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Abstract
We consider geometric properties of 3-jet non-degenerate functions in connection with
Nekhoroshev theory. In particular, after showing that 3-jet non-degenerate functions are
“almost quasi-convex”, we prove that they are steep and compute explicitly the steepness
indices (which do not exceed 2) and the steepness coefficients.
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2152 L. Chierchia et al.

1 Introduction

In 1977–1979,N.N.Nekhoroshev published a fundamental theorem [17–20] about the “expo-
nential stability” of nearly integrable, real-analytic Hamiltonian systems with Hamiltonian
given, in standard action-angle coordinates, by

H(I , ϕ) = h(I ) + ε f (I , ϕ), (I , ϕ) ∈ U × T
n , (1)

where U ⊆ R
n is an open region, Tn = R

n/(2πZ)n is the standard flat n-dimensional
torus and ε is a small parameter. The integrable limit h(I ) is assumed to satisfy a geometric
condition, called byNekhoroshev “steepness”, which can be formulated as follows (compare,
also, Definition 2, § 2).

A function f ∈ C1(U ), with U a bounded region (i.e. open, bounded and connected set)
of Rn , is said to be steep inU with steepness indices δ1, . . . , δn−1 ≥ 1 and (strictly positive)
steepness coefficients C1, . . . ,Cn−1, ξ1, . . . , ξn−1, if its gradient h′(I ) satisfies the following
estimates: inf I∈U ‖h′(I )‖ > 0 and, for any I ∈ U , for any k-dimensional linear subspace
V k ⊆ R

n orthogonal to h′(I ) with 1 ≤ k ≤ n − 1, one has1

max
0≤η≤ξ

min
u∈V k :‖u‖=η

‖PVk h′(I + u)‖ ≥ Ckξ
δk ∀ ξ ∈ (0, ξk],

where PVk denotes the orthogonal projection over V k .
Nekhoroshev’s original exponential stability statement is, then, the following:
Let H in (1) be real-analytic with h steep. Then, there exist positive constants a, b and ε0

such that for any 0 ≤ ε < ε0 the solution (It , ϕt ) of the (standard) Hamilton equations for
H(I , ϕ) with initial data (I0, ϕ0) satisfies

|It − I0| ≤ εb

for any time t satisfying

|t | ≤ 1

ε
exp

( 1

εa

)
.

The values of the parameters a, b, ε0 in the original statements of [17–20], as well as in
the recent improvement [6,7], depend on the steepness indices and coefficients. Precisely
a, b depend only on the values of the steepness indices and the number of the degrees of
freedom, while ε0 depends also on the values of the steepness coefficients. In [7], the explicit
dependence of a, b, ε0 on the steepness indices and parameters, as well as on the parameters
depending on the perturbation f , is given, and the estimate of the stability exponent:

a = 1

2nδ1 · δn−2

has been conjectured to be optimal.
Nekhoroshev proved in [16,19,20] that steepness is a generic property of C∞ functions.

Later, Niederman [21] proved that for real-analytic h, steepness is equivalent to require
that h has no critical points and that its restriction to any affine subspace of dimension
1 ≤ k ≤ n − 1 admits only isolated critical points. However, neither from Nekhoroshev’s
genericity techniques nor fromNiederman’s theorem there follow directly explicit conditions
to determine whether a given function is steep or not. Indeed, very little is known about the
evaluation of steepness parameters (index and coefficients) for general classes of functions,

1 For any vector u ∈ C
n , we denote by ‖u‖ :=

√∑
i |ui |2 its Hermitian norm.
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On steepness of 3-jet non-degenerate functions 2153

evaluation which is necessary in order to give explicit exponential estimates for perturbations
of a specific steep Hamiltonian.

Essentially, the only general class of steep functions, which is well understood, is that
of “quasi-convex” functions. Quasi-convexity is the simplest instance of steepness, and the
quasi-convex case has been used for decades to improve the theoretical stability bounds of
Nekhoroshev’s theorem, especially the stability exponent a. In the quasi-convex case, the
proof of the theorem has been significantly simplified (compare [2,3,5]), and furthermore,
the stability exponent has been improved up to a = (2n)−1 (compare [11,12,24]; see, also,
[4] for exponents which are intermediate between a = (2n)−1 and a = (2(n − 1))−1). Such
exponents in the convex case have been proved to be nearly optimal [29].

Beyond the quasi-convex case, Nekhoroshev provided other sufficient conditions to rec-
ognize if a given Ck function is steep in a neighbourhood of a point I . Such conditions are
formulated in terms of the jet of partial derivatives of h (compare [14–20]).

From this point of view, quasi-convex functions are identified as 2-jet non-degenerate
functions. Precisely, in [17,18], it is proved that if ∇h(I ) �= 0, and the jet of order 2 of the
function h at I is non-degenerate, i.e. if the system:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑
i=1

∂h

∂ Ii
(I )ui = 0

n∑
i, j=1

∂2h

∂ Ii∂ I j
(I )uiu j = 0

(2)

has a unique solution u = (0, . . . , 0) in R
n , then h is steep in a neighbourhood of I with

steepness indices δ1 = · · · = δn = 1; the steepness coefficients follow from standard
convexity estimates, since the restriction to any linear space V k orthogonal to ∇h(I ) of a
quasi-convex function h (or2 −h) is convex (compare, also, Remark (v), Sect. 2).

Therefore, one is left with the problem of computing steepness parameters of functions
whose 2-jet is degenerate.

In [17,18], Nekhoroshev pointed out also the steepness of functions h such that∇h(I ) �= 0
and with jet of order 3 at I is non-degenerate, meaning that the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

∂h

∂ Ii
(I )ui = 0

n∑
i, j=1

∂2h

∂ Ii∂ I j
(I )uiu j = 0

n∑
i, j,k=1

∂3h

∂ Ii∂ I j∂ Ik
(I )uiu j uk = 0

(3)

has a unique solution u = (0, . . . , 0) in R
n .

Actually, steepness of 3-jet non-degenerate functions is not proved in [17,18], but rather it
is obtained as a consequence of a former result ofNekhoroshev [16,19,20] about the steepness
of functions whose jets of order j are outside the closure of the set Pj of jets which satisfy

2 Steepness is invariant under the change h → −h; hence, convexity and concavity are “equivalent” in this
context and one usually refers only to convexity for simplicity.
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2154 L. Chierchia et al.

certain algebraic conditions3. From such papers, it follows that the steepness indices of 3-jet
non-degenerate functions are bounded from above with functions depending on n, and no
computations of the steepness coefficients are provided.

Nevertheless, the 3-jet condition (being the only explicit general steepness condition apart
fromquasi-convexity) has gained quite a relevance inNekhoroshev theory. Indeed, it enlarged
significantly the range of applications of Nekhoroshev’s Theorem, especially to celestial
mechanics ( [1,10,13,22,23,25,27], see also the review paper [9]). Furthermore, numerical
studies revealed the difference of the asymptotic stability between convex functions and 3-jet
non-degenerate functions (compare [8,28]).

On the other hand, 2-jet and 3-jet non-degeneracies, presently, appear to be the only
algebraic sufficient conditions for steepnesswhich are formulatedwith equations independent
on the number n of the degrees of freedom. For example, there are functions whose 4-jet is
non-degenerate, in the sense that the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

∂h

∂ Ii
(I )ui = 0

n∑
i, j=1

∂2h

∂ Ii∂ I j
(I )uiu j = 0

n∑
i, j,k=1

∂3h

∂ Ii∂ I j∂ Ik
(I )uiu j uk = 0

n∑
i, j,k,
=1

∂4h

∂ Ii∂ I j∂ Ik∂ I

(I )uiu j uku
 = 0

has only the trivial solution u = (0, . . . , 0), but are not steep (seeExample 1, [26])). Algebraic
conditions for the steepness of functions of n = 3 and n = 4 variables which are 3-jet
degenerate have been formulated in [26]; no general conditions for the steepness of 3-jet
degenerate functions formulated using the 4-jet are known up to now. In fact, the sufficient
jet conditions provided by Nekhoroshev in [14–16,19,20] are formulated in terms of the
closure C j of a set whose definition depends on the number n of the degrees of freedom;
explicit equations for C j (n), valid for arbitrary n, are not known.

In this paper, we investigate further 3-jet non-degenerate functions in connection with
their steepness properties.

A key property of such functions is a “spectral non-degeneracy” of their Hessian matrix.
More precisely, if h is 3-jet non-degenerate and V k is a linear subspace of h′(I )⊥, then the
symmetric operator PVk h′′(I ) : V k → V k is strictly definite apart, possibly, from one single
direction: in other words, there may be at most one small (or vanishing) eigenvalue; the
precise statement is the content of Lemma 1 in Sect. 3. In this sense, one might say that 3-jet
non-degenerate functions are “almost quasi-convex”.

This observation allows to concentrate the study of steepness on lines (one-dimensional
vector spaces) in h′(I )⊥: this quantitative analysis is the content of Lemma 2 of Sect. 3.

Putting together these two facts, one can finally prove (Sect. 4) the steepness of 3-jet
non-degenerate functions and compute explicitly the steepness indices, which do not exceed
2, and the steepness coefficients.

3 We remark that the result does not follow by simply checking if the 3-jet of a 3-jet non-degenerate function
is outside the closure of P3 but, depending on the value of n, there is suitably large j such that the jet of a
3-jet non-degenerate function is outside the closure of Pj .
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On steepness of 3-jet non-degenerate functions 2155

2 Main result

We start with some standard notation:

• (Tensors of derivatives) Given G ⊆ R
n open, p ∈ N and a C p function h : G → R,

Dph(I ) = h(p)(I ) denotes the symmetric p-tensor at I ∈ G of the p-derivatives acting
on4 (u1, . . . , u p) ∈ (Rn)p as

Dph(I )[u1, . . . , u p] :=
∑

1≤i1,...,i p≤n

∂ ph(I )

∂ Ii1 · · · ∂ Ii p
u1i1 · · · u pi p .

In particular, for p = 1, h(1) is (identified with) the gradient

h′ := ∇h :=
(

∂h

∂ I1
, . . . ,

∂h

∂ In

)

and, for p = 2, h(2) is (identified with) the Hessian matrix

h′′ :=
( ∂2h

∂ Ii∂ I j

)
i, j=1,...,n

.

For n ≥ p ≥ 2, Dph(I )[u2, . . . , u p] denotes the vector inRn with i th-component given
by:

ei · Dph(I )[u2, . . . , u p] = Dph(I )[ei , u2, . . . , u p] ,

where {e1, . . . , en} is the standard orthonormal bases of Rn (ei j = δi j ) and u · v =∑n
i=1 uivi the standard inner product in R

n .

Analogously, for n ≥ p ≥ 3, Dph(I )[u3, . . . , u p] denotes the (n × n)-matrix with
entries given by:

Dph(I )[u3, . . . , u p]ei · e j = Dph(I )[ei , e j , u2, . . . , u p] ;
and so on for higher-order tensors (which, however, we shall not need).
Finally, for n ≥ p ≥ k we shall also let

Dph(I )[u]k := Dph(I )[u, . . . , u︸ ︷︷ ︸
k times

] .

• (Norms) In R
n , ‖x‖ = √

x · x =
√√√√

n∑
i=1

x2i denotes Euclidean norm.

The norm of tensors of derivatives is the standard “functional norm”:

‖Dph(I )‖ := sup
u j :‖u j‖=1
j=1,...,p

∣∣Dph(I )[u1, . . . , u p]
∣∣

‖Dph‖D := sup
D

‖Dph(I )‖ .

4 ui = (ui1, . . . , uin).
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2156 L. Chierchia et al.

From Cauchy–Schwarz inequality, there follows that

‖Dph‖D ≤
√√√√

∑
1≤i1,...,i p≤n

sup
I∈D

∣∣∣ ∂ ph(I )

∂ Ii1 · · · ∂ Ii p
∣∣∣
2 =: Mp (4)

• (Projections) In what follows, V k will denote a k-dimensional linear proper subspace of
R
n , 1 ≤ k ≤ n−1, and PVk : Rn → V k the orthogonal projection on V k : if {ē1, . . . , ēk}

is an orthonormal basis of V k , then

PVkv =
k∑
j=1

(v · ē j ) ē j , ‖PVkv‖2 =
k∑
j=1

|v · ē j |2 . (5)

Recall that projections P are symmetric operators with ‖P‖ ≤ 1 and such that P2 = P .

Below, linear spaces V k will be always subspaces of the orthogonal complement of h′(I ),

h′(I )⊥ := {u ∈ R
n
∣∣ u · h′(I ) = 0} ,

with I regular point for h (i.e. h′(I ) �= 0).

We, now, recall the general notion of “jet non-degeneracy”:

Definition 1 Let p ∈ N and G ⊆ R
n be open. A C p function h : G → R is said to be p-jet

non-degenerate at I ∈ G if

Dkh(I )[u]k = 0 , ∀ 1 ≤ k ≤ p �⇒ u = 0 . (6)

The function h is said to be p-jet non-degenerate on D ⊆ G if h is p-jet non-degenerate at
every I ∈ D.

Remarks (i) A 1-jet non-degenerate function at I is simply a function regular at I , i.e. such
that h′(I ) �= 0.

A 2-jet non-degenerate function with nonvanishing gradient is, by definition, a quasi-
convex function (at I ); in other words, a quasi-convex function is a function h which is
strictly convex (or concave) on h′(I )⊥, I being a regular point for h.

(ii) From (6), it follows immediately that if h is 2-jet non-degenerate with nonvanishing
gradient (quasi-convex) on a compact set D ⊆ G then,

M2
(4)≥ ‖D2h‖D ≥ min

I∈D min
u∈h′(I )⊥
‖u‖=1

∣∣h(2)(I )[u]2∣∣ =: β > 0 .

Analogously, if h is 3-jet non-degenerate at I with nonvanishing gradient, then

M3
(4)≥ ‖D3h‖D ≥ min

u∈h′(I )⊥
‖u‖=1

max
{∣∣h(2)(I )[u]2∣∣ ,

∣∣h(3)(I )[u]3∣∣} := β(I ) > 0 , (7)
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On steepness of 3-jet non-degenerate functions 2157

and, if h is 3-jet non-degenerate on a compact set D ⊆ G, then5

M3 ≥ min
I∈D,‖u‖=1
u∈h′(I )⊥

max
{∣∣h(2)(I )[u]2∣∣ ,

∣∣h(3)(I )[u]3∣∣} := β > 0 , (8)

(obviously, β(I ) ≥ β).
(iii) For every v ∈ R

n and for every u ∈ V k with ‖u‖ = 1, one has

‖PVkv‖ ≥ |PVkv · u| = |v · PVk u| = |v · u| . (9)

Applying these inequalities with v = h′′(I )u, one sees that if h is 2-jet non-degenerate
on D it follows that, ∀ I ∈ D, ∀ V k ⊆ h′(I )⊥,

‖PVk h′′(I )u‖ ≥ β , ∀ u ∈ V k , ‖u‖ = 1 . (10)

Analogously, applying (9) with v = h(2)(I )u and v = h(3)(I )[u]2 one sees that if h is
3-jet non-degenerate on D it follows that, ∀ I ∈ D, ∀ V k ⊆ h′(I )⊥,

max
{‖PVk h′′(I )u‖, ‖PVk h(3)(I )[u]2‖} ≥ β , ∀ u ∈ V k , ‖u‖ = 1 . (11)

Notice also that the eigenvalues of PVk h′′(I ) have absolute value bounded byM2: indeed,
if PVk h′′(I )ē = λē with ‖ē‖ = 1, then

|λ| = ‖λē‖ = ‖PVk h′′(I )ē‖ ≤ M2 . (12)

Let us now turn to the definition of steepness as originally given by N.N. Nekhoroshev:

Definition 2 (Nekhoroshev [17,18]) Let n ≥ 2 be an integer and G ⊆ R
n an open set. A C1

function h : G ⊆ R
n → R is said to be steep at a point I ∈ G if I is a regular point for h

(i.e. h′(I ) �= 0) and, for each 1 ≤ k ≤ n − 1, there exist positive constants Ck, ξk, δk such
that the inequality

max
0≤η≤ξ

min
u∈V k
‖u‖=1

∥∥PVk h′(I + ηu)
∥∥ ≥ Ckξ

δk , ∀ 0 < ξ ≤ ξk (13)

holds for every linear subspace V k ⊆ h′(I )⊥.
The numbers Ck and ξk are called steepness coefficients, while δk is called the steepness

index of order k.
A C1 function h is said to be steep on D ⊆ G if there exist positive constants Ck, ξk, δk

such that, for every I ∈ D, h is steep at I with coefficients Ck, ξk and indices δk .

Let us make a few more remarks.

(iv) Definition 2 is well posed since the function (defined for η small enough)

η → FVk (η) := min
u∈V k
‖u‖=1

∥∥PVk h′(I + ηu)
∥∥ (14)

is upper semi-continuous, and hence, it achieves maximum on compact sets (note,
however, that FVk (0) = 0).

5 Notice that, if Sn−1 := {u ∈ R
n
∣∣ ‖u‖ = 1}, the function F : (I , u) ∈ D × Sn−1 → F(I , u) :=

max
{∣∣h(2)(I )[u]2∣∣ ,

∣∣h(3)(I )[u]3∣∣} is continuous on the compact set {(I , u) ∈ D× Sn−1
∣∣ h′(I ) · u = 0} and

therefore attains a minimum β on such a set: such a minimum is strictly positive since when h′(I ) · u = 0, by
(3), F(I , u) > 0.
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2158 L. Chierchia et al.

(v) Quasi-convex functions are the steepest functions: they are steep with lowest possible
indices, namely δk = 1 for all k.

Let us recall the elementary argument: by (10) andbyTaylor’s formula, for allu ∈ V k∩G
with ‖u‖ = 1, V k linear subspace of h′(I )⊥, and for small enough ξ > 0, one has:

‖PVk h′ (I + ξu) ‖ = ‖PVk h′(I ) + ξ PVk D2h(I )u + o(ξ)‖
= ‖ξ PVk h′′(I )u + o(ξ)‖
≥ ξ

(‖PVk h′′(I )u‖ − o(1)
) (10)≥ β

2
ξ ,

and steepness at I follows with δk = 1 for all k (and Ck = β/2). The argument extends
uniformly on compact sets.
Notice also that this proves a stronger property than steepness since it has been enough
to consider only η = ξ in (13) (rather than all 0 < η ≤ ξ ).

We are ready to formulate the main result:

Theorem Let D be a compact subset of an open set G ⊆ R
n such that Br (I ) ⊆ G for all

I ∈ D. Let h : G → R be a C4 function and assume that h′ �= 0 on D and that h is 3-jet
non-degenerate on D. Let β as in (8), Mp as in (4) and define

M := max{M2, M3, M4} , γ := β

M
, θ := 1

8(3 + 2
√
2)

and, for 1 ≤ k ≤ n − 1,

Ck = C := θ β , ξk := min
{
r ,

θ

2k2
γ 3} . (15)

Then, h is steep on D with coefficients Ck, ξk and indices δk ≤ 2.

Remarks (vi) From the definitions given it follows immediately that

γ ≤ 1 , ξk ≤ 1

16(3 + 2
√
2)

.

(vii) We shall first prove steepness for the third-order truncation of the Taylor expansion of
h and then extend it to the full function: this is not surprising, as the main hypothesis
regards the 3-jet of h, which may be identified with the third-order Taylor polynomial of
h. For this purpose, let us denote h̄ the third-order Taylor polynomial of h at6 I ∈ D:

h̄(I ′) :=
3∑
j=0

1

j !D
jh(I )[I ′ − I ] j

so that by Taylor’s formula with integral remainder it is

h′(I + u) = h̄′(I + u) + R(u; I ) , (16)

R(u; I ) := 1

2

∫ 1

0
(1 − t)2h(4)(I + tu)[u]3dt ,

‖R(u; I )‖ ≤ M4

6
‖u‖3 , ∀ I ∈ D , ‖u‖ ≤ r . (17)

6 D0h := h.
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On steepness of 3-jet non-degenerate functions 2159

We shall also define the truncated “Nekhoroshev’s function”, for given I ∈ D and
V k ⊆ h(I )⊥,

F̄V k (η) := min
u∈V k
‖u‖=1

∥∥PVk h̄′(I + ηu)
∥∥ . (18)

Thus, from definitions (14), (18) and (16), one has

FVk (η) ≥ F̄V k (η) − M4

6
η3 . (19)

(viii) Some of the steepness indices δk of 3-jet non-degenerate functions can be equal to 1;
this happens (trivially) for quasi-convex functions where δk = 1 for all k. Also, δk = 1
for some k if the restriction of the Hessian matrix of h to any k-dimensional linear space
orthogonal to h′(I ) is non-degenerate [1,8].

3 Two lemmas

In this section, we show two properties of 3-jet non-degenerate functions: the first is a simple
but crucial spectral non-degeneracy property, namely that the restriction of the Hessian of
a 3-jet non-degenerate function on a linear space orthogonal to its gradient has at most one
“small” eigenvalue: 3-jet non-degenerate functions are “almost quasi-convex”.

The second property is the direct, explicit check of steepness of 3-jet non-degenerate
functions on lines (one-dimensional linear subspaces).

These two properties together lead to a simple proof of steepness (given in Sect. 4).

Lemma 1 (Almost quasi-convexity) If h is 3-jet non-degenerate at I , and V k ⊆ h′(I )⊥ with
k ≥ 2, then the spectrum of PV k h′′(I ) : V k → V k has at most one eigenvalue in absolute
value strictly smaller than β(I ), where β(I ) is defined in (7).

Proof Assume, by contradiction, that the conclusion is false. Then, there is an orthonormal
basis of eigenvectors {ē1, . . . , ēk} ⊆ V k of PVk h′′(I ) with corresponding eigenvalues λk so
that |λ1| ≤ · · · ≤ |λk | and |λ1| ≤ |λ2| < β(I ). For t ∈ [0, 2π], consider the unitary vectors
in V k given by ut := (cos t)ē1 + (sin t)ē2. Then,

|h′′(I )ut · ut | = |PVk h′′(I )ut · ut | = |λ1 cos2 t + λ2 sin
2 t | ≤ |λ2| < β(I )

but this implies, by 3-jet non-degeneracy and the definition of β(I ), that |h(3)[ut ]3| ≥ β(I )
for any t , and this is not possible since the real continuous function t ∈ [0, 2π] → h(3)[ut ]3
changes sign7 and hence must have a zero. ��
Lemma 2 (Steepness on lines) Under the assumptions of the Theorem, let θ0 := 4θ

κ := θ0β , c := √
2κ/M . (20)

For every I ∈ D, u ∈ h′(I )⊥ with ‖u‖ = 1 and 0 < ξ ≤ γ , there exists η = ηu,ξ such that8

cξ ≤ ηu,ξ ≤ ξ , (21)

and

F̄V 1
u
(ηu,ξ ) = min

σ=±1
|h̄′(I + σηu,ξu) · u| ≥ κξ2 , (22)

7 For example, h(3)[u0]3 = −h(3)[uπ ]3.
8 Notice that 2κ/M = β/(M(3 + 2

√
2)) < 1, so that c < 1.

123



2160 L. Chierchia et al.

where we have denoted by V 1
u the 1-dimensional space generated by u:

V 1
u := {tu∣∣t ∈ R} .

Proof The equality in (22) follows from representation (5) with k = 1 and observing that
{u′ ∈ V 1

u : ‖u′‖ = 1} = {±u}.
Since h̄ is the third-order Taylor polynomial of h at I , for σ = ±1, it is:

F̄V 1
u
(η) = |PV 1

u
h̄(I + σηu)| =

∣∣∣σηPV 1
u
h′′(I )u + η2

2
PV 1

u
h(3)[u]2

∣∣∣
so that

F̄V 1
u
(η) ≥

∣∣∣aη − b

2
η2

∣∣∣ (23)

having set a := ‖PV 1
u
h′′(I )u‖ and b := ‖PV 1

u
h(3)[u]2‖. Note that, by (11), (4) and the

definition of M , it is

β ≤ max{a, b} ≤ M . (24)

We consider various cases.

a ≥ β . (a)

Taking ηu,ξ = ξ :

F̄V 1
u
(ηu,ξ )

(23)≥ aξ − b

2
ξ2

(a),(24)≥ βξ − M

2
ξ2 ≥ β

2
ξ > κξ2

where in the last two inequalities we used, respectively,

ξ ≤ γ := β/M ,
β

2κ
(20)= (3 + 2

√
2) > 1 .

Next case is:

a = 0 (b)

In view of (24), this implies b ≥ β. Then, taking ηu,ξ = ξ :

F̄V 1
u
(ηu,ξ ) = ξ2

2
b ≥ ξ2

2
β

(20)= (3 + 2
√
2)κξ2 > κξ2 .

We are left with the case:

0 < a < β . (c)

Note that, again because of (24),

0 < a < β
(24)≤ b ≤ M . (25)

Let α := √
2κ/b and observe that

c =
√
2κ

M
≤ α ≤

√
2κ

β

(20)= 1√
1 + √

2
. (26)
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We then have three subcases:

αξ >
a

b
(c1)

In this case, we choose

ηu,ξ := a + √
a2 + 2κbξ2

b
= a

b
+

√(a
b

)2 + α2ξ2 (27)

so that
∣∣aηu,ξ − b

2
η2u,ξ

∣∣ = bηu,ξ

∣∣a
b

− ηu,ξ

2

∣∣ = b

2
α2ξ2 = κξ2 ,

showing, by (23), that (22) is satisfied. Furthermore, by the hypothesis a/b < αξ2, (26) and
the definition of κ in (20), one finds

cξ
(26)≤ αξ

(27)≤ ηu,ξ

(c1)
< αξ(1 + √

2)
(26)≤ ξ ,

proving (21).
Next, we consider the case

ξ ≥ a

b
≥ αξ (c1)

and choose ηu,ξ := a/b. We then find

∣∣aηu,ξ − b

2
η2u,ξ

∣∣ = b

2

(a
b

)2 ≥ b

2
α2ξ2 = κξ2 ,

showing, again by (23), that (22) is satisfied. Inequalities (21) follow immediately by the
hypothesis and the fact that c ≤ α.

The final case is
a

b
> ξ . (c3)

We choose again ηu,ξ = ξ , so that:

∣∣aξ − b

2
ξ2

∣∣ ≥ b
(a
b
ξ − ξ2

2

)
>

b

2
ξ2

(25)≥ β

2
ξ2

(26)
> κξ2 .

��

4 Proof of the Theorem

First we prove steepness for the third-order polynomial truncation of h.
For k = 1, steepness for the third-order polynomial truncation of h follows fromLemma 2.

We therefore assume 2 ≤ k ≤ n−1, fix I ∈ D, fix V k a linear space of dimension k in h(I )⊥
and let, as above, h̄ denote the third-order Taylor polynomial of h at I . Let {ē1, . . . , ēk} ⊆ V k

be an orthonormal basis of eigenvectors of PVk h′′(I ) with corresponding eigenvalues λk so
that |λ1| ≤ · · · ≤ |λk |. Then, by Lemma 1 and (12) one has

β ≤ |λ j | , ∀ j ≥ 2 ; |λ j | ≤ M2 ≤ M ,∀ j . (28)

Fix 0 < ξ ≤ ξk and a unit vector u ∈ V k and define

η̄ := ηē1,ξ (29)
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with ηē1,ξ as in Lemma 2. Recall that, by (21), it is

cξ ≤ η̄ ≤ ξ . (30)

We claim that

F̄V k (η̄) = min
u∈V k
‖u‖=1

∥∥PVk h̄′(I + η̄u)
∥∥ ≥ κ

2
ξ2 , ∀0 < ξ ≤ ξk . (31)

Estimate (31) says that steepness on V k can be controlled in terms of steepness along the
line in V k corresponding to the “degenerate” eigenvector ē1 of PVk h′′(I ), where degeneracy
means here that |λ1| may be smaller in absolute value than β (and even vanish).
To prove the claim, we let

u =
k∑
j=1

x j ē j ,

k∑
j=1

x2j = 1 ,

be the expansion of u in the orthonormal basis {ē j } and fix

ν := k
M

β
= k

γ
. (32)

Notice that

2 ≤ k ≤ ν , ξk
(15)≤ 2θ

3k

1

ν
<

1

ν
. (33)

We distinguish two cases: first, assume that:

k∑
j=2

x2j ≥ ν2η̄2 . (A)

In this case, recalling (28), we have

k∑
j=2

|λ j ||x j | ≥
√√√√

k∑
j=2

|λ j |2|x j |2 ≥ β

√√√√
k∑
j=2

x2j
(A)≥ βνη̄ . (34)

Then, observe that, for all 1 ≤ j ≤ k,

‖PVk h̄′(I + η̄u)‖ ≥ ‖PVk h̄′(I + η̄u) · ē j‖ ≥ η̄‖PVk h(2)(I )u · ē j‖ − η̄2

2
M

= η̄|λ j ||x j | − η̄2

2
M ,

so that, summing over 2 ≤ j ≤ k, one gets

‖PVk h̄′(I + η̄u)‖ ≥ η̄

k

k∑
2=1

|λ j ||x j | − η̄2

2
M

(34)≥ η̄2
(βν

k
− M

2

)
(32)= η̄2

M

2
(30)≥ c2

M

2
ξ2 = κξ2 >

κ

2
ξ2 ,

proving the claim (31) in case (A).
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Assume now that

k∑
j=2

x2j < ν2η̄2 . (B)

Notice that by (33) νη̄ ≤ νξk < 1 so that
k∑
j=2

x2j < 1 and, hence, x1 �= 0.

If
k∑
j=2

x2j = 0, i.e. x1 = ±1, the claim follows directly from Lemma 2 in view of the

choice of η̄ in (29).
Therefore, we assume 0 < |x1| < 1. Assumption (B) implies that |x1| is close to 1:

1 − |x1| < 1 − x21 =
k∑
j=2

x2j
(B)
< ν2η̄2 . (35)

Let σ = sign(x1) so that

x1 − σ = σ(|x1| − 1|) . (36)

Then, recalling (29), by Lemma 2, one has

|h̄′(I + σ η̄ē1) · ē1| ≥ κξ2 . (37)

We want to approximate h̄′(I + η̄u) · ē1 with h̄′(I + σ η̄ē1) · ē1. We do it in two steps.
First, expanding u in the eigen-base {ē j } and cancelling out the equal terms, we find:

h̄′(I + η̄u) · ē1 − h̄′(I + η̄x1ē1) · ē1
= η̄h′′(I )u · ē1 − η̄x1h

′′(I )ē1 · ē1 + η̄2

2
h(3)(I )[ē1, u, u] − η̄2

2
x21h

(3)(I )[ē1]3

= η̄2

2
h(3)(I )[ē1, u, u] − η̄2

2
x21h

(3)(I )[ē1]3

= η̄2

2

∑
(i, j)�=(1,1)

xi x j h
(3)(I )[ē1, ēi , ē j ]

= η̄2x1

k∑
j=2

x j h
(3)(I )[ē1, ē1, ē j ] + η̄2

2

k∑
i, j=2

xi x j h
(3)(I )[ē1, ēi , ē j ].

Thus, by Cauchy–Schwarz inequality, (B), (4), (32) and (33),

|h̄′(I + η̄u) · ē1 − h̄′(I + η̄x1ē1) · ē1| ≤ √
k − 1η̄3νM + k − 1

2
η̄4ν2M

≤ ξ2 · ξk

(√
k − 1

k

γ 2 + k − 1

2
ξk

k2

γ 2

)
β

≤ ξ2
(
ξk 2

k2

γ 2

)

≤ ξ2θβ = κ

4
ξ2 . (38)
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Next, by (36), (35), (28) and (33), we find:

|h̄′(I + η̄x1ē1) · ē1 − h̄′(I + η̄σ ē1) · ē1|
=

∣∣∣η̄λ1σ(1 − |x1|) + η̄2

2
(x21 − 1)h(3)(I )[ē1]3

∣∣∣

≤ η̄3ν2
(
M + ξk

2
M

)

≤ ξ2 · ξk
k2

γ 2

(β

γ
+ ξk

2

β

γ

)

≤ ξ2θβ = κ

4
ξ2 . (39)

Thus, for ξ ≤ ξk , by (38) and (39), one gets

‖PVk h̄′(I + η̄u)‖ ≥ |h̄′(I + η̄u) · ē1|
≥ |h̄′(I + σ η̄ē1) · ē1| − |h̄′(I + η̄x1ē1) · ē1 − h̄′(I + η̄σ ē1) · ē1|

− |h̄′(I + η̄u) · ē1 − h̄′(I + η̄x1ē1) · ē1|
≥ κ

2
ξ2 . (40)

proving claim (31) also in case (B).
Finally, from (19), (40) and the definition of ξk , Theorem follows. ��
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