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Abstract
We characterize the sphere with radius tan2 r = 2n+1 in the complex projective spaceCPn

as the unique stable hypersurface subject to certain bounds on the curvatures.
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hypersurfaces

Mathematics Subject Classification 49Q10 · 53C42

1 Introduction

Barbosa et al. [2] proved among other results that the geodesic spherewith radius r ∈ (0, π/2)
in the complex projective space CPn , n ≥ 2, is stable for the area functional with fixed
enclosed volume if and only if tan2 r ≤ 2n + 1. They also computed the stability intervals
for the radius of a geodesic tube around CPk ⊂ CPn , with 1 ≤ k < n.

The classification of complete oriented stable hypersurfaces in CPn could be an impor-
tant step toward the classification of isoperimetric sets in CPn . Indeed, the boundary of an
isoperimetric set, if smooth, is a hypersurface with constant mean curvature that is stable for
variations fixing the volume. Since [2], there was apparently no progress on the problem of
the classification of stable hypersurfaces in CPn .

In this paper, we characterize the geodesic spherewith radius tan2 r = 2n+1 as the unique
stable connected and complete hypersurface subject to a bound either on the characteristic
curvature or on the restriction of the second fundamental form to the complex tangent space.
See Definition 6.1 for the precise definition of stability.
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232 E. Battaglia et al.

The characteristic curvature κ of a hypersurface � ⊂ CPn is the curvature in direction
J N , where N is the normal to� and J is the complex structure ofCPn , i.e., κ = h(J N , J N )

where h is the second fundamental form of �.
For fixed H ∈ R and n ∈ N, let p(·; H , n) be the quadratic polynomial of the real variable

t ∈ R

p(t; H , n) = (2n + 1)t2 − 2Ht − H2 − 4(n2 − 1). (1.1)

Our first result is the following theorem.

Theorem 1.1 Let � ⊂ CPn, n ≥ 2, be a complete connected stable hypersurface with
constant H = tr(h). If the characteristic curvature κ of � satisfies p(κ; H , n) ≥ 0 then �

is a geodesic sphere of radius r > 0 with tan2 r = 2n + 1.

LetCT� be the complex tangent space of a hypersurface�, and let T1 and T2 be nonzero
subbundles of CT� such that

CT� = T1 ⊕ T2, (1.2)

and denote their dimensions by α = dimR(T1) and β = dimR(T2). Then we have α + β =
dimR(CT�) = 2(n − 1) and 1 ≤ α < 2(n − 1). Let h1 and h2 be the restrictions of the
second fundamental form h of � to T1 and T2, and denote by H1 = tr(h1) and H2 = tr(h2)
their respective traces.

For fixed H ∈ R, n ∈ N with n ≥ 2, and 1 ≤ α < 2(n − 1), let p(·; H , n, α) be the
quadratic convex polynomial of the variables (s, t) ∈ R

2

p(s, t; H , n, α) = s2

α
+ t2

β
+ (s + t − H)2 + (s + t − 2H)2

2(n2 − 1)
− H2

n − 1
− 2n. (1.3)

Our second result is a refined version of Theorem 1.1.

Theorem 1.2 Let � ⊂ CPn, n ≥ 3, be a complete connected stable hypersurface with
constant H = tr(h). If for the decomposition (1.2), with 1 ≤ α = dimR(T1) < 2(n − 1),
we have p(H1, H2; H , n, α) ≥ 0, then � is a geodesic sphere of radius r > 0 with tan2 r =
2n + 1.

Both Theorems 1.1 and 1.2 are a consequence of the following geometric inequality that
is implied by stability. Let ∇� be the Levi–Civita connection of CPn , see Sect. 3 for the
notation, and consider the covariant derivative ∇�

J N N ∈ T� of the normal N to �. We
denote by hN ∈ CT� the projection of ∇�

J N N onto CT�. By |h|2 we denote the squared
norm of h.

Theorem 1.3 Let � ⊂ CPn, n ≥ 2, be a complete stable hypersurface with constant H =
tr(h). Then we have

∫
�

{
|h|2 + (H + κ)2 + |hN |2

2(n2 − 1)
− H2

n − 1
− 2n

}
dμ ≤ 0, (1.4)

where μ is the Riemannian hypersurface measure.

The method for obtaining formula (1.4) starts from an idea contained in the proof of [1]
that geodesic spheres are the unique stable complete hypersurfaces in the standard sphere.
Our first step is the isometric embedding of CPn into Hn+1, the space of (n + 1) × (n + 1)
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Stable hypersurfaces in the complex projective space 233

Hermitianmatrices, see [6,8].Once the hypersurface� is embedded in Hn+1,we can consider
the position matrix A ∈ � and compute its tangential Laplacian, see Theorem 4.1,

�A = tr(σ ) − σ(N , N ) − tr(h)N , (1.5)

where � is the Laplace-Beltrami operator of � and σ : TACPn ×TACPn → T⊥
A CPn is the

second fundamental form of the immersion CPn ⊂ Hn+1. We shall make systematic use of
the geometric formulas concerning σ proved by Ros in [6,7]. They are reviewed in Sect. 3.

For a smooth function u : � → R, the second variation of the area functional in the
normal direction uN is given by the formula

A ′′(u) = −
∫

�

uL u dμ,

where L u = �u + (|h|2 + Ric(N ))u is the Jacobi operator. When u has zero mean, the
deformation of � encloses a region with the same volume as �, at the infinitesimal level.

For any fixed V ∈ Hn+1, the function uV = 〈�A, V 〉 has zero mean. In Sect. 6, we
compute the trace of the quadratic form Q� on Hn+1 defined by Q�(V ) = A ′′(uV ). If �

is stable, this trace is nonnegative and this fact is precisely inequality (1.4).
From (1.5), it is clear that in the computation for L uV we need geometric formulas for

�tr(σ ),�σ(N , N ), and�N . The computation for�N is done in Theorem 4.2. The formula
for �tr(σ ) follows easily from the formula for the trace of σ , see (3.18). The difficult task
is to compute the tangential Laplacian of σ(N , N ). This is done in Sect. 5, and the resulting
formula is in (5.4). In Sect. 6, we collect all these preliminary computations and we finish
the proof of Theorem 1.3.

The proof of Theorem 1.1 now follows from Theorem 1.3 using Takagi’s and Cecil-
Ryan’s characterization of the sphere in CPn as the unique hypersurface having precisely
two (constant) different curvatures. The proof of Theorem 1.2 uses Takagi’s classification of
hypersurfaces in CPn , n ≥ 3, having precisely three different constant curvatures: they are
either geodesics tubes around CPk for some k = 1, . . . , n− 1 or geodesics tubes around the
real projective space RPn . The details are in the final Sect. 7, while the preliminary results
on spheres and tubes are reviewed in Sect. 2.

In this paper, by “hypersurface” we always mean “embedded hypersurface” in CPn .

2 Geometry of spheres and tubes

The n-dimensional complex projective space is the quotient of the unit sphere S2n+1 = {z ∈
Cn+1 : |z| = 1} by the Hopf action of S1, (eiϑ , z) �→ eiϑ z. We denote by [z] the equivalence
class of z ∈ S2n+1. The tangent space of CPn at the point [z] is

T[z]CPn = {w ∈ Cn+1 : z · w̄ = 0},
where z · w̄ = z1w̄1 + · · · + zn+1w̄n+1 is the standard Hermitian product of Cn+1. The
complex structure on T[z]CPn is given by Jw = iw, the standard multiplication by i of
w ∈ T[z]CPn ⊂ Cn+1.

The metric 〈ζ,w〉FS = Re(ζ · w̄), with ζ,w ∈ T[z]CPn , is the Fubini–Study metric of
CPn , that makes the complex projective space a Riemannian manifold. The induced distance
function d : CPn × CPn → [0, π/2] is d([z], [w]) = arccos |z · w̄|.

Let � ⊂ CPn by a C∞-smooth hypersurface oriented by the unit normal N . We define
the second fundamental form h of � with the following sign convention
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234 E. Battaglia et al.

h(X , Y ) = 〈∇�
X N , Y 〉, X , Y ∈ T[z]�.

The characteristic curvature of � at the point [z] ∈ � is κ = h(J N , J N ).
For any fixed [w] ∈ CPn and 0 < r < π/2, the geodesic sphere centered at [w] with

radius r is

�r = {[z] ∈ CPn : |z · w̄| = cos r
}
.

We omit reference to the center. The curvatures of �r are well known, see, e.g., [3, Example
1 page 493]. Letting t = tan r , they are

λ = cot r = 1

t
, with multiplicity 2(n − 1),

κ = 2 cot(2r) = 1

t
− t, the characteristic curvature.

(2.1)

These two curvatures are constant and distinct for each value of t > 0. In Takagi [9] proved
that this property characterizes the sphere.

Proposition 2.1 If � ⊂ CPn, n ≥ 2, is a connected hypersurface with precisely two distinct
constant curvatures, then � is a subset of a sphere �r .

In fact, the constancy assumption on the curvatures can be dropped, see [3].
We now discuss tubes around CPk . For k = 1, . . . , n − 1, the natural inclusion S2k+1 =

{z ∈ S2n+1 : zk+2 = · · · = zn+1 = 0} ⊂ S2n+1 induces the inclusion CPk ⊂ CPn . For
0 < r < π/2, we define the tube

T k
r = {[z] ∈ CPn : dist([z],CPk) = r}

= {[z] = [(z′, z′′)] ∈ CPn : |z| = 1, z′ ∈ Ck+1, |z′| = cos r}.
The curvatures of T k

r are computed in [3]. Letting t = tan r , they are

λ1 = cot
(
r − π

2

)
= −t, with multiplicity 2k,

λ2 = cot r = 1

t
, with multiplicity 2� = 2(n − 1 − k),

κ = 2 cot(2r) = 1

t
− t, the characteristic curvature.

(2.2)

These three curvatures are constant and distinct for each value of t > 0. In particular, T k
r has

constant mean curvature. For r + s = π/2 and k + � = n − 1 the hypersurfaces T k
r and T �

s
are congruent.

The tubes T k
r share with the sphere �r the property of being stable for some value of r .

The following theorem is proved in [2, Theorem 1.3] using the method of G-stability.

Theorem 2.2 Let n ≥ 2 and k = 1, . . . , n − 1. Then:

(1) The sphere �r is stable if and only if tan2 r ≤ 2n + 1.
(2) The tube T k

r is stable if and only if

2n − 2k − 1

2k + 3
≤ tan2 r ≤ 2n − 2k + 1

2k + 1
.

Finally, we consider geodesics tubes aroundRPn . We start from the following embedding
of the sphere Sn into S2n+1:

Sn = {z ∈ Cn+1 : |z| = 1, z = z̄} ⊂ S2n+1.
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Stable hypersurfaces in the complex projective space 235

Passing to the quotient, the inclusion Sn ⊂ S2n+1 gives an embedding of RPn into CPn .
The distance of z ∈ S2n+1 from Sn is

dist(z,Sn) = 1

2
arccos

⎛
⎝

∣∣∣∣∣∣
n+1∑
j=1

z2j

∣∣∣∣∣∣

⎞
⎠ ,

and it does not depend on the equivalence class of z. The level sets of this distance form
the isoparametric family of hypersurfaces in S2n+1 studied in [5, Theorem 1]. Hence, the
geodesic tube in CPn with radius r around RPn is

Vr =
⎧⎨
⎩[z] ∈ CPn :

∣∣∣∣∣∣
n+1∑
j=1

z2j

∣∣∣∣∣∣ = cos 2r

⎫⎬
⎭ .

The curvatures of Vr are computed in [3] starting from the formulas in [5] for the preimage
of Vr in S2n+1. Letting t = tan r , they are

λ1 = − cot r = −1

t
, with multiplicity n − 1,

λ2 = − cot
(π

2
− r

)
= t, with multiplicity n − 1,

κ = 2 cot
(π

2
− 2r

)
= 4t

1 − t2
, the characteristic curvature.

(2.3)

These three curvatures are constant and distinct for each value of t ∈ (0, 1). We have a
third example of a complete constant mean curvature hypersurface in CPn . We will see in
Lemma 6.5 that Vr is not stable for any 0 < r < π/4.

Takagi [10] proved that the tubes Vr and the tubes T k
r are characterized by the fact of

having precisely three distinct and constant curvatures.

Proposition 2.3 Let n ≥ 3. If � ⊂ CPn is a connected hypersurface with three distinct
constant curvatures, then � is a subset of some tube T k

r or Vr .

We shall use Proposition 2.3 and Theorem 2.2 in the proof of Theorem 1.2 in Sect. 7.

3 Geometry of the isometric immersion of CPn into Hn+1

Let Hn+1 = {
A ∈ gl(n + 1,C) : A = At

}
be the set of (n + 1)-dimensional Hermitian

matrices. This is a (n + 1)2-dimensional real subspace of gl(n + 1,C). The standard scalar
product on Hn+1 is

〈A, B〉 := 1

2
tr(AB), A, B ∈ Hn+1. (3.1)

Let  : CPn → Hn+1 be the mapping that takes the equivalence class [z] ∈ CPn to the
Hermitian matrix A = ([z]) ∈ Hn+1 of the projection of Cn+1 onto the complex line
[z]. The matrix A satisfies A2 = A because it is a projection and tr(A) = 1, because it
projects onto a complex line. It can be checked that  is an isometry from CPn with the
Fubini–Study metric into Hn+1 with the metric (3.1). Hence, from now on we identify the
complex projective space with

CPn = {
A ∈ Hn+1 : A2 = A, tr(A) = 1

}
.
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236 E. Battaglia et al.

For details on this identification and for the proof of the following lemmas, we refer the
reader to [6]. Our normalization in (3.1) of the scalar product is different from the one by
Ros. Namely, the relation between the metric g used by Ross and the metric in (3.1) is
g(A, B) = 4 〈A, B〉. The isometric embedding  was introduced in [8].

For any A ∈ CPn , we denote by TACPn and T⊥
A CPn the tangent space and the normal

space of CPn at the point A ∈ Hn+1, respectively.

Lemma 3.1 For any A ∈ CPn, we have:

TACPn = {
X ∈ Hn+1 : X A + AX = X

}
, (3.2)

T⊥
A CPn = {

Z ∈ Hn+1 : AZ = Z A
}
. (3.3)

For the proof see [6]. We easily see that A, I ∈ T⊥
A CPn , where I is the identity matrix.

We call the matrix A0 ∈ CPn

A0 :=
(
1 0
0 0

)

the origin of CPn . This is the projection onto the complex line of the versor e0 =
(1, 0, . . . , 0) ∈ Cn+1.

For i, j ∈ {0, 1, . . . , n}, let Ei j be the (n+1)× (n+1)matrix with entry 1 at the position
(i, j) and with 0 elsewhere. With this notation we have E00 = A0. Then the matrices
X1, . . . , Xn, X̂1, . . . , X̂n , where for j = 1, . . . , n

X j = E j0 + E0 j and X̂ j = i E j0 − i E0 j , (3.4)

form an orthonormal basis for the tangent space of CPn at the point A0. The identity X̂ j =
J X j can be checked using formula (3.10) below for the complex structure.

For any point A ∈ CPn , there exists a (non-unique) unitary transformation Q ∈ U (n+1)
such that A = QA0Q−1. The conjugation TQ : Hn+1 → Hn+1, TQX = QXQ−1, preserves
the metric of Hn+1:

〈TQX , TQY 〉 = 1

2
tr(QXY Q−1) = 1

2
tr(XY ) = 〈X , Y 〉, X , Y ∈ Hn+1.

In particular, TQ maps isometrically the tangent space TA0CPn onto TACPn . We will use
these isometries to reduce computations of isometric-invariant quantities to the origin A0.

By elementary computations based on the projection equation A2 = A and on the equation
X = AX + X A for tangent vectors, it is possible to check the following algebraic identities.

Lemma 3.2 For any point A ∈ CPn and for any vector fields X , Y ∈ TACPn, we have:

AXY = XYA, (3.5)

AX A = 0, (3.6)

X(I − 2A) = −(I − 2A)X , (3.7)

(I − 2A)2 = I , (3.8)

(I − 2A)XY = XY (I − 2A). (3.9)

Using the isometric identification , the natural complex structure on T[z]CPn ⊂ Cn+1

can be taken to TACPn ⊂ Hn+1. The resulting mapping is described in the following
proposition.
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Stable hypersurfaces in the complex projective space 237

Proposition 3.3 For any A ∈ CPn, the mapping JA : TACPn → TACPn defined by the
formula

JAX = i(I − 2A)X , (3.10)

satisfies the following properties:

(i) it is an isometry;
(ii) it satisfies J 2A = −Id, where Id is the identity mapping;
(iii) it commutes with the isometries TQ, i.e., for any A, B ∈ CPn with A = TQB for some

Q ∈ U (n + 1), and for any X ∈ TBCPn, we have

JATQ X = TQ JB X . (3.11)

We compute the mean curvature of the immersion of CPn into Hn+1. For any A ∈ CPn ,
we define the orthogonal projections π�

A : Hn+1 → TACPn and π⊥
A : Hn+1 → T⊥

A CPn .
Explicit formulas for π� and π⊥ can be expressed using the symmetric product π : Hn+1 ×
Hn+1 → Hn+1

π(X , Y ) = XY + Y X .

Notice that by (3.3) and (3.5), we have π : TACPn × TACPn → T⊥
A CPn .

Lemma 3.4 For any A ∈ CPn and X ∈ Hn+1, we have

π�
A (X) = π(A, X) − 2AX A, (3.12)

π⊥
A (X) = X − π(A, X) + 2AX A. (3.13)

Proof Themapping defined by formula (3.12) is linear and is the identity on TACPn . Indeed,
for any X ∈ TACPn , by (3.6) and (3.2) we have π�

A (X) = AX + X A = X . We claim that
π�
A (X) ∈ TACPn for any X ∈ Hn+1. Indeed, we have

π�
A (X)A + Aπ�

A (X) = AX A + X A − 2AX A + AX + AX A − 2AX A

= π(A, X) − 2AX A = π�
A (X),

where we used A2 = A.
Then formula (3.12) defines the projection onto TACPn . Formula (3.13) follows from

(3.12). ��
We split the standard connection ∇ of Hn+1 into the part that is tangent to CPn and

the part that is normal. Namely, for X ∈ �(TCPn), Y ∈ �(T Hn+1), and A ∈ CPn we
let ∇�

X Y (A) = π�
A (∇XY ), and ∇⊥

X Y (A) = π⊥
A (∇XY ). By (3.12) and (3.13), we have the

formulas

∇�
X Y = π(A,∇XY ) − 2A(∇XY )A, (3.14)

∇⊥
X Y = ∇XY − π(A,∇XY ) + 2A(∇XY )A. (3.15)

The second fundamental form of the immersion of CPn into Hn+1 is the mapping σA :
TACPn × TACPn → T⊥

A CPn , A ∈ CPn , defined by σA(X , Y ) = ∇⊥
X Y (A). When no

confusion arises, we drop the subscript A and write σ = σA.
The non-normalized mean curvature vector of the immersion is the trace of σ , i.e.,

H = tr(σ ) =
2n∑
i=1

σ(Xi , Xi ), (3.16)

where X1, . . . , X2n is any orthonormal frame of TACPn .
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238 E. Battaglia et al.

Proposition 3.5 For any A ∈ CPn and X , Y ∈ TACPn, we have

σ(X , Y ) = π(X , Y )(I − 2A), (3.17)

and the trace of σ is

H = 4 (I − (n + 1)A) , A ∈ CPn . (3.18)

For a proof of (3.17) and (3.18), see [6, Proposition 1.4].

Remark 3.6 Using (3.17) and (3.10), it is possible to check the following identity for any
X , Y , V ,W ∈ TACPn :

〈σ(X , Y ), σ (V ,W )〉 =2 〈X , Y 〉 〈V ,W 〉 + 〈X ,W 〉 〈Y , V 〉 + 〈X , V 〉 〈Y ,W 〉
+ 〈X , JW 〉 〈Y , JV 〉 + 〈X , JV 〉 〈Y , JW 〉 .

(3.19)

TheWeingarten endomorphism of the immersion is themapping� : TACPn×T⊥
A CPn →

TACPn , A ∈ CPn , defined by the formula �(X , Z) = �Z (X) = −∇�
X Z .

Proposition 3.7 For any A ∈ CPn, X ∈ TACPn, and Z ∈ T⊥
A CPn, we have

�Z (X) = (X Z − Z X)(I − 2A). (3.20)

For the proof see [6, Proposition 1.4]. We establish some identities linking � and σ . Let
X1, . . . , X2n be an orthonormal frame for TCPn and we use the notation N = X2n . In the
sequel, we also let

πi j = π(Xi , X j ) and πi,N = π(Xi , N ),

σi j = σ(Xi , X j ) and σi,N = σ(Xi , N ).

The second fundamental form σ(X , Y ) is defined when X and Y are tangent sections of
CPn . However, the right-hand side of (3.17) is defined for any X , Y ∈ Hn+1. In the next
lemma and in the next sections, we will use (3.17) as the general definition of σ .

Lemma 3.8 Let X1, . . . , X2n−1, N be an orthonormal frame of CPn. Then for any i, j =
1, . . . , 2n − 1 we have

�σ j,N (Xi ) = π(π j,N , Xi ) = 2π j,N Xi − σ(σi j , N ) − σ (X j , σi,N ). (3.21)

Proof We prove the identity on the left of (3.21). By (3.17), (3.20), (3.7), and (3.8), we get

�σ j,N (Xi ) = (
Xiσ j,N − σ j,N Xi

)
(I − 2A)

= (
Xiπ j,N (I − 2A) − π j,N (I − 2A)Xi

)
(I − 2A)

= Xiπ j,N + π j,N Xi = π(π j,N , Xi ).

(3.22)

Now we check the identity on the right. Using (3.7) and (3.8), we have:

2π j,N Xi − [
π(σi j , N ) + π

(
X j , σi,N

)]
(I − 2A)

= − (
πi j (I − 2A)N + Nπi j (I − 2A) + X jπi,N (I − 2A)

+πi,N (I − 2A)X j
)
(I − 2A) + 2π j,N Xi

= πi j N − Nπi j − X jπi,N + πi,N X j + 2π j,N Xi

= Xi X j N + N X j Xi + X j N Xi + Xi N X j

= Xiπ j,N + π j,N Xi

= π
(
Xi , π j,N

)
.

��
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Stable hypersurfaces in the complex projective space 239

Lemma 3.9 For any orthonormal frame X1, . . . , X2n−1, N of CPn, we have

2n−1∑
i=1

�σi,N (Xi ) = 2(n − 1)N . (3.23)

Proof It is enough to verify (3.23) at the point A0 ∈ CPn , with the frame (3.4) where
N = X̂n . Using formula (3.20) for � and the identities (3.7) and (3.8), for any i = 1, . . . , n
and j = 1, . . . , n − 1 we find

�σi,N (Xi ) = δin(N − 2X̂i ) + N ,

�σ ĵ,N
(X̂ j ) = δ jn(2X̂ j + N ) + N = N .

Summing up, we obtain (3.23). ��

4 Laplacian of position and normal

Let � ⊂ CPn be a hypersurface oriented by the unit normal N . In the following we adopt
the short notation σN = σ(N , N ) and πN = π(N , N ). In this section, we compute �A and
�N , where � is the Laplace-Beltrami operator of �.

The second fundamental form of � is the mapping h : TA� × TA� → R, h(X , Y ) =
〈∇�

X N , Y 〉, and we denote its trace by H = tr(h).
NotationFromnowon,wewill omit the symbol of sumover repeated indices. The repeated

index always runs from 1 to 2n − 1. In the other cases, we will write the sum.

Theorem 4.1 Let� ⊂ CPn be an oriented hypersurface with normal N. The position matrix
A satisfies the equation

�A = tr(σ ) − σN − tr(h)N , A ∈ �, (4.1)

where σ is the second fundamental form of the immersion CPn ⊂ Hn+1.

Proof Without loss of generality, we can assume that A0 ∈ � and we check formula (4.1)
at the point A0. Let X1, . . . , X2n−1 be a frame of vector fields tangent to � given by normal
coordinates at A0. Namely, for all i, j = 1, . . . , 2n − 1, we have

∇�
Xi
X j (A0) = 0. (4.2)

We are denoting by ∇� the Levi–Civita connection of �. This is the restriction of ∇� to �,
projected onto T�.

In the next line and in the rest of the paper, we shall use the identity

∇X A = X .

With sum over repeated indices for j = 1, . . . , 2n − 1, we have

�A|A=A0 = ∇X j ∇X j A|A=A0 = ∇X j X j (A0)

= ∇�
X j

X j (A0) + σA0(X j , X j ).

In the last equality, we used the definition of the second fundamental form σ . Again in A0,
by (4.2) we obtain

∇�
X j

X j = 〈∇�
X j

X j , N 〉N = −〈X j ,∇�
X j

N 〉N = −tr(h)N .
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Since X1, . . . , X2n−1, N is an orthonormal frame of CPn , from Definition (3.16) of H we
have σ(X j , X j ) = H − σN , and this ends the proof. ��

In the next theorem, we compute a formula for�N . The second fundamental form h of�
can be identified with a linear operator on TA�. The restriction of σ to TA� can be identified
with a linear operator from TA� to End(TA�, T⊥

A CPn). Hence, the composition σh = σ ◦h
is a linear operator from TA� to End(TA�, T⊥

A CPn). Namely, for any X , Y ∈ TA� we have
σh(X)[Y ] = σ

(
h(X), Y

)
. We denote its trace by

tr(σh) = σh(Xi )[Xi ] = σ
(
hi j X j , Xi

) = hi jσi j ∈ T⊥
A CPn,

where σi j = σ(Xi , X j ) and hi j = h(Xi , X j ) for any orthonormal frame X1, . . . , X2n−1 of
TA�.

Theorem 4.2 Let � ⊂ CPn be an oriented hypersurface with constant mean curvature. The
normal N to the hypersurface satisfies the equation

�N = 2tr(σh) − (|h|2 + 2(n − 1)
)
N − tr(h)σN . (4.3)

The proof is preceded by a numbers of lemmas. We are using a frame of vector fields
satisfying (4.2).

Lemma 4.3 Let � ⊂ CPn be an orientable hypersurface with constant mean curvature.
At the center A0 ∈ � of normal coordinates, the entries of the second fundamental form
hi j = h(Xi , X j ) satisfy for each j = 1, . . . , 2n − 1 the equations

Xi hi j = 0, (4.4)

with sum over the repeated index.

Proof By the Codazzi’s equations, we have the identities for i, j, � = 1, . . . , 2n − 1

X jhi� − Xih j� = 〈R(Xi , X j )N , X�〉 + 〈∇�
X j

N ,∇�
Xi
X�〉 − 〈∇�

Xi
N ,∇�

X j
X�〉+

− 〈N ,∇�[Xi ,X j ]X�〉,

where N is the normal to � and R is the Riemann curvature tensor of CPn . Since ∇� has
vanishing torsion, at the point A0 we have by (4.2)

[Xi , X j ] = ∇�
Xi
X j − ∇�

X j
Xi = 0.

Thus, at the point A0 the previous identity reduces to

X jhi� − Xih j� = 〈R(Xi , X j )N , X�〉
Letting i = �, summing up in i = 1, . . . , 2n − 1 , and using the fact that � has constant
mean curvature, we obtain

Xihi j = −〈R(Xi , X j )N , Xi 〉 = −Ric(X j , N ).

The last equality follows from the standard symmetries of the curvature operator. In
fact, we have 〈R(N , X j )N , N 〉 = 〈R(X j , N )N , N 〉 = −〈R(N , X j )N , N 〉 and thus
〈R(N , X j )N , N 〉 = 0. The complex projective space is a Kähler manifold, and thus, it is an
Einstein manifold. From the orthogonality of X j and N , it follows that Ric(X j , N ) = 0. ��
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Lemma 4.4 Let � ⊂ CPn be an orientable hypersurface with normal N and H = tr(h). At
the center of normal coordinates, we have the identity

∇Xi σi,N = tr(σh) − 2(n − 1)N − HσN . (4.5)

Proof By (3.17), (3.20) and the definition of second fundamental form σ , we have

∇Xi σi,N = ∇Xi πi,N (I − 2A) + πi,N∇Xi (I − 2A)

= σ(∇Xi Xi , N ) + σ(Xi ,∇Xi N ) − 2πi,N Xi

= −hiiσN + σ(σi i , N ) + hi jσi j + σ(Xi , σi,N ) − 2πi,N Xi .

= −hiiσN + hi jσi j + (∗),

where (∗) = σ(σi i , N ) + σ(Xi , σi,N ) − 2πi,N Xi . Using (3.21) in the particular case when
i = j , we deduce that (∗) = −�σi,N (Xi ).

Hence, we proved that

∇Xi σi,N = −hiiσN + hi jσi j − �σi,N (Xi ), (4.6)

and our claim (4.5) follows from (3.23). ��
Remark 4.5 Starting from

∇Xi σi,N = ∇�
Xi

σi,N + ∇⊥
Xi

σi,N = −�σi,N (Xi ) + ∇⊥
Xi

σi,N ,

and using (4.6), we obtain

∇⊥
Xi

σi,N = −HσN + hi jσi j . (4.7)

Proof of Theorem 4.2 We check formula (4.3) using normal coordinates at the point A0 ∈ �.
Using |N |2 = 1 and ∇⊥

Xi
N = σ(Xi , N ) we obtain

�N = ∇Xi ∇Xi N = ∇Xi (∇⊥
Xi
N + ∇�

Xi
N ) = ∇Xi

{
σi,N + hi j X j

}
. (4.8)

From (4.4) and (4.2), we deduce that, at the point A0,

∇Xi (hi j X j ) = hi j∇Xi X j = hi j
{
σi j − hi j N

} = −|h|2N + hi jσi j .

By (4.5) we have

∇Xi σi,N = −HσN + hi jσi j − 2(n − 1)N ,

and then �N = − (|h|2 + 2(n − 1)
)
N + 2hi jσi j − HσN . ��

5 Laplacian of �N

Let A be the position matrix. In the second variation of the area of a hypersurface�, we shall
use normal deformations associated with the coordinate functions of the matrix u = �A. In
our formula (4.1) for �A, there is the term σN and thus to know �u we need �σN . In this
section we compute this crucial quantity.

Let X1, . . . , X2n−1 be an orthonormal frame of T� such that Xn+ j = J X j for all
j = 1, . . . , n − 1. Then we have Xn = −J N , where N is the normal to �. The tangent
vector

hN =
2n−1∑

j=1, j �=n

h(J N , X j )X j ∈ CT�
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does not depend on the given frame. The vector hN is the projection onto CT� of ∇�
J N N .

So, we have hN = 0 if and only if ∇�
J N N = κ J N with κ = h(J N , J N ), i.e., J N is a

principal direction with characteristic curvature κ .

Lemma 5.1 Let � ⊂ CPn be an oriented hypersurface with normal N, characteristic cur-
vature κ , and H = tr(h). Then we have

hi j�σ j,n (Xi ) = (H − κ)N + JhN . (5.1)

Proof The proof is a computation based on the following relation between the second fun-
damental form σ and the Weingarten endomorphism, that is a consequence of (3.19):

�σ(X ,Y )(V ) = 2 〈X , Y 〉 V + 〈Y , V 〉 X + 〈X , V 〉 Y + 〈JY , V 〉 J X + 〈J X , V 〉 JY , (5.2)

for every X , Y , V ∈ TACPn . For details see [7, Section 1] and recall the normalization
g(A, B) = 4〈A, B〉.

Indeed, by (5.2) we get:

�σ(X j ,N )(Xi ) = δi j N − δin J X j , j = 1, . . . , n;
�σ(J X j ,N )(Xi ) = −δi j J N + δin X j , j = 1, . . . , n − 1,

for any i = 1, . . . , n, and

�σ(X j ,N )(J Xi ) = δi j J N , j = 1, . . . , n;
�σ(J X j ,N )(J Xi ) = δi j N , j = 1, . . . , n − 1,

for every i = 1, . . . , n − 1. So, adding up appropriately we prove the thesis. ��

The following lemma is a technical computation.

Lemma 5.2 Let � ⊂ CPn be an oriented hypersurface with normal N. Letting, for any
orthonormal frame of T�,

S1 = σ(σi,N , σi,N ) − 4π(σi,N , N )Xi and S2 = −π(N , N )�A,

we have the identity

S1 + S2 = 2tr(h)N − tr(σ ) + 2(n − 1)σN . (5.3)

The proof is postponed to the end of the section. In the previous section, we introduced
the linear operator σh : TA� → End(TA�, T⊥

A CPn). In the same way, we define the linear
operator σh2(X)[Y ] = σ

(
h2(X), Y

)
, for X , Y ∈ TA�. Its trace is

tr(σh2) = σh2(X j )[X j ] = σ
(
hi j h(Xi ), X j

) = hi j hikσ jk ∈ T⊥
A CPn .

Now we are ready to prove the main formula of this section.

Theorem 5.3 Let � ⊂ CPn be an orientable hypersurface with constant mean curvature
and normal N. Then we have

�σN = 4κN + 2tr(σh2 − σ) − 2|h|2σN − 4JhN , (5.4)

where κ is the characteristic curvature of �.
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Proof We check formula (5.4) using normal coordinates at the point A0 ∈ �. Using (4.3),
(3.17) and the short notation πN = π(N , N ), we have

�σN = ∇Xi ∇Xi σN = ∇Xi

(
2π(∇Xi N , N )(I − 2A) − 2πN Xi

)
= 2

{
σ(∇Xi ∇Xi N , N ) + σ(∇Xi N ,∇Xi N ) − 4π(∇Xi N , N )Xi − πN∇Xi Xi

}
= 2

{
σ(�N , N ) + 2σ

(
hi j X j + σi,N , hik Xk + σi,N

)
−4π

(
hi j X j + σi,N , N

)
Xi − πN (−hii N + σi i )

}
= −2

(|h|2 + 2(n − 1)
)
σN + 2hi j hikσ jk+

+ 4hi j
{(

σ(σi j , N ) + σ(X j , σi,N )
) −2π j,N Xi

}
+ 2

(
σ(σi,N , σi,N ) −4π(σi,N , N )Xi

) − 2πN�A.

We used the identity σ(σN , N ) = 0. By (3.21) and (5.3), we have

�σN = −2
(|h|2 + 2(n − 1)

)
σN + 2hi j hikσ jk − 4hi j�σ j,N (Xi )

+ 4(n − 1)σN − 2tr(σ ) + 4tr(h)N

= 4tr(h)N − 2tr(σ ) − 2|h|2σN + 2hi j hikσ jk − 4hi j�σ j,N (Xi ).

By (5.1), this ends the proof. ��
Proof of Lemma 5.2 We check the formula at the point A0 ∈ �. Using formulas (3.8), (3.9),
and (3.7), we obtain

S1 = 2πi,N (I − 2A)πi,N (I − 2A)2 − 4π(σi,N , N )Xi

= 2
[
π2
i,N (I − 2A) − 2

(
πi,N (I − 2A)N+ Nπi,N (I − 2A)

)
Xi

]
= 2

{[
π2
i,N − 2

(
πi,N N − Nπi,N

)
Xi

]
(I − 2A)

}
.

A simple computation gives

π2
i,N (I − 2A0) = −δin(Ein + Eni ) + Enn + Eii ,

π2
ĵ,N

(I − 2A0) = Enn + E j j ,

and also (
πi,N N Xi − Nπi,N Xi

)
(I − 2A0) = −δin Eni + Eii + (1 − δin)A0,(

π ĵ,N N X̂ j − Nπ ĵ,N X̂ j
)
(I − 2A0) = E j j + A0.

Therefore, at A0 we have

S1 = 2
n∑

i=1

[−δin(Ein + Eni ) + Enn + Eii − 2 (−δin Eni + Eii + (1 − δin)A0)]+

+ 2
n−1∑
i=1

[Enn + Eii − 2 (Eii + A0)]

= 2 [2nEnn − 2(I − A0) + (4 − 4n)A0]

= 4nEnn − 4I + (12 − 8n)A0.

Moreover, using (3.18) and σN = 2(Enn − A0), we have 4I = tr(σ ) + 4(n + 1)A0 and
2Enn = σN + 2A0, and hence, we get

S1 = 2nσN − tr(σ ) + 8(1 − n)A0. (5.5)
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Now, we compute S2 at A0. Using πN = 2N , πN tr(σ ) = −8nA0 + 8Enn , and πNσN =
−4A0 + 4Enn , we get

S2 = −πN (−tr(h)N + tr(σ ) − σN )

= − (−2tr(h)N − 8nA0 + 8Enn + 4A0 − 4Enn)

= 2tr(h)N − 8(1 − n)A0 − 2σN .

Adding S1 and S2, we get the claim. ��

6 Trace of the second variation of the area

Let � be a C∞ hypersurface with normal N and without boundary, and let u ∈ C∞(�) be
a function with zero mean: ∫

�

u dμ = 0, (6.1)

whereμ is theRiemannianhypersurfacemeasure inCPn . For t ∈ R and p ∈ �, let t �→ γp(t)
be the curve (geodesic) in CPn solving ∇�̇

γ γ̇ = 0 with γ (0) = p and γ̇ (0) = u(p)N (p).
For small t , the hypersurface �(t; u) = {γp(t) ∈ CPn : p ∈ �} is well defined and we
denote its area by A (t; u) = μ(�(t; u)). If we have

dA (t; u)

dt

∣∣∣∣
t=0

= 0

for any u ∈ C∞(�) satisfying (6.1), then � has constant mean curvature. If �(t; u) is the
boundary of a region with volume V (t), then condition (6.1) implies that V ′(0) = 0.

The second variation of the area functional is given by the formula

A ′′(u) = d2A (t; u)

dt2

∣∣∣∣
t=0

= −
∫

�

uL u dμ, (6.2)

where

L u = �u + (|h|2 + Ric(N ))u

is the Jacobi operator, see e.g. [2]. It is well known that the Ricci curvature on unit vectors
is a geometric constant in CPn , and namely Ric(N ) = 2n + 2.

Definition 6.1 (Stability) We say that an oriented hypersurfaces � without boundary and
with constant mean curvature is stable if A ′′(u) ≥ 0 for any u ∈ C∞(�) satisfying (6.1).

On � we consider the matrix valued function u = �A, where A is the position matrix.
For any V ∈ Hn+1, we define the scalarization uV = 〈u, V 〉. By the divergence theorem,
the function uV satisfies the zero-mean condition (6.1) because � has no boundary.

The mapping Q� : Hn+1 → R defined by Q�(V ) = A ′′(uV ) is a quadratic form. If the
surface � is stable then Q� is positive semidefinite, i.e., Q�(V ) ≥ 0 for any V ∈ Hn+1.
It follows that tr(Q�) ≥ 0. In the next theorem we compute an explicit expression for this
trace.

Theorem 6.2 Let � be an oriented complete hypersurface with constant mean curvature.
The trace of the quadratic form Q� is

tr(Q�) = 4
∫

�

{
2(n + 1)H2 + 2(n2 − 1)

(
2n − |h|2) − (H + κ)2 − |hN |2

}
dμ. (6.3)
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Proof For any orthonormal basis V of Hn+1, we have

tr(Q�) =
∑
V∈V

Q�(V ) = −
∫

�

∑
V∈V

uVL uV dμ

= −
∫

�

{〈u,�u〉 + (|h|2 + 2(n + 1))|u|2}dμ.

We compute first the norm of u. By formula (4.1) we have:

|u|2 = |�A|2 = 〈H − σN − tr(h)N ,H − σN − tr(h)N 〉
= H2 + |H |2 − 2 〈H , σN 〉 + |σN |2,

because the matrices N and H − σN are orthogonal. Using the identity σ(X , Y ) =
σ(J X , JY ) for any X , Y ∈ TACPn (see [6, Proposition 1.6]), we obtain

|H |2 =
2n∑

i, j=1

〈
σi i , σ j j

〉 = 4
n∑

i, j=1

〈
σi i , σ j j

〉
.

Now by (3.19) we have for any i, j = 1, . . . , n〈
σi i , σ j j

〉 = 2(1 + δi j ), (6.4)

and hence,

|H |2 = 4
n∑

i, j=1

2(1 + δi j ) = 8
(
n2 +

n∑
i, j=1

δi j

)

= 8(n2 + n) = 8n(n + 1).

(6.5)

In the same way, we have

〈H , σN 〉 =
2n∑
i=1

〈σi i , σN 〉 = 2
n∑

i=1

〈σi i , σN 〉 = 4
n∑

i=1

(1 + δin) = 4(n + 1), (6.6)

where we used (6.4) with j = n. Finally, by (6.4) with i = j = n, we have

|σN |2 = 4. (6.7)

Now, by (6.5), (6.6) and (6.7) we get

|u|2 = H2 + 8n(n + 1) − 8(n + 1) + 4 = H2 + 8(n + 1)(n − 1) + 4

= H2 + 8n2 − 8 + 4 = H2 + 4(2n2 − 1).
(6.8)

By formula (3.18), we have �H = −4(n + 1)�A = −4(n + 1)u. Hence, from formula
(4.1) we find

〈u,�u〉 = 〈u,−H�N − 4(n + 1)u − �σN 〉
= −4(n + 1)|u|2 − H〈u,�N 〉 − 〈u,�σN 〉.

Since N is orthogonal to H , σN , and σi j , we have

〈u,�N 〉 = 〈−tr(h)N + H − σN ,−(|h|2 + 2(n − 1))N + 2hi jσi j − tr(h)σN 〉
= H(|h|2 + 2(n − 1)) + 2〈H , tr(σh)〉 − H〈H , σN 〉

− 2〈σN , tr(σh)〉 + H |σN |2.
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By (3.19) we have
〈
σ(Xi , Xi ), σ (X j , Xk)

〉 = 2(δ jk + δikδi j ), (6.9)〈
σ(Xi , Xi ), σ (X j , J Xk)

〉 = 0, (6.10)

for every i, j, k = 1, . . . , n. Hence, by (6.9) and (6.10) and also using the notation h
ĵ k̂ :=

h(J X j , J Xk), we get

〈H , tr(σh)〉 = 2
n∑

i=1

2n−1∑
j,k=1

h jk
〈
σi i , σ jk

〉=

= 4
n∑

i, j,k=1

h jk(δ jk + δikδi j ) + 4
n∑

i=1

n−1∑
j,k=1

h
ĵ k̂(δ jk + δikδi j )

= 4nh j j + 4hii = 4(n + 1)H .

(6.11)

Again by (6.9) and (6.10),

〈σN , tr(σh)〉 = hi j
〈
σN , σi j

〉 =2hi j (δi j + δ jnδin) = 2H + 2κ. (6.12)

Finally, using (6.6), (6.7), (6.11) and (6.12), we get

〈u,�N 〉 = H(|h|2 + 2(n − 1)) + 8(n + 1)H − 4(n + 1)H − 4(H + κ) + 4H

= (|h|2 + 6n + 2)H − 4κ,

and so we obtain the formula

〈u,�N 〉 = H
(|h|2 + 6n + 2

) − 4κ. (6.13)

We are left with the computation of 〈u,�σN 〉. By formula (5.4), also using 〈u, hN 〉 = 0,
we obtain

〈u,�σN 〉 =〈−tr(h)N + H − σN , 4κN − 2H − 2|h|2σN + 2tr(σh2)〉
= − 4κH − 2|H |2 − 2(|h|2 − 1)〈H , σN 〉 + 2〈H , tr(σh2)〉 + 2|h|2|σN |2

− 2〈σN , tr(σh2)〉.
Again by (6.9) and (6.10),

〈
H , tr(σh2)

〉 = 2
n∑

i=1

2n−1∑
�, j,k=1

h� j h�k
〈
σi i , σ jk

〉=

= 4
n∑

i=1

2n−1∑
�=1

⎧⎨
⎩

n∑
j,k=1

h� j h�k(δ jk + δikδi j ) +
n−1∑
j,k=1

h
� ĵ h�k̂(δ jk + δikδi j )

⎫⎬
⎭

= 4n
2n−1∑
�, j=1

h2� j + 4
2n−1∑
�,i=1

h2�i = 4(n + 1)|h|2.

So, we get
〈
H , tr(σh2)

〉 = 4(n + 1)|h|2. (6.14)
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Moreover, we have〈
σN , tr(σh2)

〉 = hi j hik
〈
σN , σ jk

〉 =2hi j hik(δ jk + δknδ jn)

= 2h2i j + 2h2in = 2|h|2 + 2
(|hN |2 + κ2) .

(6.15)

Adding (6.5), (6.6), (6.7), (6.14) and (6.15), we get the identity

〈u,�σN 〉 = 4|h|2 − 8(2n − 1)(n + 1) − 4Hκ − 4κ2 − 4|hN |2. (6.16)

Now, in order to get (6.3), we just have to use formulas (6.8), (6.13) and (6.16) and sum
them up. ��

In the next lemmas, we test the trace formula (6.3) on geodesic spheres and on the tubes
introduced in Sect. 2.

Lemma 6.3 For the sphere �r ⊂ CPn, we have tr(Q�r ) ≥ 0 if and only if tan2 r ≤ 2n + 1.
The trace is zero if and only if tan2 r = 2n + 1.

Proof Letting t = tan r , by formulas (2.1), we have:

|h|2 = (2n − 1)
1

t2
+ t2 − 2,

H2 = (2n − 1)2
1

t2
+ t2 − 2(2n − 1),

(H + κ)2 = 4(n − 1)2
1

t2
+ 4t2 − 8(n − 1).

Inserting these values into the trace formula (6.3), we find

tr(Q�r ) = −8n(n − 1)

t2
μ(�r )

{
t4 − 2nt2 − (2n + 1)

}
.

Then we have tr(Q�r ) ≥ 0 if and only if t4 − 2nt2 − (2n + 1) ≤ 0, which holds if and only
if t2 ≤ 2n + 1. In particular, the trace is zero precisely when t2 = 2n + 1. ��

Lemma 6.3 shows that formula (6.3) detects the sharp stability interval for the radius of
a geodesic sphere, see Theorem 2.2. In the next lemma, we consider the tubes T k

r .

Lemma 6.4 Let k = 1, . . . , n − 1. For the tubes T k
r ⊂ CPn, we have:

(1) If n = 2k + 1, then tr(QTk
r
) > 0 for any 0 < r < π/2.

(2) If n �= 2k + 1, then tr(QTk
r
) ≥ 0 if and only if tan2 r ≤ d(n, k) for a certain positive

number d(n, k) that satisfies

d(n, k) >
2n − 2k + 1

2k + 1
. (6.17)

Moreover, tr(QTk
r
) = 0 precisely when tan2 r = d(n, k).

Proof We use the short notation t = tan r and m = 2k + 1. By formulas (2.2), we have:

|h|2 = mt2 + (2n − m)
1

t2
− 2,

H2 = m2t2 + (2n − m)2
1

t2
− 2m(2n − m),

(H + κ)2 = (m + 1)2t2 + (2n − m + 1)2
1

t2
− 2(m + 1)(2n − m + 1).
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Inserting these values into formula (6.3), we get the following expression for the trace of
QTk

r

tr(QTk
r
) = 8μ(T k

r )

t2
(at4 + bt2 + c),

where a, b, c are coefficients depending on n and k, and namely

a = m(n + 1)(m − n + 1) − 1

2
(m + 1)2,

b/2 = (n + 1)[(n2 − 1) − m(2n − m)] + 1

2
(m + 1)(2n − m + 1),

c = (n + 1)(2n − m)(n − m + 1) − 1

2
(2n − m + 1)2.

It is easy to check that b = a + c, which means that t2 = −1 is a root of at4 + bt2 + c = 0.
So, we have the decomposition

tr(QTk
r
) = 8μ(T k

r )

t2
(t2 + 1)(at2 + c).

Now there are two cases: n = m and n �= m. When n = m = 2k + 1, then n must be odd
and in this case it is a = c = 1

2 (n
2 − 1) > 0. It follows that tr(QTk

r
) > 0 for any t > 0.

In the case n �= m, we have a < 0 and c > 0. We conclude that tr(QTk
r
) ≥ 0 if and only

if t2 ≤ d(n, k) := −c/a. After some computations, inequality (6.17) is equivalent tom > 1,
that is k > 0. ��

Lemma 6.4 shows that Theorem 6.3 is not sharp in the case of the tubes T k
r . In fact, when

tan2 r = d(n, k), then the trace of QTk
r
is zero, but the tube T k

r is unstable by Theorem 2.2
part 2.

We finish this section proving the non-stability of the tubes Vr around RPn .

Lemma 6.5 The tube Vr ⊂ CPn is unstable for any r > 0.

Proof Using formulas (2.3), we compute:

|h|2 = (n − 1)
(
t2 + 1

t2

)
+ 16t2

(1 − t2)2
,

H2 = (n − 1)2
(1 − t2)2

t2
+ 16t2

(1 − t2)2
− 8(n − 1),

(H + κ)2 = (n − 1)2
(1 − t2)2

t2
+ 64t2

(1 − t2)2
− 16(n − 1).

Inserting these values into formula (6.3), we obtain the value for the trace of QVr

tr(QVr ) = −4(n − 1)μ(Vr )
{
(n − 1)

(
t2 + 1

t2

)
+ 32nt2

(1 − t2)2
+ 2(5n − 1)

}
,

and we see that tr(QVr ) < 0 for any t = tan r ∈ (0, 1) and n ≥ 2. We deduce that the
surfaces Vr are not stable. ��
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7 Proof of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1 and 1.2. Let � ⊂ CPn be a complete stable oriented
hypersurface that is connected.

Proof of Theorem 1.1 We denote by ĥ the restriction of the second fundamental form h of �

to the complex tangent space CT� and by Ĥ the trace of ĥ. At any point of �, we have the
identities

H = Ĥ + κ and |h|2 = |̂h|2 + 2|hN |2 + κ2,

and the inequalities

|h|2 ≥ |̂h|2 + κ2 and |̂h|2 ≥ Ĥ2

2(n − 1)
= (H − κ)2

2(n − 1)
. (7.1)

Inserting these inequalities and |hN | ≥ 0 into (6.3), we obtain

tr(Q�) ≤ 4
∫

�

{
2(n + 1)H2 + 2(n2 − 1)

(
2n − κ2 − (H − κ)2

2(n − 1)

)
− (H + κ)2

}
dμ

= −4n
∫

�

p(κ; H , n) dμ,

(7.2)

where p(·; H , n) is the polynomial in (1.1). By our assumption p(κ; H , n) ≥ 0 on �, we
deduce that tr(Q�) ≤ 0. On the other hand, the stability of � implies that tr(Q�) ≥ 0.
We deduce that tr(Q�) = 0 and that we have equality in (7.2). In turn, the equality in (7.2)
implies that p(κ; H , n) = 0, that

|h|2 = |̂h|2 + κ2 and |̂h|2 = Ĥ2

2(n − 1)
, (7.3)

and also that hN = 0 on �.
The equation hN = 0 means that J N is an eigenvector of h. By Maeda’s theorem [4], this

implies that the characteristic curvature κ is constant. This also simply follows from the fact
that κ is one of the roots of p(κ; H , n) = 0. Here we use the fact that � is connected.

The identity in the right-hand side of (7.3) implies that � is umbilical in CT�, i.e., each
unit vector in CT� is an eigenvector of h with eigenvalue λ = Ĥ/2(n − 1). Moreover, λ is
constant on �, because Ĥ = H − κ is constant.

The two constants κ and λ are different, because in CPn there are no totally umbilical
hypersurfaces. By Takagi’s theorem, Proposition 2.1, � is a geodesic sphere: up to a suitable
choice of the center of the sphere, we have � = �r for some r ∈ (0, π/2). By Lemma 6.3
the equation tr(Q�r ) = 0 implies that tan2 r = 2n + 1. ��

Finally, we prove Theorem 1.2. We shall use Takagi’s characterization of tubes in Propo-
sition 2.3 and the computations of Lemmas 6.4 and 6.5.

Proof of Theorem 1.2 We have the decomposition CT� = T1 ⊕ T2 where, at each point of
�, T1 and T2 are subspaces of real dimension α and β = 2(n − 1)−α. We denote by h1 and
h2 the restrictions of h to T1 and T2, respectively, and we let H1 = tr(h1) and H2 = tr(h2).

We have the identity H = H1 + H2 + κ and the inequalities

|h|2 ≥ |h1|2 + |h2|2 + κ2, |h1|2 ≥ H2
1

α
and |h2|2 ≥ H2

2

β
. (7.4)
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Inserting these inequalities and |hN | ≥ 0 into (6.3), we obtain

tr(Q�) ≤ −8(n2 − 1)
∫

�

p(H1, H2; H , n, α) dμ, (7.5)

where p(·; H , n, α) is the polynomial in (1.3). By our assumption p(H1, H2; H , n, α) ≥ 0 on
�, we deduce that tr(Q�) ≤ 0. On the other hand, the stability of� implies that tr(Q�) ≥ 0.
We deduce that tr(Q�) = 0 and that we have equality in (7.5). In turn, the equality in (7.5)
implies that p(H1, H2; H , n, α) = 0, that

|h|2 = |h1|2 + |h2|2 + κ2 and |h1|2 = H2
1

α
, |h2|2 = H2

2

β
(7.6)

and also that hN = 0 on �.
The equation hN = 0 means that J N is an eigenvector of h. By Maeda’s theorem [4], the

characteristic curvature κ is constant.
The identities in (7.6) imply that T1 is an eigenspace of h for a curvature λ1, and T2 is

an eigenspace of h for a curvature λ2. We clearly have H1 = αλ1 and H2 = βλ2. From
p(H1, H2; H , n, α) = 0 and H1 + H2 =constant, we deduce that λ1 and λ2 are constant.

Now we have three cases:

(1) κ = λ1 = λ2. This case is empty, because in CPn there are no totally umbilical hyper-
surfaces.

(2) Precisely two of the numbers κ, λ1, and λ2 are equal. By Proposition 2.1,� is a geodesic
sphere. Hence, it must be λ1 = λ2 and the radius of the sphere is tan2 r = 2n + 1, as
explained at the end of the proof of Theorem 1.1.

(3) The three numbers κ, λ1, and λ2 are different. By Proposition 2.3, the surface � is either
a tube around CPk , � = T k

r with α = 2k even, or a tube around RPn , � = Vr with
α = n − 1. The latter case � = Vr is excluded because Vr is unstable for any r > 0, by
Proposition 6.5. We are left with the case � = T k

r with α = 2k and for some r > 0. The
radius is determined by the equation tr(QTk

r
) = 0. However, this equation either has no

solution (this happens in the case α = β), or its unique solution r > 0 has the property
that the tube T r

k is unstable, as shown in Proposition 6.4.

The only possible case is that � is a geodesic sphere with radius tan2 r = 2n + 1. ��
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