# On steepness of 3-jet non-degenerate functions 

L. Chierchia ${ }^{1}$ (D) M. A. Faraggiana ${ }^{2} \cdot$ M. Guzzo $^{3}$

Received: 8 August 2018 / Accepted: 13 April 2019 / Published online: 29 April 2019
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019


#### Abstract

We consider geometric properties of 3-jet non-degenerate functions in connection with Nekhoroshev theory. In particular, after showing that 3-jet non-degenerate functions are "almost quasi-convex", we prove that they are steep and compute explicitly the steepness indices (which do not exceed 2 ) and the steepness coefficients.

Keywords Steepness • Steep functions • 3-Jet non-degeneracy • Nekhoroshev's theorem • Hamiltonian systems • Steepness indices • Exponential stability

Mathematics Subject Classification 34D20 • 37J40 • 70H08


## Contents

1 Introduction ..... 2152
2 Main result ..... 2155
3 Two lemmas ..... 2159
4 Proof of the Theorem ..... 2161
References ..... 2164

[^0][^1]
## 1 Introduction

In 1977-1979, N.N. Nekhoroshev published a fundamental theorem [17-20] about the "exponential stability" of nearly integrable, real-analytic Hamiltonian systems with Hamiltonian given, in standard action-angle coordinates, by

$$
\begin{equation*}
H(I, \varphi)=h(I)+\varepsilon f(I, \varphi), \quad(I, \varphi) \in U \times \mathbb{T}^{n} \tag{1}
\end{equation*}
$$

where $U \subseteq \mathbb{R}^{n}$ is an open region, $\mathbb{T}^{n}=\mathbb{R}^{n} /(2 \pi \mathbb{Z})^{n}$ is the standard flat $n$-dimensional torus and $\varepsilon$ is a small parameter. The integrable limit $h(I)$ is assumed to satisfy a geometric condition, called by Nekhoroshev "steepness", which can be formulated as follows (compare, also, Definition 2, § 2).

A function $f \in C^{1}(U)$, with $U$ a bounded region (i.e. open, bounded and connected set) of $\mathbb{R}^{n}$, is said to be steep in $U$ with steepness indices $\delta_{1}, \ldots, \delta_{n-1} \geq 1$ and (strictly positive) steepness coefficients $C_{1}, \ldots, C_{n-1}, \xi_{1}, \ldots, \xi_{n-1}$, if its gradient $h^{\prime}(I)$ satisfies the following estimates: $\inf _{I \in U}\left\|h^{\prime}(I)\right\|>0$ and, for any $I \in U$, for any $k$-dimensional linear subspace $V^{k} \subseteq \mathbb{R}^{n}$ orthogonal to $h^{\prime}(I)$ with $1 \leq k \leq n-1$, one has ${ }^{1}$

$$
\max _{0 \leq \eta \leq \xi} \min _{u \in V^{k}:\|u\|=\eta}\left\|P_{V^{k}} h^{\prime}(I+u)\right\| \geq C_{k} \xi^{\delta_{k}} \quad \forall \xi \in\left(0, \xi_{k}\right],
$$

where $P_{V^{k}}$ denotes the orthogonal projection over $V^{k}$.
Nekhoroshev's original exponential stability statement is, then, the following:
Let $H$ in (1) be real-analytic with $h$ steep. Then, there exist positive constants $a, b$ and $\varepsilon_{0}$ such that for any $0 \leq \varepsilon<\varepsilon_{0}$ the solution ( $I_{t}, \varphi_{t}$ ) of the (standard) Hamilton equations for $H(I, \varphi)$ with initial data $\left(I_{0}, \varphi_{0}\right)$ satisfies

$$
\left|I_{t}-I_{0}\right| \leq \varepsilon^{b}
$$

for any time t satisfying

$$
|t| \leq \frac{1}{\varepsilon} \exp \left(\frac{1}{\varepsilon^{a}}\right)
$$

The values of the parameters $a, b, \epsilon_{0}$ in the original statements of [17-20], as well as in the recent improvement [6,7], depend on the steepness indices and coefficients. Precisely $a, b$ depend only on the values of the steepness indices and the number of the degrees of freedom, while $\epsilon_{0}$ depends also on the values of the steepness coefficients. In [7], the explicit dependence of $a, b, \epsilon_{0}$ on the steepness indices and parameters, as well as on the parameters depending on the perturbation $f$, is given, and the estimate of the stability exponent:

$$
a=\frac{1}{2 n \delta_{1} \cdot \delta_{n-2}}
$$

has been conjectured to be optimal.
Nekhoroshev proved in $[16,19,20]$ that steepness is a generic property of $C^{\infty}$ functions. Later, Niederman [21] proved that for real-analytic $h$, steepness is equivalent to require that $h$ has no critical points and that its restriction to any affine subspace of dimension $1 \leq k \leq n-1$ admits only isolated critical points. However, neither from Nekhoroshev's genericity techniques nor from Niederman's theorem there follow directly explicit conditions to determine whether a given function is steep or not. Indeed, very little is known about the evaluation of steepness parameters (index and coefficients) for general classes of functions,

[^2]evaluation which is necessary in order to give explicit exponential estimates for perturbations of a specific steep Hamiltonian.

Essentially, the only general class of steep functions, which is well understood, is that of "quasi-convex" functions. Quasi-convexity is the simplest instance of steepness, and the quasi-convex case has been used for decades to improve the theoretical stability bounds of Nekhoroshev's theorem, especially the stability exponent $a$. In the quasi-convex case, the proof of the theorem has been significantly simplified (compare [2,3,5]), and furthermore, the stability exponent has been improved up to $a=(2 n)^{-1}$ (compare [11,12,24]; see, also, [4] for exponents which are intermediate between $a=(2 n)^{-1}$ and $\left.a=(2(n-1))^{-1}\right)$. Such exponents in the convex case have been proved to be nearly optimal [29].

Beyond the quasi-convex case, Nekhoroshev provided other sufficient conditions to recognize if a given $C^{k}$ function is steep in a neighbourhood of a point $I$. Such conditions are formulated in terms of the jet of partial derivatives of $h$ (compare [14-20]).

From this point of view, quasi-convex functions are identified as 2-jet non-degenerate functions. Precisely, in $[17,18]$, it is proved that if $\nabla h(I) \neq 0$, and the jet of order 2 of the function $h$ at $I$ is non-degenerate, i.e. if the system:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \frac{\partial h}{\partial I_{i}}(I) u_{i}=0  \tag{2}\\
\sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial I_{i} \partial I_{j}}(I) u_{i} u_{j}=0
\end{array}\right.
$$

has a unique solution $u=(0, \ldots, 0)$ in $\mathbb{R}^{n}$, then $h$ is steep in a neighbourhood of $I$ with steepness indices $\delta_{1}=\cdots=\delta_{n}=1$; the steepness coefficients follow from standard convexity estimates, since the restriction to any linear space $V^{k}$ orthogonal to $\nabla h(I)$ of a quasi-convex function $h\left(\mathrm{or}^{2}-h\right.$ ) is convex (compare, also, Remark (v), Sect. 2).

Therefore, one is left with the problem of computing steepness parameters of functions whose 2 -jet is degenerate.

In $[17,18]$, Nekhoroshev pointed out also the steepness of functions $h$ such that $\nabla h(I) \neq 0$ and with jet of order 3 at $I$ is non-degenerate, meaning that the system

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \frac{\partial h}{\partial I_{i}}(I) u_{i}=0  \tag{3}\\
\sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial I_{i} \partial I_{j}}(I) u_{i} u_{j}=0 \\
\sum_{i, j, k=1}^{n} \frac{\partial^{3} h}{\partial I_{i} \partial I_{j} \partial I_{k}}(I) u_{i} u_{j} u_{k}=0
\end{array}\right.
$$

has a unique solution $u=(0, \ldots, 0)$ in $\mathbb{R}^{n}$.
Actually, steepness of 3-jet non-degenerate functions is not proved in [17,18], but rather it is obtained as a consequence of a former result of Nekhoroshev [16,19,20] about the steepness of functions whose jets of order $j$ are outside the closure of the set $P_{j}$ of jets which satisfy

[^3]certain algebraic conditions ${ }^{3}$. From such papers, it follows that the steepness indices of 3 -jet non-degenerate functions are bounded from above with functions depending on $n$, and no computations of the steepness coefficients are provided.

Nevertheless, the 3-jet condition (being the only explicit general steepness condition apart from quasi-convexity) has gained quite a relevance in Nekhoroshev theory. Indeed, it enlarged significantly the range of applications of Nekhoroshev's Theorem, especially to celestial mechanics ( $[1,10,13,22,23,25,27]$, see also the review paper [9]). Furthermore, numerical studies revealed the difference of the asymptotic stability between convex functions and 3-jet non-degenerate functions (compare $[8,28]$ ).

On the other hand, 2-jet and 3-jet non-degeneracies, presently, appear to be the only algebraic sufficient conditions for steepness which are formulated with equations independent on the number $n$ of the degrees of freedom. For example, there are functions whose 4-jet is non-degenerate, in the sense that the system

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} \frac{\partial h}{\partial I_{i}}(I) u_{i}=0 \\
\sum_{i, j=1}^{n} \frac{\partial^{2} h}{\partial I_{i} \partial I_{j}}(I) u_{i} u_{j}=0 \\
\sum_{i, j, k=1}^{n} \frac{\partial^{3} h}{\partial I_{i} \partial I_{j} \partial I_{k}}(I) u_{i} u_{j} u_{k}=0 \\
\sum_{i, j, k, \ell=1}^{n} \frac{\partial^{4} h}{\partial I_{i} \partial I_{j} \partial I_{k} \partial I_{\ell}}(I) u_{i} u_{j} u_{k} u_{\ell}=0
\end{array}\right.
$$

has only the trivial solution $u=(0, \ldots, 0)$, but are not steep (see Example 1, [26])). Algebraic conditions for the steepness of functions of $n=3$ and $n=4$ variables which are 3 -jet degenerate have been formulated in [26]; no general conditions for the steepness of 3 -jet degenerate functions formulated using the 4-jet are known up to now. In fact, the sufficient jet conditions provided by Nekhoroshev in [14-16,19,20] are formulated in terms of the closure $C_{j}$ of a set whose definition depends on the number $n$ of the degrees of freedom; explicit equations for $C_{j}(n)$, valid for arbitrary $n$, are not known.

In this paper, we investigate further 3-jet non-degenerate functions in connection with their steepness properties.

A key property of such functions is a "spectral non-degeneracy" of their Hessian matrix. More precisely, if $h$ is 3-jet non-degenerate and $V^{k}$ is a linear subspace of $h^{\prime}(I)^{\perp}$, then the symmetric operator $P_{V^{k}} h^{\prime \prime}(I): V^{k} \rightarrow V^{k}$ is strictly definite apart, possibly, from one single direction: in other words, there may be at most one small (or vanishing) eigenvalue; the precise statement is the content of Lemma 1 in Sect. 3. In this sense, one might say that 3-jet non-degenerate functions are "almost quasi-convex".

This observation allows to concentrate the study of steepness on lines (one-dimensional vector spaces) in $h^{\prime}(I)^{\perp}$ : this quantitative analysis is the content of Lemma 2 of Sect. 3.

Putting together these two facts, one can finally prove (Sect. 4) the steepness of 3-jet non-degenerate functions and compute explicitly the steepness indices, which do not exceed 2 , and the steepness coefficients.

[^4]
## 2 Main result

We start with some standard notation:

- (Tensors of derivatives) Given $G \subseteq \mathbb{R}^{n}$ open, $p \in \mathbb{N}$ and a $C^{p}$ function $h: G \rightarrow \mathbb{R}$, $D^{p} h(I)=h^{(p)}(I)$ denotes the symmetric $p$-tensor at $I \in G$ of the $p$-derivatives acting on $^{4}\left(u_{1}, \ldots, u_{p}\right) \in\left(\mathbb{R}^{n}\right)^{p}$ as

$$
D^{p} h(I)\left[u_{1}, \ldots, u_{p}\right]:=\sum_{1 \leq i_{1}, \ldots, i_{p} \leq n} \frac{\partial^{p} h(I)}{\partial I_{i_{1}} \cdots \partial I_{i_{p}}} u_{1 i_{1}} \cdots u_{p i_{p}} .
$$

In particular, for $p=1, h^{(1)}$ is (identified with) the gradient

$$
h^{\prime}:=\nabla h:=\left(\frac{\partial h}{\partial I_{1}}, \ldots, \frac{\partial h}{\partial I_{n}}\right)
$$

and, for $p=2, h^{(2)}$ is (identified with) the Hessian matrix

$$
h^{\prime \prime}:=\left(\frac{\partial^{2} h}{\partial I_{i} \partial I_{j}}\right)_{i, j=1, \ldots, n} .
$$

For $n \geq p \geq 2, D^{p} h(I)\left[u_{2}, \ldots, u_{p}\right]$ denotes the vector in $\mathbb{R}^{n}$ with $i$ th-component given by:

$$
e_{i} \cdot D^{p} h(I)\left[u_{2}, \ldots, u_{p}\right]=D^{p} h(I)\left[e_{i}, u_{2}, \ldots, u_{p}\right],
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard orthonormal bases of $\mathbb{R}^{n}\left(e_{i j}=\delta_{i j}\right)$ and $u \cdot v=$ $\sum_{i=1}^{n} u_{i} v_{i}$ the standard inner product in $\mathbb{R}^{n}$.

Analogously, for $n \geq p \geq 3, D^{p} h(I)\left[u_{3}, \ldots, u_{p}\right]$ denotes the $(n \times n)$-matrix with entries given by:

$$
D^{p} h(I)\left[u_{3}, \ldots, u_{p}\right] e_{i} \cdot e_{j}=D^{p} h(I)\left[e_{i}, e_{j}, u_{2}, \ldots, u_{p}\right] ;
$$

and so on for higher-order tensors (which, however, we shall not need). Finally, for $n \geq p \geq k$ we shall also let

$$
D^{p} h(I)[u]^{k}:=D^{p} h(I)[\underbrace{u, \ldots, u}_{k \text { times }}] .
$$

- (Norms) In $\mathbb{R}^{n},\|x\|=\sqrt{x \cdot x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ denotes Euclidean norm.

The norm of tensors of derivatives is the standard "functional norm":

$$
\begin{aligned}
& \left\|D^{p} h(I)\right\|:=\sup _{\substack{u_{j}:\left\|u_{j}\right\|=1 \\
j=1, \ldots, p}}\left|D^{p} h(I)\left[u_{1}, \ldots, u_{p}\right]\right| \\
& \left\|D^{p} h\right\|_{D}:=\sup _{D}\left\|D^{p} h(I)\right\| .
\end{aligned}
$$

[^5]From Cauchy-Schwarz inequality, there follows that

$$
\begin{equation*}
\left\|D^{p} h\right\|_{D} \leq \sqrt{\sum_{1 \leq i_{1}, \ldots, i_{p} \leq n} \sup _{I \in D}\left|\frac{\partial^{p} h(I)}{\partial I_{i_{1}} \cdots \partial I_{i_{p}}}\right|^{2}}=: M_{p} \tag{4}
\end{equation*}
$$

- (Projections) In what follows, $V^{k}$ will denote a $k$-dimensional linear proper subspace of $\mathbb{R}^{n}, 1 \leq k \leq n-1$, and $P_{V^{k}}: \mathbb{R}^{n} \rightarrow V^{k}$ the orthogonal projection on $V^{k}$ : if $\left\{\bar{e}_{1}, \ldots, \bar{e}_{k}\right\}$ is an orthonormal basis of $V^{k}$, then

$$
\begin{equation*}
P_{V^{k}} v=\sum_{j=1}^{k}\left(v \cdot \bar{e}_{j}\right) \bar{e}_{j}, \quad\left\|P_{V^{k}} v\right\|^{2}=\sum_{j=1}^{k}\left|v \cdot \bar{e}_{j}\right|^{2} . \tag{5}
\end{equation*}
$$

Recall that projections $P$ are symmetric operators with $\|P\| \leq 1$ and such that $P^{2}=P$.
Below, linear spaces $V^{k}$ will be always subspaces of the orthogonal complement of $h^{\prime}(I)$,

$$
h^{\prime}(I)^{\perp}:=\left\{u \in \mathbb{R}^{n} \mid u \cdot h^{\prime}(I)=0\right\},
$$

with $I$ regular point for $h$ (i.e. $h^{\prime}(I) \neq 0$ ).
We, now, recall the general notion of "jet non-degeneracy":
Definition 1 Let $p \in \mathbb{N}$ and $G \subseteq \mathbb{R}^{n}$ be open. A $C^{p}$ function $h: G \rightarrow \mathbb{R}$ is said to be $p$-jet non-degenerate at $I \in G$ if

$$
\begin{equation*}
D^{k} h(I)[u]^{k}=0, \quad \forall 1 \leq k \leq p \quad \Longrightarrow \quad u=0 \tag{6}
\end{equation*}
$$

The function $h$ is said to be $p$-jet non-degenerate on $D \subseteq G$ if $h$ is $p$-jet non-degenerate at every $I \in D$.

Remarks (i) A 1-jet non-degenerate function at $I$ is simply a function regular at $I$, i.e. such that $h^{\prime}(I) \neq 0$.

A 2-jet non-degenerate function with nonvanishing gradient is, by definition, a quasiconvex function (at $I$ ); in other words, a quasi-convex function is a function $h$ which is strictly convex (or concave) on $h^{\prime}(I)^{\perp}, I$ being a regular point for $h$.
(ii) From (6), it follows immediately that if $h$ is 2 -jet non-degenerate with nonvanishing gradient (quasi-convex) on a compact set $D \subseteq G$ then,

$$
M_{2} \stackrel{(4)}{\geq}\left\|D^{2} h\right\|_{D} \geq \min _{I \in D} \min _{\substack{u \in h^{\prime}(I)^{\perp} \\\|u\|=1}}\left|h^{(2)}(I)[u]^{2}\right|=: \beta>0 .
$$

Analogously, if $h$ is 3 -jet non-degenerate at $I$ with nonvanishing gradient, then

$$
\begin{equation*}
M_{3} \stackrel{(4)}{\geq}\left\|D^{3} h\right\|_{D} \geq \min _{\substack{u \in h^{\prime}(I)^{\perp} \\\|u\|=1}} \max \left\{\left|h^{(2)}(I)[u]^{2}\right|,\left|h^{(3)}(I)[u]^{3}\right|\right\}:=\beta(I)>0, \tag{7}
\end{equation*}
$$

and, if $h$ is 3-jet non-degenerate on a compact set $D \subseteq G$, then ${ }^{5}$

$$
\begin{equation*}
M_{3} \geq \min _{\substack{I \in D,\|u\|=1 \\ u \in h^{\prime}(I)^{\perp}}} \max \left\{\left|h^{(2)}(I)[u]^{2}\right|,\left|h^{(3)}(I)[u]^{3}\right|\right\}:=\beta>0, \tag{8}
\end{equation*}
$$

(obviously, $\beta(I) \geq \beta$ ).
(iii) For every $v \in \mathbb{R}^{n}$ and for every $u \in V^{k}$ with $\|u\|=1$, one has

$$
\begin{equation*}
\left\|P_{V^{k}} v\right\| \geq\left|P_{V^{k}} v \cdot u\right|=\left|v \cdot P_{V^{k}} u\right|=|v \cdot u| . \tag{9}
\end{equation*}
$$

Applying these inequalities with $v=h^{\prime \prime}(I) u$, one sees that if $h$ is 2-jet non-degenerate on $D$ it follows that, $\forall I \in D, \forall V^{k} \subseteq h^{\prime}(I)^{\perp}$,

$$
\begin{equation*}
\left\|P_{V^{k}} h^{\prime \prime}(I) u\right\| \geq \beta, \quad \forall u \in V^{k},\|u\|=1 . \tag{10}
\end{equation*}
$$

Analogously, applying (9) with $v=h^{(2)}(I) u$ and $v=h^{(3)}(I)[u]^{2}$ one sees that if $h$ is 3-jet non-degenerate on $D$ it follows that, $\forall I \in D, \forall V^{k} \subseteq h^{\prime}(I)^{\perp}$,

$$
\begin{equation*}
\max \left\{\left\|P_{V^{k}} h^{\prime \prime}(I) u\right\|,\left\|P_{V^{k}} h^{(3)}(I)[u]^{2}\right\|\right\} \geq \beta, \quad \forall u \in V^{k},\|u\|=1 \tag{11}
\end{equation*}
$$

Notice also that the eigenvalues of $P_{V^{k}} h^{\prime \prime}(I)$ have absolute value bounded by $M_{2}$ : indeed, if $P_{V^{k}} h^{\prime \prime}(I) \bar{e}=\lambda \bar{e}$ with $\|\bar{e}\|=1$, then

$$
\begin{equation*}
|\lambda|=\|\lambda \bar{e}\|=\left\|P_{V^{k}} h^{\prime \prime}(I) \bar{e}\right\| \leq M_{2} . \tag{12}
\end{equation*}
$$

Let us now turn to the definition of steepness as originally given by N.N. Nekhoroshev:
Definition 2 (Nekhoroshev [17,18]) Let $n \geq 2$ be an integer and $G \subseteq \mathbb{R}^{n}$ an open set. A $C^{1}$ function $h: G \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be steep at a point $I \in G$ if $I$ is a regular point for $h$ (i.e. $h^{\prime}(I) \neq 0$ ) and, for each $1 \leq k \leq n-1$, there exist positive constants $C_{k}, \xi_{k}, \delta_{k}$ such that the inequality

$$
\begin{equation*}
\max _{0 \leq \eta \leq \xi} \min _{\substack{u \in V^{k} \\\|u\|=1}}\left\|P_{V^{k}} h^{\prime}(I+\eta u)\right\| \geq C_{k} \xi^{\delta_{k}}, \forall 0<\xi \leq \xi_{k} \tag{13}
\end{equation*}
$$

holds for every linear subspace $V^{k} \subseteq h^{\prime}(I)^{\perp}$.
The numbers $C_{k}$ and $\xi_{k}$ are called steepness coefficients, while $\delta_{k}$ is called the steepness index of order $k$.

A $C^{1}$ function $h$ is said to be steep on $D \subseteq G$ if there exist positive constants $C_{k}, \xi_{k}, \delta_{k}$ such that, for every $I \in D, h$ is steep at $I$ with coefficients $C_{k}, \xi_{k}$ and indices $\delta_{k}$.

Let us make a few more remarks.
(iv) Definition 2 is well posed since the function (defined for $\eta$ small enough)

$$
\begin{equation*}
\eta \rightarrow F_{V^{k}}(\eta):=\min _{\substack{u \in V^{k} \\\|u\|=1}}\left\|P_{V^{k}} h^{\prime}(I+\eta u)\right\| \tag{14}
\end{equation*}
$$

is upper semi-continuous, and hence, it achieves maximum on compact sets (note, however, that $\left.F_{V^{k}}(0)=0\right)$.

[^6](v) Quasi-convex functions are the steepest functions: they are steep with lowest possible indices, namely $\delta_{k}=1$ for all $k$.

Let us recall the elementary argument: by (10) and by Taylor's formula, for all $u \in V^{k} \cap G$ with $\|u\|=1, V^{k}$ linear subspace of $h^{\prime}(I)^{\perp}$, and for small enough $\xi>0$, one has:

$$
\begin{aligned}
\left\|P_{V^{k}} h^{\prime}(I+\xi u)\right\| & =\left\|P_{V^{k}} h^{\prime}(I)+\xi P_{V^{k}} D^{2} h(I) u+o(\xi)\right\| \\
& =\left\|\xi P_{V^{k}} h^{\prime \prime}(I) u+o(\xi)\right\| \\
& \geq \xi\left(\left\|P_{V^{k}} h^{\prime \prime}(I) u\right\|-o(1)\right) \stackrel{(10)}{\geq} \frac{\beta}{2} \xi,
\end{aligned}
$$

and steepness at $I$ follows with $\delta_{k}=1$ for all $k$ (and $C_{k}=\beta / 2$ ). The argument extends uniformly on compact sets.
Notice also that this proves a stronger property than steepness since it has been enough to consider only $\eta=\xi$ in (13) (rather than all $0<\eta \leq \xi$ ).

We are ready to formulate the main result:
Theorem Let $D$ be a compact subset of an open set $G \subseteq \mathbb{R}^{n}$ such that $B_{r}(I) \subseteq G$ for all $I \in D$. Let $h: G \rightarrow \mathbb{R}$ be a $C^{4}$ function and assume that $h^{\prime} \neq 0$ on $D$ and that $h$ is 3 -jet non-degenerate on $D$. Let $\beta$ as in (8), $M_{p}$ as in (4) and define

$$
M:=\max \left\{M_{2}, M_{3}, M_{4}\right\}, \quad \gamma:=\frac{\beta}{M}, \quad \theta:=\frac{1}{8(3+2 \sqrt{2})}
$$

and, for $1 \leq k \leq n-1$,

$$
\begin{equation*}
C_{k}=C:=\theta \beta, \quad \xi_{k}:=\min \left\{r, \frac{\theta}{2 k^{2}} \gamma^{3}\right\} . \tag{15}
\end{equation*}
$$

Then, $h$ is steep on $D$ with coefficients $C_{k}, \xi_{k}$ and indices $\delta_{k} \leq 2$.
Remarks (vi) From the definitions given it follows immediately that

$$
\gamma \leq 1, \quad \xi_{k} \leq \frac{1}{16(3+2 \sqrt{2})}
$$

(vii) We shall first prove steepness for the third-order truncation of the Taylor expansion of $h$ and then extend it to the full function: this is not surprising, as the main hypothesis regards the 3-jet of $h$, which may be identified with the third-order Taylor polynomial of $h$. For this purpose, let us denote $\bar{h}$ the third-order Taylor polynomial of $h \mathrm{at}^{6} I \in D$ :

$$
\bar{h}\left(I^{\prime}\right):=\sum_{j=0}^{3} \frac{1}{j!} D^{j} h(I)\left[I^{\prime}-I\right]^{j}
$$

so that by Taylor's formula with integral remainder it is

$$
\begin{align*}
& h^{\prime}(I+u)=\bar{h}^{\prime}(I+u)+R(u ; I),  \tag{16}\\
& R(u ; I):=\frac{1}{2} \int_{0}^{1}(1-t)^{2} h^{(4)}(I+t u)[u]^{3} d t, \\
& \|R(u ; I)\| \leq \frac{M_{4}}{6}\|u\|^{3}, \quad \forall I \in D,\|u\| \leq r . \tag{17}
\end{align*}
$$

${ }^{6} D^{0} h:=h$.

We shall also define the truncated "Nekhoroshev's function", for given $I \in D$ and $V^{k} \subseteq h(I)^{\perp}$,

$$
\begin{equation*}
\bar{F}_{V^{k}}(\eta):=\min _{\substack{u \in V^{k} \\\|u\|=1}}\left\|P_{V^{k}} \bar{h}^{\prime}(I+\eta u)\right\| . \tag{18}
\end{equation*}
$$

Thus, from definitions (14), (18) and (16), one has

$$
\begin{equation*}
F_{V^{k}}(\eta) \geq \bar{F}_{V^{k}}(\eta)-\frac{M_{4}}{6} \eta^{3} \tag{19}
\end{equation*}
$$

(viii) Some of the steepness indices $\delta_{k}$ of 3 -jet non-degenerate functions can be equal to 1 ; this happens (trivially) for quasi-convex functions where $\delta_{k}=1$ for all $k$. Also, $\delta_{k}=1$ for some $k$ if the restriction of the Hessian matrix of $h$ to any $k$-dimensional linear space orthogonal to $h^{\prime}(I)$ is non-degenerate $[1,8]$.

## 3 Two lemmas

In this section, we show two properties of 3-jet non-degenerate functions: the first is a simple but crucial spectral non-degeneracy property, namely that the restriction of the Hessian of a 3-jet non-degenerate function on a linear space orthogonal to its gradient has at most one "small" eigenvalue: 3-jet non-degenerate functions are "almost quasi-convex".

The second property is the direct, explicit check of steepness of 3-jet non-degenerate functions on lines (one-dimensional linear subspaces).

These two properties together lead to a simple proof of steepness (given in Sect. 4).
Lemma 1 (Almost quasi-convexity) If $h$ is 3-jet non-degenerate at $I$, and $V^{k} \subseteq h^{\prime}(I)^{\perp}$ with $k \geq 2$, then the spectrum of $P_{V^{k}} h^{\prime \prime}(I): V^{k} \rightarrow V^{k}$ has at most one eigenvalue in absolute value strictly smaller than $\beta(I)$, where $\beta(I)$ is defined in (7).
Proof Assume, by contradiction, that the conclusion is false. Then, there is an orthonormal basis of eigenvectors $\left\{\bar{e}_{1}, \ldots, \bar{e}_{k}\right\} \subseteq V^{k}$ of $P_{V^{k}} h^{\prime \prime}(I)$ with corresponding eigenvalues $\lambda_{k}$ so that $\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{k}\right|$ and $\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right|<\beta(I)$. For $t \in[0,2 \pi]$, consider the unitary vectors in $V^{k}$ given by $u_{t}:=(\cos t) \bar{e}_{1}+(\sin t) \bar{e}_{2}$. Then,

$$
\left|h^{\prime \prime}(I) u_{t} \cdot u_{t}\right|=\left|P_{V^{k}} h^{\prime \prime}(I) u_{t} \cdot u_{t}\right|=\left|\lambda_{1} \cos ^{2} t+\lambda_{2} \sin ^{2} t\right| \leq\left|\lambda_{2}\right|<\beta(I)
$$

but this implies, by 3-jet non-degeneracy and the definition of $\beta(I)$, that $\left|h^{(3)}\left[u_{t}\right]^{3}\right| \geq \beta(I)$ for any $t$, and this is not possible since the real continuous function $t \in[0,2 \pi] \rightarrow h^{(3)}\left[u_{t}\right]^{3}$ changes sign ${ }^{7}$ and hence must have a zero.
Lemma 2 (Steepness on lines) Under the assumptions of the Theorem, let $\theta_{0}:=4 \theta$

$$
\begin{equation*}
\kappa:=\theta_{0} \beta, \quad c:=\sqrt{2 \kappa / M} . \tag{20}
\end{equation*}
$$

For every $I \in D, u \in h^{\prime}(I)^{\perp}$ with $\|u\|=1$ and $0<\xi \leq \gamma$, there exists $\eta=\eta_{u, \xi}$ such that ${ }^{8}$

$$
\begin{equation*}
c \xi \leq \eta_{u, \xi} \leq \xi, \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{F}_{V_{u}^{1}}\left(\eta_{u, \xi}\right)=\min _{\sigma= \pm 1}\left|\bar{h}^{\prime}\left(I+\sigma \eta_{u, \xi} u\right) \cdot u\right| \geq \kappa \xi^{2}, \tag{22}
\end{equation*}
$$

[^7]where we have denoted by $V_{u}^{1}$ the 1-dimensional space generated by $u$ :
$$
V_{u}^{1}:=\{t u \mid t \in \mathbb{R}\} .
$$

Proof The equality in (22) follows from representation (5) with $k=1$ and observing that $\left\{u^{\prime} \in V_{u}^{1}:\left\|u^{\prime}\right\|=1\right\}=\{ \pm u\}$.

Since $\bar{h}$ is the third-order Taylor polynomial of $h$ at $I$, for $\sigma= \pm 1$, it is:

$$
\bar{F}_{V_{u}^{1}}(\eta)=\left|P_{V_{u}^{1}} \bar{h}(I+\sigma \eta u)\right|=\left|\sigma \eta P_{V_{u}^{1}} h^{\prime \prime}(I) u+\frac{\eta^{2}}{2} P_{V_{u}^{1}} h^{(3)}[u]^{2}\right|
$$

so that

$$
\begin{equation*}
\bar{F}_{V_{u}^{1}}(\eta) \geq\left|a \eta-\frac{b}{2} \eta^{2}\right| \tag{23}
\end{equation*}
$$

having set $a:=\left\|P_{V_{u}^{1}} h^{\prime \prime}(I) u\right\|$ and $b:=\left\|P_{V_{u}^{1}} h^{(3)}[u]^{2}\right\|$. Note that, by (11), (4) and the definition of $M$, it is

$$
\begin{equation*}
\beta \leq \max \{a, b\} \leq M . \tag{24}
\end{equation*}
$$

We consider various cases.

$$
\begin{equation*}
a \geq \beta \tag{a}
\end{equation*}
$$

Taking $\eta_{u, \xi}=\xi$ :

$$
\bar{F}_{V_{u}^{1}}\left(\eta_{u, \xi)} \stackrel{(23)}{\geq} a \xi-\frac{b}{2} \xi^{2} \stackrel{(a),(24)}{\geq} \beta \xi-\frac{M}{2} \xi^{2} \geq \frac{\beta}{2} \xi>\kappa \xi^{2}\right.
$$

where in the last two inequalities we used, respectively,

$$
\xi \leq \gamma:=\beta / M, \quad \frac{\beta}{2 \kappa} \stackrel{(20)}{=}(3+2 \sqrt{2})>1 .
$$

Next case is:

$$
\begin{equation*}
a=0 \tag{b}
\end{equation*}
$$

In view of (24), this implies $b \geq \beta$. Then, taking $\eta_{u, \xi}=\xi$ :

$$
\bar{F}_{V_{u}^{1}}\left(\eta_{u, \xi}\right)=\frac{\xi^{2}}{2} b \geq \frac{\xi^{2}}{2} \beta \stackrel{(20)}{=}(3+2 \sqrt{2}) \kappa \xi^{2}>\kappa \xi^{2}
$$

We are left with the case:

$$
\begin{equation*}
0<a<\beta . \tag{c}
\end{equation*}
$$

Note that, again because of (24),

$$
\begin{equation*}
0<a<\beta \stackrel{(24)}{\leq} b \leq M . \tag{25}
\end{equation*}
$$

Let $\alpha:=\sqrt{2 \kappa / b}$ and observe that

$$
\begin{equation*}
c=\sqrt{\frac{2 \kappa}{M}} \leq \alpha \leq \sqrt{\frac{2 \kappa}{\beta}} \stackrel{(20)}{=} \frac{1}{\sqrt{1+\sqrt{2}}} . \tag{26}
\end{equation*}
$$

We then have three subcases:

$$
\begin{equation*}
\alpha \xi>\frac{a}{b} \tag{1}
\end{equation*}
$$

In this case, we choose

$$
\begin{equation*}
\eta_{u, \xi}:=\frac{a+\sqrt{a^{2}+2 \kappa b \xi^{2}}}{b}=\frac{a}{b}+\sqrt{\left(\frac{a}{b}\right)^{2}+\alpha^{2} \xi^{2}} \tag{27}
\end{equation*}
$$

so that

$$
\left|a \eta_{u, \xi}-\frac{b}{2} \eta_{u, \xi}^{2}\right|=b \eta_{u, \xi}\left|\frac{a}{b}-\frac{\eta_{u, \xi}}{2}\right|=\frac{b}{2} \alpha^{2} \xi^{2}=\kappa \xi^{2},
$$

showing, by (23), that (22) is satisfied. Furthermore, by the hypothesis $a / b<\alpha \xi^{2}$, (26) and the definition of $\kappa$ in (20), one finds

$$
c \xi \stackrel{(26)}{\leq} \alpha \xi \stackrel{(27)}{\leq} \eta_{u, \xi} \stackrel{\left(\mathfrak{c}_{1}\right)}{<} \alpha \xi(1+\sqrt{2}) \stackrel{(26)}{\leq} \xi,
$$

proving (21).
Next, we consider the case

$$
\begin{equation*}
\xi \geq \frac{a}{b} \geq \alpha \xi \tag{1}
\end{equation*}
$$

and choose $\eta_{u, \xi}:=a / b$. We then find

$$
\left|a \eta_{u, \xi}-\frac{b}{2} \eta_{u, \xi}^{2}\right|=\frac{b}{2}\left(\frac{a}{b}\right)^{2} \geq \frac{b}{2} \alpha^{2} \xi^{2}=\kappa \xi^{2},
$$

showing, again by (23), that (22) is satisfied. Inequalities (21) follow immediately by the hypothesis and the fact that $c \leq \alpha$.

The final case is

$$
\begin{equation*}
\frac{a}{b}>\xi \tag{3}
\end{equation*}
$$

We choose again $\eta_{u, \xi}=\xi$, so that:

$$
\left|a \xi-\frac{b}{2} \xi^{2}\right| \geq b\left(\frac{a}{b} \xi-\frac{\xi^{2}}{2}\right)>\frac{b}{2} \xi^{2} \stackrel{(25)}{\geq} \frac{\beta}{2} \xi^{2} \stackrel{(26)}{>} \kappa \xi^{2} .
$$

## 4 Proof of the Theorem

First we prove steepness for the third-order polynomial truncation of $h$.
For $k=1$, steepness for the third-order polynomial truncation of $h$ follows from Lemma 2 . We therefore assume $2 \leq k \leq n-1$, fix $I \in D$, fix $V^{k}$ a linear space of dimension $k$ in $h(I)^{\perp}$ and let, as above, $\bar{h}$ denote the third-order Taylor polynomial of $h$ at $I$. Let $\left\{\bar{e}_{1}, \ldots, \bar{e}_{k}\right\} \subseteq V^{k}$ be an orthonormal basis of eigenvectors of $P_{V^{k}} h^{\prime \prime}(I)$ with corresponding eigenvalues $\lambda_{k}$ so that $\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{k}\right|$. Then, by Lemma 1 and (12) one has

$$
\begin{equation*}
\beta \leq\left|\lambda_{j}\right|, \forall j \geq 2 ; \quad\left|\lambda_{j}\right| \leq M_{2} \leq M, \forall j . \tag{28}
\end{equation*}
$$

Fix $0<\xi \leq \xi_{k}$ and a unit vector $u \in V^{k}$ and define

$$
\begin{equation*}
\bar{\eta}:=\eta_{\bar{e}_{1}, \xi} \tag{29}
\end{equation*}
$$

with $\eta_{\bar{e}_{1}, \xi}$ as in Lemma 2. Recall that, by (21), it is

$$
\begin{equation*}
c \xi \leq \bar{\eta} \leq \xi . \tag{30}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\bar{F}_{V^{k}}(\bar{\eta})=\min _{\substack{u \in V^{k} \\\|u\|=1}}\left\|P_{V^{k}} \bar{h}^{\prime}(I+\bar{\eta} u)\right\| \geq \frac{\kappa}{2} \xi^{2}, \quad \forall 0<\xi \leq \xi_{k} \tag{31}
\end{equation*}
$$

Estimate (31) says that steepness on $V^{k}$ can be controlled in terms of steepness along the line in $V^{k}$ corresponding to the "degenerate" eigenvector $\bar{e}_{1}$ of $P_{V^{k}} h^{\prime \prime}(I)$, where degeneracy means here that $\left|\lambda_{1}\right|$ may be smaller in absolute value than $\beta$ (and even vanish).
To prove the claim, we let

$$
u=\sum_{j=1}^{k} x_{j} \bar{e}_{j}, \quad \sum_{j=1}^{k} x_{j}^{2}=1
$$

be the expansion of $u$ in the orthonormal basis $\left\{\bar{e}_{j}\right\}$ and fix

$$
\begin{equation*}
v:=k \frac{M}{\beta}=\frac{k}{\gamma} . \tag{32}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
2 \leq k \leq v, \quad \xi_{k} \stackrel{(15)}{\leq} \frac{2 \theta}{3 k} \frac{1}{v}<\frac{1}{v} \tag{33}
\end{equation*}
$$

We distinguish two cases: first, assume that:

$$
\begin{equation*}
\sum_{j=2}^{k} x_{j}^{2} \geq v^{2} \bar{\eta}^{2} \tag{A}
\end{equation*}
$$

In this case, recalling (28), we have

$$
\begin{equation*}
\sum_{j=2}^{k}\left|\lambda_{j}\right|\left|x_{j}\right| \geq \sqrt{\sum_{j=2}^{k}\left|\lambda_{j}\right|^{2}\left|x_{j}\right|^{2}} \geq \beta \sqrt{\sum_{j=2}^{k} x_{j}^{2}} \stackrel{(\mathrm{~A})}{\geq} \beta \nu \bar{\eta} . \tag{34}
\end{equation*}
$$

Then, observe that, for all $1 \leq j \leq k$,

$$
\begin{aligned}
\left\|P_{V^{k}} \bar{h}^{\prime}(I+\bar{\eta} u)\right\| & \geq\left\|P_{V^{k}} \bar{h}^{\prime}(I+\bar{\eta} u) \cdot \bar{e}_{j}\right\| \geq \bar{\eta}\left\|P_{V^{k}} h^{(2)}(I) u \cdot \bar{e}_{j}\right\|-\frac{\bar{\eta}^{2}}{2} M \\
& =\bar{\eta}\left|\lambda_{j} \| x_{j}\right|-\frac{\bar{\eta}^{2}}{2} M
\end{aligned}
$$

so that, summing over $2 \leq j \leq k$, one gets

$$
\begin{aligned}
\left\|P_{V^{k}} \bar{h}^{\prime}(I+\bar{\eta} u)\right\| & \geq \frac{\bar{\eta}}{k} \sum_{2=1}^{k}\left|\lambda_{j}\right|\left|x_{j}\right|-\frac{\bar{\eta}^{2}}{2} M \\
& \stackrel{(34)}{\geq} \bar{\eta}^{2}\left(\frac{\beta v}{k}-\frac{M}{2}\right) \stackrel{(32)}{=} \bar{\eta}^{2} \frac{M}{2} \\
& \stackrel{(30)}{\geq} c^{2} \frac{M}{2} \xi^{2}=\kappa \xi^{2}>\frac{\kappa}{2} \xi^{2}
\end{aligned}
$$

proving the claim (31) in case (A).

Assume now that

$$
\begin{equation*}
\sum_{j=2}^{k} x_{j}^{2}<v^{2} \bar{\eta}^{2} \tag{B}
\end{equation*}
$$

Notice that by (33) $\nu \bar{\eta} \leq \nu \xi_{k}<1$ so that $\sum_{j=2}^{k} x_{j}^{2}<1$ and, hence, $x_{1} \neq 0$.
If $\sum_{j=2}^{k} x_{j}^{2}=0$, i.e. $x_{1}= \pm 1$, the claim follows directly from Lemma 2 in view of the choice of $\bar{\eta}$ in (29).

Therefore, we assume $0<\left|x_{1}\right|<1$. Assumption (B) implies that $\left|x_{1}\right|$ is close to 1 :

$$
\begin{equation*}
1-\left|x_{1}\right|<1-x_{1}^{2}=\sum_{j=2}^{k} x_{j}^{2} \stackrel{(\mathrm{~B})}{<} v^{2} \bar{\eta}^{2} . \tag{35}
\end{equation*}
$$

Let $\sigma=\operatorname{sign}\left(x_{1}\right)$ so that

$$
\begin{equation*}
x_{1}-\sigma=\sigma\left(\left|x_{1}\right|-1 \mid\right) \tag{36}
\end{equation*}
$$

Then, recalling (29), by Lemma 2, one has

$$
\begin{equation*}
\left|\bar{h}^{\prime}\left(I+\sigma \bar{\eta} \bar{e}_{1}\right) \cdot \bar{e}_{1}\right| \geq \kappa \xi^{2} . \tag{37}
\end{equation*}
$$

We want to approximate $\bar{h}^{\prime}(I+\bar{\eta} u) \cdot \bar{e}_{1}$ with $\bar{h}^{\prime}\left(I+\sigma \bar{\eta} \bar{e}_{1}\right) \cdot \bar{e}_{1}$. We do it in two steps.
First, expanding $u$ in the eigen-base $\left\{\bar{e}_{j}\right\}$ and cancelling out the equal terms, we find:

$$
\begin{aligned}
\bar{h}^{\prime} & (I+\bar{\eta} u) \cdot \bar{e}_{1}-\bar{h}^{\prime}\left(I+\bar{\eta} x_{1} \bar{e}_{1}\right) \cdot \bar{e}_{1} \\
& =\bar{\eta} h^{\prime \prime}(I) u \cdot \bar{e}_{1}-\bar{\eta} x_{1} h^{\prime \prime}(I) \bar{e}_{1} \cdot \bar{e}_{1}+\frac{\bar{\eta}^{2}}{2} h^{(3)}(I)\left[\bar{e}_{1}, u, u\right]-\frac{\bar{\eta}^{2}}{2} x_{1}^{2} h^{(3)}(I)\left[\bar{e}_{1}\right]^{3} \\
& =\frac{\bar{\eta}^{2}}{2} h^{(3)}(I)\left[\bar{e}_{1}, u, u\right]-\frac{\bar{\eta}^{2}}{2} x_{1}^{2} h^{(3)}(I)\left[\bar{e}_{1}\right]^{3} \\
& =\frac{\bar{\eta}^{2}}{2} \sum_{(i, j) \neq(1,1)} x_{i} x_{j} h^{(3)}(I)\left[\bar{e}_{1}, \bar{e}_{i}, \bar{e}_{j}\right] \\
& =\bar{\eta}^{2} x_{1} \sum_{j=2}^{k} x_{j} h^{(3)}(I)\left[\bar{e}_{1}, \bar{e}_{1}, \bar{e}_{j}\right]+\frac{\bar{\eta}^{2}}{2} \sum_{i, j=2}^{k} x_{i} x_{j} h^{(3)}(I)\left[\bar{e}_{1}, \bar{e}_{i}, \bar{e}_{j}\right] .
\end{aligned}
$$

Thus, by Cauchy-Schwarz inequality, (B), (4), (32) and (33),

$$
\begin{align*}
\left|\bar{h}^{\prime}(I+\bar{\eta} u) \cdot \bar{e}_{1}-\bar{h}^{\prime}\left(I+\bar{\eta} x_{1} \bar{e}_{1}\right) \cdot \bar{e}_{1}\right| & \leq \sqrt{k-1} \bar{\eta}^{3} \nu M+\frac{k-1}{2} \bar{\eta}^{4} v^{2} M \\
& \leq \xi^{2} \cdot \xi_{k}\left(\sqrt{k-1} \frac{k}{\gamma^{2}}+\frac{k-1}{2} \xi_{k} \frac{k^{2}}{\gamma^{2}}\right) \beta \\
& \leq \xi^{2}\left(\xi_{k} 2 \frac{k^{2}}{\gamma^{2}}\right) \\
& \leq \xi^{2} \theta \beta=\frac{\kappa}{4} \xi^{2} \tag{38}
\end{align*}
$$

Next, by (36), (35), (28) and (33), we find:

$$
\begin{align*}
& \left|\bar{h}^{\prime}\left(I+\bar{\eta} x_{1} \bar{e}_{1}\right) \cdot \bar{e}_{1}-\bar{h}^{\prime}\left(I+\bar{\eta} \sigma \bar{e}_{1}\right) \cdot \bar{e}_{1}\right| \\
& \quad=\left|\bar{\eta} \lambda_{1} \sigma\left(1-\left|x_{1}\right|\right)+\frac{\bar{\eta}^{2}}{2}\left(x_{1}^{2}-1\right) h^{(3)}(I)\left[\bar{e}_{1}\right]^{3}\right| \\
& \quad \leq \bar{\eta}^{3} v^{2}\left(M+\frac{\xi_{k}}{2} M\right) \\
& \quad \leq \xi^{2} \cdot \xi_{k} \frac{k^{2}}{\gamma^{2}}\left(\frac{\beta}{\gamma}+\frac{\xi_{k}}{2} \frac{\beta}{\gamma}\right) \\
& \quad \leq \xi^{2} \theta \beta=\frac{\kappa}{4} \xi^{2} . \tag{39}
\end{align*}
$$

Thus, for $\xi \leq \xi_{k}$, by (38) and (39), one gets

$$
\begin{array}{rlr}
\left\|P_{V^{k}} \bar{h}^{\prime}(I+\bar{\eta} u)\right\| & \geq\left|\bar{h}^{\prime}(I+\bar{\eta} u) \cdot \bar{e}_{1}\right| \\
& \geq\left|\bar{h}^{\prime}\left(I+\sigma \bar{\eta} \bar{e}_{1}\right) \cdot \bar{e}_{1}\right|-\left|\bar{h}^{\prime}\left(I+\bar{\eta} x_{1} \bar{e}_{1}\right) \cdot \bar{e}_{1}-\bar{h}^{\prime}\left(I+\bar{\eta} \sigma \bar{e}_{1}\right) \cdot \bar{e}_{1}\right| \\
& \quad-\left|\bar{h}^{\prime}(I+\bar{\eta} u) \cdot \bar{e}_{1}-\bar{h}^{\prime}\left(I+\bar{\eta} x_{1} \bar{e}_{1}\right) \cdot \bar{e}_{1}\right|
\end{array}
$$

proving claim (31) also in case (B).
Finally, from (19), (40) and the definition of $\xi_{k}$, Theorem follows.

## References

1. Benettin, G., Fassò, F., Guzzo, M.: Nekhoroshev stability of L4 and L5 in the spatial restricted three body problem. Regul. Chaotic Dyn. 3, 56-72 (1998)
2. Benettin, G., Galgani, L., Giorgilli, A.: A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech. 37, 1-25 (1985)
3. Benettin, G., Gallavotti, G.: Stability of motions near resonances in quasi-integrable Hamiltonian systems. J. Stat. Phys. 44, 293-338 (1985)
4. Bounemoura, A., Marco, J.P.: Improved exponential stability for near-integrable quasi-convex Hamiltonians. Nonlinearity 24(1), 97-112 (2011)
5. Gallavotti, G.: Quasi-integrable mechanical systems. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories. Les Houches, Session XLIII, 1984. North-Holland, Amsterdam (1986)
6. Guzzo, M., Chierchia, L., Benettin, G.: The steep Nekhoroshev's theorem and optimal stability exponents (an announcement). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 25, 293-299 (2014)
7. Guzzo, M., Chierchia, L., Benettin, G.: The steep Nekhoroshev's theorem. Commun. Math. Phys. 342, 569-601 (2016)
8. Guzzo, M., Lega, E., Froeschlé, C.: First numerical investigation of a conjecture by N.N. Nekhoroshev about stability in quasi-integrable systems. Chaos 21(3), 1-13 (2011). paper 033101
9. Guzzo, M.: The Nekhoroshev theorem and long-term stabilities in the solar system. Serb. Astron. J. 190, 1-10 (2015)
10. Lhotka, Ch., Efthymiopoulos, C., Dvorak, R.: Nekhoroshev stability at $L_{4}$ or $L_{5}$ in the elliptic-restricted three-body problem—application to Trojan asteroid. Mon. Not. R. Astron. Soc. 384(3), 1165-1177 (2008)
11. Lochak, P.: Canonical perturbation theory via simultaneous approximations. Russ. Math. Surv. 47, 57-133 (1992)
12. Lochak, P., Neishtadt, A.: Estimates in the theorem of N.N. Nekhoroshev for systems with quasi-convex Hamiltonian. Chaos 2, 495-499 (1992)
13. Morbidelli, A., Guzzo, M.: The Nekhoroshev theorem and the asteroid belt dynamical system. Celest. Mech. Dyn. Astron. 65, 107-136 (1997)
14. Nekhoroshev, N.N.: Behavior of Hamiltonian systems close to integrability. Funct. Anal. Appl. 5, 338-339 (1971)
15. Nekhoroshev, N.N.: Behavior of Hamiltonian systems close to integrability. Funk. An. Ego Prilozheniya 5, 82-83 (1971)
16. Nekhoroshev, N.N.: Stable lower estimates for smooth mappings and for gradients of smooth functions. Math USSR Sbornik 19, 425-467 (1973)
17. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems I. Uspekhi Mat. Nauk 32, 5-66 (1977)
18. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems I. Russ. Math. Surv. 32, 1-65 (1977)
19. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems II. Tr. Semin. Petrovsk. 5, 5-50 (1979)
20. Nekhoroshev N.N.: In: Oleinik, O.A. (ed.) Topics in Modern Mathematics, Petrovskii Seminar, No. 5. Consultant Bureau, New York (1985)
21. Niederman, L.: Hamiltonian stability and subanalytic geometry. Ann. Inst. Fourier (Grenoble) 56(3), 795-813 (2006)
22. Pavlovic, R., Guzzo, M.: Fulfillment of the conditions for the application of the Nekhoroshev theorem to the Koronis and Veritas asteroid families. Mon. Not. R. Astron. Soc. 384, 1575-1582 (2008)
23. Pinzari, G.: Aspects of the planetary Birkhoff normal form. Regul. Chaotic Dyn. 18(6), 860-906 (2013)
24. Pöschel, J.: Nekhoroshev estimates for quasi-convex hamiltonian systems. Math. Z. 213, 187 (1993)
25. Sansottera, M., Locatelli, U., Giorgilli, A.: On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system. Math. Comput. Simul. 88, 1-14 (2013)
26. Schirinzi, G., Guzzo, M.: On the formulation of new explicit conditions for steepness from a former result of N.N. Nekhoroshev. J. Math. Phys. 54(072702), 1-22 (2013)
27. Schirinzi, G., Guzzo, M.: Numerical verification of the steepness of three and four degrees of freedom hamiltonian systems. Regul. Chaotic Dyn. 20(1), 1-18 (2015)
28. Todorović, N., Guzzo, M., Lega, E., Froeschlé, Cl: A numerical study of the stabilization effect of steepness. Celest. Mech. Dyn. Astr. 110, 389-398 (2011)
29. Zhang, Ke: Speed of Arnold diffusion for analytic Hamiltonian systems. Invent. Math. 186(2), 255-290 (2011)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


[^0]:    This research was partially supported by the Italian MIUR Grant 2015KB9WPT_008 "Variational methods, with applications to problems in mathematical physics and geometry".

[^1]:    L. Chierchia
    luigi@mat.uniroma3.it
    M. A. Faraggiana
    martha.faraggiana@ubs.com
    M. Guzzo
    guzzo@math.unipd.it
    1 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San L. Murialdo 1, 00146 Rome, Italy
    2 UBS - Zürich, Badenerstrasse 678, Altstetten, 8048 Zurich, Switzerland
    3 Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova, Via Trieste 63, 35121 Padua, Italy

[^2]:    ${ }^{1}$ For any vector $u \in \mathbb{C}^{n}$, we denote by $\|u\|:=\sqrt{\sum_{i}\left|u_{i}\right|^{2}}$ its Hermitian norm.

[^3]:    ${ }^{2}$ Steepness is invariant under the change $h \rightarrow-h$; hence, convexity and concavity are "equivalent" in this context and one usually refers only to convexity for simplicity.

[^4]:    ${ }^{3}$ We remark that the result does not follow by simply checking if the 3-jet of a 3-jet non-degenerate function is outside the closure of $P_{3}$ but, depending on the value of $n$, there is suitably large $j$ such that the jet of a 3-jet non-degenerate function is outside the closure of $P_{j}$.

[^5]:    ${ }^{4} u_{i}=\left(u_{i 1}, \ldots, u_{i n}\right)$.

[^6]:    5 Notice that, if $S^{n-1}:=\left\{u \in \mathbb{R}^{n} \mid\|u\|=1\right\}$, the function $F:(I, u) \in D \times S^{n-1} \rightarrow F(I, u):=$ $\max \left\{\left|h^{(2)}(I)[u]^{2}\right|,\left|h^{(3)}(I)[u]^{3}\right|\right\}$ is continuous on the compact set $\left\{(I, u) \in D \times S^{n-1} \mid h^{\prime}(I) \cdot u=0\right\}$ and therefore attains a minimum $\beta$ on such a set: such a minimum is strictly positive since when $h^{\prime}(I) \cdot u=0$, by (3), $F(I, u)>0$.

[^7]:    ${ }^{7}$ For example, $h^{(3)}\left[u_{0}\right]^{3}=-h^{(3)}\left[u_{\pi}\right]^{3}$.
    ${ }^{8}$ Notice that $2 \kappa / M=\beta /(M(3+2 \sqrt{2}))<1$, so that $c<1$.

