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Abstract
We construct the tangential k-Cauchy–Fueter complexes on the right quaternionic Heisen-
berg group, as the quaternionic counterpart of ∂b-complex on the Heisenberg group in the
theory of several complex variables. We can use the L2 estimate to solve the nonhomoge-
neous tangential k-Cauchy–Fueter equation under the compatibility condition over this group
modulo a lattice. This solution has an important vanishing property when the group is higher
dimensional. It allows us to prove the Hartogs’ extension phenomenon for k-CF functions,
which are the quaternionic counterpart of CR functions.

Keywords The tangential k-Cauchy–Fueter complex · Hartogs’ phenomenon · The right
quaternionic Heisenberg group · The nonhomogeneous equation under the compatibility
condition · The L2 estimate

1 Introduction

The ∂-complex plays an important role in the theory of several complex variables since many
important results for holomorphic functions can be obtained by solving nonhomogeneous
∂-equation. We obtain ∂b-complex when it is restricted to a CR submanifold, and many
important results for CR functions can also be obtained by solving ∂b-equation. In general,
for a differential complex, there is an abstract way to obtain a boundary complex restricted
to a submanifold, which is written down in terms of quotient sheafs (cf., e.g., [3,4,25]).
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In quaternionic analysis, we now know the k-Cauchy–Fueter complexes explicitly (cf.
[1,5,8,9,11,30,35,41] and references therein), which are used to show several interesting
properties of k-regular functions (cf. [12,35,40,42] and references therein). When restricted
to a quadratic hypersurface in Hn+1, we have the tangential k-Cauchy–Fueter operators and
k-CF functions (cf. [39] for k = 1, n = 2), corresponding to ∂b and CR functions over a CR
manifold. In this paper, we will consider their restriction to a model quadratic hypersurface

S := {(q ′, qn+1) ∈ H
n × H : ρ(q ′, qn+1) = 0} (1.1)

in H
n+1, where

ρ(q ′, qn+1) := Re qn+1 − φ(q ′), φ(q ′) :=
n−1∑

l=0

(−3x24l+1 + x24l+2 + x24l+3 + x24l+4

)
.

(1.2)

Here, we write q ′ = (. . . , ql , . . .), ql = x4l+1 + ix4l+2 + jx4l+3 +kx4l+4. This hypersurface
has the structure of the right quaternionic Heisenberg group H = H

n × Im H with the
multiplication given by

(x, t) · (y, s) = (x + y, t + s + 2Im(x y)) , (1.3)

where x, y ∈ H
n and t, s ∈ Im H. We construct a family of differential complexes on H ,

the tangential k-Cauchy–Fueter complexes, given by

0→C∞(�,V0)
D0−→ C∞(�,V1)

D1−→ C∞(�,V2) → · · · D2n−2−−−→ C∞(�,V2n−1) → 0,

(1.4)

for a domain � in H , where

V j := �k− j
C
2 ⊗ ∧ j

C
2n, j = 0, 1, . . . , k,

V j := � j−k−1
C
2 ⊗ ∧ j+1

C
2n, j = k + 1, . . . , 2n − 1,

(1.5)

for fixed k = 0, 1, . . ., and �p
C
2 is the pth symmetric power of C2. They are the quater-

nionic counterpart of ∂̄b-complex over the Heisenberg group in the theory of several complex
variables. They have the same form as the k-Cauchy–Fueter complexes on H

n (cf. Remark
2.1), but D j ’s are given in terms of left invariant vector fields (2.23) (2.26) (2.27), which are
differential operators of variable coefficients. So we cannot use the computational algebraic
method in [12] to construct these complexes. This family of complexes are natural in the
sense that they can be viewed as the restriction to the hypersurface S of complexes onHn+1,

but not natural in the sense that they are not invariant under the conformal transformation
group Sp(n + 1, 1) of H (cf. Sect. 2.5).

D0 in (1.4) is called the tangential k-Cauchy–Fueter operator. A�k
C
2-valued distribution

f on � is called k-CF if D0 f = 0 in the sense of distributions. The space of all k-CF
functions on � is denoted by Ak(�). A 1-CF function is also called anti-CRF function in
[18,19]. Such functions play an important role in the study of pseudo-Einstein equation over
the quaternionic Heisenberg group [19].

On the other hand, when the hypersurface is the boundary of the Siegel upper half space,
i.e., the defining function in (1.1) is given by

ρ = Re qn+1 − |q ′|2,
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The tangential k-Cauchy–Fueter complexes and Hartogs’… 653

the corresponding group is the left quaternionic Heisenberg group H̃ := H
n × ImH with

the multiplication given by

(x, t) · (y, s) = (x + y, t + s + 2Im(x y)) . (1.6)

We already know the tangential k-Cauchy–Fueter complex (cf. [37, Theorem 1.0.1]) on
the left quaternionic Heisenberg group by using the twistor method (see also [6,27] for
constructing complexes by this method) . But in this case,∧ j

C
2n in (1.5) must be replaced by

the irreducible representation of sp(2n,C)with the highest weight to be the j th fundamental
weight (cf. Sect. 2.5). Since it is more complicated than the right case, we only consider the
right quaternionic Heisenberg group in this paper. We see that when restricted to different
submanifolds, we get different differential complexes. This is a new phenomenon compared
to several complex variables, where expressions of ∂b-complex for different CR submanifolds
are the same. It is an interesting problem to write down explicitly the tangential k-Cauchy–
Fueter complexes for all quadratic hypersurfaces in Hn+1 (cf. [39] for such hypersurfaces).

In this paper, we prove Hartogs’ phenomenon for k-CF functions over right quaternionic
Heisenberg group.

Theorem 1.1 Let � be a bounded open set in the right quaternionic Heisenberg group H
with dim H ≥ 19, and let K be a compact subset of � such that �\K is connected. Then,
for each u ∈ Ak(�\K ), k = 2, 3, . . . , we can find U ∈ Ak(�) such that U = u in �\K .

The restriction of dimH and k in this theorem comes from the technical difficulty to establish
the L2 estimate in the remaining cases. A form of Hartogs’ phenomenon was proved for
many elliptic differential systems (cf. [12,26] and references therein). Notably, in our case
D0 as a matrix-valued horizontal vector field is not an elliptic system, and (1.4) is not an
elliptic complex. This is because symbols ofD j ’s vanish at the cotangent vectors annihilating
horizontal vector fields.

In the complex case, we have deep Hartogs–Bochner effect for CR functions on CR sub-
manifolds, which are usually proved by using integral representation formulae (cf. [15,23,29]
and references therein for further development of this effect). But in the quaternionic case, the
integral representation formulae are not sufficiently developed, and only Bochner–Martinelli-
type formulae are known (cf. [34,35]). As in the theory of several complex variables, the
formulae with Bochner–Martinelli- type kernels are not good enough to prove the extension
phenomenon.

Given a differential complex, it is a fundamental problem to investigate its cohomology
group or its Poincaré lemma over a domain (cf., e.g., [7,16]). In particular, we hope to solve
the nonhomogeneous tangential k-Cauchy–Fueter equation

D0u = f , (1.7)

for f ∈ L2(H ,V1), under the compatibility condition

D1 f = 0, (1.8)

i.e., f is D1-closed. If we can find compactly supported solution of (1.7)–(1.8) when f is
compactly supported, it is a standard procedure to derive Hartogs’ phenomenon (cf., e.g.,
[17,35]). One way to solve (1.7)–(1.8) is to consider the associated Hodge–Laplacian

�1 = D0D
∗
0 + D∗

1D1 : L2(H ,V1) → L2(H ,V1). (1.9)

By identifying V1 = �k−1
C
2 ⊗ C

2n with C
2nk, we can see that �1 is a (2kn) × (2kn)

matrix-valued differential operator of the second order, which is not diagonal (cf. Appendix
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654 Y. Shi, W. Wang

for the expression in the case n = 2, k = 2). So it is not easy to verify the subellipticity
of �1 and find its fundamental solution, while in the complex case, the Hodge–Laplacian
associated with ∂b-complex is diagonal and it is easy to find its fundamental solution (cf.
[13]).

By using the L2 method, we establish the following estimate: when dim H ≥ 19, there
exists some constant c > 0 such that

‖D∗
0 f ‖2 + ‖D1 f ‖2 ≥ c〈�b f , f 〉 (1.10)

for f ∈ C2 (H ,V1)∩ L2 (H ,V1) , where �b is the SubLaplacian on the right quaternionic
Heisenberg group. But 〈�b f , f 〉 does not control the L2 normof f . It only controls ‖ f ‖2

L
Q+2
Q−2

by thewell-knownSobolev inequality [19], where Q = 4n+6 is the homogeneous dimension
ofH . To avoid this difficulty, we consider the locally flat compact manifoldH /HZ, where

HZ := Z
4n+3 (1.11)

is a lattice ofH . It is a spherical qc manifold (cf. [31]). Because the self-adjoint subelliptic
operator�b over a compact manifold has discrete spectra, 〈�b f , f 〉 controls the L2 norm of
f for f ⊥ ker�b.Moreover, by the Poincaré-type inequality we can show ker�b consisting
of constant vectors. Namely, there exists some c′′ > 0 such that

〈�b f , f 〉 ≥ c′′‖ f ‖2 (1.12)

for f ∈ C2(H /HZ,V1) and f ⊥ constant vectors. It is a standard way to use the L2

estimate to solve the nonhomogeneous tangential k-Cauchy–Fueter equation (1.7)–(1.8) on
H /HZ. The solution has an important vanishing property which allows us to prove Hartogs’
phenomenon. See also [13] for the existence theorem for ∂b-equation over compact CR
manifolds by establishing a priori estimate.

In Sect. 2, we give preliminaries on the right quaternionic Heisenberg group, the hori-
zontal complex vector fields Z A′

A ’s and nice behavior of their commutators. We also give
the definition of the tangential k-Cauchy–Fueter operators and their basic properties. It is
checked directly that (1.4)–(1.5) is a complex. We compare the complexes on the left and
right quaternionic Heisenberg groups. In Sect. 3, we use integration by part and Poincaré-type
inequality to show the L2 estimate (1.10) (1.12) for the tangential k-Cauchy–Fueter operator.
In Sect. 4, we use the L2 estimate to solve the nonhomogeneous tangential k-Cauchy–Fueter
equation (1.7)–(1.8) over the quotientmanifoldH /HZ and derive theHartogs’ phenomenon.
In Sect. 5, we construct the nilpotent Lie groups of step two associated with quadratic hyper-
surfaces. By constructing a diffeomorphism from the groupH to the hypersurface S in (1.1),
we show that the pushforward of the tangential k-Cauchy–Fueter operator on the group H
coincides with the restriction of the k-Cauchy–Fueter operator on H

n+1 to this hypersur-
face. Therefore, the restriction of a k-regular functions to S is k-CF on H . k-CF functions
are abundant because so are k-regular functions on H

n+1 [21]. In Appendix, we give the
expression of �1 for n = 2, k = 2.
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2 The tangential k-Cauchy–Fueter complexes

2.1 The right quaternionic Heisenberg groupH and the locally flat compact
manifoldH /HZ

The multiplication of the right quaternionic Heisenberg groupH can be written in terms of
real variables (cf. [36, (2.13)]) as

(x, t) · (y, s) =
⎛

⎝x + y, tβ + sβ + 2
n−1∑

l=0

4∑

j,k=1

Bβ
k j x4l+k y4l+ j

⎞

⎠, (2.1)

for x, y ∈ R
4n, t, s ∈ R

3, β = 1, 2, 3, where Bβ
k j is the (k, j)th entry of the following

matrices

B1 :=

⎛

⎜⎜⎝

0 − 1 0 0
1 0 0 0
0 0 0 − 1
0 0 1 0

⎞

⎟⎟⎠ , B2 :=

⎛

⎜⎜⎝

0 0 − 1 0
0 0 0 1
1 0 0 0
0 − 1 0 0

⎞

⎟⎟⎠ ,

B3 :=

⎛

⎜⎜⎝

0 0 0 − 1
0 0 − 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ ,

(2.2)

satisfying the commutating relation of quaternions (B1)2 = (B2)2 = (B3)2 =
−id, B1B2 = B3.This is because for x = x1+x2i+x3j+x4k and x ′ = x ′

1+x ′
2i+x ′

3j+x ′
4k,

we have

Im(xx ′) = (−x1x ′
2 + x2x ′

1 − x3x ′
4 + x4x ′

3)i + (−x1x ′
3 + x3x ′

1 + x2x ′
4 − x4x ′

2)j

+ (−x1x ′
4 + x4x ′

1 − x2x ′
3 + x3x ′

2)k =
3∑

β=1

4∑

k, j=1

Bβ
k j xk x ′

j iβ,

where i0 = 1, i1 = i, i2 = j, i3 = k. For fixed point (y, s) ∈ H , the left translate
τ(y,s) : H −→ H , (x, t) �−→ (y, s) · (x, t), is an affine transformation given by a lower
triangular matrix by (2.1). So the Lebesgue measure on R4n+3 is an invariant measure under
the left translation ofH .Recall that we have the following left invariant vector fields onH :

(Ya f )(y, s) = d

dt
f ((y, s)(tea, 0))

∣∣∣∣
t=0

, a = 1, 2, . . . , 4n, (2.3)

where ea is (0, . . . , 1, . . . , 0) with only the ath entry equal to 1. Then,

Y4l+ j := ∂

∂ y4l+ j
+ 2

3∑

β=1

4∑

k=1

Bβ
k j y4l+k

∂

∂sβ

, (2.4)

whose brackets are

[Y4l+k, Y4l+ j ] = 4
3∑

β=1

Bβ
k j∂sβ , and [Y4l+k, Y4l ′+ j ] = 0 for l �= l ′, (2.5)
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where l, l ′ = 0, 1, . . . , n − 1, j, k = 1, . . . , 4. The SubLaplacian is defined as

�b := −
4n∑

a=1

Y 2
a . (2.6)

The norm of the right quaternionic Heisenberg group H is defined by

‖(y, s)‖ := (|y|4 + |s|2) 1
4 . (2.7)

Define balls B(ξ, r) := {η ∈ H ; ‖ξ−1 · η‖ < r} for ξ ∈ H , r > 0. The fundamental set
of H under the action of the lattice HZ in (1.11) is

F = { (y, s) ∈ H | 0 ≤ ya < 1, 0 ≤ sβ < 1, a = 1, . . . , 4n, β = 1, 2, 3}. (2.8)

H /HZ is equivalent to F as a set.

Proposition 2.1 H is the disjoint union of τ(n,m)F with (n, m) ∈ HZ.

Proof We need to prove that for any (y, s) ∈ H , there exist unique (y′, s′) ∈ F and
(n, m) ∈ HZ such that (y, s) = (n, m) · (y′, s′). Let (na, ma) ∈ HZ, a = 1, 2. By the
multiplication law (2.1), we have

(na, ma) · (y, s) =
⎛

⎝na + y, (ma)β + sβ + 2
n−1∑

l=0

4∑

j,k=1

Bβ
k j (na)4l+k y4l+ j

⎞

⎠ . (2.9)

If n1 �= n2, the y-coordinates of (n1, m1) · (y, s) and (n2, m2) · (y, s) are n1 + y and n2 + y,

respectively, which are different. If n1 = n2, m1 �= m2, we see that their s-coordinates in
(2.9) must be different. This proves the uniqueness.

For (y, s) = (y1, . . . , y4n, s1, s2, s3), we can choose y′ ∈ R
4n with 0 ≤ y′

j < 1 and

n ∈ Z
4n such that y j = n j + y′

j . Then, we can determine s′ ∈ R
3 and m ∈ Z

3 satisfying

mβ + s′
β = sβ − 2

n−1∑

l=0

4n∑

j,k=1

Bβ
k j n4l+k y′

4l+ j , with 0 ≤ s′
β < 1,

for β = 1, 2, 3. So H is the disjoint union of τ(n,m)F . The proposition is proved. ��

H /HZ has the structure of a locally flat manifold as follows (cf. [22, p. 238]). Let π : H →
H /HZ be the projection. We can find a finite number of balls B(ξ j , r), j = 1, . . . , N ,

covering F with r sufficiently small so that τ(n,m) B(ξ j , r) ∩ B(ξ j , r) = ∅ for any (0, 0) �=
(n, m) ∈ HZ.Note that π B(ξi , r)∩π B(ξ j , r) �= ∅ for i �= j if and only if there exist unique
(n, m) ∈ HZ, such that

τ(n,m) B(ξi , r) ∩ B(ξ j , r) �= ∅. (2.10)

Then, we can construct coordinates charts (π B(ξ j , r), φ j ), where φ j : π B(ξ j , r) →
B(ξ j , r) and the transition function φ j ◦ φ−1

i is given by τ(n,m) for some (n, m) ∈ HZ

such that (2.10) holds.
A function is called periodic on H if

f (y, s) = f ((n, m)(y, s))
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for any (n, m) ∈ HZ. A function over H /HZ can be viewed as a function on F and be
extended to a periodic function on H by

f (y, s) = f ((n, m) · (y′, s′)) = f (y′, s′), (2.11)

for (y, s) = (n, m) · (y′, s′) and (y′, s′) ∈ F . If f is periodic, then so is Ya f for any a. This
is because

(Ya f )(y′, s′) = d

dt
f ((y′, s′)(tea, 0))

∣∣∣∣
t=0

= d

dt
f ((n, m)(y′, s′)(tea, 0))

∣∣∣∣
t=0

= (Ya f )(y, s),

for ea as in (2.3). Thus, the action of Ya on functions over H /HZ is well-defined, i.e., it is
a vector field over H /HZ.

2.2 Complex horizontal vector fields ZA
′

A ’s and the tangential k-Cauchy–Fueter
operator

We consider the following complex horizontal left invariant vector fields on H :

(Z AA′) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1 + iY2 −Y3 − iY4

Y3 − iY4 Y1 − iY2
...

...

Y4l+1 + iY4l+2 −Y4l+3 − iY4l+4

Y4l+3 − iY4l+4 Y4l+1 − iY4l+2
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.12)

where A = 0, 1, . . . , 2n −1, A′ = 0′, 1′. It is motivated by the embedding τ of quaternionic
algebra H into gl(2,C) :

τ(x1 + x2i + x3j + x4k) =
(

x1 + ix2 −x3 − ix4
x3 − ix4 x1 − ix2

)
(2.13)

and vector fields

(∇AA′) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1 + i∂x2 −∂x3 − i∂x4
∂x3 − i∂x4 ∂x1 − i∂x2

...
...

∂x4l+1 + i∂x4l+2 −∂x4l+3 − i∂x4l+4

∂x4l+3 − i∂x4l+4 ∂x4l+1 − i∂x4l+2
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.14)

to construct the k-Cauchy–Fueter operators on H
n+1 in [35]. We will use matrices

(εA′ B′) =
(

0 1
− 1 0

)
, (εA′ B′

) =
(
0 − 1
1 0

)
(2.15)

to raise or lower primed indices, e.g., Z A′
A = ∑

B′=0′,1′ Z AB′εB′ A′
.Here, (εA′ B′

) is the inverse
of (εA′ B′). Then,

Z0′
A = Z A1′ , Z1′

A = −Z A0′ ,
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and

(
Z A′

A

)
=

⎛

⎜⎜⎜⎜⎜⎝

...
...

Z0′
2l Z1′

2l
Z0′
2l+1 Z1′

2l+1
...

...

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

...
...

−Y4l+3 − iY4l+4 −Y4l+1 − iY4l+2

Y4l+1 − iY4l+2 −Y4l+3 + iY4l+4
...

...

⎞

⎟⎟⎟⎟⎠
. (2.16)

An element of C2 is denoted by ( f A′) with A′ = 0′, 1′. The symmetric power �p
C
2 is a

subspace of ⊗p
C
2, whose element is a 2p-tuple ( f A′

1 A′
2...A

′
p
) with A′

1, A′
2, . . . , A′

p = 0′, 1′,
such that f A′

1 A′
2...A

′
p

∈ C are invariant under permutations of subscripts, i.e.,

f A′
1 A′

2...A
′
p

= f A′
σ(1) A′

σ(2)...A
′
σ(p)

for any σ in the group Sp of permutations of p letters. An element of �p
C
2 ⊗ ∧q

C
2n is

given by a tuple ( f A′
1...A

′
p A1...Aq

) ∈ (⊗p
C
2) ⊗ (⊗q

C
2n), which is invariant under permu-

tations of subscripts of A′
1, . . . , A′

p, and antisymmetric under permutations of subscripts of
A1, . . . , Aq = 0, 1, . . . 2n − 1. In the sequel, we will write f AA′

2 A′
3...A

′
k

:= f A′
2 A′

3...A
′
k A and

f A′
3...A

′
k AB := f AB A′

3...A
′
k
for convenience. We will use symmetrization of primed indices

f...(A′
1...A

′
p)... := 1

p!
∑

σ∈Sp

f...A′
σ(1)...A

′
σ(p)

.... (2.17)

The tangential k-Cauchy–Fueter operator in (1.4) is given by

(D0 f )AA′
2...A

′
k

:=
∑

A′
1=0′,1′

Z
A′
1

A f A′
1 A′

2...A
′
k
, (2.18)

for f ∈ C1(�,V0). The k-Cauchy–Fueter operator on Hn+1 [35] is D̂0 : C1(Hn+1,V0) →
C1(Hn+1,V1) with

(
D̂0 f

)
A′
2...A

′
k A :=

∑

B′=0′,1′
∇B′

A fB′ A′
2...A

′
k
,

where ∇ is given by (2.14). A V0-valued distribution f is called k-regular on � ∈ H
n+1 if

D̂0 f = 0 on � in the sense of distributions.

2.3 Commutators of complex horizontal vector fields

The following nice behavior of commutators of Z A′
A ’s plays a very important role to show

that (1.4) is a complex and to establish the L2 estimate. It is also the reason why the tangential
k-Cauchy–Fueter complex on the right Heisenberg group is simpler than that on the left one.

Lemma 2.1 (1) Vector fields in each column in (2.16) are commutative, i.e., for fixed A′ =
0′ or 1′,

[Z A′
A , Z A′

B ] = 0, (2.19)

for any A, B = 0, . . . , 2n − 1.
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(2) We have

[Z0′
2l , Z1′

2l ] = [Z0′
2l+1, Z1′

2l+1] = 8
(
∂s2 + i∂s3

)
,

[Z0′
2l , Z1′

2l+1] = [Z0′
2l+1, Z1′

2l ] = 8i∂s1 ,
(2.20)

l = 0, . . . , n − 1, and any other bracket vanishes.

Proof (1) If {A, B} �= {2l, 2l + 1} for any integer l, we have

[Z A′
A , Z B′

B ] = 0, for A′, B ′ = 0′, 1′,

by using (2.5) because Z A′
A and Z B′

B only involve Y4l+ j ’s for different l. It follows from
(2.2) (2.5) that

[Y4l+1, Y4l+2] = [Y4l+3, Y4l+4] = − 4∂s1 ,

[Y4l+1, Y4l+3] = − [Y4l+2, Y4l+4] = − 4∂s2 ,

[Y4l+1, Y4l+4] = [Y4l+2, Y4l+3] = − 4∂s3 .

(2.21)

Then, for {A, B} = {2l, 2l + 1}, we have

[Z0′
2l , Z0′

2l+1] = [−Y4l+3 − iY4l+4, Y4l+1 − iY4l+2]
= [Y4l+1, Y4l+3] + [Y4l+2, Y4l+4] − i[Y4l+2, Y4l+3] + i[Y4l+1, Y4l+4] = 0,

[Z1′
2l , Z1′

2l+1] = [−Y4l+1 − iY4l+2,−Y4l+3 + iY4l+4]
= [Y4l+1, Y4l+3] + [Y4l+2, Y4l+4] + i[Y4l+2, Y4l+3] − i[Y4l+1, Y4l+4] = 0,

by (2.21). Then, (2.19) follows.
(2) Similarly, we have

[Z0′
2l , Z1′

2l ] = [−Y4l+3 − iY4l+4,−Y4l+1 − iY4l+2]
= − [Y4l+1, Y4l+3] + [Y4l+2, Y4l+4]

− i[Y4l+2, Y4l+3] − i[Y4l+1, Y4l+4] = 8(∂s2 + i∂s3),

[Z0′
2l+1, Z1′

2l+1] = [Z0′
2l , Z1′

2l ] = 8(∂s2 − i∂s3),

[Z0′
2l , Z1′

2l+1] = [−Y4l+3 − iY4l+4,−Y4l+3 + iY4l+4] = − 2i[Y4l+3, Y4l+4] = 8i∂s1 ,

[Z0′
2l+1, Z1′

2l ] = [Y4l+1 − iY4l+2,−Y4l+1 − iY4l+2] = − 2i[Y4l+1, Y4l+2] = 8i∂s1 ,

by (2.21). The lemma is proved. ��

On the left quaternionic Heisenberg group, vector fields in each column are not commutative
(2.43)–(2.44). We have the following corollary directly by Lemma 2.1 (2).

Corollary 2.1

[Z0′
A , Z1′

B ] + [Z1′
A , Z0′

B ] = 0, (2.22)

for any A, B = 0, . . . , 2n − 1.
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2.4 The tangential k-Cauchy–Fueter complex

Differential operators in the complex (1.4) are as follows. For j = 0, 1, . . . , k − 1, D j :
C∞(�,V j ) → C∞(�,V j+1) with V j = �k− j

C
2 ⊗ ∧ j

C
2n is a differential operator of the

first order given by
(
D j f

)
A0...A j A′

1...A
′
k− j−1

= ( j + 1)
∑

A′=0′,1′
Z A′

[A0
f A1...A j ]A′ A′

1...A
′
k− j−1

, (2.23)

where [A0A1 . . . A j ] is the antisymmetrization of unprimed indices given by

f...[A1...Ap]... := 1

p!
∑

σ∈Sp

sign(σ ) f...Aσ(1)...Aσ(p).... (2.24)

In particular, h[AB] := 1
2 (h AB − h B A). By definition, we have

f...[A1...[A j ...Al ]...Ap]... = f...[A1...A j ...Al ...Ap].... (2.25)

Dk : C∞(�,Vk) → C∞(�,Vk+1) with Vk = ∧k
C
2n and Vk+1 = ∧k+2

C
2n is a differential

operator of the second order given by

(Dk f )A1...Ak+2
= (k + 2)Z0′

[A1
Z1′

A2
f A3...Ak+2]. (2.26)

For j = k + 1, . . . , 2n − 2, D j : C∞(�,V j ) → C∞(�,V j+1) with V j = � j−k−1
C
2 ⊗

∧ j+1
C
2n is a differential operator of the first order given by

(
D j f

)A′
1...A

′
j−k

A1...A j+2
= ( j + 2)Z

(A′
1[A1

f
A′
2...A

′
j−k )

A2...A j+2] . (2.27)

Remark 2.1 The k-Cauchy–Fueter complex onHn [35,41] is the same as (1.4)–(1.5) withH
replaced by Hn and Z A′

A in definition of D j ’s in (2.23), (2.26) and (2.27) replaced by ∇ A′
A in

(2.14).

Lemma 2.2

Z (A′
[A Z B′)

B] = 0, (2.28)

for any A, B = 0, . . . , 2n − 1 and A′, B ′ = 0′, 1′.

Proof Note that

2Z A′
[A Z A′

B] = Z A′
A Z A′

B − Z A′
B Z A′

A = [Z A′
A , Z A′

B ] = 0, (2.29)

by (2.19), and

4Z (0′
[A Z1′)

B] = 2Z0′
[A Z1′

B] + 2Z1′
[A Z0′

B] = Z0′
A Z1′

B − Z0′
B Z1′

A + Z1′
A Z0′

B − Z1′
B Z0′

A

= [Z0′
A , Z1′

B ] + [Z1′
A , Z0′

B ] = 0,

by Corollary 2.1. The lemma is proved. ��
Now, let us check (1.4) to be a complex by direct calculation as in [41, Section 3.1].

Theorem 2.1 (1.4) is a complex, i.e.,

D j+1 ◦ D j = 0 (2.30)

for each j .
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Proof For A, B = 0, . . . , 2n − 1 and A′
3, . . . , A′

k = 0′, 1′, we have

(D1 ◦ D0 f )AB A′
3...A

′
k

= 2
∑

A′=0′,1′
Z A′

[A(D0 f )B]A′ A′
3...A

′
k

= 2
∑

A′,C ′=0′,1′
Z A′

[A ZC ′
B] fC ′ A′ A′

3...A
′
k

= 2
∑

A′,C ′=0′,1′
Z (A′

[A ZC ′)
B] fC ′ A′ A′

3...A
′
k

= 0,

by Lemma 2.2 and fC ′ A′ A′
3...A

′
k

= f A′C ′ A′
3...A

′
k
. For general j = 1, . . . , k − 2, we have

(D j+1 ◦ D j f )A1...A j+2 A′
1...A

′
k− j−2

= ( j + 2)( j + 1)
∑

A′,C ′=0′,1′
Z A′

[A1
ZC ′

[A2
f A3...A j+2]]C ′ A′ A′

1...A
′
k− j−2

= ( j + 2)( j + 1)
∑

A′,C ′=0′,1′
Z (A′

[[A1
ZC ′)

A2] f A3...A j+2]C ′ A′ A′
1...A

′
k− j−2

= 0,

by using (2.25) repeatedly, Lemma 2.2 and f symmetric in the primed indices again.
For j = k − 1, we have

(Dk ◦ Dk−1 f )A1...Ak+2 =(k + 2)k
∑

A′=0′,1′
Z0′

[A1
Z1′

A2
Z A′

[A3
f A4...Ak+2]]A′ = 0.

This is because if A′ = 1′, Z0′
[A1

Z1′
[A2

Z1′
A3] f A4...Ak+2]1′ = 0 by using (2.29), and if A′ = 0′,

Z0′
[A1

Z1′
A2

Z0′
A3] = Z0′

[A1
Z1′

[A2
Z0′

A3]] = −Z0′
[A1

Z0′
[A2

Z1′
A3]] = −Z0′

[[A1
Z0′

A2] Z1′
A3] = 0,

by using (2.25) repeatedly and Corollary 2.1.
For j = k, we have

(Dk+1 ◦ Dk f )A′
A1...Ak+3

= (k + 3)(k + 2)Z A′
[A1

Z0′
[A2

Z1′
A3

f A4...Ak+3]] = 0. (2.31)

This is because if A′ = 0′, Z0′
[[A1

Z0′
A2] Z1′

A3
f A4...Ak+3] = 0 by using (2.29), and if A′ = 1′,

Z1′
[A1

Z0′
A2

Z1′
A3] = Z1′

[A1
Z0′

[A2
Z1′

A3]] = −Z1′
[A1

Z1′
[A2

Z0′
A3]] = −Z1′

[[A1
Z1′

A2] Z0′
A3] = 0,

by using (2.25) repeatedly and Corollary 2.1.
For j = k + 1, . . . , 2n − 2, we have

(
D j+1 ◦ D j f

)A′
1...A

′
j−k+1

A1...A j+3
= ( j + 3)( j + 2)Z

((A′
1[[A1
Z

A′
2)

A2] f
A′
3...A

′
j−k+1)

A3...A j+3] = 0,

by Lemma 2.2. The theorem is proved. ��

2.5 Comparison with the left case

Recall that a transformation T on H is called conformal if ‖T∗W1‖ = ‖T∗W2‖ for any two
horizontal vector fields W1 and W2 with ‖W1‖ = ‖W2‖, where ‖W‖2 := ∑4n

j=1 a2
j if we

write W = ∑4n
j=1 a j Y j . It is known that the group of conformal transformations onH is the

real semisimple Lie group Sp(n+1, 1) of rank one (cf., e.g., [18]) generated by the following
transformations:

(1) Dilations:

Dδ : (y, s) −→ (δy, δ2s), δ > 0; (2.32)
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(2) Left translations:

τ(x,t) : (y, s) −→ (x, t) · (y, s); (2.33)

(3) Rotations:

Ra : (y, s) −→ (ya, s), for a ∈ Sp(n), (2.34)

where

Sp(n) = {a ∈ GL(n,H)|aāt = In};
(4) The inversion:

R : (y, s) −→
(

− (|y|2 − s)−1y,
−s

|y|4 + |s|2
)

; (2.35)

(5) Sp(1) acts on H as

σ : (y, s) −→ (σ y, σ sσ−1), (2.36)

where the action on the first factor is left multiplication by σ ∈ H with |σ | = 1, while
the action on the second factor is isomorphism with SO(3).

It is known that Sp(n + 1, 1) is a real form of Sp(2(n + 2),C), whose Lie algebra
g = sp(2(n + 2),C) has the decomposition g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, where g−2 is an
complex abelian subalgebra generated by T1, T2, T3, and g−1 is generated by {YAA′ }, A =
0, 1, . . . , 2n − 1, A′ = 0′, 1′ with

[YA0′ , Y(n+A)0′ ] = 4T2,

[YA1′ , Y(n+A)1′ ] = 4T3,

[YA0′ , Y(n+A)1′ ] = [YA1′ , Y(n+A)0′ ] = 4T1,

(2.37)

and any other bracket vanishes (cf. [37, (2.10)]). p := g0 ⊕ g1 ⊕ g2 is a parabolic subgroup.
u− := g−2 ⊕ g−1. Then,

g = u− ⊕ p. (2.38)

Let U− be the complex Lie group with Lie algebra u−. There exist exact sequences [37,
Theorem 3.2.1] on U−

0 → R
(
U−,�k

C
2
) Q(k)

0−−→ R
(
U−,�k−1

C
2 ⊗ V (1)

) Q(k)
1−−→ . . . → R

(
U−, V (k)

)

Q(k)
k−−→ R

(
U−, V (k+2)

) Q(k)
k+1−−−→ . . .

Q(k)
2n−1−−−→ R

(
U−,�2n−k

C
2
)

→ 0,

(2.39)

for 0 ≤ k ≤ n −2,where operators Q(k)
j ’s are defined in terms of YAA′ , Tβ (cf. [37, Theorem

1.0.1]). Here, V ( j) is the irreducible representation of sp(2n,C) with the highest weight to
be the j th fundamental weight ω j andR(U−, V ) is the space of V -valued polynomials over

U−. These complexes are constructed by twistor method, and operators Q(k)
j ’s are invariant

under Sp(2(n + 2),C).

The multiplication (1.6) of the left quaternionic Heisenberg group H̃ can be written as

(x, t) · (y, s) =
⎛

⎝x + y, tβ + sβ + 2
n−1∑

l=0

4∑

j,k=1

I β
k j x4l+k y4l+ j

⎞

⎠, (2.40)
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for x, y ∈ R
4n, t, s ∈ R

3, β = 1, 2, 3, where I β
k j is the (k, j)th entry of the following

matrices

I 1 :=

⎛

⎜⎜⎝

0 1 0 0
− 1 0 0 0
0 0 0 − 1
0 0 1 0

⎞

⎟⎟⎠ , I 2 :=

⎛

⎜⎜⎝

0 0 1 0
0 0 0 1

− 1 0 0 0
0 − 1 0 0

⎞

⎟⎟⎠ ,

I 3 :=

⎛

⎜⎜⎝

0 0 0 1
0 0 − 1 0
0 1 0 0

− 1 0 0 0

⎞

⎟⎟⎠ ,

(2.41)

satisfying the commutating relation of quaternions. Note that

X̃4l+ j = ∂

∂x4l+ j
+ 2

3∑

β=1

4∑

k=1

I β
k j x4l+k

∂

∂tβ
(2.42)

is standard left invariant vector field on H̃ . Denote

(
Z̃ AA′

) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̃1 + iX̃2 −X̃3 − iX̃4

X̃3 − iX̃4 X̃1 − iX̃2
...

...

X̃4l+1 + iX̃4l+2 −X̃4l+3 − iX̃4l+4

X̃4l+3 − iX̃4l+4 X̃4l+1 − iX̃4l+2
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.43)

where A = 0, 1, . . . , 2n −1, A′ = 0′, 1′. They satisfy the following commutating relations:
[
Z̃(2l)0′ , Z̃(2l+1)0′

] = 8
(
∂t2 − i∂t3

)
,

[
Z̃(2l)1′ , Z̃(2l+1)1′

] = 8
(
∂t2 + i∂t3

)
,

[
Z̃(2l)0′ , Z̃(2l+1)1′

] = [
Z̃(2l)1′ , Z̃(2l+1)0′

] = −8i∂t1 ,

(2.44)

l = 0, . . . , n−1, and any other bracket vanishes. So by embedding the real Lie algebra of H̃
into the complex Lie algebra u− by Z̃(2l)A′ �→ Yl A′ , Z̃(2l+1)A′ �→ Y(n+l)A′ we get tangential
k-Cauchy–Fueter complexes on H̃ (cf. [37, Theorem 1.0.1]), on which G = Sp(2(n+2),C)

acts naturally.
Now, consider complexes on the right quaternionic Heisenberg group. We can show the

following proposition as [38, Proposition 3.1].

Proposition 2.2 Under the transformation Ma : Hn → H
n, q �→ q ′ = qa with a = (a jk) ∈

GL(n,H), where q = (q1, q2, . . . , qn) with ql+1 = x4l+1 + ix4l+2 + jx4l+3 + kx4l+4, we
have

∂ql [ f (qa)] =
n∑

m=1

[
∂q ′

m
(ālm f )

]
(qa), (2.45)

where ∂ql+1 = ∂x4l+1 + i∂x4l+2 + j∂x4l+3 + k∂x4l+4 .

Proof Denote q̂ = (x1, . . . , x4n). Since Ma defines a real linear transformation on the under-
lying vector space R4n , we have q̂a = q̂aR for some (4n) × (4n) real matrix aR associated
with a. As the bth element of q̂a is

∑4n
a=1 xaaRab, we have
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∂

∂xa
[ f (qa)] =

4n∑

b=1

∂ f

∂xb
(qa)aRab.

Note that we can write ql+1 = ∑4
j=1 i j−1x4l+ j . Therefore,

Ma∗∂ql+1 =
4∑

j=1

i j−1Ma∗
∂

∂x4l+ j
=

4n∑

b=1

4∑

j=1

i j−1
∂

∂xb
aR(4l+ j)b

=
4n∑

b=1

4∑

j=1

i j−1
∂

∂xb

(
aR

)t

b(4l+ j)
=

n∑

m=1

∂q ′
m

· ā(l+1)m,

by
(
aR

)t = (
at)R, which can be proved as [38, Lemma 2.1 (1)]. The proposition is proved.

��
Corollary 2.2 Let Ql+1 := X4l+1 + iX4l+2 + jX4l+3 + kX4l+4. Then, Ra∗

(
Q1, . . . , Qn

) =(
Q1, . . . , Qn

)
āt , for rotation Ra in (2.34) with a ∈ Sp(n).

Since Ql = ∂ql at the origin ofH , the above identity holds at the origin by Proposition 2.2.
It holds at other places by the left invariance. By applying the representation τ in (2.13), i.e.,
τ(q1q2) = τ(q1)τ (q2) for any q1, q2 ∈ H (cf. [33, Proposition 2.1]), we get

Ra∗
(

Z00′ Z01′ · · · Z(2l)0′ Z(2l)1′ · · ·
Z10′ Z11′ · · · Z(2l+1)0′ Z(2l+1)1′ · · ·

)

=
(

Z00′ Z01′ · · · Z(2l)0′ Z(2l)1′ · · ·
Z10′ Z11′ · · · Z(2l+1)0′ Z(2l+1)1′ · · ·

)
τ(āt ),

(2.46)

where τ(āt ) is a (2n) × (2n) complex matrix with a jk replaced by the 2 × 2 matrix τ(a jk).

(2.46) implies that each column in (2.14) is not preserved under rotations (2.34) of Sp(n).

The commutativity (2.19) of each column that plays a very important role in the construction
of our complexes (1.4) is destroyed. So by definition (2.23), (2.26) and (2.27), the differential
operatorsD j ’s in the complex (1.4) in terms of Z A′

A ’s are not invariant under Sp(n).Therefore,
they are not invariant under Sp(2(n + 2),C).

Another difference is that the kernel of the tangential k-Cauchy–Fueter in space of L2

integrable function on the left quaternionic Heisenberg group H̃ is infinite dimensional
[32], while it is trivial on the right quaternionic Heisenberg groupH , since such a function
satisfies �b f = 0 by Proposition 2.4 and ker�b = {0} in the L2 space.

On the other hand, if we choose the complex horizontal fields on H

(
Ẑ AA′

) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

− Y1 + iY2 − Y3 − iY4

Y3 − iY4 − Y1 − iY2
...

...

− Y4l+1 + iY4l+2 − Y4l+3 − iY4l+4

Y4l+3 − iY4l+4 − Y4l+1 − iY4l+2
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.47)

with Y4l+1 replaced by −Y4l+1, then Ẑ AA′ ’s satisfy
[
Ẑ(2l)0′ , Ẑ(2l+1)0′

] = 8
(
∂t2 − i∂t3

)
,

[
Ẑ(2l)1′ , Ẑ(2l+1)1′

] = 8
(
∂t2 + i∂t3

)
,

[
Ẑ(2l)0′ , Ẑ(2l+1)1′

] = [
Ẑ(2l)1′ , Ẑ(2l+1)0′

] = −8i∂t1 ,

123



The tangential k-Cauchy–Fueter complexes and Hartogs’… 665

l = 0, . . . , n − 1, and any other bracket vanishes, i.e., we can embed the real Lie algebra of
H into the complex Lie algebra u−. Then, the complexes (2.39) on U− induce a family of
complexes onH invariant under Sp(2(n + 2),C). But the first operator is different from the
first one in (1.4). Moreover, the (n −1)th operator in the complex induced fromU− is a linear
combination of Tβ ’s (cf. [37, Proposition 4.3.3]), while the (n−1)th operator in (1.4) involves
only Z AA′ ’s. So we get two different families of complexes on H . Here, changing Y4l+1 to
−Y4l+1 corresponds to changing the sign before x24l+1 in the defining function (1.2) of the
hypersurface S. The resulting hypersurface is essentially the boundary of the quaternionic
Siegel domain.

On other quadratic hypersurface, there is no reason to expect that the restriction of the
k-Cauchy–Fueter operators and complexes is invariant in general under the action of Sp(n).

2.6 The adjoint operator

On a domain � ⊂ H , denote the inner product

(u, v) :=
∫

�

u · vdV ,

for u, v ∈ L2(�,C), where dV is the Lebesgue measure on H . The inner product of
L2(�,V1) is defined as

〈 f , h〉 :=
2n−1∑

A=0

∑

A′
2,...,A′

k=0′,1′

(
f AA′

2...A
′
k
, h AA′

2...A
′
k

)

for f , h ∈ L2(�,V1), and ‖ f ‖ := 〈 f , f 〉 1
2 . We define inner products of L2(�,V0) and

L2(�,V2) similarly. Define the L2-norm on H /HZ by

‖ f ‖2L2(H /HZ)
= ‖ f ‖2L2(F )

=
∫

F
| f |2dV .

Proposition 2.3 The formal adjoint operator of Z A′
A is

(
Z A′

A

)∗ = δA
A′ , where δA

A′ := −Z A′
A . (2.48)

Proof For u, v ∈ C∞
0 (H ,C), we have

(Yau, v) = (u,−Yav)

by integration by part. So ((Ya ± iYb)u, v) = (u,−(Ya ∓ iYb)v). Then, (2.48) holds since
Z A′

A has the form Ya ± iYb for some a and b by (2.16). Thus, we have
(

Z A′
A u, v

)
=
(

u, δA
A′v

)
(2.49)

over H . For (2.49) over H /HZ, by using the unit partition, it is sufficient to show it for
v ∈ C∞

0 (H ,C). This case follows from the result over H . ��
Lemma 2.3 For f ∈ C1

0 (H ,V1) or C1(H /HZ,V1), we have

(
D∗
0 f

)
A′
1...A

′
k

=
2n−1∑

A=0

δA
(A′

1
f A′

2...A
′
k )A. (2.50)

123



666 Y. Shi, W. Wang

Proof The proof is similar to that for the k-Cauchy–Fueter operator overHn (cf. [40, Lemma
3.1]). For any g ∈ C1(H /HZ,V0), we have

〈D0g, f 〉 =
∑

A,A′
2,...,A′

k

⎛

⎝
∑

A′
1

Z
A′
1

A gA′
1...A

′
k
, f A′

2...A
′
k A

⎞

⎠ =
∑

A,A′
1,...,A′

k

(
gA′

1...A
′
k
, δA

A′
1

f A′
2...A

′
k A

)

=
∑

A′
1,...,A′

k

(
gA′

1...A
′
k
,
∑

A

δA
(A′

1
f A′

2...A
′
k )A

)
= 〈g,D∗

0 f 〉

by using (2.49) and symmetrization

∑

A′
1,...,A′

k

(
gA′

1...A
′
k
, G A′

1...A
′
k

)
=

∑

A′
1,...,A′

k

(
gA′

1...A
′
k
, G(A′

1...A
′
k )

)

for any g ∈ L2(H ,�k
C
2), G ∈ L2(H ,⊗k

C
2). (cf. [40, (3.4)]). Here, we have to sym-

metrise the primed indices in
∑

A δA
A′
1

f A′
2...A

′
k A since only after symmetrization it becomes

an element of C1
0 (H ,V0). ��

D∗
0D0 is simple since it is diagonal by the following proposition.

Proposition 2.4 For f ∈ C2(�,V0), we have

D∗
0D0 f = �b f .

Proof Recall that for a ⊗k
C
2-valued function FA′

1...A
′
k
symmetric in A′

2 . . . A′
k, we have

F(A′
1...A

′
k ) = 1

k

(
FA′

1 A′
2...A

′
k
+ · · · + FA′

s A′
1... Â

′
s ...A

′
k
+ · · · + FA′

k A′
1... Â

′
k

)
, (2.51)

by the definition of symmetrization (2.17). As usual, a hat means omittance of the corre-
sponding index. Then, for fixed A′

1, . . . , A′
k = 0′, 1′,

(
D∗
0D0 f

)
A′
1...A

′
k

=
∑

A

δA
(A′

1
(D0 f )A′

2...A
′
k )A = 1

k

k∑

s=1

δA
A′

s
(D0 f )... Â′

s ...A
′
k A

= − 1

k

k∑

s=1

∑

A,A′
Z

A′
s

A Z A′
A f A′... Â′

s ...A
′
k

=1

k

k∑

s=1

∑

A′
�b f A′... Â′

s ...A
′
k
δA′

s A′ = �b f A′
1...A

′
k
,

(2.52)

by using the following Lemma 2.4 and f symmetric in the primed indices, whereD∗
0 is given

by (2.50). The proposition is proved. ��

Lemma 2.4 For A′, B ′ = 0′, 1′, we have

2n−1∑

A=0

Z A′
A Z B′

A = − δA′ B′�b. (2.53)
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Proof Note that

Z0′
2l Z0′

2l + Z0′
2l+1Z0′

2l+1 = (− Y4l+3 + iY4l+4)(−Y4l+3 − iY4l+4)

+ (Y4l+1 + iY4l+2)(Y4l+1 − iY4l+2)

=
4∑

k=1

Y 2
4l+k + i[Y4l+3, Y4l+4] − i[Y4l+1, Y4l+2] =

4∑

k=1

Y 2
4l+k,

by (2.21), whose summation over l gives us (2.53) for A′ = B ′ = 0′. Similarly, we have

Z0′
2l Z1′

2l + Z0′
2l+1Z1′

2l+1 = (−Y4l+3 + iY4l+4)(−Y4l+1 − iY4l+2)

+ (Y4l+1 + iY4l+2)(−Y4l+3 + iY4l+4)

= −[Y4l+1, Y4l+3] − [Y4l+2, Y4l+4]
+ i[Y4l+1, Y4l+4] − i[Y4l+2, Y4l+3] = 0,

by (2.21), whose summation over l gives us (2.53) for A′ = 0, B ′ = 1′. Similarly, (2.53)
holds for A′ = 1, B ′ = 0′ and A′ = B ′ = 1′ by

Z1′
2l Z0′

2l + Z1′
2l+1Z0′

2l+1 = [Y4l+1, Y4l+3] + [Y4l+2, Y4l+4]
+ i[Y4l+1, Y4l+4] − i[Y4l+2, Y4l+3] = 0,

Z1′
2l Z1′

2l + Z1′
2l+1Z1′

2l+1 =
4∑

k=1

Y 2
4l+k + i[Y4l+1, Y4l+2] − i[Y4l+3, Y4l+4] =

4∑

k=1

Y 2
4l+k .

Then, (2.53) follows. ��

3 The L2 estimate

We begin with the following Poincaré-type inequality, which was proved for general vector
fields satisfying Hörmander’s condition (cf. [20, Theorem 2.1]). So it holds over H .

Proposition 3.1 (Poincaré-type inequality) For each f with
∑4n

a=1 |Ya f |2 ∈ L1(H ), we
have

∫

Br

| f − fBr |2dV ≤ Cr2
∫

Br

4n∑

a=1

|Ya f |2dV , (3.1)

where Br is a ball of radius r and fBr = ∫
Br

f dV /
∫

Br
dV .

We say f ∈ L2(H /HZ,V1) satisfies f ⊥ constant vectors if 〈 f , C〉 = 0 for any
constant vector C ∈ V1.

Lemma 3.1 There exists some c > 0 such that

〈�b f , f 〉 ≥ c‖ f ‖2L2(H /HZ)
,

for f ∈ C2 (H /HZ,V1) and f ⊥ constant vectors.
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Proof As
⋃

(n,m)∈HZ

τ(n,m)F = H by Proposition 2.1, we can choose some r > 0 and a finite

number of elements (ni , mi ) ∈ HZ, i = 1, . . . , N , such that

F ⊂ Br ⊂
N⋃

i=1

τ(ni ,mi )F .

Recall that if we identify f ∈ C2(H /HZ,V1) with a periodic function on H , so is Ya f .

Then, the Poincaré-type inequality (3.1) implies that

N
4n∑

a=1

‖Ya f ‖2L2(F )
≥

4n∑

a=1

‖Ya f ‖2L2(Br )
≥ 1

Cr2

∫

Br

| f − fBr |2dV ≥ 1

Cr2
‖ f − fBr ‖2L2(F )

.

Since f ⊥ constant vectors, we have

‖ f − fBr ‖2L2(H /HZ)
= ‖ f ‖2L2(H /HZ)

+ ‖ fBr ‖2L2(H /HZ)
≥ ‖ f ‖2L2(H /HZ)

.

Thus, we find that

〈�b f , f 〉 ≥ c‖ f − fBr ‖2L2(H /HZ)
≥ c‖ f ‖2L2(H /HZ)

,

for constant c = 1
NCr2

. ��
Lemma 3.2 (cf. [40, Lemma 2.1]) For any h, H ∈ C

2n ⊗ C
2n, we have

∑

A,B

h B A HAB =
∑

A,B

h AB HAB − 2
∑

A,B

h[AB] H[AB].

We have the following L2 estimate.

Theorem 3.1 For n > 3, k ≥ 2, there exists some cn,k > 0 such that

‖D∗
0 f ‖2 + ‖D1 f ‖2 ≥ cn,k‖ f ‖2, (3.2)

for f ∈ Dom(D1) ∩ Dom(D∗
0 ) and f ⊥ constant vectors over H /HZ.

Proof We use the L2 method for the k-Cauchy–Fueter operator on H
n in [40]. Since C2

functions are dense in Dom(D1)∩Dom(D∗
0 ) for the compactmanifoldH /HZ, it is sufficient

to prove (3.2) for f ∈ C2(H /HZ,�k−1
C
2 ⊗ C

2n). We have

k〈D∗
0 f ,D∗

0 f 〉 = k〈D0D
∗
0 f , f 〉 = k

∑

B,A′
2,...,A′

k

⎛

⎝
∑

A′
1

Z
A′
1

B

∑

A

δA
(A′

1
f A′

2...A
′
k )A, f A′

2...A
′
k B

⎞

⎠

=
∑

A,B,A′
1,...,A′

k

(
Z

A′
1

B δA
A′
1

f A′
2...A

′
k A, f A′

2...A
′
k B

)

+
∑

A,B,A′
1,...,A′

k

k∑

s=2

(
Z

A′
1

B δA
A′

s
f A′

1... Â
′
s ...A

′
k A, f A′

2...A
′
k B

)
=: �0 + �1,

(3.3)

by using (2.51) to expand the symmetrization. Note that

�0 =
∑

A′
1,...,A′

k

(
∑

A

δA
A′
1

f A′
2...A

′
k A,

∑

B

δB
A′
1

f A′
2...A

′
k B

)
=

∑

A′
1,...,A′

k

∥∥∥∥∥
∑

A

δA
A′
1

f A′
2...A

′
k A

∥∥∥∥∥

2

≥ 0,

(3.4)
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and

�1 =
k∑

s=2

∑

A,B,A′
1,...,A′

k

(
δA

A′
s
Z

A′
1

B f A′
1... Â

′
s ...A

′
k A, f A′

2...A
′
k B

)

+
k∑

s=2

∑

A,B,A′
1,...,A′

k

([
Z

A′
1

B , δA
A′

s

]
f A′

1... Â
′
s ...A

′
k A, f A′

2...A
′
k B

)
=: �11 + C

(3.5)

by using commutators. For the first sum, we have

�11 =
k∑

s=2

∑

A,B,A′
1,...,A′

k

(
Z

A′
1

B f A′
1... Â

′
s ...A

′
k A, Z

A′
s

A f A′
2...A

′
k B

)

=
k∑

s=2

∑

A,B

∑

Â′
1,..., Â′

s ,...,A′
k

⎛

⎝
∑

A′
1

Z
A′
1

B f A′
1... Â

′
s ...A

′
k A,

∑

A′
s

Z
A′

s
A f A′

s A′
2... Â

′
s ...A

′
k B

⎞

⎠

= (k − 1)
∑

B′
3,...,B′

k=0′,1′

∑

A,B

(
∑

A′
Z A′

B f AA′ B′
3...B

′
k
,
∑

A′
Z A′

A fB A′ B′
3...B

′
k

)

(3.6)

by relabeling indices and f symmetric in the primed indices. Then, by applying Lemma 3.2
with h B A = ∑

A′ Z A′
B f AA′ B′

3...B
′
k
and HAB = ∑

A′ Z A′
A fB A′ B′

3...B
′
k
for fixed B ′

3, . . . , B ′
k, we

get

�11 = (k − 1)
∑

B′
3,...,B′

k

∑

A,B

⎛

⎝
∥∥∥∥∥
∑

A′
Z A′

A fB A′ B′
3...B

′
k

∥∥∥∥∥

2

− 2

∥∥∥∥∥
∑

A′
Z A′

[A fB]A′ B′
3...B

′
k

∥∥∥∥∥

2
⎞

⎠

= (k − 1)
∑

B′
3,...,B′

k

∑

A,B

∥∥∥∥∥
∑

A′
Z A′

A fB A′ B′
3...B

′
k

∥∥∥∥∥

2

− k − 1

2
‖D1 f ‖2,

(3.7)

where

∑

A

∥∥∥∥∥
∑

A′
Z A′

A fB A′ B′
3...B

′
k

∥∥∥∥∥

2

=
∑

A,A′,B′

(
Z A′

A fB A′ B′
3...B

′
k
, Z B′

A fB B′ B′
3...B

′
k

)

=
∑

A′,B′

(
−
∑

A

Z B′
A Z A′

A fB A′ B′
3...B

′
k
, fB B′ B′

3...B
′
k

)
=
∑

B′

(
�b fB B′ B′

3...B
′
k
, fB B′ B′

3...B
′
k

)
(3.8)

by Lemma 2.4. Thus, by substituting (3.4)–(3.5) and (3.7)–(3.8) to (3.3), we get

k
∥∥D∗

0 f
∥∥2 + k − 1

2
‖D1 f ‖2 ≥ (k − 1)〈�b f , f 〉 + C . (3.9)

To control the commutator term C in (3.5), note that

Z0′
2l = Z1′

2l+1, Z1′
2l = −Z0′

2l+1

by (2.16). Then, it follows from Lemma 2.1 that (1)
[

Z A′
A , Z B′

B

]
= 0, for A′ �= B ′, (3.10)
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A, B = 0, . . . , 2n − 1; (2) for A′ = B ′, we have
[

Z0′
2l , Z0′

2l+1

]
=
[

Z1′
2l , Z1′

2l+1

]
= −8

(
∂s2 + i∂s3

)
,

[
Z0′
2l+1, Z0′

2l

]
=
[

Z1′
2l+1, Z1′

2l

]
= 8

(
∂s2 − i∂s3

)
,

[
Z0′
2l , Z0′

2l

]
=
[

Z1′
2l , Z1′

2l

]
= −

[
Z0′
2l+1, Z0′

2l+1

]
= −

[
Z1′
2l+1, Z1′

2l+1

]
= 8i∂s1;

(3.11)

(3) if {A, B} �= {2l, 2l + 1} for any l, then
[

Z A′
A , Z B′

B

]
= 0 for any A′, B ′. Thus, we have

C =
k∑

s=2

∑

A,B,A′
1,...,A′

k

([
Z

A′
1

B ,−Z
A′

s
A

]
f A′

1... Â
′
s ...A

′
k A, f A′

2...A
′
k B

)

= − (k − 1)
∑

A,B,B′,B′
3,...,B′

k

([
Z B′

B , Z B′
A

]
fB′ B′

3...B
′
k A, fB′ B′

3...B
′
k B

)
,

= − (k − 1)
∑

B′,B′
3,...,B′

k

n−1∑

l=0

{([
Z B′
2l , Z B′

2l

]
fB′ B′

3...B
′
k (2l), fB′ B′

3...B
′
k (2l)

)

+
([

Z B′
2l , Z B′

2l+1

]
fB′ B′

3...B
′
k (2l+1), fB′ B′

3...B
′
k (2l)

)

+
([

Z B′
2l+1, Z B′

2l

]
fB′ B′

3...B
′
k (2l), fB′ B′

3...B
′
k (2l+1)

)

+
([

Z B′
2l+1, Z B′

2l+1

]
fB′ B′

3...B
′
k (2l+1), fB′ B′

3...B
′
k (2l+1)

)}

by using (1) and (3) above, relabeling indices and f symmetric in the primed indices. Apply
(3.11) to C above to get

C = − 8(k − 1)
∑

B′,B′
3,...,B′

k

{
2n−1∑

A=0

(−1)A
(
i∂s1 fB′ B′

3...B
′
k A, fB′ B′

3...B
′
k A

)

+
n−1∑

l=0

(
−(∂s2 + i∂s3) fB′ B′

3...B
′
k (2l+1), fB′ B′

3...B
′
k (2l)

)

+
n−1∑

l=0

(
(∂s2 − i∂s3) fB′ B′

3...B
′
k (2l), fB′ B′

3...B
′
k (2l+1)

)}
.

(3.12)

For any u, v ∈ C1(H /HZ,C), we have

8
(
∂s1u, v

) = −1

n

n−1∑

l=0

([Y4l+1, Y4l+2]u + [Y4l+3, Y4l+4]u, v) ,

by (2.21). As

|([Ya, Yb]u, v)| = |(Ybu,−Yav) + (Yau, Ybv)|
≤ 1

2

(‖Yau‖2 + ‖Ybu‖2 + ‖Yav‖2 + ‖Ybv‖2) ,
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for a, b = 1, . . . , 4n, we get

∣∣8
(
∂s1u, v

)∣∣ ≤ 1

2n

4n∑

a=1

(‖Yau‖2 + ‖Yav‖2) . (3.13)

Similarly, we have

∣∣(8(∂s2 ± i∂s3)u, v
)∣∣ ≤ 1

n

4n∑

a=1

(‖Yau‖2 + ‖Yav‖2) . (3.14)

Then, apply (3.13)–(3.14) to the right-hand side of (3.12) to get

|C | ≤ (k − 1)
3

n

∑

A,B′,B′
3,...,B′

k

4n∑

a=1

∥∥∥Ya fB′ B′
3...B

′
k A

∥∥∥
2 = 3(k − 1)

n
〈�b f , f 〉 . (3.15)

So it follows from estimate (3.9) that

k
∥∥D∗

0 f
∥∥2 + k − 1

2
‖D1 f ‖2 ≥ (k − 1)

(
1 − 3

n

)
〈�b f , f 〉 . (3.16)

Now, by applying Lemma 3.1 we get (3.2). ��

4 Hartogs’ phenomenon

4.1 The nonhomogeneous tangential k-Cauchy–Fueter equation overH /HZ

Consider the Hilbert subspace L consisting of f ∈ L2 (H /HZ,V1) and f ⊥ constant
vectors. The domain of �1 over L is

Dom(�1) := {
f ∈ L : f ∈ Dom(D∗

0 ) ∩ Dom(D1),D
∗
0 f ∈ Dom(D0),D1 f ∈ Dom(D∗

1 )
}
.

Proposition 4.1 The associated Hodge–Laplacian �1 is densely defined, closed, self-adjoint
and nonnegative operator on L.

The proof is exactly the same as that of Proposition 3.1 in [40] since L ⊕ {const .} =
L2(H /HZ,V1), and the action of �1 on {const .} is trivial. We omit the detail. Now, we
can find solution to (1.7)–(1.8), whose proof is similar to that of Theorem 1.2 in [40] for the
k-Cauchy–Fueter operator on H

n .

Theorem 4.1 Suppose that dim H ≥ 19 and k = 2, 3, . . .. If f ∈ Dom(D1) is D1-closed
and f ⊥ constant vectors, then there exist u ∈ L2 (H /HZ,V0) such that

D0u = f .

Proof The L2 estimate (3.2) implies

cn,k‖g‖2 ≤ ‖D∗
0 g‖2 + ‖D1g‖2 = 〈�1g, g〉 ≤ ‖�1g‖‖g‖,

for g ∈ Dom(�1), i.e.,

cn,k‖g‖ ≤ ‖�1g‖. (4.1)
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Thus, �1 : Dom(�1) → L is injective. This together with the self-adjointness of �1 by
Proposition 4.1 implies the density of the range. For fixed f ∈ L, the complex anti-linear
functional

l f : �1g −→ 〈 f , g〉
is then well-defined on a dense subspace of L. It is finite since

|l f (�1g)| = |〈 f , g〉| ≤ ‖ f ‖‖g‖ ≤ 1

cn,k
‖ f ‖‖�1g‖

for any g ∈ Dom(�1), by (4.1). So l f can be uniquely extended to a continuous anti-linear
functional on L. By the Riesz representation theorem, there exists a unique element h ∈ L
such that l f (F) = 〈h, F〉 for any F ∈ L, and ‖h‖ = ‖l f ‖ ≤ 1

cn,k
‖ f ‖. Then, we have

〈h,�1g〉 = 〈 f , g〉
for any g ∈ Dom(�1). This implies that h ∈ Dom(�∗

1) and �∗
1h = f , and so h ∈ Dom(�1)

and �1h = f by self-adjointness of �1. We write h = N f . Then, ‖N f ‖ ≤ 1
cn,k

‖ f ‖.
Since N f ∈ Dom(�1), we have D∗

0 N f ∈ Dom(D0), D1N f ∈ Dom(D∗
1 ), and

D0D
∗
0 N f = f − D∗

1D1N f (4.2)

by �1N f = f . Because f and D0F for any F ∈ Dom(D0) are both D1-closed, the above
identity implies D∗

1D1N f ∈ Dom(D1) and so D1D
∗
1D1N f = 0. Then,

0 = 〈D1D
∗
1D1N f ,D1N f 〉 = ‖D∗

1D1N f ‖2,
i.e., D∗

1D1N f = 0. Hence, D0D
∗
0 N f = f by (4.2). ��

4.2 Proof of Hartogs’phenomenon

We need the analytic hypoellipticity of �b. Let G be a nilpotent Lie group of step 2, and
its Lie algebra g has decomposition: g = g1 ⊕ g2 satisfying [g1, g1] ⊂ g2, [g, g2] = 0.
Consider the condition (H): For any λ ∈ g∗

2\{0}, the antisymmetric bilinear form

Bλ(Y , Y ′) = 〈λ, [Y , Y ′]〉,
for Y , Y ′ ∈ g1 is nondegenerate. Métivier proved the following theorem for analytic hypoel-
lipticity.

Theorem 4.2 ([24, Theorem 0]) Let P be a homogeneous left invariant differential operator
on a nilpotent Lie group G satisfies condition (H). Then, the following are equivalent:

(i) P is analytic hypoelliptic;
(ii) P is C∞ hypoelliptic.

Corollary 4.1 �b is analytic hypoelliptic on a domain � ⊂ H , i.e., for any distribution
u ∈ S′(�) such that �bu is analytic, u must be also analytic.

Proof It follows from the well-known subellipticity of �b that u is locally Ck+1 if �bu
is locally Ck . So �b is C∞ hypoelliptic. To obtain the analytic hypoellipticity of �b by
applying Theorem 4.2, it is sufficient to check the condition (H) for the right quaternionic
Heisenberg groupH . In this case, g1 = span{Y1, . . . , Y4n}, g2 = span

{
∂s1 , ∂s2 , ∂s3

}
,where
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The tangential k-Cauchy–Fueter complexes and Hartogs’… 673

Y1, . . . , Y4n is the left invariant vector fields in (2.4). Let λ ∈ g∗
2\{0}. For Y4l+ j , Y4l+ j ′ ∈ g1,

we have

Bλ(Y4l+ j , Y4l ′+ j ′) = 〈λ, [Y4l+ j , Y4l ′+ j ′ ]〉 = 4δll ′
3∑

β=1

Bβ

j j ′λ(∂sβ ) = 4δll ′
3∑

β=1

Bβ

j j ′λβ,

by (2.5), if we write λ(∂sβ ) = λβ . Then, the matrix associated with Bλ is

4
3∑

β=1

⎛

⎜⎝
λβ Bβ

. . .

λβ Bβ

⎞

⎟⎠ , where
3∑

β=1

λβ Bβ =

⎛

⎜⎜⎝

0 − λ1 − λ2 − λ3
λ1 0 − λ3 λ2
λ2 λ3 0 − λ1
λ3 − λ2 λ1 0

⎞

⎟⎟⎠ , (4.3)

whose determinant is
(
λ21 + λ22 + λ23

)2n
by direct calculation. So Bλ is nondegenerate for

λ ∈ g∗
2\{0}, i.e., H satisfies condition (H). ��

Liouville-type theorems hold for SubLaplacian �b on the right quaternionic Heisenberg
group by the following general theorem of Geller.

Theorem 4.3 ([14, Theorem 2]) Let L be a homogeneous hypoelliptic left invariant differ-
ential operator on a homogeneous group G. Suppose u ∈ S′(G) and L u = 0. Then, u is a
polynomial.

Theorem 4.4 Let �̃ be an open set in F such that �̃ � F̊ and F\�̃ are connected. If
f ∈ C1(H /HZ,V1) with supp f ⊂ �̃ is D1-closed and f ⊥ constant vectors, then there
exist u ∈ C2 (H /HZ,V0) such that

D0u = f , (4.4)

with supp u ⊂ �̃.

Proof By Theorem 4.1, we can find a solution u ∈ L2 (H /HZ,V0) to (4.4). For c ∈ H,
denote

H ′
c := {(q ′, c, s) ∈ H : q ′ ∈ H

n−1, s ∈ R
3}.

We see that H ′
c ∩ � = ∅ for |c| small by �̃ � F̊ .

Since D0u = 0 on (H /HZ) \�̃, we have D∗
0D0u = 0,, and then, by Proposition 2.4

�bu A′
1...A

′
k A = 0 on (H /HZ) \�̃ in the sense of distributions for any fixed A′

1, . . . , A′
k, A.

So it is real analytic on (H /HZ) \�̃ by Corollary 4.1. Moreover, u is C2 on H /HZ by
subellipticity of �b. In particular, u(q ′, c, s) is well-defined on H ′

c /H ′
Z
as a real analytic

function. So it can be extended to a periodic function overH ′
c by (2.11). Now, let D ′

0 be the
tangential k-Cauchy–Fueter operator onH ′

c , i.e.,D ′
0u is a�k−1

C
2⊗C

2n−2-valued function
with

(
D ′
0u
)

AA′
2...A

′
k

= (D0u)AA′
2...A

′
k
, A = 0, 1, . . . , 2n − 3.

By applying Proposition 2.4 toH ′
c , we see that �′

bu = 0, where �′
b = −∑4n−5

a=0 Y 2
a . Then,

apply Liouville-type Theorem 4.3 to the group H ′
c and �′

b to get

u(·, c, ·) = a polynomial on H ′
c ,

which must be a constant by periodicity. Thus, u only depends on the variable qn .

123



674 Y. Shi, W. Wang

Similarly, we can prove u is a constant on the subgroup

H ′′
0 := {(0, qn, s) ∈ H ; qn ∈ H, s ∈ R

3}.
Now, if replacing u by u− const., we see that u vanishes in a neighborhood of H ′′

0 . Con-
sequently, by the identity theorem for real analytic functions it vanishes on the connected
component F\�̃. Thus, supp u ⊂ �̃. ��
The solution with supp u ⊂ �̃ above plays the role of compactly supported solution to ∂

equation or the tangential k-Cauchy–Fueter equations (cf., e.g., [17,35]). It leads to Hartogs’
extension phenomenon as follows.

The proof of Theorem 1.1 Without loss of generality, we can assume � � F̊ by dilating if
necessary. Let χ ∈ C∞

0 (�) be equal to 1 in a neighborhood of K such that F\suppχ is
connected. Set

ũ(ξ) :=
{

(1 − χ)u(ξ), ξ ∈ �\K
0, ξ ∈ K

.

Then, ũ ∈ C∞(�), and ũ|�\suppχ = u|�\suppχ . We have

D0ũ = D0((1 − χ)u) =: f

on H , where f A′
2...A

′
k A = −∑

A′
1

Z
A′
1

A χ · u A′
1...A

′
k
by D0u = 0 on �\K . Hence, f ∈

C∞
0 (H ,V1) vanishes in K and outside �, satisfying D1 f = D1D0ũ = 0 by (2.30). We can

extend f to a periodic function and view it as an element of C∞(H /HZ,V1).
Denote

c :=
∫
H /HZ

f dV
∫
H /HZ

dV
∈ V1.

Then, we have ( f − c) ⊥ constant vectors. It follows from Theorem 4.4 that there exists a
solution Ũ ∈ C2(H /HZ,V0) toD0Ũ = f −c,which vanishes outside �̃ := suppχ . Then,
D0 (̃u − Ũ ) = c on H /HZ. So c = D0ũ|�\�̃ = D0u|�\�̃ = 0. Therefore, U = ũ − Ũ is

k-CF in � since D0 (̃u − Ũ ) = 0. Note that Ũ ≡ 0 outside �̃ and F\�̃ is connected. So
U = u in �\�̃. Then, U = u in �\K by the identity theorem for real analytic functions.
The theorem is proved. ��

5 The restriction of the k-Cauchy–Fueter operator to the hypersurface
S

5.1 The nilpotent Lie groups of step two associated with quadratic hypersurfaces

Let (x1, . . . , x4n, t1, t2, t3) be coordinates of R4n+3. Now, consider general quadratic hyper-
surfaces Ŝ defined by

ρ = Re qn+1 − φ(q ′), where φ =
4n∑

k=1

S jk x j xk, (5.1)

for some symmetric matrix S. Define the projection:

π : Ŝ −→ H
n × ImH � R

4n+3,

(q1, . . . , qn, φ(q ′) + t) �−→ (q1, . . . , qn, t),
(5.2)
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The tangential k-Cauchy–Fueter complexes and Hartogs’… 675

where t = t1i + t2j + t3k, ql+1 = x4l+1 + ix4l+2 + jx4l+3 + kx4l+4, l = 0, . . . , n − 1
and tβ = x4n+1+β for β = 1, 2, 3. Let ψ : Hn × ImH −→ S ⊂ H

n+1 be its inverse. The
Cauchy–Fueter operator is

∂ql+1 = ∂x4l+1 + i∂x4l+2 + j∂x4l+3 + k∂x4l+4 .

Then, ∂ql+1 + ∂ql+1φ · ∂qn+1 is a vector field tangential to the hypersurface Ŝ, since
(
∂ql+1 + ∂ql+1φ · ∂qn+1

)
ρ = 0,

l = 0, 1, . . . , n − 1. This vector field is exactly the pushforward vector field ψ∗
(
∂ql+1 +

∂ql+1φ · ∂ t
)
, where ∂ t = i∂t1 + j∂t2 + k∂t3 . Because

ψ∗∂tβ = ∂x4n+1+β
, ψ∗∂x4l+ j = ∂x4l+ j + ∂x4l+ j φ · ∂x4n+1 ,

for β = 1, 2, 3, j = 1, . . . , 4, l = 0, . . . , n − 1, and

ψ∗
(
∂ql+1 + ∂ql+1φ · ∂ t

) =
4∑

j=1

i j−1
(
∂x4l+ j + ∂x4l+ j φ · ∂x4n+1

)

+ ∂ql+1φ
(
i∂x4n+2 + j∂x4n+3 + k∂x4n+4

) = ∂ql+1 + ∂ql+1φ · ∂qn+1 .

Denote

X4l+1 + iX4l+2 + jX4l+3 + kX4l+4 := ∂ql+1 + ∂ql+1φ · ∂ t. (5.3)

Proposition 5.1 We have

Xb = ∂xb + 2
3∑

β=1

4n∑

a=1

(
SI

β
)

ab xa∂tβ ,

where I
β is the (4n) × (4n) matrix diag

(
I β, . . . , I β

)
.

Proof The proof is similar to that of Proposition 2.1 in [39]. Consider right multiplication by
iβ . Note that

(x1 + x2i + x3j + x4k)i = −x2 + x1i + x4j − x3k,

(x1 + x2i + x3j + x4k)j = −x3 − x4i + x1j + x2k,

(x1 + x2i + x3j + x4k)k = −x4 + x3i − x2j + x1k,

we can write

(x1 + x2i + x3j + x4k)iβ = − (I β x)1 − (I β x)2i − (I β x)3j − (I β x)4k

= −
4∑

j=1

(I β x) j i j−1, (5.4)

where I β ’s are given by (2.41). Bβ in (2.2) is the matrix associated with left multiplication
by iβ ([39, p. 1358]). Then, we have

∂ql+1φ · ∂t = (
∂x4l+1φ + i∂x4l+2φ + j∂x4l+3φ + k∂x4l+4φ

) (
i∂t1 + j∂t2 + k∂t3

)

= −
3∑

β=1

4∑

j,k=1

I β
jk∂x4l+k φi j−1∂tβ .
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Substitute it into (5.3) to get

X4l+ j = ∂x4l+ j + 2
3∑

β=1

4∑

k=1

4n∑

a=1

I β
k jSa(4l+k)xa∂tβ = ∂x4l+ j + 2

3∑

β=1

4n∑

a=1

(
SI

β
)

a(4l+ j) xa∂tβ ,

by the antisymmetry of I β . ��
By Proposition 5.1, we get

[Xa, Xb] = 2
3∑

β=1

((
SI

β
)

ab − (
SI

β
)

ba

)
∂tβ .

So spanC
{

X1, . . . , X4n, ∂t1 , ∂t2 , ∂t3

}
is a nilpotent Lie algebra with center spanC

{
∂t1 , ∂t2 ,

∂t3

}
. The corresponding nilpotent Lie group of step two is the group associated with the

quadratic hypersurface Ŝ.
Now, if we choose the matrix S so that

SI
β + I

β
S = 2Bβ, where B

β = diag
(
Bβ, . . . , Bβ

)
,

then the Lie algebra spanned by X1, . . . , X4n, ∂t1 , ∂t1 , ∂t3 is isomorphic to the Lie algebra
of the right quaternionic Heisenberg groupH . It is sufficient to choose S = diag(S, . . . , S)

such that SI β + I β S = 2Bβ, where S is a symmetric 4 × 4 matrix. Namely,

Cβ − (
Cβ

)t = 2Bβ, (5.5)

for Cβ = SI β . Then,

S = diag(−3, 1, 1, 1),

and

C1 :=

⎛

⎜⎜⎝

0 − 3 0 0
− 1 0 0 0
0 0 0 − 1
0 0 1 0

⎞

⎟⎟⎠ , C2 :=

⎛

⎜⎜⎝

0 0 − 3 0
0 0 0 1

− 1 0 0 0
0 − 1 0 0

⎞

⎟⎟⎠ ,

C3 :=

⎛

⎜⎜⎝

0 0 0 − 3
0 0 − 1 0
0 1 0 0

− 1 0 0 0

⎞

⎟⎟⎠ .

satisfy (5.5). Thus, the defining function (5.1) of Ŝ in this case is (1.2) of S, and so the Lie
group associate with S is the right quaternionic Heisenberg group.

5.2 The restriction of the k-Cauchy–Fueter operator

Xa’s for S has the form

X4l+ j = ∂x4l+ j + 2
3∑

β=1

4∑

k=1

Ckj x4l+k∂tβ .

Since Cβ is not antisymmetric, they are different from the standard left invariant vector fields
(2.4) on H . It is standard that they can be transformed to the standard left invariant vector
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fields (2.4) on H by a simple coordinate transformation F : H → R
4n+3, (y, s) �→ (x, t)

given by

x4l+ j = y4l+ j , tβ = sβ +
4∑

k, j=1

Dβ
k j y4l+k y4l+ j , (5.6)

(cf. [39, (1.8)]) with Dβ := Cβ + (
Cβ

)t
symmetric. It is direct to see that

F∗∂sβ = ∂tβ and F∗Y4l+ j = X4l+ j ,

where Y4l+ j is given by (2.4). Then, we find the relationship between complex horizontal
vector fields Z A′

A ’s on H and ∇ A′
A ’s on Hn+1.

Proposition 5.2 Under the diffeomorphism ψ ◦ F : H → S, we have

(ψ ◦ F)∗ Z A′
A = ∇ A′

A +
∑

α=0,1

Cα
A∇ A′

(2n+α), for
(
Cα

A

) :=
⎛

⎜⎝

...
τ
(
∂ql φ

)

...

⎞

⎟⎠ , (5.7)

for fixed A = 0, 1, . . . , 2n − 1, A′ = 0′, 1′, where τ is the embedding given by (2.13).

Proof As τ is a representation, we have

ψ∗
(−X4l+3 − iX4l+4 −X4l+1 − iX4l+2

X4l+1 − iX4l+2 −X4l+3 + iX4l+4

)
= ψ∗

(
X4l+1 + iX4l+2 −X4l+3 − iX4l+4

X4l+3 − iX4l+4 X4l+1 − iX4l+2

)
ε

= τ (ψ∗(X4l+1 + iX4l+2 + jX4l+3 + kX4l+4)) ε

= τ
(
∂ql+1 + ∂ql+1φ · ∂qn+1

)
ε = τ

(
∂ql+1

)
ε + τ

(
∂ql+1φ

)
τ
(
∂qn+1

)
ε

=
(

∇0′
(2l) ∇1′

(2l)

∇0′
(2l+1) ∇1′

(2l+1)

)
+ τ(∂ql φ)

(
∇0′

(2n) ∇1′
(2n)

∇0′
(2n+1) ∇1′

(2n+1)

)
,

where ε =
(
0 − 1
1 0

)
in (2.15). Then, (5.7) follows. ��

From this proposition, we can derive the relationship between operators in k-Cauchy–Fueter
complex on Hn+1 and that in the tangential k-Cauchy–Fueter complex on H .

Proposition 5.3 Suppose that f is a k-regular function near q0 ∈ S. Then, (ψ ◦ F)∗ f is
k-CF on H near the point F−1(π(q0)).

Proof As f is a k-regular function near q0 ∈ S ⊂ H
n+1,we have

∑
B′=0′,1′ ∇B′

A fB′ A′
2...A

′
k

=
0 for any fixed A = 0, 1, . . . , 2n + 1, A′

2, . . . , A′
k = 0′, 1′. Then, we find that

(
D0(ψ ◦ F)∗ f

)
AA′

2...A
′
k

∣∣∣
F−1(π(q0))

=
∑

B′=0′,1′
Z B′

A ((ψ ◦ F)∗ f )B′ A′
2...A

′
k

∣∣∣F−1(π(q0))

=
∑

B′=0′,1′
(ψ ◦ F)∗ Z B′

A fB′ A′
2...A

′
k
(q0)

=
∑

B′

⎛

⎝∇B′
A +

∑

α=0,1

Cα
A∇B′

(2n+α)

⎞

⎠ fB′ A′
2...A

′
k
(q0) = 0,

for any fixed A = 0, 1, . . . , 2n −1, A′
2, . . . , A′

k = 0′, 1′, by Proposition 5.2. The proposition
is proved. ��
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6 Appendix

In the case n = 2, k = 2, We have isomorphisms

�2
C
2 ∼= C

3, C
2 ⊗ C

4 ∼= C
8, (6.1)

by identifying f ∈ �2
C
2 and F ∈ C

2 ⊗ C
4 with

f :=
⎛

⎝
f0′0′
f0′1′
f1′1′

⎞

⎠ , F :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0′0
...

F0′3
F1′0
...

F1′3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.2)

respectively. The operator D0 in (2.18) can be written as a 8 × 3 matrix-valued differential
operator:

D0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Y3 − iY4 −Y1 − iY2 0
Y1 − iY2 −Y3 + iY4 0

−Y7 − iY8 −Y5 − iY6 0
Y5 − iY6 −Y7 + iY8 0

0 −Y3 − iY4 −Y1 − iY2

0 Y1 − iY2 −Y3 + iY4

0 −Y7 − iY8 −Y5 − iY6

0 Y5 − iY6 −Y7 + iY8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, the operator D1 in (2.23) can be written as a 6 × 8 matrix-valued differential
operator:
⎛

⎜⎜⎜⎜⎜⎜⎝

−Y1 + iY2 −Y3 − iY4 0 0 Y3 − iY4 −Y1 − iY2 0 0
Y7 + iY8 0 −Y3 − iY4 0 Y5 + iY6 0 −Y1 − iY2 0

−Y5 − iY6 0 0 −Y3 − iY4 Y7 − iY8 0 0 −Y1 − iY2

0 Y7 + iY8 Y1 − iY2 0 0 Y5 + iY6 −Y3 + iY4 0
0 −Y5 + iY6 0 Y1 − iY2 0 Y7 − iY8 0 −Y3 + iY4

0 0 −Y5 + iY6 −Y7 − iY8 0 0 Y7 − iY8 −Y5 − iY6

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Thus, we have D∗
0 = −D0

t
, D∗

1 = −D1
t
. Then, by direct calculation we have

�1 = D0D
∗
0 + D∗

1D1 =
(

A 0
0 B

)
(6.3)

with

A =
⎛

⎜⎝

�b+�1−12i∂s1 L1+(Y1+iY2)(−Y3−iY4) (−Y1−iY2)(Y5−iY6) (−Y1−iY2)(Y7+iY8)

−L1+(Y3−iY4)(−Y1+iY2) �b+�2+12i∂s1 (−Y3+iY4)(Y5−iY6) (−Y3+iY4)(Y7+iY8)

(−Y5−iY6)(Y1−iY2) (−Y5−iY6)(Y3+iY4) �b+�3−12i∂s1 L1+(Y5+iY6)(−Y7−iY8)

(−Y7+iY8)(Y1−iY2) (−Y7+iY8)(Y3+iY4) −L1+(Y7−iY8)(−Y5+iY6) �b+�4+12i∂s1

⎞

⎟⎠ ,

B =
⎛

⎜⎝

�b+�2−12i∂s1 L1+(−Y3−iY4)(−Y1−iY2) (−Y3−iY4)(−Y7−iY8) (−Y3−iY4)(−Y5−iY6)

−L1+(Y1−iY2)(Y3−iY4) �b+�1+12i∂s1 (Y1−iY2)(Y7−iY8) (Y1−iY2)(−Y5−iY6)

(Y7−iY8)(Y3−iY4) (−Y7−iY8)(−Y1−iY2) �b+�4−12i∂s1 L1+(−Y7−iY8)(−Y5−iY6)

(Y5−iY6)(Y3−iY4) (Y5−iY6)(−Y1−iY2) −L1+(Y5−iY6)(Y7−iY8) �b+�3+12i∂s1

⎞

⎟⎠ ,

where �b = −Y 2
1 · · · − Y 2

8 ,�1 = −Y 2
1 − Y 2

2 ,�2 = −Y 2
3 − Y 2

4 ,�3 = −Y 2
5 − Y 2

6 ,�4 =
−Y 2

7 − Y 2
8 , L1 = 8(∂s2 + i∂s3). Because of the complexity of �1 in (6.3), it is not easy to

obtain its fundamental solution.
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