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Abstract
We study the asymptotic behaviour of positive groundstate solutions to the quasilinear elliptic
equation

− �pu + εu p−1 − uq−1 + ul−1 = 0 in R
N (Pε)

where 1 < p < N , p < q < l < +∞ and ε > 0 is a small parameter. For ε → 0, we
give a characterization of asymptotic regimes as a function of the parameters q , l and N . In
particular, we show that the behaviour of the groundstates is sensitive to whether q is less
than, equal to, or greater than the critical Sobolev exponent p∗ := pN

N−p .
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1 Introduction

The present paper is devoted to the study of positive solutions to the quasilinear elliptic
equation

− �pu + εu p−1 − uq−1 + ul−1 = 0 in R
N , (Pε)

where

�pu = div(|∇u|p−2∇u),

is the p-Laplacian operator, 1 < p < N , p < q < l and ε > 0 is a small parameter. Our
main aim is to understand the behaviour of positive groundstate solutions to (Pε) as ε → 0.
By a solution to (Pε), we mean a weak solution uε ∈ W 1,p(RN ) ∩ Ll(RN ). These solutions
are constructed as critical points of the energy

Eε(u) := 1

p

∫
RN

|∇u|pdx −
∫
RN

Fε(u)dx, (Eε)

where

Fε(u) =
∫ u

0
f̃ε(s)ds,

and the expression f̃ε is a suitable bounded truncation of

fε(s) := −ε|s|p−2s + |s|q−2s − |s|l−2s. (1.1)

Throughout the paper by groundstate solution to (Pε), we mean a positive weak solution
which has the least energy Eε amongst all the other non-trivial solutions.

In the first part of the paper, for all 1 < p < N and p < q < l, we prove the existence
of a radial groundstate solution uε of (Pε) for all sufficiently small ε > 0, see Theorem 2.1,
extending classical results of Berestycki and Lions [3] from the Laplacian (p = 2) to the
p-Laplacian setting, for any 1 < p < N . As a by-product of the method [3] which is adapted
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Groundstate asymptotics for a class of singularly perturbed... 25

to the present quasilinear context, the weak solutions to (Pε) which are found, are essentially
bounded and decay uniformly to zero as |x | → ∞. We recall that, as in the known case
p = 2 treated in [3], the symmetry of the solutions is achieved as a limit of a suitable
(minimizing) sequence of radially decreasing rearrangements constructed from a possibly
non-radial minimizing sequence. Theorem 2.1 in Sect. 3.2 summarizes all the above results
about the existence and basic properties of these groundstates to (Pε).

We point out that for large ε > 0 equation (Pε) has no finite energy solutions, so the
restriction on the size of ε is essential for the existence of the groundstates. The uniqueness
(up to translations) of a spherically symmetric groundstate of (Pε) is rather delicate. For
p ≤ 2, Serrin and Tang [33, Theorem 4] proved that equation (Pε) admits at most one positive
groundstate solution. For p > 2 the uniqueness could be also expected but to the best of our
knowledge this remains an open question. We do not study the question of uniqueness in this
paper and none of our result rely on the information about the uniqueness of the groundstate
to (Pε).

The question of understanding the asymptotic behaviour of the groundstates uε of (Pε)
as ε → 0, naturally arises in the study of various bifurcation problems, for which (Pε) at
least in the case p = 2 can be considered as a canonical normal form (see, e.g. [8,40]). This
problem may also be regarded as a bifurcation problem for quasilinear elliptic equations

−�pu = fε(u) in R
N ,

whose nonlinearity fε has the leading term in the expansion around zero which coincides
with the ones in (Pε). Let us also mention that problem (Pε) in the case p = 2 appears in the
study of phase transitions [6,25,44], as well as in the study of the decay of false vacuum in
quantum field theories [7].

Loosely speaking, to understand the asymptotic behaviour of the groundstatesuε as ε → 0,
one notes that elliptic regularity implies that locally the solution uε converges as ε → 0 to a
radial solution of the limit equation (see Theorem 6.4)

− �pu − uq−1 + ul−1 = 0 in R
N . (P0)

It is known that (here and in the rest of the paper p∗ := pN
N−p is the critical Sobolev exponent):

when q ≤ p∗ equation (P0) has no non-trivial finite energy solutions, by Pohožaev’s identity
(3.1), whereas for q > p∗ equation (P0) admits a radial groundstate solution. Existence goes
back to Berestycki–Lions [3] andMerle–Peletier [23] in the case p = 2 and, in the context of
the present paper, it is proved in the general p-Laplacian case (see Theorem 4.3); uniqueness
questions have been studied by Tang [38, Theorem 4.1], see also Remark 4.4 .

In Theorem 2.8 we prove using direct variational arguments that, as expected, for q > p∗
solutions uε converge as ε → 0 to a non-trivial radial groundstate solution to the formal limit
equation (P0). The fact that for q ≤ p∗ equation (P0) has no non-trivial positive solutions,
suggests that for q ≤ p∗ the solutions uε should converge almost everywhere, as ε → 0,
to the trivial zero solution of equation (P0) (see estimate 2.2). This however does not reveal
any information about the limiting profile of uε. Therefore, instead of looking at the formally
obtained limit equation (P0), we are going to show that for q ≤ p∗ solutions uε converge
to a non-trivial limit after a rescaling. The limiting profile of uε will be obtained from the
groundstate solutions of the limit equations associated with the rescaled equation (Pε), where
the choice of the associated rescaling and limit equation depends on the value of p and on
the space dimension N in a highly non-trivial way.

The convergence of rescaled solutions uε to their limiting profiles will be proved using a
variational analysis similar to the techniques developed in [24] in the case p = 2. Note that
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the natural energy space for equation (Pε) is the usual Sobolev space

W 1,p(RN ) :=
{

u : u ∈ L p(RN ) and ∇u ∈ L p(RN )
}

,

with the norm

||u||1,p = ||u||p + ||∇u||p,

while for q > p∗ the natural functional setting associated with the limit equation (P0) is
the homogeneous Sobolev space D1,p(RN ) defined for 1 < p < N as the completion of
C∞
0 (RN ) with respect to the norm ||∇u||L p . Since W 1,p(RN ) � D1,p(RN ), it follows that

no natural perturbation setting (suitable to apply the implicit function theorem or Lyapunov–
Schmidt-type reduction methods) is available to analyse the family of equations (Pε) as
ε → 0. In fact, even for p = 2 a linearization of (P0) around the groundstate solution is not
a Fredholm operator and has zero as the bottom of the essential spectrum in L2(RN ). In the
case of the p–Laplace equations, the difficulty in applying classical perturbation methods is
even more striking, as for 1 < p < 2 the energy associated with the p-Laplacian is not twice
Fréchet differentiable.

In order to understand the limiting profile of uε in the case q ≤ p∗, we introduce the
canonical rescaling associated with the lowest order nonlinear term in (Pε):

vε(x) = ε
− 1

q−p uε

(
x
p
√

ε

)
. (1.2)

Then (Pε) reads as

− �pv + v p−1 = vq−1 − ε
l−q
q−p vl−1 in R

N , (Rε)

from which we formally get, as ε → 0, the limit problem

− �pv + v p−1 = vq−1 in R
N . (R0)

We recall that for q ≥ p∗ equation (R0) has no non-trivial finite energy solutions, as a
consequence of Pohožaev’s identity (3.1), whereas for p < q < p∗ equation (R0) possesses
a unique radial groundstate solution. Existence was proved by Gazzola, Serrin and Tang [15]
and uniqueness by Pucci–Serrin [29, Theorem 2]. The particular rescaling (1.2) allows to
have, when p < q < p∗, for both (Rε) and the limit problem (R0), a variational formulation
on the same Sobolev space W 1,p(RN ). This indicates that problem (Rε) could be considered
as a small perturbation of the limit problem (R0). In particular in the case p = 2 the family
of the groundstates (vε) of problem (Rε) could be rigorously interpreted as a perturbation
of the groundstate solution of the limit problem (R0) using the perturbation techniques and
framework developed by Ambrosetti, Malchiodi et al., see [2] and references. However,
for p �= 2 the Lyapunov–Schmidt reduction technique, in the spirit of [2] is not directly
applicable. Instead, in this work, using a direct variational argument inspired by [24, Theorem
2.1] we prove (see Theorem 2.2) that for p < q < p∗ groundstate solutions (vε) of the
rescaled problem (Rε) converge to the (unique) radial groundstate of the limit problem (R0).

In the critical case q = p∗, the limit problem (R0) has no non-trivial positive solutions.
This means that in this case the canonical rescaling (1.2) does not accurately capture the
behaviour of (uε). In the present paper, extending the results obtained in [24] for p = 2, we
show that for q = p∗ the asymptotic behaviour of the groundstate solutions to (Pε) after a
rescaling is given by a particular solution of the critical Emden–Fowler equation

− �pU = U p∗−1 in R
N . (R∗)
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Groundstate asymptotics for a class of singularly perturbed... 27

It is well known that equation (R∗) admits a continuum of radial groundstate solutions.
We will prove that the choice of the rescaling (and a particular solution of (R∗)) which
provides the limit asymptotic profile for groundstate solutions to equation (Pε) depends on
the dimension N in a non-trivial way (see Theorem 2.3).

Wrapping up, we provide a characterization of the three asymptotic regimes occurring as
ε → 0, i.e. the subcritical case q < p∗, the supercritical case q > p∗ and the critical case
q = p∗, extending the results of [24,25], to both a singular (p < 2) and degenerate (p > 2)
quasilinear setting.

Asymptotic notation

Throughout the paper we will extensively use the following asymptotic notation. For ε � 1
and f (ε), g(ε) ≥ 0, we write f (ε) � g(ε), f (ε) ∼ g(ε) and f (ε) � g(ε), implying that
there exists ε0 > 0 such that for every 0 < ε ≤ ε0:
f (ε) � g(ε) if there exists C > 0 independent of ε such that f (ε) ≤ Cg(ε);
f (ε) ∼ g(ε) if f (ε) � g(ε) and g(ε) � f (ε);
f (ε) � g(ε) if f (ε) ∼ g(ε) and limε→0

f (ε)
g(ε)

= 1.
Wealso use the standardLandau symbols f = O(g) and f = o(g),with the understanding

that f ≥ 0 and g ≥ 0. As usual, C, c, c1, etc., denote generic positive constants independent
of ε.

2 Main results

The following theorem summarizes the existence results for the equation (Pε). The proof is
a standard adaptation of the Berestycki and Lions method [3]. For completeness, we sketch
the arguments in Sect. 3.2.

Theorem 2.1 Let N ≥ 2, 1 < p < N and p < q < l. Then there exists ε∗ = ε∗(p, q, l) > 0
such that for all ε ∈ (0, ε∗), equation (Pε) admits a groundstate uε ∈ W 1,p(RN )∩ Ll(RN )∩
C1,α
loc (RN ). Moreover, uε(x) is, by construction, a positive monotone decreasing function of

|x | and

uε(|x |) ≤ Ce−δ|x |, x ∈ R
N ,

for some C, δ > 0.

For p ≤ 2, Serrin and Tang proved [33, Theorem 4] that equation (Pε) admits at most
one positive groundstate solution. For p > 2 the uniqueness to the best of our knowledge
remains an open question. As anticipated earlier, none of our subsequent results rely on the
uniqueness of groundstates of (Pε). Inwhat follows, uε always denotes a groundstate solution
to (Pε) constructed in Theorem 2.1 for an ε ∈ (0, ε∗). When we say that groundstates uε

converge to a certain limit (in some topology) as ε → 0, we understand that for every ε > 0 a
groundstate of (Pε) is selected, so that (uε)ε∈(0,ε∗) is a branch of groundstates of (Pε), which
is not necessarily continuous in ε. In the present work, we study the limit behaviour of such
a branch of groundstates when ε → 0.
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2.1 Subcritical case p < q < p∗

As anticipated earlier, since in the subcritical case the formal limit equation (P0) has no
groundstate solutions, the family of groundstates uε must converge to zero, uniformly on
compact subsets. We describe the asymptotic behaviour of uε performing the rescaling (1.2)
which transforms (Pε) into equation (Rε). In Sect. 7, using the variational approach developed
in the main part of this work we prove the following result, which extends [24, Theorem 2.1]
to the case p �= 2.

Theorem 2.2 Let N ≥ 2, 1 < p < N, p < q < p∗ and (uε) be a family of groundstates of
(Pε). As ε → 0, the rescaled family

vε(x) := ε
− 1

q−p uε

(
x
p
√

ε

)
(2.1)

converges in W 1,p(RN ), Ll(RN ) and C1,α
loc (RN ) to the unique radial groundstate solution

v0(x) of the limit equation (R0). In particular,

uε(0) � ε
1

q−p v0(0). (2.2)

2.2 Critical case q = p∗

In this case we show that after a suitable rescaling the correct limit equation for (Pε) is given
by the critical Emden–Fowler equation

− �pU = U p∗−1 in R
N . (R∗)

It is well known by Guedda–Veron [16] that the only radial solution to (R∗) is given, by the
family of rescalings

Uλ(|x |) := U1(|x |/λ) (λ > 0), (2.3)

where

U1(|x |) :=
[

κ1/p′
N 1/p

1 + |x |p′

]κ/p′

, (2.4)

and where p′ := p
p−1 and κ := N−p

p−1 . Recently in [12] it has been observed that ±Uλ are

the only nontrivial radial solutions to �pu + |u|p∗−2u = 0 in D1,p(RN ). Sciunzi [32] and
Vétois [42], respectively in the ranges p > 2 and p < 2, proved that any positive solution
to (R∗) in D1,p(RN ) is necessarily radial about some point; this combined with [16] gives a
complete classification of the positive finite energy solutions to (R∗).

Our main result in this work is the following theorem, which extends [24, Theorem 2.5]
to the case p �= 2.

Theorem 2.3 Let N ≥ 2, 1 < p < N, p∗ = q < l and (uε) be a family of groundstates of
(Pε). There exists a rescaling

λε : (0, ε∗) → (0,∞) (2.5)

such that as ε → 0, the rescaled family

vε(x) := λ

N−p
p

ε uε(λεx)
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converges in D1,p(RN ) to the radial groundstate solution U1(x) of the Emden–Fowler equa-
tion (R∗). Moreover,

λε �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
− p∗−p

p(l−p) 1 < p <
√

N ,(
ε(log 1

ε
)
)− (p∗−p)

p(l−p) p = √
N ,

ε
− 1

[(l−p∗)(p−1)+p]
√

N < p < N ,

(2.6)

and

λε �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
− p∗−p

p(l−p) 1 < p <
√

N ,

ε
− (p∗−p)

p(l−p)
(
log 1

ε

) (l−p∗)
p(l−p) p = √

N ,

ε
− (p2−N )(l−p∗)+p2

p2[(l−p∗)(p−1)+p]
√

N < p < N .

(2.7)

Remark 2.4 The lower bound (2.6) on λε can be converted into an upper bound on the
maximum of uε,

uε(0) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
l

(l−p) 1 < p <
√

N ,

(ε(log 1
ε
)
) l

(l−p)
p = √

N ,

ε
N−p

p[(l−p∗)(p−1)+p]
√

N < p < N ,

(2.8)

see Corollary 5.20.

For 1 < p <
√

N lower bound (2.6) and upper bound (2.7) are equivalent and hence
optimal. For

√
N ≤ p < N , the upper bounds in (2.7) do not match the lower bounds (2.6).

However, under some additional restrictions, we could obtain optimal two-sided estimates.

Theorem 2.5 Under the assumptions of Theorem 2.3, we additionally have

λε ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
− p∗−p

p(l−p) 1 < p <
√

NandN ≥ 2,(
ε(log 1

ε
)
)− (p∗−p)

p(l−p) p = √
N and N ≥ 4,

ε
− 1

[(l−p∗)(p−1)+p]
√

N < p < N+1
2 and N ≥ 4,

(2.9)

and

uε(0) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
l

(l−p) 1 < p <
√

N and N ≥ 2,

(ε(log 1
ε
)
) l

(l−p)
p = √

N and N ≥ 4,

ε
N−p

p[(l−p∗)(p−1)+p]
√

N < p < N+1
2 and N ≥ 4.

(2.10)

In the above cases vε converges to U1(x) in Ll(RN ) and C1,α
loc (RN ).

Remark 2.6 In the case p = 2 and N ≥ 3, two–sided asymptotics of the form (2.9) were
derived in [25] using methods of formal asymptotic expansions. Later, two sided bounds
of the form (2.9) were rigorously established for p = 2 in [24, Theorem 2.5]. The barrier
approach developed in [24, Lemma 4.8] in order to refine upper bounds on λε in the difficult
case

√
N ≤ p < N cannot be fully extended to p �= 2, see Lemma 5.11. In this difficult

case, the matching upper bounds of the form (2.6) are valid for
√

N ≤ p < N+1
2 and N ≥ 4.

Remark 2.7 Theorem 2.5 leaves open the following cases, where matching lower and upper
bounds are not available:
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• N ≥ 4 and N+1
2 ≤ p < N

• N = 3 and
√
3 ≤ p < 3

• N = 2 and
√
2 ≤ p < 2

Note that the case N = 3 and p = 2 is not included in Theorem 2.5. However, matching
bounds (2.9) and (2.10) remain valid in this case. This is one of the results in [24, Theorem
2.5]. We conjecture that the restriction p < N+1

2 is merely technical and is due to the method
we use.

2.3 Supercritical case q > p∗

Unlike the subcritical and critical cases, for q > p∗ the formal limit equation (P0) admits a
nontrivial solution.Using adirect analysis of the family of constrainedminimizationproblems
associated with (Pε), we prove the following result, which extends [24, Theorem 2.3] to the
case p �= 2.

Theorem 2.8 Let N ≥ 2, 1 < p < N, p∗ < q < l and (uε) be a family of groundstates
of (Pε). As ε → 0, the family uε converges in D1,p(RN ), Ll(RN ) and C1,α

loc (RN ) to a
groundstate solution u0(x) of the limit equation (P0), with

u0(x) ∼ |x |− N−p
p−1 as |x | → ∞.

Moreover, it holds that

uε(0) � u0(0),

and that ε||uε|p
p → 0.

2.4 Organisation of the paper

This paper is organized as follows. Section 3 is devoted to the existence and qualitative
properties of groundstates uε to (Pε); in Sect. 4 we deal with existence and qualitative
properties of groundstates to the limiting PDEs (P0), (R0), (R∗). Both sections contain various
facts about the equation (Pε) and limiting equations which are involved in our analysis. In
the rest of the paper we study the asymptotic behaviour of the groundstates uε . In Sect. 5
we study the most delicate critical case q = p∗ and prove Theorems 2.3 and 2.5. In Sect. 6
we consider the supercritical case q > p∗ and prove Theorem 2.8. In Sect. 7 we consider
the subcritical case q < p∗ and prove Theorem 2.2. For the reader convenience we have
collected in the sections A and B of Appendix some auxiliary results which have been used
in the main body of the paper.

3 Groundstate solutions to (P")

3.1 Necessary conditions and Pohožaev’s identity

According to Pohožaev’s classical identity [26] for p-Laplacian equations, a solution to (Pε)
which is smooth enough, necessarily satisfies the identity∫

RN

|∇u|pdx = p∗
∫

RN

F(u)dx, (3.1)
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Groundstate asymptotics for a class of singularly perturbed... 31

for 1 < p < N . Identities of this type are classical, see for instance [28] for C2 solutions and
[9] for bounded domains. In the present paper the following version of Pohožaev’s identity
has been extensively used.

Proposition 3.1 Suppose f : R → R is a continuous function such that f (0) = 0, and set
F(t) = ∫ t

0 f (s)ds. Let

u ∈ C1,α
loc (RN ), and |∇u|p, F(u) ∈ L1(RN )

with u such that

−�pu = f (u)

holds in the sense of distributions. Then u satisfies (3.1).

Proof We first assume that p ≤ 2. By the classical regularity result of Tolksdorf [39], see
also Theorem 2.5 in [31], we have

u ∈ W 2,p
loc (RN ), p ≤ 2.

Having checked the existence and local summability of the second weak derivatives in this
casewe argue as follows.Multiply the equation by xi∂i u(x) and integrate over BR = B(0, R)

and denote by n(·) the outer normal unit vector. Observe that the vector field

v = xi∂i u|∇u|p−2∇u

is such that v ∈ C(RN , R
N ) and div v ∈ L1

loc(R
N ). By the divergence theorem (see, e.g.

Lemma 2.1 in [22]), we have
∫

BR

�pu xi∂i u(x)dx =
∫

∂ BR

|∇u(σ )|p−2∂i u(σ )σi∇u · n dσ

−
∫

BR

|∇u(x)|p−2∇u(x) · ∇[xi∂i u(x)]dx .

Write the last integral as Ai + Bi , where

Ai :=
∫

BR

|∇u(x)|p−2|∂i u(x)|2dx,

Bi := 1

p

∫
BR

∂i (|∇u(x)|p)xidx .

An integration by parts in Bi yields

Bi = 1

p

∫
∂ BR

|∇u(σ )|pσi nidσ − 1

p

∫
BR

|∇u(x)|pdx .

On the other hand, we have also
∫

BR

f (u(x))xi∂i u(x)dx

= −
∫

BR

F(u(x))dx +
∫

∂ BR

F(u(x))σi nidσ.
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Summing up on i we have

(∗) N
∫

BR

F(u(x))dx +
(
1 − N

p

)∫
BR

|∇u(x)|pdx =
∫

∂ BR

|∇u(σ )|p−2∇u · σ ∇u · n dσ

− 1

p

∫
∂ BR

|∇u(σ )|pσ · n dσ +
∫

∂ BR

F(u(x))σ · n dσ.

The right hand side is bounded by

M(R) =
(
1 + 1

p

)
R
∫

∂ BR

|∇u(σ )|p dσ + R
∫

∂ BR

|F(u(x))|dσ.

Similarly as in Lemma 2.3 from [22], since F(u), |∇u|p ∈ L1(RN ), there exists a sequence
Rk → ∞ such that M(Rk) → 0. By using the monotone convergence theorem in (∗) we
obtain the conclusion in the case p ≤ 2.

For p > 2 a regularisation argument similar to [11, p. 833] (see also [12,17,20]) allows
to work with a C1,α

loc -approximation uε ∈ C2 which classically solves

−div

((
ε + |∇uε|2

) p−2
2 ∇uε

)
= f (u) in B2R,

uε = u on ∂ B2R .

The proof can be then carried out with obvious modifications of the proof given in the case
p ≤ 2, performing the ε-limit before letting R → +∞ along a suitable sequence (Rk)k∈N,

and this concludes the proof. ��

3.2 Existence and variational characterization of the groundstates

To prove the existence of groundstates, we first observe that the method of Berestycki–Lions
[3] although focused on the case p = 2 is applicable in the present quasilinear context,
we sketch the proof referring to [3] for the details. In fact, observe that fε(s) = |s|q−2s −
|s|l−2s − ε|s|p−2s satisfies

( f1) −∞ < lim infs→0+
fε(s)

s p−1 � lim sups→0+
fε(s)

s p−1 = −ε < 0.

( f2) −∞ � lim sups→+∞
fε(s)

s p∗−1 � 0, where p∗ = pN
N−p .

( f3) There exists ε∗ > 0 such that for all ε ∈ (0, ε∗) the following property holds: there exists
ζ > 0 such that Fε(ζ ) = ∫ ζ

0 fε(s)ds > 0.

To prove the existence of an optimizer, one carries on with the constrained minimization
argument as in [3], based on the truncation of the nonlinearity fε, which allows to use
W 1,p(RN ) for the functional setting. For all ε ∈ (0, ε∗) in the present context p �= 2 a
suitable truncated function f̃ε : R → R is provided by:

f̃ε(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, u < 0,

uq−1 − ul−1 − εu p−1, u ∈ [0, 1], F̃ε(u) :=
u∫
0

f̃ε(s)ds,

−ε, u > 1.

(3.2)
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Replacing in (Pε) the nonlinearity with the above bounded truncation f̃ε(u) makes the min-
imization problem

Sε = inf

⎧⎪⎨
⎪⎩
∫

RN

|∇w|pdx; w ∈ W 1,p(RN ), p∗
∫

RN

F̃ε(w)dx = 1

⎫⎪⎬
⎪⎭ (Sε)

well-posed in W 1,p(RN ) even for supercritical l > p∗. Standard compactness arguments
using radially symmetric rearrangements of minimizing sequences allows to obtain a radially
decreasing optimizerwε, see also “AppendixA”. Ifwε is an optimizer for (Sε) then aLagrange
multiplier θε exists such that

− �pwε = θε f̃ε(wε) inR
N . (3.3)

Note that by construction f̃ε(u) ∈ L∞(RN ) and then by a classical result of DiBenedetto,
see, e.g. Corollary p. 830 in [11], any solution u ∈ W 1,p(RN ) to the truncated problem with
f̃ε is regular, i.e. u ∈ C1,α

loc (RN ). Then the maximum principle implies that any solution for
the truncated problem is strictly positive and solves the problem

− �pwε = θε fε(wε) inR
N , (3.4)

involving the original nonlinearity. The exponential decay estimate (3.10) on wε follows by
Gazzola–Serrin ( [14, Theorem 8]). As a consequence of the regularity and summability, wε

satisfies both Nehari’s identity
∫

RN

|∇wε|pdx = θε

∫

RN

fε(wε)wεdx, (3.5)

and Pohožaev’s identity (3.1)
∫

RN

|∇wε|pdx = θε p∗
∫

RN

Fε(wε)dx . (3.6)

The latter immediately implies that
θε = Sε. (3.7)

Then a direct calculation involving (3.7) shows that the rescaled function

uε(x) := wε(x/
p
√

Sε) (3.8)

is the radial groundstate of (Pε), described in Theorem 3.2 below.
One more consequence of Pohožaev’s identity (3.6) is an expression for the total energy

of the solution

Eε(uε) =
(
1

p
− 1

p∗

)
SN/p
ε ,

(see [3, Corollary 2]), which shows that uε is indeed a groundstate, i.e. a nontrivial solution
with the least energy. Another simple consequence of (3.6) is that (Pε) has no nontrivial finite
energy solutions for ε ≥ ε∗. The threshold value ε∗ is simply the smallest value of ε > 0 for
which the energy Eε is nonnegative and can be computed explicitly.

To summarize, in the spirit of [3, Theorem 2] we have the following
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Theorem 3.2 Let N ≥ 2, 1 < p < N and p < q < l. Then there exists ε∗ = ε∗(p, q, l) > 0
such that for all ε ∈ (0, ε∗), the minimization problem (Sε)has a minimizer wε ∈ W 1,p(RN )∩
Ll(RN ) ∩ C1,α

loc (RN ). The minimizer wε satisfies

− �pwε = Sε fε(wε) in R
N . (3.9)

Moreover, wε(x) is a positive monotone decreasing function of |x | and

wε(|x |) ≤ Ce−δ|x |, x ∈ R
N , (3.10)

for some C, δ > 0. The rescaled function

uε(x) := wε(x/
p
√

Sε)

is a groundstate solution to (Pε).

In view of (3.2) and since we are interested only in positive solutions of (Pε), in what
follows, we always assume that the nonlinearity fε(u) in (Pε) is replaced by its bounded
truncation f̃ε(u) from (3.2), without mentioning this explicitely.

Remark 3.3 Equivalently to (Sε), we can consider minimizing the quotient

Sε(w) := ||∇w||p
p(

p∗ ∫
RN

Fε(w)dx

)(N−p)/N
, w ∈ Mε,

where

Mε :=

⎧⎪⎨
⎪⎩0 ≤ w ∈ W 1,p(RN ),

∫

RN

Fε(w)dx > 0

⎫⎪⎬
⎪⎭ .

Setting wλ(x) := w(λx), it is easy to check that Sε(wλ) = Sε(w) for all λ > 0. Therefore
it holds that

Sε = inf
w∈Mε

Sε(w). (3.11)

Moreover, the inclusion Mε2 ⊂ Mε1 for ε2 > ε1 > 0, (3.11) implies that Sε is a nonde-
creasing function of ε ∈ (0, ε∗).

4 Limiting PDEs

4.1 Critical Emden–Fowler equation

In this section, we recall some old and new results for the critical Emden–Fowler equation

− �pu = u p∗−1, u ∈ D1,p(RN ), u > 0, (R∗)

where 1 < p < N , p∗ = pN/(N − p) is the critical exponent for the Sobolev embedding.
We observe that any nontrivial nonnegative solution to (R∗) is necessarily positive as a
consequence of strong maximum principle (see [41]). Solutions of (R∗) are critical points of
the functional

J (u) := 1

p

∫
RN

|∇u|pdx − 1

p∗

∫
RN

|u|p∗
dx . (4.1)
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By the Sobolev embedding D1,p(RN ) ⊂ L p∗
(RN ), J is defined in D1,p(RN ). Since by

[18] all the minimizing sequences for

S∗ := inf

⎧⎪⎨
⎪⎩
∫

RN

|∇w|pdx; w ∈ D1,p(RN ),

∫

RN

|w|p∗
dx = 1

⎫⎪⎬
⎪⎭ , (S∗)

are relatively compact modulo translations and dilations, critical points for J are provided
by direct minimization, after suitable rescaling of positive solutions W to the Euler–Lagrange
equation for S∗

− �pW = θW p∗−1 in R
N . (4.2)

Here since ∫

RN

|∇W |pdx = θ

∫

RN

|W |p∗
dx = θ,

it follows that S∗ = θ. Positive finite energy solutions to this equation are classified after
the works of Guedda–Veron [16] and of Sciunzi [32] and Vétois [42] mentioned in the
Introduction, which we recall in the following

Theorem 4.1 Let 1 < p < N. Then every radial solution U to (R∗) is represented as

U (|x |) = Uλ,0(|x |) :=
[

λp′/pk1/p′
N 1/p

λp′ + |x |p′

]k/p′

, (4.3)

for some λ > 0, where p′ := p
p−1 and k := N−p

p−1 , [16].

In fact, every solution U to (R∗) is radially symmetric about some points y ∈ R
N and

therefore it holds that

U (x) = Uλ,y(x) :=
[

λp′/pk1/p′
N 1/p

λp′ + |x − y|p′

]k/p′

, (4.4)

for some λ > 0 and y ∈ R
N , [32,42].

In the case p = 2 and N ≥ 3 this result is classical, see [5]. Hence, the radial groundstate of
(R∗) is given by rescaling the function

U1,0(x) :=
[

k1/p′
N 1/p

1 + |x |p′

]k/p′

, (4.5)

and moreover it holds that

||∇Uλ,0||p
p = ||Uλ,0||p∗

p∗ = SN/p∗ , (4.6)

see, e.g. [37]. In conclusion all the positive minimisers for (S∗) are translations of the radial
family

Wλ(x) := Uλ,0(
p
√

S∗x). (4.7)
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4.2 Supercritical zeromass equation

This section is devoted to the supercritical equation

− �pu − |u|q−2u + |u|l−2u = 0 in R
N , (P0)

where 1 < p < N and p∗ < q < l.

Remark 4.2 Note that by Pohožaev’s identity (3.1), equation (P0) has no solution in
D1,p(RN ) ∩ C1,α

loc (RN ) q ≤ p∗.

We prove the following existence result in the spirit of Merle-Peletier [23] to the case p �= 2.

Theorem 4.3 Let N ≥ 2, 1 < p < N and p∗ < q < l. Equation (P0) admits a groundstate
solution u0 ∈ D1,p(RN ) ∩ Ll(RN ) ∩ C1,α

loc (RN ), such that u0(x) is a positive monotone
decreasing function of |x | and

u0(x) ∼ |x |− N−p
p−1 as |x | → ∞. (4.8)

Remark 4.4 The uniqueness result of [38] is applicable to fast decay solutions to (P0). How-
ever the regularity hypothesis H1 as stated at p. 155 in [38] would require p∗ ≥ 2, namely
p ≥ 2N

N+2 .

Proof Following Berestycki–Lions [3] in the present zero-mass case context, we solve the
variational problem in D1,p(RN ) namely

S0 := inf

⎧⎪⎨
⎪⎩
∫

RN

|∇w|pdx |w ∈ D1,p(RN ), p∗
∫

RN

F̃0(w)dx = 1

⎫⎪⎬
⎪⎭ , (S0)

where

F̃0(w) =
∫ w

0
f̃0(s)ds,

and f̃0(s) is a bounded truncation of the nonlinearity

f0(s) = |s|q−2s − |s|l−2s,

e. g.

f̃0(u) =

⎧⎪⎨
⎪⎩
0, u < 0,

uq−1 − ul−1, u ∈ [0, 1],
0, u > 1.

(4.9)

The above bounded truncation makes the minimization problem well-posed in D1,p(RN ).
Arguing as for the positive mass case the existence of a radially decreasing optimizer u is
standard.

The global boundedness of the truncation allows to use the classical result of DiBenedetto,
see, e.g. Corollary p. 830 in [11], to show that u ∈ C1,α

loc (RN ).
Then the maximum principle implies that any solution for the truncated problem solves in
fact (P0) and is strictly positive.

Note that by Ni’s inequality A.3 and theC1,α
loc (RN ) regularity it follows that u ∈ L∞(RN ).

By interpolation with Sobolev’s inequality, this implies that u ∈ Ll(RN ) for all l > p∗.
With the lemmas below on the asymptotic decay, we conclude the proof. ��
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The following lemma about asymptotic properties of solutions is taken from [13].

Lemma 4.5 ([13, Corollary 8.3.]) Let 1 < p < N. Assume that

|V (x)| ≤ g(|x |)
1 + |x |p

,

where g : R
+ → R

+ is bounded and continuous and satisfies the following conditions:

(C1)

∣∣∣∣∣
∞∫
1

∣∣∣∣∣ t1−N
t∫
1

g(|x |)
|x |p |x |N−1d|x |

∣∣∣ 1
p−1 dt

∣∣∣ < ∞.

(C2)

∣∣∣∣∣
∞∫
1

g(|x |)
|x | d|x |

∣∣∣∣∣ < ∞.

Assume that
− �pu + V (x)u p−1 = 0, in R

N \B1(0), (4.10)

admits a positive supersolution. Then (4.10) admits a solution which satisfies

U0(x) ∼ |x |− N−p
p−1 as |x | → ∞. (4.11)

Corollary 4.6 If

V (x) = c

(1 + |x |)p+δ
,

and c is sufficiently small then (4.10) admits a positive solution that satisfies (4.11)

Proof We can take

g(|x |) = |x |−δ.

Then (C1), (C2) are elementary to check. ��
The decay estimate (4.8) is proved in the following lemma.

Lemma 4.7 Let u0 ∈ D1,p(RN ) ∩ Ll(RN ) be a positive radial solution of (P0). Then

u0(x) ∼ |x |− N−p
p−1 as |x | → ∞. (4.12)

Proof Since u0 ∈ D1,p(RN )∩ Ll(RN ) is radial then by the Ni type inequality A.3, we have

u0 ≤ c|x |− N−p
p , in R

N \B1(0),

and since l > p∗ then we have for some δ1 > 0

ul−p
0 ≤ c|x |− N−p

p (l−p) = c

|x |p+δ1
, in R

N \B1(0), (4.13)

implying

ul−p
0 ≤ C

(1 + |x |)p+δ1
, in R

N ,

for sufficiently large constant C independent of x . Now set

−�pu0 + (ul−p
0 )u p−1

0 = uq−1
0 ≥ 0, in R

N ,

123



38 W. Albalawi et al.

and then we have

−�pu0 + C

(1 + |x |)p+δ1
u p−1
0 ≥ 0, in R

N .

As a consequence, u0 is a supersolution of (4.10) and then by comparison principle (see
Theorem B.1 in Appendix), we obtain

u0 ≥ c|x |− N−p
p−1 in |x | > 1. (4.14)

Similarly, we can set

−�pu0 − (uq−p
0 )u p−1

0 = −ul−1
0 ≤ 0, in R

N ,

and since q > p∗ we have for some δ2 > 0,

uq−p
0 ≤ c′|x |− N−p

p (q−p) ≤ c′

|x |p+δ2
, in |x | > 1,

implying

uq−p
0 ≤ C ′

(1 + |x |)p+δ2
, in R

N ,

and hence

−�pu0 − C ′

(1 + |x |)p+δ2
u p−1
0 ≤ 0 in R

N .

Now since u0 ∈ D1,p
rad(RN ) is a subsolution of (4.10), then by Lemma B.2 u0 satisfies

condition (S) and hence by comparison principle Theorem B.1, we have

u0 ≤ c′|x |− N−p
p−1 in |x | > 1, (4.15)

and hence from (4.14) and(4.15) the conclusion follows. ��

5 Proof of Theorems 2.3 and 2.5: critical case q = p∗

In this section we analyse the behaviour of the groundstates uε of equation (Pε) as ε → 0 in
the critical case q = p∗ and prove Theorem 2.3. Although our approach follows the ideas of
[24], the present p-Laplacian setting requires substantial modifications.

5.1 Variational estimates for S"

Equivalently to the Sobolev constant (S∗), we consider the Rayleigh type Sobolev quotient

S∗(w) :=

∫
RN

|∇w|pdx

( ∫
RN

|w|p∗dx

)(N−p)/N
, w ∈ D1,p(RN ), w �= 0,

which is invariant with respect to the dilations wλ(x) := w(x/λ), so that

S∗ = inf
0 �=w∈D1,p(RN )

S∗(w).
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We define the gap
σε := Sε − S∗. (5.1)

To estimate σε in terms of ε, we shall use the Sobolev minimisers Wμ from (4.7) as test
functions for (Sε). Since Wλ ∈ L p(RN ) only if 1 < p <

√
N , we analyse the higher and

lower dimensions separately. It is easy to check that Wλ ∈ Ls(RN ) for all s >
N (p−1)

N−p , with

||Wλ||ss = λ
− N−p

p s+N ||W1||ss = λ
− N−p

p (s−p∗)||W1||ss,
and that, if 1 < p <

√
N then Wλ ∈ L p(RN ) it holds that

||Wλ||p
p = λp||W1||p

p.

In the case of dimensions p = √
N and

√
N < p < N , given R � μ, we introduce a cutoff

function ηR ∈ C∞
0 (R) such that ηR(r) = 1 for |r | < R, 0 < ηR < 1 for R < |r | < 2R,

ηR(r) = 0 for |r | > 2R and |η′
R(r)| ≤ 2/R. We then compute as in, e.g. [35, Chapter III,

proof of Theorem 2.1]

||∇ (
ηR Wμ(x)

) ||p
p = S∗ + O

⎛
⎝
(

R

μ

)− N−p
p−1

⎞
⎠ , (5.2)

||ηR Wμ||p∗
p∗ = 1 − O

((
R

μ

)− N
p−1

)
, (5.3)

||ηR Wμ||ll = μ
− N−p

p (l−p∗)||W1||ll
(
1 − O

(( R

μ

)− (N−p)l
p−1 +N)

, (5.4)

and

||ηR Wμ||p
p =

⎧⎨
⎩

O (μp log R) , p = √
N ,

O

(
μ

N−p
p−1 R

p2−N
p−1

)
,

√
N < p < N .

(5.5)

As a consequence of these expansions we get an upper estimate for σε which plays a key role
in what follows.

Lemma 5.1 It holds that

0 < σε �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
l−p∗
l−p 1 < p <

√
N ,

ε
(N−p)(l−p∗)

p[(l−p∗)(p−1)+p]
√

N < p < N ,(
ε(log 1

ε
)
) (l−p∗)

(l−p) p = √
N .

(5.6)

Hence, σε → 0 as ε → 0.

Proof We first observe that since

S∗ ≤ S∗(wε) < Sε(wε) = Sε,

it follows that σε > 0. We now obtain the upper bounds on σε.
Case 1 < p <

√
N . Note that Wμ ∈ Mε for all sufficiently small ε and sufficiently large

μ, and we have

Sε(Wμ) ≤ S∗(
1 − εμpβp − μ

−(N−p)
p (l−p∗)

βl

)(N−p)/N
, (5.7)
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where

βp := p∗

p
||W1||p

p, βl := p∗

l
||W1||ll .

We now optimize the right hand side of the estimate (5.7) picking μ such that the function

ψε(μ) := βpεμ
p + βlμ

− N−p
p (l−p∗)

.

achieves its minimum. This occurs at

με ∼ ε
− p

(N−p)(l−p) (5.8)

and we have

min
μ>0

ψε ∼ ψε(με) ∼ ε
l−p∗
l−p .

In the present case 1 < p <
√

N , we may conclude that

Sε(Wμ) � S∗
(1 − ψε(με))

(N−p)/N
= S∗ (1 + O(ψε(με))) = S∗ + O

(
ε

l−p∗
l−p

)
, (5.9)

and (5.8) is the value of με such that the bound (5.6) is achieved on the function Wμε .

Case p >
√

N . We assume here that R � μ. Using ηR Wμ as test function and using the
calculation in (5.2)–(5.5), we get

Sε(ηR Wμ) ≤
⎛
⎝S∗ + O

⎛
⎝
(

R

μ

)− N−p
p−1

⎞
⎠
⎞
⎠

×
(
1 −

{
O
(( R

μ

)− N
p−1

)
+ εO

(
μ

N−p
p−1 R

p2−N
p−1

)

+μ
− N−p

p (l−p∗)||W1||ll
[
1 − O

(( R

μ

)− (N−p)l
p−1 +N)]})− N−p

N
,

and hence as R
μ

→ ∞, we have

Sε(ηR Wμ) ≤ S∗
(
1 + ψε(μ, R)

)
,

and hence as R
μ

→ ∞, we have

Sε(ηR Wμ) ≤ S∗
(
1 + ψε(μ, R)

)
,

where

ψε(μ, R) :=
( R

μ

)− N−p
p−1 + εμ

N−p
p−1 R

p2−N
p−1 + μ

− N−p
p (l−p∗)

. (5.10)

If in particular we choose

με = ε
− 1

(l−p∗)(p−1)+p , Rε = ε
− 1

p . (5.11)

we then find that

ψε(με, Rε) ∼ ε
(N−p)(l−p∗)

p[(l−p∗)(p−1)+p] ,
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and, similarly to the above case, the bound (5.6) is achieved on the test function ηRε Wμε

provided με and Rε are as in (5.11).
Case p = √

N . Againwe assume that R � μ. Testing again against ηR Wμ and by(5.2)–(5.5)
with p = √

N , we get

Sε(ηR Wμ) ≤
(

S∗ + O
(( R

μ

)− N−p
p−1

))

×
(
1 −

(
O
(( R

μ

) −N
p−1

)
+ εO

(
μp log R

)

+μ
− N−p

p (l−p∗)||W1||ll
[
1 − O

(( R

μ

)− (N−p)l
p−1 +N)]))−(N−p)/N

,

and then as R
μ

→ ∞, we have

Sε(ηR Wμ) ≤ S∗
(
1 + ψε(μ, R)

)
,

where

ψε(μ, R) :=
( R

μ

)− N−p
p−1 + εμp log R + μ

− N−p
p (l−p∗)

. (5.12)

Choose

Rε := ε
− 1

p , με :=
(
ε log

1

ε

) −p
(N−p)(l−p)

, (5.13)

and hence

ψε(με, Rε) ∼
(
ε log

1

ε

) (l−p∗)
(l−p)

.

Thus the bound (5.6) is achieved by the test function ηRε Wμε , where με and Rε are defined
in (5.13). ��

5.2 Pohožaev estimates

For ε ∈ (0, ε∗), letwε > 0 be a family of the minimisers for (Sε) (or equivalently 3.11). This
minimisers wε solve the Euler–Lagrange equation

− �pwε = Sε

(− εw p−1
ε + w p∗−1

ε − wl−1
ε

)
in R

N (5.14)

with the original (untruncated) nonlinearity.
Our next step is to use Nehari’s identity combined with Pohožaev’s identity for (5.14) in

order to obtain the following useful relations between the norms of wε.

Lemma 5.2 For all 1 < p < N, set k := l(p∗−p)
p(l−p∗) > 0. Then, it holds that

||wε||ll = kε||wε||p
p,

||wε||p∗
p∗ = 1 + (k + 1)ε||wε||p

p.

Proof Since wε is a minimizer of (Sε), identities (3.5)–(3.6) read

1 = ||wε||p∗
p∗ − ε||wε||p

p − ||wε||ll , 1 = ||wε||p∗
p∗ − p∗ε

p
||wε||p

p − p∗

l
||wε||ll . (5.15)

An easy calculation yields the conclusion. ��
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Lemma 5.3 For all 1 < p < N, we have

ε(k + 1)||wε||p
p ≤ N

N − p
S−1∗ σε

(
1 + o(1)

)
.

Proof Using that wε is a minimizer for (Sε), by Lemma 5.2 it follows that

S∗ ≤ S∗(wε) = ||∇wε||p
p

||wε||p
p∗

= Sε(
1 + (k + 1)ε||wε||p

p

)(N−p)/N
,

namely,

SN/(N−p)∗
(
1 + (k + 1)ε||wε||p

p

)
≤ SN/(N−p)

ε .

Setting σε := Sε − S∗, as ε → 0 we obtain

SN/(N−p)∗ (k + 1)ε||wε||p
p ≤ σε

N

N − p
S

N
N−p −1
∗ + o(σε),

and this concludes the proof. ��
We note that the above results allow us to understand the behaviour of the norms associated
with the minimizer wε to (Sε). In fact we have the following

Corollary 5.4 As ε → 0, we have

ε||wε||p
p → 0, ||wε||ll → 0, ||wε||p∗

p∗ → 1.

5.3 Optimal rescaling

We are now in a position to introduce an optimal rescaling which captures the convergence
of the minimisers wε to the limit Emden–Fowler optimizer W1.
Following [35, pp.38 and 44], consider the concentration function

Qε(λ) =
∫

Bλ

|wε|p∗
dx,

where Bλ is the ball of radius λ centred at the origin. Note that Qε(·) is strictly increasing,
with

lim
λ→0

Qε(λ) = 0,

and

lim
λ→∞ Qε(λ) = ||wε||p∗

p∗ → 1, as ε → 0,

by Corollary 5.4. It follows that the equation Qε(λ) = Q∗ with

Q∗ :=
∫

B1

|W1(x)|p∗
dx < 1,

has a unique solution λ = λε > 0 for ε � 1, namely

Qε(λε) = Q∗. (5.16)
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By means of the value of λε implicitly defined by (5.16), we set

vε(x) := λ

N−p
p

ε wε(λεx), (5.17)

and easily check that

||vε||p∗ = ||wε||p∗ = 1 + o(1), ||∇vε||p
p = ||∇wε||p

p = S∗ + o(1). (5.18)

namely (vε) is a minimizing family for (S∗). Moreover∫

B1

|vε(x)|p∗
dx = Q∗.

The following convergence lemma follows by the concentration–compactness principle of
P.-L. Lions [35, Theorem 4.9].

Lemma 5.5 For all 1 < p < N, it holds that

||∇(vε − W1)||p → 0,

and

||vε − W1||p∗ → 0,

as ε → 0.

Proof By (5.18), for any sequence εn → 0, there exists a subsequence (εń) such that
(vεń ) converges weakly in D1,p(RN ) to some radial functions w0 ∈ D1,p(RN ). By the
concentration–compactness Principle [35, Theorem 4.9] applied to ||vε||−1

p∗ vε, we have in

fact that (vεń ) converges to w0 strongly in D1,p(RN ) and L p∗
(RN ). Hence, ||w0||p∗ = 1

and therefore w0 is a radial minimizer of (S∗), that is necessarily w0 ∈ {Wλ}λ>0. Note that
it also holds ∫

B1

|w0(x)|p∗
dx = Q∗.

As a consequence w0 = W1. Since the sequence (εn) was arbitrary, the whole sequence (vn)

converges to W1 strongly in D1,p(RN ) and L p∗
(RN ), and this concludes the proof. ��

5.4 Rescaled equation estimates

Our next step is to obtain upper and lower estimates on the rescaling function λε , which is
implicitly determined by (5.16). The rescaled function vε introduced in (5.17) is such that

− �pvε = Sε

(
− ελp

ε v p−1
ε + v p∗−1

ε − λ
−(N−p)(

l−p
p )+p

ε vl−1
ε

)
, (R∗

ε )

as (Sε) is achieved by wε. By construction, for vε we obtain

||vε||ll = λ

p(l−p∗)

(p∗−p)
ε ||wε||ll , ||vε||p

p = λ−p
ε ||wε||p

p.

Putting Lemmas 5.2 and 5.3together we then achieve the relation

λ
− p(l−p∗)

(p∗−p)
ε ||vε||ll = λp

ε kε||vε||p
p � σε, (5.19)

which yields the following
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Lemma 5.6 Let 1 < p < N. Then

σ
− (p∗−p)

p(l−p∗)
ε � λε � ε

− 1
p σ

1
p

ε .

Proof The statement will follow by (5.19) combined with the observation that

lim inf
ε→0

||vε||l > 0, lim inf
ε→0

||vε||p > 0.

The former is a consequence of Lemma 5.5 and Hölder’s inequality, which yields Ll(B1) ⊂
L p∗

(B1) since l > p∗, hence

c||vεXB1 ||l ≥ ||vεXB1 ||p∗ ≥ ||W1XB1 ||p∗ − ||(W1 − vε)XB1 ||p∗

= ||W1XB1 ||p∗ − o(1).

HereXBR is the characteristic functionof BR . To show the latter, by the embedding L p∗
(B1) ⊂

L p(B1) since p∗ > p, we obtain

c||vεXB1 ||p∗ ≥ ||vεXB1 ||p ≥ ||W1XB1 ||p − ||(W1 − vε)XB1 ||p = ||W1XB1 ||p − o(1),

and this concludes the proof. ��

By (5.6) and Lemma 5.6 we obtain both an estimate from below

λε � σ
− (p∗−p)

p(l−p∗)
ε �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
− (p∗−p)

p(l−p) 1 < p <
√

N ,

ε
− 1

[(l−p∗)(p−1)+p]
√

N < p < N ,(
ε(log 1

ε
)
)− (p∗−p)

p(l−p)
p = √

N ,

(5.20)

and from above

λε �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε
− p∗−p

p(l−p) 1 < p <
√

N ,

ε
− (p2−N )(l−p∗)+p2

p2[(l−p∗)(p−1)+p]
√

N < p < N ,

ε
− (p∗−p)

p(l−p)

(
log 1

ε

) (l−p∗)
p(l−p)

p = √
N .

(5.21)

We note that in the case 1 < p <
√

N the above lower and upper estimates are equivalent,
therefore we have the following

Corollary 5.7 Let 1 < p <
√

N. Then ||vε||l and ||vε||p are bounded.

Proof This is an immediate consequence of (5.19)–(5.21). ��

In the case p ≥ √
N we take into account the growth of ||vε||p to obtain matching bounds.

In this case instead of (5.21) we use the more explicit upper bound

λε � ε−1/pσ
1/p
ε

||vε||p
� ||vε||−1

p

⎧⎪⎨
⎪⎩

ε
− (p2−N )(l−p∗)+p2

p2[(l−p∗)(p−1)+p]
√

N < p < N .

ε
− (p∗−p)

p(l−p)

(
log 1

ε

) (l−p∗)
p(l−p)

p = √
N ,

(5.22)

which follows from (5.19) and (5.6).
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5.5 A lower barrier for p ≥ 2

To refine the upper bound (5.21) we shall construct a lower barrier for wε in the critical
regimés

√
N ≤ p < N . For p ≥ 2 this will be done using the following uniform estimate.

Lemma 5.8 Given μ > 0 and γ > 0, set

h(r) := r−γ e−μr .

Assume that p ≥ 2 and that N − 1 − 2γ (p − 1) ≤ 0 and γ (N − p − γ (p − 1)) ≤ 0. Then
for all μ > 0 and r > 0,

−�ph + μp(p − 1)h p−1

≤ μ
γ p−2(N − 1 − 2γ (p − 1))

r p−1 h p−1 + γ p−1(N − p − γ (p − 1))

r p
h p−1. (5.23)

Remark 5.9 If p = 2 then (5.23) becomes an equality.

Proof By direct calculations, we have

−�ph + μp(p − 1)h p−1 = (p − 1)μ2
{
μp−2 −

(
μ + γ

r

)p−2
}

h p−1

+
(
μ + γ

r

)p−2
{
μ

N − 1 − 2γ (p − 1)

r
+ γ (N − p − γ (p − 1))

r2

}
h p−1.

For all μ > 0 and r > 0, by monotonicity we have{
μp−2 −

(
μ + γ

r

)p−2
}

≤ 0,

(
μ + γ

r

)p−2 ≥
(γ

r

)p−2
.

Therefore, assuming that N − 1 − 2γ (p − 1) ≤ 0 and γ (N − p − γ (p − 1)) ≤ 0 we can
estimate,

−�ph + μp(p − 1)h p−1

≤
(γ

r

)p−2
{
μ

N − 1 − 2γ (p − 1)

r
+ γ (N − p − γ (p − 1))

r2

}
h p−1

≤ μ
γ p−2(N − 1 − 2γ (p − 1))

r p−1 h p−1 + γ p−1(N − p − γ (p − 1))

r p
h p−1,

uniformly for all μ > 0 and r > 0. ��
Remark 5.10 In the case 1 < p < 2 by monotonicity, convexity and Taylor for all μ > 0
and r > 0 we have

0 ≤
{
μp−2 −

(
μ + γ

r

)p−2
}

≤ (2 − p)μp−3 γ

r
.

Similarly, we can estimate
(
μ + γ

r

)p−2 ≥ μp−2 − (2 − p)μp−3 γ

r
, (5.24)

or, alternatively, (
μ + γ

r

)p−2 ≥
(γ

r

)p−2 − (2 − p)
(γ

r

)p−3
μ. (5.25)
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Therefore, assuming that N − 1 − 2γ (p − 1) ≤ 0 and γ (N − p − γ (p − 1)) ≤ 0 we can
estimate,

−�ph + μp(p − 1)h p−1 ≤ μp−1 (2 − p)(p − 1)γ

r
h p−1

+
(

(5.24) or (5.25)
){

μ
N − 1 − 2γ (p − 1)

r
+ γ (N − p − γ (p − 1))

r2

}
h p−1.

(5.26)

Both (5.24) and (5.25) introduce a large positive term in (5.26) which we cannot control.

To estimate the norm ||vε||p , we note that

−�pvε + Sεελ
p
ε |vε|p−1 = Sε|vε|p∗−1 − Sελ

−(N−p)
l−p

p +p
ε |vε|l−1 ≥ −Vε(x)v p−1

ε ,

where we have set

Vε(x) := Sελ
−(N−p)

l−p
p +p

ε vl−p
ε (x).

By the radial decay estimate (A.3) we have

vε(x) ≤ CN ,p∗ |x |−N/p∗ ||vε||p∗ .

By (5.18) and since λ
− p(l−p∗)

(p∗−p)
ε � σε → 0 Lemmas 5.1 and 5.6 yield, for sufficiently small

ε > 0, the following decay estimate

Vε(x) := Sελ
−(N−p)

l−p
p +p

ε vl−p
ε (x) ≤ Sελ

−(N−p)
l−p

p +p
ε cl−p

p∗ ||vε||l−p
p∗ |x |− N

p∗ (l−p)

≤ Cλ
−(N−p)

l−p
p +p

ε |x |−(p+δ),

where δ := N−p
p (l − p) − p > 0 and the constant C > 0 does not depend on ε or x . Hence,

for small ε > 0 the rescaled functions vε > 0 satisfy the homogeneous inequality

− �pvε + Sεελ
p
ε v p−1

ε + Vε(x)v p−1
ε ≥ 0, x ∈ R

N. (5.27)

The following result provides a suitable lower barrier to (5.29) below.

Lemma 5.11 Assume N ≥ 4 and 2 ≤ p < N+1
2 . Then there exists R > 0, independent on

ε > 0, such that for all small ε > 0,

hε(x) := |x |− N−p
p−1 e− p√εSελε |x |

satisfies
− �phε + (p − 1)Sεελ

p
ε h p−1

ε + Vε(x)h p−1
ε ≤ 0, |x | > R. (5.28)

Proof By Lemma 5.8 with γ = N−p
p−1 we conclude that there exists R > 1, independent of

ε > 0, such that

−�phε + (p − 1)Sεελ
p
ε h p−1

ε + Vε(x)h p−1
ε

≤ (εSε)
1
p λε

γ p−2(N − 1 − 2γ (p − 1))

r p−1 h p−1
ε + λ

− N−p
p (l−p)+p

ε

C

r p+δ
h p−1

ε

≤
{
−γ p−2(N + 1 − 2p

)
(εSε)

1
p λε + Cλ

− N−p
p (l−p)+p

ε

}
1

r p−1 h p−1
ε for |x | > R.
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It is convenient to denote s := l − p∗ > 0. Taking into account that − N−p
p (l − p) + p =

s(1 − N/p) < 0, we can use the lower bound (5.20) on λε to estimate

−γ p−2(N + 1 − 2p
)
(εSε)

1
p λε + Cλ

− N−p
p (l−p)+p

ε

≤ −γ p−2(N + 1 − 2p)S
1
p

ε ε
1
p − 1

[s(p−1)+p] + Cε
(N−p)(l−p)−p2

p[s(p−1)+p]

≤ −γ p−2(N + 1 − 2p)S
1
p

ε ε
s(p−1)

p[s(p−1)+p] + Cε
(N−p)(l−p)−p2

p[s(p−1)+p] ≤ 0,

for all sufficiently small ε > 0, provided that p < (N + 1)/2, which completes the proof. ��
Lemma 5.12 Assume N ≥ 4 and 2 ≤ p < N+1

2 . There exists R > 0 and c > 0, independent
on ε > 0, such that for all small ε > 0,

vε(x) ≥ c|x |− N−p
p−1 e− p√εSελε |x | (|x | > R).

Proof Define the barrier

hε(x) := |x |− N−p
p−1 e− p√εSελε |x |,

which satisfies
− �phε + εSελ

p
ε h p−1

ε + Vε(x)h p−1
ε ≤ 0, |x | > R. (5.29)

by Lemma 5.11. Note that Lemma 5.5 and Lemma A.4 in Appendix imply

||(vε − W1)BR\BR/2 ||∞ → 0,

and hence

vε(|x |) → W1(|x |), for |x | = R.

Hence for all sufficiently small ε > 0, we have

vε(R) ≥ 1

2
W1(R), for |x | = R.

Since hε(R) is a monotone decreasing function in ε, then by a suitable choice of a uniform
small constant c > 0 we obtain

chε(R) ≤ 1

2
W1(R),

and hence

vε(R) ≥ chε(R), for all small ε > 0.

Then the homogeneity of (5.29) implies

−�p(chε) + εSελ
p
ε (chε)

p−1 + Vε(x)(chε)
p−1 ≤ 0, in |x | > R,

for all small ε > 0. Define a function chε,k by

chε,k = chε − k−1 < chε, for all k > 0,

then

− �p(chε,k) + Vε(x)(chε,k)
p−1 + εSελ

p
ε (chε,k)

p−1 ≤ 0, in |x | > R (5.30)
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and

vε ≥ chε > chε,k, for |x | = R.

Now, since

chε → 0, as |x | → +∞,

then for k large enough there exists Rk > R such that

chε,k = 0, for |x | = Rk,

and since vε > 0, then

vε > chε,k, for |x | = Rk .

As a consequence, from (5.29) and (5.30), using the comparison principle (see Theorem B.1
in Appendix) we obtain

vε ≥ chε,k, for R < |x | < Rk,

which can be achieved for every k. Since Rk → ∞ as k → ∞, the assertion follows. ��

5.6 Critical dimensions N ≥ 4 and
√
N ≤ p < N+1

2 completed

We now apply Lemma 5.12 to obtain matching estimates for the blowup of ||vε||p in dimen-
sions N ≥ 4 and

√
N ≤ p < N+1

2 .

Lemma 5.13 If N ≥ 4 and
√

N < p < N+1
2 , then ||vε||p

p �
(

1
p√ελε

) p2−N
p−1

.

Proof Since
√

N < p < N+1
2 , we directly calculate from Lemma 5.12:

||vε||p
p ≥

∫

RN \BR

|vε|pdx ≥
∞∫

R

r N−1
∣∣cr− N−p

p−1 e− p√εSελεr
∣∣pdr ,

and as ε → 0 (i.e. 1
p√ελε

→ ∞), we have

||vε||p
p ≥ cp

1
p√εSελε∫

R

r
p2−N
p−1 −1dr ≥

( C
p
√

ελε

) p2−N
p−1

,

and this completes the proof. ��
As an immediate consequence of the above result, by (5.22), we obtain an upper estimate of
λε which matches the lower bound of (5.20) in dimensions N ≥ 4 and

√
N < p < N+1

2 .

Corollary 5.14 If N ≥ 4 and
√

N < p < N+1
2 , then λε � ε

− 1
[(l−p∗)(p−1)+p] .

We now move to consider the case p = √
N .

Lemma 5.15 If N ≥ 4 and p = √
N then it holds that ||vε||p

p � log( 1
p√ελε

).
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Proof Since p = √
N , by Lemma 5.12 we immediately get

||vε||p
p ≥

∫

RN \BR

r N−1|vε(r)|pdr ≥ cp

1
p√εSελε∫

R

r
p2−N
p−1 −1dr

= cp

1
p√εSελε∫

R

r−1dr ≥ log

(
C

p
√

ελε

)
,

and this concludes the proof. ��

Corollary 5.16 If N ≥ 4 and p = √
N then it holds that λε �

(
ε(log 1

ε
)
)− (p∗−p)

p(l−p)
.

Proof By (5.19) and (5.6) we get

Cελp
ε log

1
p
√

ελε

≤
(
ε

(
log

1

ε

)) (l−p∗)
(l−p)

.

Clearly,

εδ1 ≤ p
√

ελε ≤ εδ2 ,

for some δ1,2 ≥ 0 and ε small enough, by (5.20) and (5.21). It follows that

log
1

p
√

ελε

∼ log
1

ε
.

Hence,

λp
ε �

(
ε(log

1

ε
)
) (l−p∗)

(l−p)
−1 =

(
ε

(
log

1

ε

))− (p∗−p)
(l−p)

,

and

λε �
(
ε

(
log

1

ε

))− (p∗−p)
p(l−p)

,

and this concludes the proof. ��

5.7 Proofs

The sharp upper estimates on λε yield the following

Corollary 5.17 Let either 1 < p <
√

N , or N ≥ 4 and
√

N ≤ p < N+1
2 . Then

||vε||l = O(1).

The boundedness of the Ll norm also allows one to reverse the estimates of ||vε||p via (5.19).

Corollary 5.18 It holds that

||vε||p
p =

⎧⎪⎪⎨
⎪⎪⎩

O(1), 1 < p <
√

N ,

O(log 1
ε
), p = √

N , N ≥ 4,

O(ε
(l−p∗)[p−(p∗−p)(p−1)]
(p∗−p)[(l−p∗)(p−1)+p] ),

√
N < p < N+1

2 , N ≥ 4.
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We now prove that the Ll bound implies an L∞ bound.

Lemma 5.19 Let either 1 < p <
√

N , or N ≥ 4 and
√

N ≤ p < N+1
2 . It holds that

||vε||∞ = O(1). (5.31)

Proof We start observing that by (R∗
ε ) vε is a positive solution to the inequality

−�pvε − Vε(x)v p−1
ε ≤ 0, x ∈ R

N ,

with

Vε(x) := Sεv
p∗−p
ε (x).

By Lemma A.5 in Appendix, we obtain

|vε(x)| ≤ Cl ||vε||l |x |−N/l x �= 0, (5.32)

which combined with Corollary 5.17 yields

Vε(x) ≤ SεC p∗−p
l ||vε||p∗−p

l |x |−N (p∗−p)/l ≤ C∗|x |−pp∗/l ,

for some uniform constant C∗ > 0 independent on ε or x . Hence, vε is a positive solution to
the inequality

− �pvε − V∗(x)v p−1
ε ≤ 0, x ∈ R

N , (5.33)

with V∗(x) = C∗|x |−pp∗/l ∈ Ls
loc(R

N ) for some s > N/p, since l > p∗. With these
preliminaries in place, one can invoke here the result on local boundedness Theorem 7.1.1 in
[30, p.154] for subsolutions of (5.33) to conclude. However, tomake the proof self-contained,
we provide a simple argument to justify (5.31).
Integrating the inequality (5.33) over a ball

∫

B|x |(0)

−�pvε(y)dy ≤
∫

B|x |(0)

V∗(y)v p−1
ε (y)dy,

and by the divergence theorem, taking into account the monotonicity of vε with respect to
|x | we have

∫

B|x |(0)

−�pvε(y)dy =
∫

∂ B|x |(0)

−|∇vε(σ )|p−2∇vε(σ ) · ν dσ

= |∇vε(x)|p−1
∫

∂ B|x |(0)

dσ = C1|∇vε(x)|p−1|x |N−1.

On the other hand

∫

B|x |(0)

V∗(y)v p−1
ε (y)dy = C2

|x |∫

0

r− pp∗
l +N−1v p−1

ε (r)dr

≤ C2|vε(0)|p−1

|x |∫

0

r− pp∗
l +N−1dr = C3|vε(0)|p−1|x |− pp∗

l +N ,
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since − pp∗
l + N > 0. Hence

|∇vε(x)|p−1 ≤ C4

|x |N−1

∫

B|x |(0)

V∗(r)v p−1
ε (r)dr ≤ C5|vε(0)|p−1|x |1−pp∗/l , (5.34)

for some C4, C5 > 0 independent of ε and x . Integrating again from 0 to x0 after writing
(5.34) in this form

− d

dr
vε(|x |) ≤ C6|vε(0)||x |(1−pp∗/l)/(p−1),

we have

vε(0) ≤ vε(x0) + C7vε(0)|x0|
p(l−p∗)
l(p−1) , (5.35)

for some C7 independent of ε and x . We pick A small enough such that for all |x0| ≤ A we
have

vε(0)

(
1 − C7A

p(l−p∗)
l(p−1)

)
≤ vε(0)

(
1 − C7|x0|

p(l−p∗)
l(p−1)

)
≤ vε(x0).

Then

C8vε(0) ≤ vε(x0), for all x0, |x0| < A,

where C8 = 1 − C7A
p(l−p∗)
l(p−1) . Hence by taking the power l and integrating we obtain∫

|x |<A

C9|vε(0)|ldx ≤
∫

|x |<A

|vε(x)|ldx .

which by Corollary 5.17 immediately concludes the proof. ��
By elliptic estimates for the p-Laplacian, we have the following

Corollary 5.20 Let either 1 < p <
√

N , or N ≥ 4 and
√

N ≤ p < N+1
2 . It holds that

vε → W1 in C1,α
loc (RN ) and Ls(RN ) for any s ≥ p∗. In particular,

vε(0) � U1(0).

Proof As a consequence of the L∞ bound of Lemma 5.19 and the convergence of vε to the
Sobolev minimiser W1 in D1,p(RN ) via the compactness result in Lemma A.5 we obtain the
convergence in Ls(RN ) for any s ≥ p∗. Since we can write (R∗

ε ) in the form

−�pvε = gε(vε),

and by Lemma 5.19 we have

||gε(vε)||L∞
loc(R

N ) < C,

uniformly with respect to ε, then by [11, Theorem 2] we have

||vε||C1,α
loc (RN )

< C,

uniformly with respect to ε. It follows that by the classical Arzelá–Ascoli theorem that for a
suitable sequence ε → 0 we have

vε → W1 in C1,α′
loc (RN ),

where α < α′. ��
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Proof of Theorem 2.3 The proof follows immediately from Lemmas 5.5 and 5.6, which yield
the upper and lower estimates on λε. ��
Proof of Theorem 2.5 Theproof follows from the sharp upper boundonλε inCorollaries 5.14–
5.16, and from Corollary 5.20. In particular, since from Corollary 5.20 and in view of (3.8),
we have

uε(0) ∼ λ
− N−p

p
ε vε(0),

then by the sharp estimate of λε we have the exact rate of the groundstate uε(0) in the present
critical case

uε(0) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
l

(l−p) 1 < p <
√

N , N ≥ 2,

ε
N−p

p[(l−p∗)(p−1)+p]
√

N < p < N+1
2 , N ≥ 4,

(ε(log 1
ε
)
) l

(l−p)
p = √

N , N ≥ 4.

(5.36)

��

6 Proof of Theorem 2.8: supercritical case q > p∗

In this section, we consider the supercritical case q > p∗ and prove Theorem 2.8 stated in
Introduction, which essentially says that for q > p∗ groundstate solutions uε converge as
ε → 0 to a non-trivial radial groundstate solution of the formal limit equation (P0). This
result extends [24, Theorem 2.3] to p �= 2.

6.1 The limiting PDE

From the results of Sect. 4 we know that for q > p∗ the limit equation

− �pu − uq−1 + ul−1 = 0 in R
N , (P0)

admits positive radial groundstates solutions u0 ∈ D1,p(RN ) ∩ Ll(RN ), which are, since
they are radial, fast decaying, namely such that

u0(x) ∼ |x |− N−p
p−1 as |x | → ∞. (6.1)

Note that by construction u0 ∈ C1,α
loc (RN ).Moreover u0 admits a variational charachterization

in the Sobolev space D1,p(RN ) via the rescaling

u0(x) := w0

( x
p
√

S0

)
,

where w0 is a positive radial minimizer of the constrained minimization problem

S0 := inf

⎧⎪⎨
⎪⎩
∫

RN

|∇w|pdx
∣∣∣w ∈ D1,p(RN ), p∗

∫

RN

F̃0(w)dx = 1

⎫⎪⎬
⎪⎭ , (S0)

where

F̃0(w) =
∫ w

0
f̃0(s)ds,
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and f̃0(s) is a truncation of the nonlinearity

f0(s) = |s|q−2s − |s|l−2s,

as described in Sect. 4. Then the minimization problem (S0) is well defined on D1,p(RN ).
The minimizer w0 satisfies the Euler–Lagrange equation

−�pw0 = S0(w
q−1
0 − wl−1

0 ).

Moreover, w0 satisfies Nehari’s identity

∫

RN

|∇w0|pdx = S0

⎛
⎜⎝
∫

RN

|w0|qdx −
∫

RN

|w0|ldx

⎞
⎟⎠ ,

which yields
1 = ||w0||qq − ||w0||ll . (6.2)

From the Pohožaev identity

∫

RN

|∇w0|pdx = S0 p∗

⎛
⎜⎝ 1

q

∫

RN

|w0|qdx − 1

l

∫

RN

|w0|ldx

⎞
⎟⎠ ,

we have

1 = p∗

q
||w0||qq − p∗

l
||w0||ll . (6.3)

Hence from (6.2) and (6.3) we obtain the relation

||w0||qq − ||w0||ll = p∗

q
||w0||qq − p∗

l
||w0||ll = 1,

from which we obtain the expressions

||w0||qq = q(l − p∗)
p∗(l − q)

, ||w0||ll = l(q − p∗)
p∗(l − q)

.

6.2 Energy estimates and groundstate asymptotics

The relations between Sε and S0 is provided by introducing the convenient scaling-invariant
quotient

S0(w) :=

∫
RN

|∇w|pdx

(
p∗ ∫

RN

F̃0(w)dx
)(N−p)/N

, w ∈ M0, (6.4)

where

M0 :=

⎧⎪⎨
⎪⎩w ∈ D1,p(RN ),

∫

RN

F̃0(w)dx > 0

⎫⎪⎬
⎪⎭ .

Note that, by a rescaling argument, this is equivalent to (S0) :

S0 = inf
w∈M0

S0(w).
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Lemma 6.1 For all 1 < p < N, it holds that

0 < Sε − S0 → 0, as ε → 0.

Proof To show that S0 < Sε , simply note that

S0 ≤ S0(wε) < Sε(wε) = Sε. (6.5)

To estimate Sε from above we test (Sε) with the minimizer w0. By (6.1), we have w0 ∈
L p(RN ) if and only if 1 < p <

√
N . We break the proof by analysing the higher and lower

dimensions separately.
Case 1 < p <

√
N . Using w0 as a test function for (Sε), we obtain

Sε ≤ Sε(w0) ≤ S0

(1 − εp∗
p ||w0||p

L p(RN )
)

N−p
N

≤ S0 + O(ε), (6.6)

which proves the statement for 1 < p <
√

N .
In the cases p = √

N and
√

N < p < N , given R > 1 we pick a cutoff function
ηR ∈ C∞

0 (R) such that ηR(r) = 1 for |r | < R, 0 < ηR < 1 for R < |r | < 2R, ηR = 0 for
|r | > 2R and |η′

R | ≤ 2/R. By (6.1), for s > N
N−p we obtain

∫
RN

|∇(ηRw0(x)|pdx = S0 + O

(
R− N−p

p−1

)
,

∫
RN

|ηRw0(x)|sdx = ||w0||sLs (RN )

(
1 − O

(
R− (N−p)s

p−1 +N
))

,

∫
RN

|ηRw0(x)|pdx =
⎧⎨
⎩

O(log(R)), p = √
N ,

O

(
R

p2−N
p−1

)
,

√
N < p < N .

Case p = √
N . Let R = ε−1. Testing (Sε) with ηRw0 and since q > p∗, we get

Sε ≤ Sε(ηRw0) ≤
(

S0 + O

(
R− N−p

p−1

))

÷
( p∗

q
||w0||qq

(
1 − O

(
R− (N−p)q

p−1 +N
))

− εp∗

p
O(log R)

− p∗

l
||w0||ll

(
1 − O

(
R− (N−p)l

p−1 +N
))) N−p

N

= S0 + O(ε
N−p
p−1 )

(
1 − o(ε

N
p−1 ) − O(ε log 1

ε
)
) N−p

N

≤ S0 + O

(
ε log

1

ε

)
,

from which the claim follows.
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Case
√

N < p < N . Let R = ε
− 1

p . We test (Sε) with ηRw0 and as q > p∗, we obtain

Sε ≤ Sε(ηRw0) ≤
(

S0 + O

(
(R)

− N−p
p−1

))
÷

( p∗

q
||w0||qq

(
1 − O

(
R− (N−p)q

p−1 +N
))

− εp∗

p
O

(
R

p2−N
p−1

)

− p∗

l
||w0||ll

(
1 − O

(
(R)

− (N−p)l
p−1 +N

))) N−p
N

≤ S0 + O(ε
N−p

p(p−1) )

(
1 − o(ε

N
p(p−1) ) − O(ε

− p2−N
p(p−1) +1

)
) N−p

N

≤ S0 + O

(
ε

N−p
p(p−1)

)
,

which completes the proof. ��
Lemma 6.2 It holds that ||wε||∞ ≤ 1 and ||wε||s � 1 for all s > p∗.

Proof Note that by (3.8) we have

||wε||∞ = ||uε||∞ ≤ 1.

By Sobolev’s inequality and Lemma 6.1, we have

||wε||p
p∗ ≤ S−1∗ ||∇wε||p

p = S−1∗ Sε = S−1∗ S0
(
1 + o(1)

)
.

Hence for every s > p∗,

||wε||ss ≤ ||wε||p∗
p∗ ,

which concludes the proof. ��
Lemma 6.3 For all 1 < p < N, we have

ε||wε||p
p → 0 as ε → 0.

Proof Observing that wε is an optimizer to (Sε), it follows that

1 = p∗
∫

RN

Fε(wε)dx = p∗
∫

RN

F0(wε) − p∗ ε

p
||wε||p

p. (6.7)

Hence

S0(wε) =

∫
RN

|∇wε|pdx

(
p∗ ∫

RN

F0(wε)dx
)(N−p)/N

= Sε(
1 + p∗

p ε||wε||p
p

)(N−p)/N
.

If by contradiction we had lim supε→0 ε||wε||p
p = m > 0, then by Lemma 6.1 for any

sequence εn → 0, we would obtain

S0 ≤ S0(wεn ) = Sεn(
1 + p∗

p εn ||wεn ||p
p

)(N−p)/N
≤ S0

(
1 + o(1)

)
1 + p∗

p m
< S0,

and this, as it is clearly a contradiction, concludes the proof. ��
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Theorem 6.4 Let 1 < p < N and q > p∗. As ε → 0, the family of groundstates uε converges
to a groundstate u0 in D1,p(RN ), Ll(RN ) and C1,α

loc (RN ) to (P0). In particular

uε(0) � u0(0).

Furthermore u0 is fast decaying, namely

u0(x) ∼ |x |− N−p
p−1 as |x | → ∞.

Proof Since the family wε is bounded in D1,p(RN ), then there exists a subsequence wεn

such that

wεn ⇀w̃ in D1,p(RN ) and wεn → w̃ a.e in R
N , as n → ∞

where w̃ ∈ D1,p(RN ) is a radial function. By Sobolev’s inequality, the sequence (wεn ) is
bounded in L p∗

(RN ). Using Lemma A.5 we conclude that

wεn → w̃ in Ls(RN \ Br (0)) for r > 0 and s ∈ (p∗,∞).

Taking into account Lemma 6.3 and (6.7) we also obtain∫

RN

F0(w̃)dx = lim
n→∞

∫

RN

F0(wεn )dx = lim
n→∞

(
1 + p∗ εn

p
||wεn ||p

p

)
= 1.

By the weak lower semicontinuity property of the norm we also have that

||∇w̃||p
p ≤ lim inf

n−→∞ ||∇wεn ||p
p = S0,

i.e. w̃ is a minimizer for (S0). We now claim that

∇wεn → ∇w̃ a.e. on R
N , (6.8)

and then by Brezis–Lieb Lemma [4], (wεn ) converges strongly to w̃ in D1,p(RN ). In fact,
arguing as in [22, Theorem 3.3] (see also [21, Proposition 2.3], define a bounded function

T :=
{

s if |s| ≤ 1,
s
|s| if |s| > 1,

and consider a sequence (Bk) of open subsets of R
N such that

∞⋃
k=1

Bk = R
N . Then if

lim
n→∞

∫

Bk

(|∇wεn |p−2∇wεn − |∇w̃|p−2∇w̃) · ∇T (wεn − w̃)dx → 0, (6.9)

for every k, then

∇wεn → ∇w̃ a.e. on Bk,

and hence by a Cantor diagonal argument, (6.8) is satisfied.
To show (6.9), we introduce a cutoff function

ρ(x) :=
{
1 if |x | ≤ k,

0 if |x | ≥ k + 1,

and since (|∇wεn |p−2∇wεn − |∇w̃|p−2∇w̃
)∇T (wεn − w̃) ≥ 0,
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then

0 ≤
∫

Bk

(|∇wεn |p−2∇wεn − |∇w̃|p−2∇w̃
)∇T (wεn − w̃)dx

≤
∫

Bk+1

[(|∇wεn |p−2∇wεn − |∇w̃|p−2∇w̃
)∇T (wεn − w̃)

]
ρ(x)dx

≤
∣∣∣
∫

Bk+1

(|∇wεn |p−2∇wεn − |∇w̃|p−2∇w̃
)∇(ρT (wεn − w̃)

)
dx
∣∣∣

+
∣∣∣
∫

Bk+1

(|∇wεn |p−2∇wεn − |∇w̃|p−2∇w̃
)
T (wεn − w̃)∇ρdx

∣∣∣ → 0,

as n → ∞. In fact
∣∣∣
∫

Bk+1

(|∇wεn |p−2∇wεn − |∇w0|p−2∇w̃
)∇(ρT (wεn − w̃)

)
dx
∣∣∣

≤
∣∣∣
∫

RN

|∇wεn |p−2∇wεn ∇
(
ρT (wεn − w̃)

)
dx
∣∣∣+

∣∣∣
∫

RN

|∇w̃|p−2∇w̃∇(ρT (wεn − w̃)
)
dx
∣∣∣

=
∣∣∣
∫

RN

fε(wεn )ρT (wεn − w̃)dx
∣∣∣+

∣∣∣
∫

RN

f (w̃)ρT (wεn − w̃)dx
∣∣∣ → 0,

by local compactness. Moreover, by Hölder’s inequality and since T is bounded and wεn −
w̃ → 0 a.e. on R

N , then by dominated convergence theorem, we have

∣∣∣
∫

Bk+1

(|∇wεn |p−2∇wεn − |∇w̃|p−2∇w̃)T (wεn − w̃)∇ρdx
∣∣∣

≤ C
( ∫

Bk+1

|T (wεn − w̃)|p|∇ρ|pdx
) 1

p → 0,

and hence (6.9) follows. As a consequence (wεn ) converges to w̃ in D1,p(RN ) and in Ls(RN )

for any s ≥ p∗, where w̃ is a minimizer of (S0) satisfying the constraint. Similarly to the
proof of Corollary 5.20, using Lemma 6.2, by uniform elliptic estimates we conclude that
(wεn ) converges to w̃0 in C1,α

loc (RN ). The decay follows from Lemma 4.7. This concludes the
proof. ��

Proof of Theorem 2.8 The statement follows directly from Theorem 6.4 and Lemma 6.3. ��

7 Proof of Theorem 2.2: subcritical case p < q < p∗

In this section, we consider the subcritical case p < q < p∗ and prove Theorem 2.2 showing
that, after the canonical rescaling (1.2), the groundstate solutions uε converge as ε → 0 to the
unique non-trivial radial groundstate solution to the limit equation (R0). This result extends
[24, Theorem 2.1] to p �= 2.
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Since by Pohožaev’s identity the equation (P0) has no positive finite energy solutions, to
understand the asymptotic behaviour of the groundstates uε we consider the rescaling in
(1.2), which transforms (Pε) into (Rε), whose limit problem as ε → 0 is (R0).
Pick Gε : R → R, a bounded truncated function such that

Gε(w) = 1

q
|w|q − 1

p
|w|p − ε

l−q
q−p

l
|w|l ,

for 0 < w ≤ ε
− 1

q−p , Gε(w) ≤ 0 for w > ε
− 1

q−p and Gε(w) = 0 for w ≤ 0. For ε ∈ [0, ε∗),
we set

S′
ε := inf

{ ∫

RN

|∇w|pdx
∣∣∣ w ∈ W 1,p(RN ), p∗

∫

RN

Gε(w)dx = 1
}
, (S′

ε)

a well-defined family of constrained minimization problems, which share, together with the
limit problem (S′

0), the same functional setting W 1,p(RN ). By Theorem 3.2, (S′
ε) possesses

a radial positive minimizer wε for every ε ∈ [0, ε∗). The rescaled function

vε(x) := wε

( x
p
√

S′
ε

)
,

is a radial groundstate of (Rε).
We estimate (S′

ε) by means of the dilation invariant representation

S ′
ε(w) :=

∫
RN

|∇w|pdx

(
p∗ ∫

RN

Gε(w)dx
)(N−p)/N

, w ∈ M′
ε,

where M′
ε := {0 ≤ w ∈ W 1,p(RN ),

∫
RN

Gε(w)dx > 0}. We have

S′
ε = inf

w∈M′
ε

S ′
ε(w),

and for ε small enough we have

S′
0 ≤ S ′

0(wε) < S ′
ε(wε) = S′

ε. (7.1)

This follows by observing that as p∗ ∫
RN

Gε(wε)dx = 1 and Gε(s) is a decreasing function of

ε for each s > 0,we havewε ∈ M′
0, and the second inequality follows again bymonotonicity.

Observe that by continuityw0 ∈ M′
ε for sufficiently small ε. As a consequence, by testing(S′

ε)
with w0, that for ε small enough, we have that

S′
ε ≤ S ′

ε(w0) = S′
0(

1 − p∗
l ε

l−q
q−p ||w0||ll

)(N−p)/N
≤ S′

0 + O(ε
l−q
q−p ).

Hence S′
ε → S′

0. Reasoning as in Lemma 5.2 , we obtain that

||wε||qq = (l − p∗)q
(l − q)p∗ + q(l − p)

p(l − q)
||wε||p

p.

Inserting this identity into the definition of S′
0(wε) and using the convergence of S′

ε to S′
0,

one can easily check that
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lim
ε→0

||wε||p
p = p(p∗ − q)

p∗(q − p)
, lim

ε→0
||wε||qq = q(p∗ − p)

p∗(q − p)
. (7.2)

Therefore p∗ ∫
RN

G0(wε)dx → 1 as ε → 0.Wehave then achieved that a rescalingλε → 1

exists such that p∗ ∫
RN

G0(w̃ε)dx = 1 and S ′
ε(w̃ε) → S′

0 with w̃ε(x) := wε(λεx). It follows

that (w̃ε) is a minimizing one parameter family for (S′
0) that satisfies the constraint used

in the method which yields Theorem 3.2. By Theorem 3.2 we conclude that for a suitable
sequence εn → 0, it holds w̃εn → w̃ strongly in W 1,p(RN ), and since λε → 1, it holds that
wεn → w̃, where w̃ is the minimizer of (S′

0) satisfying the constraint. By the uniqueness of
minimizer of (R0), we have w̃ = w0. An obvious modification of the proof of Lemma 5.19,
using ||wε||p∗ , yields that ||wε||∞ � 1 as ε → 0. By uniform elliptic estimates we conclude
that wε converges to w0 in Ls(RN ) for any s ≥ p and in C1,α

loc (RN ), and therefore the proof
of Theorem 2.2 is complete.

A Radial functions

We recall that for u ∈ L1(RN ), the radially decreasing rearrangement of a function u is
denoted by u∗ and it is such that for any α > 0 it holds that∣∣x ∈ R

N : u(x)∗ ≥ α
∣∣ = ∣∣x ∈ R

N : |u(x)| ≥ α
∣∣,

where
∣∣ · ∣∣ denotes the Lebesgue measure in R

N . We recall that
∫
RN

F(u)dx =
∫
RN

F(u∗)dx,

for every continuous F such that F(u) is summable.
The following fundamental properties of rearrangements can be found, e.g. in [43]:

Lemma A.1 Let 1 ≤ p < ∞ and u, v ∈ L p(RN ). Then u∗, v∗ ∈ L p(RN ) and

||u∗||p = ||u||p, ||u∗ − v∗||p ≤ ||u − v||p.

Lemma A.2 Let 1 < p < N and u ∈ D1,p(RN ) (respectively, in W 1,p(RN )). Then u∗
belongs to D1,p(RN ) (respectively, in W 1,p(RN )), and we have∫

RN
|∇u∗(x)|pdx ≤

∫
RN

|∇u(x)|pdx .

We will be frequently using the following well-known decay and compactness properties
of radial functions on R

N .

Lemma A.3 [36] Assume that 1 < p < N. Then there exists C = C(N , p) > 0 such that
for all u ∈ D1,p

r (RN ),

|u(x)| ≤ C |x |− N−p
p ||∇u||L p(RN ). (A.1)

Lemma A.4 (Compactness of the radial embedding [36]) Let 1 < p < N. Then we have the
following continuous embedding

W 1,p
r (RN ) ↪→ Lq(RN ) (A.2)

123



60 W. Albalawi et al.

for p ≤ q ≤ p∗ := pN
N−p when p∗ < ∞ and for p ≤ q < ∞ when p∗ = ∞. Furthermore,

the embedding is compact for p < q < p∗.

Lemma A.5 (1) Let s ≥ 1 and let u ∈ Ls(RN ) be a radial nonincreasing function. Then for
every x �= 0,

|u(x)| ≤ C |x | −N
s ||u||s, (A.3)

where C = C(s, N ), see, e.g. [3].
(2) Let un ∈ D1,p(RN ) be a sequence of radial functions such that un⇀u in D1,p(RN ).

Then, passing if necessary to a subsequence, it holds that

un → u in L∞(RN \Br (0)) and Ls(RN \Br (0)) ∀ r > 0, s > p∗.

Proof Since (un)n∈N ∈ D1,p(RN ) is a radial sequence, setting fn(|x |) = un(x) from the
fundamental theorem of calculus and Hölder’s inequality for all |x | > |y| > r > 0 it holds
that

|un(x) − un(y)| ≤
∫ |x |

|y|
| f ′

n(t)|dt ≤ |x − y|1/p′ |y|(1−N )/p|SN−1|−1/p‖∇un‖L p(RN )

and as a consequence, since un⇀u is bounded, for all x, y ∈ R
N \ Br (0) and a uniform

constant C > 0 we have that

|un(x) − un(y)| ≤ Cr (1−N )/p|x − y|1/p′
. (A.4)

Namely, (un)n∈N is bounded inC0,1/p′
(RN \ Br (0)) and by the locally compact embedding it

is strongly convergent to u in L∞
loc(R

N \ Br (0)). This and Lemma A.3 yield the convergence
in Ls(RN \ Br (0)). ��

B Comparison principle for the p-Laplacian

Let G ⊆ R
N be a domain. We say that 0 ≤ v ∈ W 1,p

loc (G) satisfies condition (S) if:

(S) there exists (θn)n∈N ⊂ W 1,∞
c (RN ) such that 0 ≤ θn → 1 a.e. in R

N and∫

G

R(θnv, v) → 0, as n → +∞.

where R is defined by

R(w, v) := ∣∣∇w
∣∣p − ∇

( w p

v p−1

)∣∣∇v
∣∣p−2∇v. (B.1)

Notice that if G is bounded and v ∈ W 1,p(G) then condition (S) is trivially satisfied with
θ = 1 in G. In case of an unbounded domain G, condition (S) ensures that the subsolution
v is sufficiently small at infinity, in order to respect the comparison principle (see [19]).
Using condition (S), we formulate a version of comparison principle for a p-Laplacian with
a general negative potential (see, e.g. [19,27,34]).

Theorem B.1 (Comparison principle for p-Laplacian) Let 0 < u ∈ W 1,p
loc (G) ∩ C(Ḡ) be a

supersolution and v ∈ W 1,p
loc (G) ∩ C(Ḡ) a subsolution to the equation

− �pu + V |u|p−2u = 0 in G, (B.2)
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where V ∈ L∞
loc(G). If G is an unbounded domain, assume in addition that ∂G �= ∅ and v+

satisfies condition (S). Then u ≥ v on ∂G implies u ≥ v in G.

Below we prove a simple sufficient condition for assumption (S) to hold.

Lemma B.2 If 0 ≤ v ∈ D1,p
rad(RN ) then v satisfies (S).

Proof Following [19,34], define

ηR(r) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 ≤ r ≤ R
log R2

r
log R , R ≤ r ≤ R2,

0, r ≥ R2,

and note that |ηR | ≤ 1 a.e. in R
N and |η′

R | ≤ c
log R r−1. We are going to show that

∫

RN

R(ηRv, v) → 0 as R → ∞.

Using the Picone’s identity [1,10] and inequalities [34, Lemma 7.4], it is straightforward to
deduce the inequalities

R(ηRv, v) ≤ c1|v (ηR)′r |p, (1 < p ≤ 2), (B.3)

R(ηRv, v) ≤ c2|ηRv′
r |p−2|v(ηR)′r |2 + c3|v (ηR)′r |p, (p > 2). (B.4)

Case 1 < p ≤ 2. Using (B.3) and Ni’s decay estimate Lemma A.3 on v ∈ D1,p
rad(RN ),

v ≤ c|x |− N−p
p ,

by a direct calculation we obtain

∫

RN

R(ηRv, v)dx ≤ c1

R2∫

R

|v(ηR)′r |pr N−1dr ≤ c

R2∫

R

∣∣∣r− N−p
p

1

log R
r−1

∣∣∣p
r N−1dr

≤ C

(log R)p−1 → 0 as R → ∞. (B.5)

Case p > 2. By Hölder and (B.5) we conclude
∫ +∞

0
|ηRv′|p−2|v(ηR)′r )|2r N−1dr

≤
(∫ +∞

0
|ηRv′|pr N−1dr

) p−2
p
(∫ +∞

0
|v(ηR)′r )|pr N−1dr

) 2
p

≤ c‖v‖p−2
D1,p(RN )

(∫ R2

R
|v(ηR)′r )|pr N−1dr

) 2
p

→ 0 as R → ∞.

Taking into account (B.4) and once again (B.5), the conclusion follows. ��
Remark B.3 While the statement of Lemma B.2 is sufficient for our purposes, it is far from
optimal. See [19, Appendix B] for constructions of radial functions v /∈ D1,p(RN ) which
satisfy assumption (S).
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