is a nonzero meromorphic function which is small

with respect to f , we get from the first main theorem that

m

(

r ,
1

A

)

≤ T

(

r ,
1

A

)

= T (r , A) + O(1) = o(T (r , f )).

It follows from Eq. (27) that

1

f 2(z1, z2)
= 1

A(z1, z2)

(
f (z1 + c1, z2 + c2)

f (z1, z2)
− 1

)(
f (z1, z2 + c2)

f (z1, z2)
− f (z1 + c1, z2)

f (z1, z2)

)

,

and thus,

m(r ,
1

f 2(z1, z2)
) ≤ m

(

r ,
f (z1 + c1, z2 + c2)

f (z1, z2)

)

+ m

(

r ,
f (z1, z2 + c2)

f (z1, z2)

)

+m

(

r ,
f (z1 + c1, z2)

f (z1, z2)

)

+ m(r ,
1

A(z1, z2)
) + O(1)

≤ m

(

r ,
f (z1 + c1, z2 + c2)

f (z1, z2)

)

+ m

(

r ,
f (z1, z2 + c2)

f (z1, z2)

)

+m

(

r ,
f (z1 + c1, z2)

f (z1, z2)

)

+ o(T (r , f )).

By Theorem 2.1, one can deduce that

m

(

r ,
f (z1 + c1, z2 + c2)

f (z1, z2)

)

+ m

(

r ,
f (z1 + c1, z2)

f (z1, z2)

)

+ m

(

r ,
f (z1, z2 + c2)

f (z1, z2)

)

= o(T (r , f ))

hold for r /∈ E where E is a set with densE = 0. Hence,

T (r , f 2) = T

(

r ,
1

f 2

)

+ O(1) = N

(

r ,
1

f 2

)

+ m

(

r ,
1

f 2

)

+ O(1)

≤ 2N

(

r ,
1

f

)

+ o(T (r , f ))
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holds for all r /∈ E where E is a set with densE = 0. Since δ f (0) > 0, we have

N

(

r ,
1

f

)

<

(

1 − δ f (0)

2

)

T (r , f ).

This gives

T (r , f 2) ≤ 2

(

1 − δ f (0)

2

)

T (r , f ) + o(T (r , f ))

holds for all r /∈ E where E is a set with densE = 0. By the Valion–Mohon’ko theorem in
several complex variables [27, Theorem 3.4], we get

T (r , f 2) = 2T (r , f ) + o(T (r , f )).

Therefore, it follows that

δ f (0)T (r , f ) ≤ o(T (r , f ))

for all r /∈ E where E is a set with densE = 0. This is a contradiction. ��
Example 3.1 Let c1 ∈ C \ {0}, c2 = 2π i . Then the transcendental meromorphic function

f (z1, z2) = z21
z2

+ ez2 is a solution of the partial difference equation (27) with rational

coefficient A(z1, z2) = −(z21+2c1z1)(2c1z1z2+c21z2−2π i z21)

z22(z2+2π i)
. One can deduce that δ f (0) = 0,

ρ( f ) = 1 and lim supr→∞
log T (r , f )

r = 0. This means that the assumption δ f (0) > 0 in
Theorem 3.1 is necessary.

Example 3.2 Denote℘(z2)by theWeierstrass℘-function (an elliptic function) of onevariable
z2 with two periods w1 and w2 such that w1

w2
/∈ R defined as

℘(z2) = 1

z2
+

∑

μ,ν;μ2+ν2 �=0

{
1

(z2 + μw1 + νw2)2
− 1

(μw1 + νw2)2

}

,

which is even and satisfies the differential equation (℘ (z2)
′
)2 = 4℘(z2)3 − 1 after appro-

priately choosing w1 and w2. It was proved by Bank and Langley [2, Corollary 2] that
T (r , ℘) = O(r2) and m(r , ℘) = o(r2) = o(T (r , ℘)). Then, the meromorphic function
f (z1, z2) = 2z1 + ℘(z2) is a solution of the partial difference equation

f (z1 + w1, z2 + w2) = f (z1, z2) + 4w2
1

f (z1, z2 + w2) − f (z1 + w1, z2)
.

Obviously, we have ρ( f ) = 2 and thus lim supr→∞
log T (r , f )

r = 0. It seems not easy
to compute N (r , 1

2z1+℘(z2)
), and however, it is interesting that by Theorem 3.1, we get

immediately δ f (0) = 0, and thus N (r , 1
2z1+℘(z2)

) = O(r2). Of course, if one can compute

directly N (r , 1
2z1+℘(z2)

) = O(r2), then this implies that the condition δ f (0) > 0 in Theorem
3.1 is necessary.

Question 3.1 Observe that any nonzero meromorphic function with two periods (c1, 0) and
(0, c2) must satisfy the discrete KdV partial difference equation

f (z1 + c1, z2 + c2) = f (z1, z2) + 1

f (z1 + c1, z2)
− 1

f (z1, z2 + c2)
. (28)
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For example, f (z1, z2) = sin z1 − ℘(z2) satisfies Eq. (28) with c1 = 2kπ and c2 = w j

( j ∈ {1, 2}). Thus, it is interesting to ask whether all meromorphic solutions of the discrete
KdV partial difference equation (28) must be period or not?

Recall that Gross [19] andHayman [23] investigatedmeromorphic solutions of the Fermat
functional equations f m + gm = 1 and f m + gm + hm = 1 of one variable, respectively.
Motivated by this, we get an interesting result on solutions of nonlinear Fermat-type partial
difference equations as follows.

Theorem 3.2 Let c1, c2 ∈ C \ {0}. Suppose that f is a nontrivial meromorphic solution of
the Fermat-type partial difference equations

1

f m(z1 + c1, z2 + c2)
+ 1

f m(z1, z2)
= A(z1, z2) f

n(z1, z2), (29)

or

1

f m(z1 + c1, z2 + c2)
+ 1

f m(z1 + c1, z2)
+ 1

f m(z1, z2 + c2)
= A(z1, z2) f

n(z1, z2),

(30)

where m ∈ N, n ∈ N ∪ {0}, and A(z1, z2) is a nonzero meromorphic function on C
2 with

respect to the solution f , that is T (r , A) = o(T (r , f )). If δ f (∞) > 0, then

lim sup
r→∞

log T (r , f )

r
> 0.

Proof Since A is a small function with respect to f , we get

m

(

r ,
1

A

)

≤ T

(

r ,
1

A

)

= T (r , A) + O(1) = o(T (r , f )).

Since δ f (∞) > 0, we have

N (r , f ) <

(

1 − δ f (∞)

2

)

T (r , f ).

By the Valion–Mohon’ko theorem in several complex variables [27, Theorem 3.4], we have

T (r , f m+n) = (m + n)T (r , f ) + o(T (r , f )).

Furthermore, by Theorem 2.1, we have

m

(

r ,
f (z1, z2)

f (z1 + c1, z2 + c2)

)

+ m

(

r ,
f (z1, z2)

f (z1 + c1, z2)

)

+ m

(

r ,
f (z1, z2)

f (z1, z2 + c2)

)

= o(T (r , f ))

hold for r /∈ E where E is a set with densE = 0.
It follows from the Fermat-type partial difference equation (30) that

f n+m(z1, z2)

= 1

A(z1, z2)

[(
f (z1, z2)

f (z1 + c1, z2 + c2)

)m

+
(

f (z1, z2)

f (z1, z2 + c2)

)m

+
(

f (z1, z2)

f (z1 + c1, z2)

)m]

.
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Therefore, we have

(m + n)T (r , f )

= T (r , f m+n) + o(T (r , f ))

= N (r , f m+n) + m(r , f m+n) + o(T (r , f ))

= N (r , f m+n) + m(r ,
1

A
) + m · m

(

r ,
f (z1 + c1, z2 + c2)

f (z1, z2)

)

+m · m
(

r ,
f (z1, z2 + c2)

f (z1, z2)

)

+ m · m
(

r ,
f (z1 + c1, z2)

f (z1, z2)

)

+ o(T (r , f ))

≤ (m + n)(1 − δ f (∞)

2
)T (r , f ) + o(T (r , f )).

We obtain a contradiction. Similarly discussion about Eq. (29) also gives a contradiction. ��
Example 3.3 [45, Example 1.5] Let c1 and c2 are two complex values such that c1 + 2ic2 =
−π

2 + 2kπ (k ∈ Z). Then the meromorphic function f (z1, z2) = 1
cos(z1,2i z2)

is a solution

of the Fermat-type partial difference equation 1
f 2(z1+c1,z2+c2)

+ 1
f 2(z1,z2)

= 1. Obviously,

δ f (∞) = 0, ρ( f ) = 1 and lim supr→∞
log T (r , f )

r = 0. This shows that the assumption
δ f (∞) > 0 in Theorem 3.2 is necessary.

Since δ f (∞) > 0 is always true for any nonconstant entire function, Theorem 3.2 tells us

that Eqs. (29) and (30) do not have any admissible entire solutions of lim supr→∞
log T (r , f )

r =
0. Furthermore, if we take g(z1, z2) = 1

f (z1,z2)
, then a corollary is obtained immediately by

Theorem 3.2.

Corollary 3.1 Let c1, c2 ∈ C \ {0}. Suppose that g is a nontrivial meromorphic solution of
the Fermat-type partial difference equations

gm(z1 + c1, z2 + c2) + gm(z1, z2) = A(z1, z2)

gn(z1, z2)
,

or

gm(z1 + c1, z2 + c2) + gm(z1 + c1, z2) + gm(z1, z2 + c2) = A(z1, z2)

gn(z1, z2)
,

where m ∈ N, n ∈ N ∪ {0}, and A(z1, z2) is a nonzero meromorphic function on
C
2 with respect to the solution g, that is T (r , A) = o(T (r , g)). If δg(0) > 0, then

lim supr→∞
log T (r ,g)

r > 0.

3.2 Linear partial difference equations

Next, owing to many models of partial difference equations such as discrete heat equation,
discrete Laplace equation, nonsymmetric partial difference functional equation and discrete
Poisson equation, we consider general partial linear difference equations and obtain the
following results. The first theorem extends and generalizes some previous results of complex
difference equations in one variable (see [12, Theorem 9.2] and [7, Theorem 6.2.3].

Theorem 3.3 Let A0, . . . , An are meromorphic functions on C
m such that there exists an

integer k ∈ {0, . . . , n} satisfying
ρ(Ak) > max{ρ(A j ) : 0 ≤ j ≤ n, j �= k}, and δAk (∞) > 0.
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If f is a nontrivial meromorphic solution of linear partial difference equation

An(z) f (z + cn) + · · · + A1(z) f (z + c1) + A0(z) f (z) = 0 (31)

where c1, . . . , cn are distinct values of Cm \ {0}, then we have ρ( f ) ≥ ρ(Ak) + 1.

Proof If ρ(Ak) = ∞, then we obviously get from (31) that f must be of infinite order.
Without loss of generality, we assume +∞ > ρ(Ak) > 0. In this case, it gives that Ak

must be transcendental. We find that there is nothing to do if f is of infinity order. So, we
may assume that ρ( f ) < +∞. From Eq. (31), we get that the solution f of (31) cannot
be any nonzero rational function. Now we only need to assume that f is a transcendental
meromorphic function with finite order. Equation (31) gives

− Ak = An
f (z + cn)

f (z + ck)
+ · · · + Ak+1

f (z + ck+1)

f (z + ck)

+Ak−1
f (z + ck−1)

f (z + ck)
+ · · · + A0

f (z)

f (z + ck)
. (32)

Since δ := δAk (∞) > 0, by the definition we get that

N (r , Ak) <

(

1 − δ

2

)

TAk (r). (33)

It yields by Theorem 2.4 that

m

(

r ,
f (z + c j )

f (z + ck)

)

= O(rρ( f )−1+ε) (34)

for any ε(> 0), where j ∈ {0, 1, . . . , n} \ {k} and c0 = 0. Then from (32), (33) and (34), we
have

δ

2
T (r , Ak) ≤ T (r , Ak) − N (r , Ak)

= m(r , Ak)

≤
∑

0≤ j≤n; j �=k

m(r , A j ) +
∑

0≤ j≤n; j �=k

m(r ,
f (z + c j )

f (z + k)
) + O(1)

≤
∑

0≤ j≤n; j �=k

T (r , A j ) + O(rρ( f )−1+ε). (35)

Set

max{ρ(A j ) : 0 ≤ j ≤ n, j �= k} := σ < ρ(Ak) := ρ

such that ρ − σ > 3ε > 0. Then for the above ε > 0,

T (r , A j ) < rσ+ε < rρ−2ε

holds for all 0 ≤ j ≤ n, j �= k. From the definition of order of Ak, there exists a sequence
{rm}+∞

m=1 (with rm → ∞ as m → ∞) such that

T (rm, Ak) > rρ−ε
m

for sufficiently large rm . Hence, it follows from (35) that

δ

2
rρ−ε
m ≤ (n − 1)rσ+ε

m + O(rρ( f )−1+ε
m )

≤ (n − 1)rρ−2ε
m + O(rρ( f )−1+ε

m ),
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and thus
(

δ

2
+ o(1)

)

rρ−ε
m ≤ O(rρ( f )−1+ε

m ).

This implies ρ( f ) ≥ ρ + 1 = ρ(Ak) + 1. ��
Obvious, if the dominant coefficient Ak is holomorphic, then δAk (∞) > 0. Hence, we get

immediately the following corollary.

Corollary 3.2 Let A0, . . . , An are entire functions on C
m such that there exists an integer

k ∈ {0, . . . , n} satisfying
ρ(Ak) > max{ρ(A j ) : 0 ≤ j ≤ n, j �= k}.

If f is a nontrivial entire solution of linear partial difference equation

An(z) f (z + cn) + · · · + A1(z) f (z + c1) + A0(z) f (z) = 0

where c1, . . . , cn are distinct values of Cm \ {0}, and then, we have ρ( f ) ≥ ρ(Ak) + 1.

Example 3.4 Let c ∈ C. Then, the entire function w(z) = ez
2+z of one variable is a solution

of the linear partial difference equation

1

ec2+c
w(z + c) − e2zcw(z) = 0.

Here ρ(w) = 2 and ρ( 1
ec2+c

) = 0 and ρ(−e2zc) = 1. This means that the conclusion

ρ( f ) ≥ ρ(Ak) + 1 in Theorem 3.3 is sharp.

Example 3.5 Let c1 = (1, 0), c2 = (0, i) ∈ C
2. Then, w(z) = ez

2
1+z22 is an entire solution of

linear partial difference equation

A2(z)w(z + c2) + A1(z)w(z + c1) + A0w(z) = 0,

that is

A2(z)w(z1, z2 + i) + A1(z)w(z1 + 1, z2) + A0w(z) = 0,

where A1(z) ≡ 1, A2(z) = z1 + z2 and A0(z) = − (
(z1 + z2)e2z1+1 + e2i z2−1

)
. Here

ρ(w) = 2 and ρ(A1) = ρ(A2) = 0 and ρ(A0) = 1. This also means that the conclusion
ρ( f ) ≥ ρ(Ak) + 1 in Theorem 3.3 is sharp.

Example 3.6 Let c1 = (1, i), c2 = (i,−1) ∈ C
2. Then w(z) = ez

2
1−2z22

z1+z2
is a meromorphic

solution of linear partial difference equation

A2(z)w(z + c2) + A1(z)w(z + c1) + A0w(z) = 0,

that is

A2(z)w(z1 + 1, z2 + i) + A1(z)w(z1 + i, z2 − 1) + A0w(z1, z2) = 0,

where A1(z) = 1
z1+z2

, A2(z) = z1+z2+i−1
z1+z2

and

A0(z) = −
(

e2z1−4z2i+3

z1 + z2 + 1 + i
+ e2i z1+4z2−3

)

.

Here ρ(w) = 2 and ρ(A1) = ρ(A2) = 0 and ρ(A0) = 1.This alsomeans that the conclusion
ρ( f ) ≥ ρ(Ak) + 1 in Theorem 3.3 is sharp.
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Example 3.7 Let c1 = (1, i), c2 = (i, 1) ∈ C
2. Thenw(z) = eiz1+z2 −1 is an entire solution

of linear partial difference equation

A2(z)w(z + c2) + A1(z)w(z + c1) + A0w(z) = 0,

that is

A2(z)w(z1 + 1, z2 + i) + A1(z)w(z1 + i, z2 + 1) + A0w(z1, z2) = 0,

where A1(z) = A2(z) ≡ 1 and

A0(z) = −1 −
(
eiz1+z2+2i − 1

eiz1+z2 − 1

)

.

Here ρ(w) = 1 and ρ(A1) = ρ(A2) = 0, ρ(A0) = 1 and δA0(∞) = 0. This implies that
the assumption δAk (∞) > 0 in Theorem 3.3 is necessary.

Question 3.2 It is obvious that w(z) = ez1+2z2

z+2z2
is a meromorphic solution of the partial

difference equation

A(z)w(z1 + 1, z2 − 1) + B(z)w(z1, z2) = 0,

where the coefficients B(z) = − z1+2z2
e and A(z) = z1 + 2z2 − 1 are polynomials in C

2.

Obviously, ρ(w) = 1 = ρ(A) + 1 = ρ(B) + 1. Thus, we ask what can be said for a general
partial difference equation (31) with all polynomial coefficients A0, . . . , An?

Since there is the model of the discrete or finite Poisson equation (see [10])

ui, j+1 + ui+1, j + ui, j−1 + ui−1, j − 4ui, j = gi j ,

it is interesting to consider the following result on linear nonhomogeneous partial difference
equations.

Theorem 3.4 Let a meromorphic function f on Cm be a solution of linear partial difference
equation

An(z) f (z + cn) + · · · + A1(z) f (z + c1) + A0(z) f (z) = F(z), (36)

where meromorphic coefficients A0, . . . , An, F(�≡ 0) onCm are small functions with respect
to f , and c1, . . . , cn are distinct values of Cm \ {0}. If lim supr→∞

log T (r , f )
r = 0, then

δ f (0) = 0.

Proof Assume that the defect of zeros of f satisfies δ f (0) > 0. Then, we have

N

(

r ,
1

f

)

<

(

1 − δ f (0)

2

)

T (r , f ).

It follows from Eq. (36) that

1

f
= 1

F

(

An
f (z + cn)

f
+ An−1

f (z + cn−1)

f
+ · · · + A1

f (z + c1)

f
+ A0

)

.
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Under the assumption of lim supr→∞
log T (r , f )

r = 0, we get from the first main theorem and
Theorem 2.1 that

m(r ,
1

f
) ≤ m

(

r ,
1

F

)

+
n∑

j=1

m

(

r ,
f (z + c j )

f

)

+
n∑

j=0

m
(
r , A j

) + O(1)

≤ T (r , F) +
n∑

j=0

T (r , A j ) +
n∑

j=1

m

(

r ,
f (z + c j )

f

)

+ O(1)

= o(T (r , f )).

for r /∈ E where E is a set with densE = 0. This gives

T (r , f ) + O(1) = T

(

r ,
1

f

)

= m

(

r ,
1

f

)

+ N

(

r ,
1

f

)

≤ N

(

r ,
1

f

)

+ o(T (r , f ))

≤
(

1 − δ f (0)

2

)

T (r , f ) + o(T (r , f ))

for all r /∈ E . Therefore, we get

δ f (0)T (r , f ) ≤ o(T (r , f ))

for all r /∈ E where E is a set with densE = 0. This is a contradiction. ��
Example 3.8 It is obvious that f (z1, z2) = z1ez2 with lim supr→∞

log T (r , f )
r = 0 and δ f (0) >

0 is an entire solution of partial difference equation

1

ez2
f (z1, z2 − 1) + 1

z1 + 1
f (z1 + 1, z2) = ez2 + z1

e
.

Here the coefficient 1
z1+1 is a small function with respect to f , and however, the other

coefficients 1
ez2 and ez2 + z1

e are not. This means that it is necessary of the assumption that
the coefficients are small with respect to the solution in Theorem 3.4.

Example 3.9 Let c2 = (1, 0) and c1 = (0,−2i). Then, f (z) = ez
2
1+z2z1 with

lim supr→∞
log T (r , f )

r = 0 and δ f (0) = 1 is an entire solution of partial difference equation

1

e1+2z1
f (z1 + 1, z2) − e2i z2 f (z1, z2 − 2i) = 0.

Here the coefficients 1
e1+2z1

and −e2i z2 are small functions with respect to the solution f .
This implies that the coefficient F in Theorem 3.4 cannot be identical to zero.

3.3 Difference analogues of Tumura–Clunie theorem in several complex variables

Now, we will extend difference version of Tumura–Clunie theorem from one variable to
several variables. The Clunie lemma [13] for meromorphic functions of one variable in
Nevanlinna theory has been a powerful tool of studying complex differential equations and
related fields, particularly the lemma has been used to investigate the value distribution of
certain differential polynomials; see [13] for the original versions of these results, as well as
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[22,33]. A slightly more general version of the Clunie lemma can be found in [24, pp. 218–
220]; see also [33, Lemma 2.4.5]. In 2007, the additional assumptions in the He–Xiao version
of the Clunie lemma have been removed by Yang and Ye in [46, Theorem 1]. A generalized
Clunie lemma for meromorphic functions of several complex variables was proved in [38];
for some special cases, refer [27,29]. Recently, Hu and Yang [28] extended the classical
Tumura–Clunie theorem ([22, Theorem 3.9] and [39]) for meromorphic functions of one
variable to that of meromorphic functions of several complex variables.

We prove a difference counterpart of the Hu–Yang’s version [28] of Tumura–Clunie
theorem in several complex variables as follows, which in fact generalize and extend the
corresponding result of one variable due to Laine and Yang [35, Theorem 1] modified later
by Chen et al. [8] (see also [7, Theorem 4.3.4]). Set a difference polynomial of several
complex variables

G(z, f ) =
∑

λ∈J

bλ(z)
τλ∏

j=1

f (z + qλ, j )
μλ, j , (37)

wheremaxλ∈J
∑τλ

j=1 μλ, j = n, and qλ, j �= 0 for at least one of the constants qλ, j . Moreover,
we assume that the coefficients in (37) are meromorphic functions on C

m and small with
respect to the function f , which is meromorphic on Cm .

Theorem 3.5 Let f be a meromorphic function on Cm with

lim sup
r→∞

log T (r , f )

r
= 0,

such that

N

(

r ,
1

f

)

+ N (r , f ) = o(T (r , f )). (38)

Suppose that the difference polynomial (37) of f (z) and its shifts are of maximal total degree
n. If G also satisfies

∑

λ∈Jn−1

bλ(z)
τλ∏

j=1

f (z + qλ, j )
μλ, j �≡ 0, (39)

where Jn−1 = {λ ∈ J : ∑τλ

j=1 μλ, j = n − 1}, then G must satisfy

N

(

r ,
1

G

)

�= o(T (r , f )).

For the proof of Theorem3.5,wefirst need theTumura–Clunie theoremof several complex
variables due to Hu and Yang.

Lemma 3.1 [28, Theorem 2.1] Suppose that f is meromorphic and not constant inCm, that

g = f n + Pn−1( f ),

where Pn−1( f ) is a differential polynomial of degree at most n − 1 in f , and that

N (r , f ) + N

(

r ,
1

g

)

= o(T (r , f )).
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Then

g =
(
f + α

n

)n
,

where α is a meromorphic function in Cm, which is small with respect to f , and determined
by the terms of degree n − 1 in Pn−1( f ) and by g.

We also need the second main theorem for meromorphic functions with small function
targets on C

m . It is mentioned in [9, Theorem 2.1] that the conclusion is easily extended
from the second main theorem for small function targets due to Yamanoi [47] by the standard
process of averaging over the complex lines in Cm .

Lemma 3.2 Let f be ameromorphic function onCm, and a1, . . . aq are distinct meromorphic
functions which are “small” with respect to f . Then, we have

(q − 2)T (r , f ) ≤
q∑

j=1

N

(

r ,
1

f − a j

)

+ o(T (r , f ))

for all r /∈ F, where F is a set of finite Lebesgue logarithmic measure.

Proof of Theorem 3.5 Suppose that the conclusion is not true, that is,

N

(

r ,
1

G

)

= o(T (r , f )).

To prove this theorem, we propose to follow the idea in the proof of [35, Theorem 1]. Since
the difference polynomial (37) of f (z) and its shifts are of maximal total degree n, we get

G(z, f ) =
∑

λ∈J

bλ(z)
τλ∏

j=1

f (z + qλ, j )
μλ, j

=
∑

λ∈J

bλ(z)
τλ∏

j=1

[(
f (z + qλ, j )

f (z)

)μλ, j

· f (z)μλ, j

]

:=
n∑

j=0

b̃ j (z) f (z)
j ,

where each of the coefficients b̃ j (z) ( j = 1, . . . , n) is the sum of finitely many terms of type

bλ(z)

(
f (z + qλ, j )

f (z)

)μλ, j

.

It yields

G(z, f )

b̃n(z)
= f (z)n +

n−1∑

j=0

b̃ j (z)

b̃n(z)
f (z) j .

In terms of assumption (39), we have
∑n−1

j=0
b̃ j (z)

b̃n(z)
f (z) j �≡ 0.

Note that all the coefficient functions bλ(z) (λ ∈ J ) are small with respect to f . Then, by
Theorem 2.1 we get that for all j = 1, . . . , n,

m(r , b̃ j ) = o(T (r , f ))
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holds for all r /∈ E with densE = 0. Moreover, by assumption (38) and Lemma 2.1 we have

N (r , b̃ j ) = o(T (r , f )),

and thus

T (r , b̃ j ) = o(T (r , f )), j ∈ {0, 1, . . . , n}
and

N

⎛

⎝r ,
1

G(z, f )
b̃n(z)

⎞

⎠ = o(T (r , f )).

for all r /∈ E . Hence, by Lemma 3.1 we may write

G(z, f )

b̃n(z)
=

(

f (z) + α(z)

n

)n

,

where α �≡ 0 and T (r , α) = o(T (r , f )). This implies that

N

(

r ,
1

f (z) + α(z)
n

)

= o(T (r , f )). (40)

Together with (38) and (40), it follows from Lemma 3.2 that

T (r , f ) ≤ N

(

r ,
1

f

)

+ N (r , f ) + N

(

r ,
1

f (z) + α(z)
n

)

+ o(T (r , f )) = o(T (r , f ))

for all r /∈ (E ∪ F), where F is a set of finite Lebesgue logarithmic measure. Hence, we get
a contradiction. ��

Moreover, we improve and extend Laine–Yang’s difference analogue of Clunie theorem in
one variable [34] to high dimension by using Theorem 2.1. Define complex partial difference
polynomials as follows

P(z, w) =
∑

λ∈I
aλ(z)w(z)lλ0 w(z + qλ1)

lλ1 · · · w(z + qλi )
lλi , (41)

Q(z, w) =
∑

μ∈J

bμ(z)w(z)lμ0 w(z + qμ1)
lμ1 · · · w(z + qμ j )

lμ j , (42)

U (z, w) =
∑

ν∈K
cν(z)w(z)lν0 w(z + qν1)

lν1 · · · w(z + qνk )
lνk , (43)

where all coefficients aλ(z), bμ(z) and cν(z) are small functions with respect to the function
w(z) which is meromorphic on C

m, I , J , K are three finite sets of multi-indices, and qs ∈
C
m \ {0}, (s ∈ {λ1, . . . , λi , μ1, . . . , μ j , ν1, . . . , νk}). Since the proof is closely similar as in

[34], we omit it here.

Theorem 3.6 Let w be a nonconstant meromorphic function on Cm with

lim sup
r→∞

log T (r , w)

r
= 0,

and let P(z, w), Q(z, w), and U (z, w) are complex partial difference polynomials as (41),
(42) and (43) satisfy a complex partial difference equation of the form

U (z, w)P(z, w) = Q(z, w). (44)
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Assume that the total degree of U (z, w) is equal to n, and the total degree of Q(z, w) is less
than or equal to n, and that U (z, w) contains just one term of maximal total degree in w(z)
and its shifts. Then, we have

m(r , P(z, w)) = o(T (r , w))

for all r /∈ E where E is a set with densE = 0.

3.4 Improvement of Korhonen’s result

Finally, by applying Theorems 2.1, 2.2 and Valion–Mohon’ko theorem in several complex
variables [27, Theorem 3.4] into the following Eq. (45), it is easy to follow that

T (r , w) = degw(R)T (r , w) + o(T (r , w))

for all r /∈ E with densE = 0. We restate [30, Theorem 4.1] as follows.

Theorem 3.7 Let c ∈ C
n \ {0}. If the difference equation

w(z + c) = R(z, w(z)), (45)

where R(z, u) is rational in u having meromorphic coefficients in C
n, has an admissible

meromorphic solution w on C
n with

lim sup
r→∞

log T (r , w)

r
= 0,

then the degree degw(R) of R(z, w(z)) is equal to one.

4 Concluding remark

The partial difference equations can be regarded as discrete analogue of partial differential
equations. Although partial difference equations appear earlier than partial differential equa-
tions, the former equations have not drawn asmuch attention as their continuous counterparts.
In this paper as we shown, in the viewpoint of Nevanlinna theory in complex analysis, the
improvements of logarithmic difference lemma for meromorphic functions in several com-
plex variables, the relations N (r , f (z + c) ∼ N (r , f (z)) and T (r , f (z + c)) ∼ T (r , f (z))
are obtained. Then we focus basically on some typical partial difference equations such as
linear partial difference equations with function coefficients coming from the models of dis-
crete heat equation, discrete Laplace equation, nonsymmetric partial difference functional
equation, and discrete Poisson equation and others, the nonlinear partial difference equations
coming from discrete potential KdV equation and the Fermat equation, and partial difference
equation concerning the Tumura–Clunie theorem. Of course, it is impossible to study com-
pletely and systematically the meromorphic solutions of partial difference equations in one
paper. This paper is an attempt to do this by making use of the logarithmic difference lemma
of several complex variables in Nevanlinna theory. Much work on meromorphic solutions of
partial difference equations remains to be done in the near future.
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