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Abstract
Let � be a smooth, bounded domain of RN , ω be a positive, L1-normalized function, and
0 < s < 1 < p. We study the asymptotic behavior, as p → ∞, of the pair

(
p
√

�p, u p
)
,

where �p is the best constant C in the Sobolev-type inequality

C exp

(∫

�

(log |u|p)ωdx
)

≤ [u]ps,p ∀ u ∈ Ws,p
0 (�)

and u p is the positive, suitably normalized extremal function corresponding to �p . We
show that the limit pairs are closely related to the problem of minimizing the quo-
tient |u|s / exp

(∫
�
(log |u|)ωdx) , where |u|s denotes the s-Hölder seminorm of a function

u ∈ C0,s
0 (�).

Keywords Asymptotic behavior · Fractional p-Laplacian · Singular problem · Viscosity
solution

Mathematics Subject Classification 35D40 · 35R11 · 35J60

1 Introduction

Let � be a smooth (at least Lipschitz) domain of RN , and consider the fractional Sobolev
space

Ws,p
0 (�) :=

{
u ∈ L p(RN ) : u = 0 in R

N\� and [u]s,p < ∞
}

, 0 < s < 1 < p,
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where

[u]s,p :=
(∫

RN

∫

RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

.

It is well known that the Gagliardo seminorm [·]s,p is a norm in Ws,p
0 (�) and that this

Banach space is uniformly convex. Actually,

Ws,p
0 (�) = C∞

c (�)
[·]s,p

.

Let ω be a nonnegative function in L1(�) satisfying ‖ω‖L1(�) = 1, and define

Mp :=
{
u ∈ Ws,p

0 (�) :
∫

�

(log |u|)ωdx = 0

}

and
�p := inf

{
[u]ps,p : u ∈ Mp

}
. (1)

In the recent paper [9], it is proved that �p > 0 and that

�p exp

(∫

�

(log |u|p)ωdx
)

≤ [u]ps,p ∀ u ∈ Ws,p
0 (�), (2)

provided that �p < ∞. Moreover, the equality in this Sobolev-type inequality holds if, and
only if, u is a scalar multiple of the function u p ∈ Mp which is the only weak solution of
the problem ⎧

⎨

⎩

(−�p
)s
u = �pu−1ω in �

u > 0 in �

u = 0 in R
N\�.

(3)

Here,
(−�p

)s is the s-fractional p-Laplacian, formally defined by

(−�p
)s
u(x) = −2

∫

RN

|u(y) − u(x)|p−2 (u(y) − u(x))

|y − x |N+sp
dy.

We recall that a weak solution of the equation in (3) is a function u ∈ Ws,p
0 (�) satisfying

〈(−�p
)s
u, ϕ

〉 = �p

∫

�

u−1ϕωdx ∀ ϕ ∈ Ws,p
0 (�),

where

〈(−�p
)s
u, ϕ

〉 :=
∫

RN

∫

RN

|u(x) − u(y)|p−2 (u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+sp
dxdy

is the expression of
(−�p

)s as an operator from Ws,p
0 (�) into its dual.

The purpose of this paper is to determine both the asymptotic behavior of the pair(
p
√

�p, u p
)
, as p → ∞, and the corresponding limit problem of (3). In our study s ∈ (0, 1)

is kept fixed.
After introducing, in Sect. 2, the notation used throughout the paper, we prove in Sect. 3

that�p < ∞ by constructing a function ξ ∈ C0,1
0 (�)∩Mp. In the simplest case ω ≡ |�|−1

this was made in [10] where the inequality (2) corresponding to the standard Sobolev Space
W 1,p

0 (�) has been derived.
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Asymptotic behavior of extremals for fractional Sobolev… 2061

In Sect. 4, we show that the limit problem is closely related to the problem of minimizing
the quotient

Qs(u) := |u|s
exp

(∫
�
(log |u|)ωdx)

on the Banach space
(
C0,s
0 (�), |·|s

)
of the s-Hölder continuous functions in � that are zero

on the boundary ∂�. Here, |u|s denotes the s-Hölder seminorm of u (see (6)).
We prove that if pn → ∞ then (up to a subsequence)

u pn → u∞ ∈ C0,s
0 (�) uniformly in �, and pn

√
�pn → |u∞|s .

Moreover, the limit function u∞ satisfies
∫

�

(log |u∞|)ωdx ≥ 0 and Qs(u∞) ≤ Qs(u) ∀ u ∈ C0,s
0 (�)\ {0}

and the only minimizers of the quotient Qs are the scalar multiples of u∞.

One of the difficulties we face in Sect. 4 is that C∞
c (�) is not dense in

(
C0,s
0 (�), |·|s

)
.

This makes it impossible to directly exploit the fact that u p is a weak solution of (3). We
overcome this issue by using a convenient technical result proved in [18, Lemma 3.2] and
employed in [2] to deal with a similar approximation matter.

In Sect. 5, motivated by [3,13,17], we derive the limit problem of (3). Assuming that ω is
continuous and positive in �, we prove that u∞ is a viscosity solution of

{L−∞u + |u|s = 0 in �

u = 0 in R
N\�

where
(L−∞u

)
(x) := inf

y∈RN \{x}
u(y) − u(x)

|y − x |s .

We also show u∞ is a viscosity supersolution of
{L∞u = 0 in �

u = 0 in R
N\�

where

L∞ := L+∞ + L−∞
and

(L+∞u
)
(x) := sup

y∈RN \{x}
u(y) − u(x)

|y − x |s .

This fact guarantees that u∞ > 0 in �.

The existing literature on the asymptotic behavior (as p → ∞) of solutions of problems
involving the p-Laplacian is most focused on the local version of the operator, that is, on the
problem {−�pu = f (x, u) in �

u = 0 on ∂�
(4)

where�pu = div
(|∇u|p−2 ∇u

)
is the standard p-Laplacian. This kind of asymptotic behav-

ior has been studied for at least three decades (see [1,14,16]) and many new results, adding
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2062 G. Ercole et al.

the dependence of p in the term f (x, u), are still being produced (see [4–6,8]). The solutions
of (4) are obtained in the natural Sobolev space W 1,p

0 (�), and an important property related
to this space, crucial in the study of the asymptotic behavior of the corresponding family of
solutions

{
u p

}
, is the inclusion

W 1,p2
0 (�) ⊂ W 1,p1

0 (�) whenever 1 < p1 < p2.

It allows us to show that any uniform limit function u∞ of the sequence
{
u pn

}
(with pn → ∞)

is admissible as a test function in the weak formulation of (4), so that u∞ inherits certain
properties of the functions of

{
u pn

}
.

Since the inclusion Ws,p2
0 (�) ⊂ Ws,p1

0 (�) does not hold when 0 < s < 1 < p1 < p2
(see [19]), the asymptotic behavior, as p → ∞, of the solutions of the problem

{
(−�p)

su = f (x, u) in �

u = 0 in R
N\� (5)

is more difficult to be determined. For example, in the case considered in the present paper
( f (x, u) = ω(x)/u) we cannot ensure that the property

∫

�

(log
∣
∣u pn

∣
∣)ωdx = 0

is inherited by the limit function u∞ (see Remark 12). Actually, we are able to prove only
that

∫

�

(log u∞)ωdx ≥ 0.

As a consequence, the limit functions of the family
{
u p

}
p>1 might not be unique.

The study of the asymptotic behavior, as p → ∞, of the solutions of (5) is quite recent
and restricted to few works. In [17] the authors considered f (x, u) = λp |u|p−2 u where λp

is the first eigenvalue of the s-fractional p-Laplacian. Among other results, they proved that

lim
p→∞

p
√

λp = R−s,

where R is the radius of the largest ball inscribed in �, and that limit function u∞ of the
family

{
u p

}
is a positive viscosity solution of

max
{L∞u , L−∞u + R−su

} = 0.

The equation in (5) with f = 0 and under the nonhomogeneous boundary condition u = g
in R

N\� was first studied in [3]. It is shown that the limit function is an optimal s-Hölder
extension of g ∈ C0,s(∂�) and also a viscosity solution of the equation

L∞u = 0 in ∂�.

Moreover, some tools for studying the behavior as p → ∞ of the solutions of (5) are
developed there.

In [13], also under the boundary condition u = g in R
N\�, the cases f = f (x) and

f = f (u) = |u|θ(p)−2 u with � := lim p→∞ θ(p)/p < 1 are studied. In the first case,
different limit equations involving the operators L∞, L+∞ and L−∞ are derived according to
the sign of the function f (x), what resembles the known results obtained in [1], where the
standard p-Laplacian is considered. For example, the limit function u∞ is a viscosity solution
of

−L−∞u = 1 in { f > 0} .
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Asymptotic behavior of extremals for fractional Sobolev… 2063

As for the second case, the limit equation is

min
{−L−∞u − u�,−L∞u

} = 0

which is consistent with the limit equation obtained in [4] for the standard p-Laplacian and
f (u) = |u|θ(p)−2 u satisfying � := lim p→∞ θ(p)/p < 1.

2 Notation

The ball centered at x ∈ R
N with radius ρ is denoted by B(x, ρ), and δ stands for the distance

function to the boundary ∂�, defined by

δ(x) := min
y∈∂�

|x − y| , x ∈ �.

We recall that δ ∈ C0,1
0 (�) and satisfies |∇δ| = 1 a.e. in �. Here,

C0,β
0 (�) := {

u ∈ C0,β(�) : u = 0 on ∂�
}
, 0 < β ≤ 1,

where C0,β(�) is the well-known β-Hölder space endowed with the norm

‖u‖0,β = ‖u‖∞ + |u|β
with ‖u‖∞ denoting the sup norm of u and |u|β denoting the β-Hölder seminorm, that is,

|u|β := sup
x,y∈�,x 
=y

|u(x) − u(y)|
|x − y|β . (6)

We recall that
(
C0,β
0 (�), |·|β

)
is a Banach space. The fact that the β-Hölder seminorm

|·|β is a norm in C0,β
0 (�) equivalent to ‖u‖0,β is a consequence of the estimate

‖u‖∞ ≤ |u|β ‖δ‖β∞ ∀ u ∈ C0,β
0 (�),

which in turn follows from the following

|u(x)| = |u(x) − u(yx )| ≤ |u|β |x − yx |β = |u|β δ(x)β ∀ x ∈ �, (7)

where yx ∈ ∂� is such that δ(x) = |x − yx | .
We also define

C∞
c (�) := {

u ∈ C∞(�) : supp( f ) ⊂⊂ �
}

where

supp(u) := {x ∈ � : u(x) 
= 0}

is the support of u and X ⊂⊂ Y means that X is a compact subset of Y . Analogously, we
define Ec if E is a space of functions (e.g., Cc(R

N ), Cc(R
N ;RN ), C0,β

c (�)).
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3 Finiteness of3p

Let us recall the Federer’s co-area formula (see [12])
∫

�

g(x) |∇ f (x)| dx =
∫ ∞

−∞

(∫

f −1{t}
g(x)dHN−1

)
dt,

which holds whenever g ∈ L1(�) and f ∈ C0,1(�). (In this formula HN−1 stands for the
(N − 1)-dimensional Hausdorff measure).

In the particular case f = δ, the above formula becomes
∫

�

g(x)dx =
∫ ‖δ‖∞

0

(∫

δ−1{t}
g(x)dHN−1

)
dt . (8)

Proposition 1 Let ω ∈ L1(�) such that
∫

�

ωdx = 1 and ω ≥ 0 a.e. in�. (9)

There exists a nonnegative function ξ ∈ C(�) that vanishes on the boundary ∂� and satisfies
∫

�

(log |ξ |)ωdx = 0.

If, in addition,

Kε := ess
0≤t≤ε

∫

δ−1{t}
ωdHN−1 < ∞ (10)

for some ε > 0, then ξ ∈ C0,1
0 (�).

Proof Let σ : [0, ‖δ‖∞] → [0, 1] be the ω-distribution associated with δ, that is,

σ(t) :=
∫

�t

ωdx, t ∈ [0, ‖δ‖∞]

where

�t := {x ∈ � : δ(x) > t}
is the t-superlevel set of δ.

We remark that σ is continuous at each point t ∈ [0, ‖δ‖∞] since the t-level set δ−1 {t}
has Lebesgue measure zero. This follows, for example, from the Lebesgue density theorem
(see [11], where the distance function to a general closed set in RN is considered).

Thus, there exists a nonincreasing sequence {tn} ⊂ [0, ‖δ‖∞] such that

σ(tn) = 1 − 1

2n
.

Now, choose a nondecreasing, piecewise linear function ϕ ∈ C([0, ‖δ‖∞]) satisfying

ϕ(0) = 0 and ϕ(tn) = 1

2n
,

and take the function

ξ1 := ϕ ◦ δ ∈ C0(�).
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Taking into account that

tn+1 ≤ δ(x) ≤ tn a.e. x ∈ �tn+1\�tn ,

one has

1

2n+1 = ϕ(tn+1) ≤ ξ1(x) ≤ ϕ(tn) = 1

2n
a.e. x ∈ �tn+1\�tn .

Consequently,

∫

�

|ξ1|ε ωdx ≥
∫

�t1

|ξ1|ε ωdx +
n∑

k=1

∫

�tk+1\�tk

|ξ1|ε ωdx

≥ 1

2ε

∫

�t1

ωdx +
n∑

k=1

1

2ε(k+1)

∫

�tk+1\�tk

ωdx

= 1

2ε
σ (t1) +

n∑

k=1

1

2ε(k+1)
(σ (tk+1) − σ(tk))

= 1

2ε

1

2
+

n∑

k=1

1

2ε(k+1)

1

2k+1 =
n+1∑

k=1

(
(1/2)ε+1)k .

It follows that

lim
ε→0

(∫

�

|ξ1|ε ωdx

) 1
ε ≥ lim

ε→0

( ∞∑

k=1

(
(1/2)ε+1)k

) 1
ε

= lim
ε→0

(
(1/2)ε+1

1 − (1/2)ε+1

) 1
ε

= 1

4
.

Taking ξ := kξ1 with

k = lim
ε→0

(∫

�

|ξ1|ε ωdx

)− 1
ε

we obtain, by L’Hôpital’s rule,

1 = lim
ε→0+

(∫

�

|ξ |ε ωdx

) 1
ε = exp

(∫

�

(log |ξ |)ωdx
)

.

Hence,
∫

�

(log |ξ |)ωdx = 0.

We now prove that ξ1 ∈ C0,1(�) under the additional hypothesis (10). Since the nonde-
creasing function ϕ can be chosen such that ϕ′ is bounded in any closed interval contained in
(0, ‖δ‖∞], we can assume that ∇ξ1 ∈ L∞

loc(�) (note that |∇ξ1| = ∣∣ϕ′(δ)∇δ
∣∣ = ∣∣ϕ′(δ)

∣∣ a.e.
in �).

Thus, it suffices to show that the quotient

Q(x, y) := |ξ1(x) − ξ1(y)|
|x − y|

is bounded uniformly with respect to y ∈ ∂� and x ∈ �c
ε := {

x ∈ � : δ(x) ≤ ε
}
, where ε

is given by (10).
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Let x ∈ �c
ε and y ∈ ∂� be fixed and chose n ∈ N sufficiently large such that

tn+1 < δ(x) ≤ tn ≤ ε.

Since ξ1(y) = 0 and ϕ is nondecreasing, one has

|ξ1(x) − ξ1(y)| = ξ1(x) ≤ ϕ(tn) = 1

2n
.

Moreover,

tn+1 < δ(x) ≤ |x − y| .
Hence,

Q(x, y) ≤ 1

2ntn+1
whenever y ∈ ∂� and x ∈ �c

ε .

Applying the co-area formula (8) with g = ω and � = �c
tn+1, we find

1

2n+1 =
∫

�c
tn+1

ωdx =
∫ tn+1

0

(∫

δ−1{t}
ωdHN−1

)
dt ≤ Kε tn+1.

It follows that

Q(x, y) ≤ 1

2ntn+1
≤ Kε2n+1

2n
= 2Kε whenever y ∈ ∂� and x ∈ �c

ε, (11)

concluding thus the proof that ξ1 ∈ C0,1(�). ��
Remark 2 The estimate (11) can also be obtained from theWeyl’s Formula (see [15]) provided
that ω is bounded on an ε-tubular neighborhood of ∂�.

In the remaining of this section, ξ denotes the function obtained in Proposition 1 extended
as zero outside �. So,

ξ ∈ C0,1
0 (�) and

∫

�

(log |ξ |)ωdx = 0.

Since C0,1
0 (�) ⊆ W 1,p

0 (�) ⊆ Ws,p
0 (�), we have ξ ∈ Mp (for a proof of the second

inclusion see [7]). Therefore,
�p ≤ [ξ ]ps,p ∀ p > 1. (12)

Combining (12) with the results proved in [9, Section 4] (which requires ω ∈ Lr (�), for
some r > 1), we have the following theorem.

Theorem 3 Let ω be a function in Lr (�), for some r > 1, satisfying (9)–(10). For each
p > 1, the infimum �p in (1) is attained by a function u p ∈ Mp which is the only positive
weak solution of

(−�p
)s
u = �pu

−1ω, u ∈ Ws,p
0 (�).

Summarizing,
[
u p

]p
s,p = �p := min

{
[u]ps,p : u ∈ Mp

} ≤ [ξ ]ps,p ∀ p > 1, (13)
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Asymptotic behavior of extremals for fractional Sobolev… 2067

and u p is the unique function in W 1,p
0 (�) satisfying

u p > 0 in� and
〈(−�p

)s
u p, φ

〉 = �p

∫

�

ω(u p)
−1φdx ∀ φ ∈ Ws,p

0 (�).

We also have

0 < p
√

�p ≤ [u]s,p
exp

(∫
�
(log |u|)ωdx) ∀ u ∈ Ws,p

0 (�),

since the quotient is homogeneous.

Remark 4 It is worth pointing out that
∫

�

(log |u|)ωdx = −∞ (14)

for any function u ∈ L∞(�) whose supp u is a proper subset of suppω. Indeed, in this case
we have

0 ≤ exp

(∫

�

(log |u|)ωdx
)

= lim
t→0+

(∫

�

|u|t ωdx
) 1

t ≤ ‖u‖∞ lim
t→0+

(∫

supp|u|
ωdx

) 1
t = 0.

Thus, if ω > 0 almost everywhere in � then (14) holds for every u ∈ C∞
c (�)\ {0} .

4 The asymptotic behavior as p → ∞
In this section, we assume that the weight ω satisfies the hypothesis of Theorem 3. Our goal
is to relate the asymptotic behavior (as p → ∞) of the pair

(
p
√

�p, u p
)
with the problem of

minimizing the homogeneous quotient Qs : C0,s
0 (�)\ {0} → (0,∞) defined by

Qs(u) := |u|s
k(u)

where k(u) := exp

(∫

�

(log |u|)ωdx
)

.

Note that k(u) = 0 if, and only if, u satisfies (14). In particular, according to Remark 4,

ω > 0 a.e. in� �⇒ Qs(u) = ∞ ∀ u ∈ C∞
c (�)\ {0} .

We also observe that

0 ≤ k(u) ≤
∫

�

|u| ωdx < ∞ ∀ u ∈ C0,s
0 (�)\ {0} , (15)

where the second inequality is consequence of the Jensen’s inequality (since the logarithm
is concave): ∫

�

(log |u|)ωdx ≤ log

(∫

�

|u| ωdx
)

. (16)

Now, let us define

μs := inf
u∈C0,s

0 (�)\{0}
Qs(u).

Thanks to the homogeneity of Qs , we have

μs = inf
u∈Ms

|u|s

123



2068 G. Ercole et al.

where

Ms :=
{
u ∈ C0,s

0 (�) : k(u) = 1
}

.

Combining (15) and (7), we obtain

1 ≤
∫

�

|u|ωdx ≤ |u|s
∫

�

δsωdx ∀ u ∈ Ms,

what yields the following positive lower bound to μs

(∫

�

δsωdx

)−1

≤ μs .

In the sequel we show that μs is in fact a minimum, attained at a unique nonnegative
function. Before this, let us make an important remark.

Remark 5 If v minimizes |·|s in Ms the same holds for |v| , since the function w = |v|
belongs to Ms and satisfies |w|s ≤ |v|s .

Proposition 6 There exists a unique nonnegative function v ∈ Ms such that

μs = |v|s .

Proof Let {vn}n∈N ⊂ Ms be such that

lim
n→∞ |vn |s = μs . (17)

Since the function wn = |vn | belongs toMs and satisfies |wn |s ≤ |vn |s , we can assume that
vn ≥ 0 in �.

It follows from (17) that {vn}n∈N is bounded in C0,s
0 (�). Hence, the compactness of

the embedding C0,s
0 (�) ↪→ C0(�) allows us to assume (by renaming a subsequence) that

{vn}n∈N converges uniformly to a function v ∈ C0(�). Of course, v ≥ 0 in �.

Letting n → ∞ in the inequality

|vn(x) − vn(y)| ≤ |vn |s |x − y|s ∀ x, y ∈ �

and taking (17) into account, we obtain

|v(x) − v(y)| ≤ μs |x − y|s ∀ x, y ∈ �.

This implies that v ∈ C0,s
0 (�) and

|v|s ≤ μs . (18)

Thus, to prove that μs = |v|s it suffices to verify that v ∈ Ms . Since

1 = k(vn) = lim
ε→0+

(∫

�

|vn |ε ωdx

) 1
ε ≤

(∫

�

|vn |t ωdx
) 1

t ∀ t > 0

the uniform convergence vn → v yields

1 ≤
(∫

�

|v|t ωdx
) 1

t ∀ t > 0.

Hence,

1 ≤ lim
t→0+

(∫

�

|v|t dx
) 1

t = k(v).
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Thus, noticing that (k(v))−1v ∈ Ms and taking (18) into account, we obtain

μs ≤ ∣
∣(k(v))−1v

∣
∣
s = (k(v))−1 |v|s ≤ |v|s ≤ μs .

Therefore, k(v) = 1, v ∈ Ms and |v|s = μs .

Now, let u ∈ Ms be a nonnegative minimizer of |·|s and consider the convex combination

w := θu + (1 − θ)v with 0 < θ < 1.

Since the logarithm is a concave function, we have
∫

�

(logw)ωdx ≥
∫

�

(θ log(u) + (1 − θ) log(v))ωdx

= θ

∫

�

(log u)ωdx + (1 − θ)

∫

�

(log v)ωdx = 0.

This implies that c−1w ∈ Ms where c := k(w) ≥ 1.
Hence,

μs ≤ c−1 |w|s ≤ |w|s ≤ θ |u|s + (1 − θ) |v|s = θμs + (1 − θ)μs = μs .

It follows that c = 1 and the convex combination w minimizes |·|s in Ms . Consequently,

0 =
∫

�

[
log(θu + (1 − θ)v)

]
ωdx ≥

∫

�

[
θ log(u) + (1 − θ) log(v)

]
ωdx = 0.

Since the concavity of the logarithm is strict, one must have u = Cv for some positive
constant C . Taking account that 1 = k(u) = Ck(v) = C, we have u = v. ��

From now on, vs ∈ Ms denotes the only nonnegative minimizer of |·|s on Ms, given
by Proposition 6. The main result of this section, proved in the sequence, shows that if
pn → ∞ then a subsequence of

{
u pn

}
n∈N converges uniformly to a scalar multiple of vs,

say u∞ = k∞vs where k∞ ≥ 1.
In the next section (see (37)), we show that u∞ is strictly positive in�, implying thus that

−vs and vs are the only minimizers of |·|s on Ms . As consequence, the minimizers of Qs

on C0,s
0 (�)\ {0} are precisely the scalar multiples of vs (or, equivalently, the scalar multiples

of u∞). Further, we derive an equation satisfied by vs and μs in the viscosity sense (see
Corollary 16).

Lemma 7 Let u ∈ C0,s
0 (�) be extended as zero outside �. If u ∈ Ws,q(�) for some q > 1,

then u ∈ Ws,p
0 (�) for all p ≥ q and

lim
p→∞ [u]s,p = |u|s . (19)

Proof First, note that the inequality

|u(x) − u(y)| ≤ |u|s |x − y|s

is valid for all x, y ∈ R
N , not only for those x, y ∈ �. In fact, this is obvious when

x, y ∈ R
N\�.Now, if x ∈ � and y ∈ R

N\� then take y1 ∈ ∂� such that |x − y1| ≤ |x − y|
(such y1 can be taken on the straight line connecting x to y). Since u(y) = u(y1) = 0, we
have

|u(x) − u(y)| = |u(x)| = |u(x) − u(y1)| ≤ |u|s |x − y1|s ≤ |u|s |x − y|s .
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For each p > q , we have

[u]ps,p =
∫

RN

∫

RN

|u(x) − u(y)|p−q

|x − y|s(p−q)

|u(x) − u(y)|q
|x − y|N+sq

dxdy ≤ (|u|s)(p−q) [u]qs,q .

Thus, u ∈ Ws,p
0 (�) and

lim sup
p→∞

[u]s,p ≤ lim
p→∞ |u|(p−q)/p

s [u]q/p
s,q = |u|s . (20)

Now, noticing that (by Fatou’s lemma)

∫

�

∫

�

( |u(x) − u(y)|
|x − y|s

)q

dxdy ≤ lim inf
p→∞

∫

�

∫

�

(
|u(x) − u(y)|
|x − y| Np +s

)q

dxdy

and (by Hölder’s inequality)

∫

�

∫

�

(
|u(x) − u(y)|
|x − y| Np +s

)q

dxdy ≤ |�|2(1− q
p )

(∫

�

∫

�

(
|u(x) − u(y)|
|x − y| Np +s

)p

dxdy

) q
p

≤ |�|2(1− q
p ) [u]qs,p ,

we obtain

(∫

�

∫

�

( |u(x) − u(y)|
|x − y|s

)q

dxdy

) 1
q

≤ |�|2/q lim inf
p→∞ [u]s,p .

Hence, taking into account that

|u|s = lim
q→∞

(∫

�

∫

�

( |u(x) − u(y)|
|x − y|s

)q

dxdy

) 1
q

we arrive at

|u|s ≤ lim
q→∞ |�|2/q

(
lim inf
p→∞ [u]s,p

)
= lim inf

p→∞ [u]s,p .

This estimate combined with (20) leads us to (19). ��

It is known (see [7, Theorem 8.2]) that if p >
N

s
then there exists of a positive constant

C such that
‖u‖C0,β (�) ≤ C [u]s,p ∀ u ∈ Ws,p

0 (�), (21)

where β := s − N

p
∈ (0, 1). As pointed out in [13, Remark 2.2] the constant C in (21) can

be chosen uniform with respect to p.
We remark that the family of positive numbers

{
p
√

�p
}
p>1 is bounded. Indeed, combining

(12) with the previous lemma we obtain

lim sup
p→∞

p
√

�p ≤ |ξ |s .

The next lemma, where Id stands for the identity function, is extracted of the proof of [18,
Lemma 3.2]. It helps us to overcome the fact that C∞

c (�) is not dense in C0,s
0 (�).
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Lemma 8 [see [18, Lemma 3.2]]Let � ⊂ R
N be a Lipschitz bounded domain. There exist

φ ∈ C∞
c (RN ,RN ) and 0 < τ0 < (|φ|1)−1 such that, for each 0 ≤ τ ≤ τ0, the map

�τ := Id+τφ : RN → R
N

is a diffeomorphism satisfying

1. �τ (�) ⊂⊂ �,

2. �τ → Id and (�τ )
−1 → Id as τ → 0+ uniformly on RN ,

3.
∣
∣(�τ )

−1(x) − (�τ )
−1(y)

∣
∣ ≤ |x − y|

1 − τ |φ|1
.

Lemma 9 Let u ∈ C0,s
0 (�) be a nonnegative function extended as zero outside �. There

exists a sequence of nonnegative functions {uk}k∈N ⊂ C0,s
0 (�) ∩ Ws,p

0 (�), for all p > 1,
converging uniformly to u in � and such that

lim sup
k→∞

|uk |s ≤ |u|s .

Proof For each k ∈ N let �k denote the inverse of �1/k, given by Lemma 8, and set

�k := �1/k(�).

Since �k ⊂⊂ � there exists Uk, a subdomain of �, such that

�k ⊂ Uk ⊂ Uk ⊂ �.

Let η ∈ C∞(RN ) be a standard convolution kernel: η(z) > 0 if |z| < 1, η(z) = 0 if
|z| ≥ 1 and

∫
|z|≤1 φ(z)dz = 1.

Define the function

uk = (u ◦ �k) ∗ ηk ∈ C∞(RN ),

where

ηk(x) := (εk)
−Nη(

x

εk
), x ∈ R

N

and εk < dist(�k, ∂Uk). Note that εk → 0.
Since

B(x, εk) ⊂ R
N\�k ∀ x ∈ R

N\Uk,

we have

�k(B(x, εk)) ⊂ R
N\� ∀ x ∈ R

N\Uk .

Hence, observing that

uk(x) =
∫

RN
ηk(x − z)u(�k(z))dz =

∫

B(0,1)
η(z)u(ψk(x − εk z))dz ∀ x ∈ R

N

and that

|x − εk z − x | ≤ εk ∀ z ∈ B(0, 1)

we conclude that

uk(x) = 0 ∀ x ∈ R
N\Uk .
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Therefore, uk ∈ C∞
c (�) ⊂ W 1,p

0 (�) for all p > 1.
Now, let x, y ∈ � be fixed. According to item 3 of Lemma 8,

|uk(x) − uk(y)| ≤
∫

B(0,1)
η(z) |u(�k(x − εk z)) − u(�k(y − εk z))| dz

≤ |u|s
∫

B(0,1)
η(z) |�k(x − εk z) − �k(y − εk z))|s dz

≤ |u|s
(1 − (1/k) |φ|1)s

∫

B(0,1)
η(z) |x − y|s dz

= |u|s
(1 − (1/k) |φ|1)s

|x − y|s .

It follows that uk ∈ C0,s
0 (�) and

lim sup
k→∞

|uk |s ≤ lim
k→∞

|u|s
(1 − (1/k) |φ|1)s

= |u|s .

Consequently, up to a subsequence, uk → ũ ∈ C(�) uniformly in �. Hence, ũ = u since
item 2 of Lemma 8 implies that

lim
k→∞ uk(x) =

∫

B(0,1)
η(z)u( lim

k→∞ �k(x − εk z))dz = u(x)
∫

B(0,1)
η(z)dz = u(x).

��
Theorem 10 Let pn → ∞. Up to a subsequence,

{
u pn

}
n∈N converges uniformly to a non-

negative function u∞ ∈ C0,s
0 (�) such that

|u∞|s = lim
n→∞

pn
√

�pn .

Furthermore,
vs = (k∞)−1u∞ (22)

where

k∞ := k(u∞) = exp

(∫

�

(log |u∞|)ωdx
)

≥ 1. (23)

Proof Let p0 >
N

s
be fixed and take β0 = s − N

p0
. For each (x, y) ∈ � × �, with x 
= y,

we obtain from (21)
∣∣u p(x) − u p(y)

∣∣

|x − y|s− N
p0

=
∣∣u p(x) − u p(y)

∣∣

|x − y|s− N
p

|x − y|N ( 1
p0

− 1
p )

≤ C
[
u p

]
s,p diam(�)

N ( 1
p0

− 1
p )

, ∀ p ≥ p0,

whereC is uniformwith respect to p and diam(�) is the diameter of�.Hence, in view of (13)
and (12) the family

{
u p

}
p≥p0

is bounded in C0,β0
0 (�), implying that, up to a subsequence,

u pn → u∞ ∈ C(�) uniformly in �. Of course, the limit function u∞ is nonnegative in �

and vanishes on ∂�.

Letting n → ∞ in the inequality (which follows from (21))
∣∣u pn (x) − u pn (y)

∣∣

|x − y|s− N
pn

≤ C
[
u pn

]
s,pn

= C pn
√

�pn
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and taking (12) into account, we conclude that u∞ ∈ C0,s
0 (�).

Up to another subsequence, we can assume that

pn
√

�pn → L.

Let q >
N

s
be fixed. By Fatou’s Lemma and Hölder’s inequality,

∫

�

∫

�

( |u∞(x) − u∞(y)|
|x − y|s

)q

dxdy

≤ lim inf
n→∞

∫

�

∫

�

(∣
∣u pn (x) − u pn (y)

∣
∣

|x − y| N
pn

+s

)q

dxdy

≤ lim inf
n→∞ |�|2(1− q

pn
)

(∫

�

∫

�

(∣
∣u pn (x) − u pn (y)

∣
∣

|x − y| N
pn

+s

)pn

dxdy

) q
pn

≤ |�|2 lim inf
n→∞

[
u pn

]q
s,pn

= |�|2 lim
n→∞( pn

√
�pn )

q = |�|2 Lq .

Therefore,

|u∞|s = lim
q→∞

(∫

�

∫

�

( |u∞(x) − u∞(y)|
|x − y|s

)q

dxdy

)1/q

≤ lim
q→∞ |�| 2q L = L. (24)

To prove that k∞ ≥ 1, we first note that

lim
t→0+

(∫

�

∣∣u pn

∣∣t ωdx
) 1

t = inf
0<t<1

(∫

�

∣∣u pn

∣∣t ωdx
) 1

t ≤
(∫

�

∣∣u pn

∣∣ε ωdx

) 1
ε ∀ ε ∈ (0, 1).

Consequently,

1 = k(u pn ) = lim
t→0+

(∫

�

∣∣u pn

∣∣t ωdx
) 1

t ≤
(∫

�

∣∣u pn

∣∣ε ωdx

) 1
ε

.

The uniform convergence u pn → u∞ then yields

1 ≤ lim
n→∞

(∫

�

∣∣u pn

∣∣ε ωdx

) 1
ε =

(∫

�

|u∞|ε ωdx

) 1
ε

.

Therefore,

k∞ = k(u∞) = lim
ε→0+

(∫

�

|u∞|ε ωdx

) 1
ε ≥ 1.

It follows that (k∞)−1u∞ ∈ Ms, so that

μs ≤ ∣∣(k∞)−1u∞
∣∣
s = (k∞)−1 |u∞|s . (25)

In the next step, we prove that
∫

�

u

u∞
ωdx ≤ |u|s

L
∀ u ∈ C0,s

0 (�). (26)

According to Lemma 9, there exists a sequence of nonnegative functions {uk}k∈N ⊂
C0,s
0 (�) ∩ Ws,p

0 (�), for all p > 1, converging uniformly to u in C(�) and such that

lim sup
k→∞

|uk |s ≤ |u|s .
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Since u p is the weak solution of (3) and �p = [
u p

]p
s,p , we use Hölder’s inequality to get

�p

∫

�

uk
u p

ωdx = 〈
(−�p)

su p, uk
〉 ≤ [

u p
]p−1
s,p [uk]s,p = (�p)

p−1
p [uk]s,p .

It follows that

pn
√

�pn

∫

�

uk
u pn

ωdx ≤ [uk]s,pn .

Combining Fatou’s lemma with the uniform convergence u pn → u∞ and Lemma 7, we
obtain

L
∫

�

uk
u∞

ωdx ≤ L lim inf
n→∞

∫

�

uk
u pn

ωdx ≤ lim inf
n→∞ [uk]s,pn = |uk |s ,

that is,

L
∫

�

uk
u∞

ωdx ≤ |uk |s .

Letting k → ∞ and applying Fatou’s lemma again, we arrive at (26):

L
∫

�

u

u∞
ωdx ≤ L lim inf

k→∞

∫

�

uk
u∞

ωdx ≤ lim inf
k→∞ |uk |s ≤ |u|s .

Taking u = u∞ in (26), we obtain

L ≤ |u∞|s
and combining this with (24) we conclude that

L = |u∞|s . (27)

Now, let 0 ≤ u ∈ Ms be fixed. Then (16) yields

−
∫

�

(log u∞)ωdx =
∫

�

(log u)ωdx −
∫

�

(log u∞)ωdx

=
∫

�

(log(
u

u∞
))ωdx ≤ log

(∫

�

u

u∞
ωdx

)
.

Hence, (26) and (27) imply that

(k∞)−1 ≤
∫

�

u

u∞
ωdx ≤ |u|s

|u∞|s whenever 0 ≤ u ∈ Ms . (28)

Combining these estimates at u = vs with (25), we obtain

(k∞)−1 ≤
∫

�

vs

u∞
ωdx ≤ |vs |s

|u∞|s
= μs

|u∞|s
≤ (k∞)−1,

which leads us to conclude that

μs = ∣∣(k∞)−1u∞
∣∣
s and (k∞)−1 =

∫

�

vs

u∞
ωdx .

Since vs is the only nonnegative minimizer of |·|s on Ms , we get (22). ��
Corollary 11 The following inequalities hold

k(u) ≤
∫

�

|u|
vs

ωdx ≤ |u|s
μs

∀ u ∈ C0,s
0 (�). (29)
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Proof Since we already know that L = |u∞|s and u∞ = k∞vs , the second inequality in (29)
follows from (26), with u replaced with w = |u| (note that |w|s ≤ |u|s). The first inequality
in (29) is obvious when k(u) = 0 and, when k(u) > 0, it follows from the first inequality in
(28), with w = (k(u))−1 |u| ∈ Ms . ��
Remark 12 In contrast with what happens in similar problems driven by the standard p-
Laplacian, we are not able to prove that u∞ ∈ Ws,q

0 (�) for some q > 1. Such a property
would guarantee that u∞ = vs and, consequently,

lim
p→∞ u p = vs

(that is, vs would be the only limit point of the family
{
u p

}
p>1 , as p → ∞). Indeed, if

u∞ ∈ Ws,q
0 (�) for some q > 1 then, according to Lemma 7, u∞ ∈ Ws,pn

0 (�) for all n
sufficiently large (such that pn ≥ q) and

lim
n→∞ [u∞]s,pn = |u∞|s .

Hence, proceeding as in the proof of Theorem 10, we would arrive at

1 ≤ k∞ ≤
∫

�

u∞
u pn

ωdx ≤ [u∞]s,pn
pn
√

�pn
.

Since limn→∞ [u∞]s,pn = limn→∞ pn
√

�pn = |u∞|s we would conclude that k∞ = 1 and
u∞ = vs .

5 The limit problem

For amatter of compatibility with the viscosity approach, we add the hypotheses of continuity
and strict positiveness to the weight ω. So, we assume in this section that

ω ∈ C(�) ∩ Lr (�), r > 1, ω > 0 in �, and
∫

�

ωdx = 1.

Note that such ω satisfies the hypotheses of Theorem 3.
For 1 < p < ∞wewrite the s-fractional p-Laplacian, in its integral version, as

(−�p
)s =

−Lp where

(Lpu)(x) := 2
∫

RN

|u(y) − u(x)|p−2 (u(y) − u(x))

|y − x |N+sp
dy. (30)

Corresponding to the case p = ∞, we define operator L∞ by

L∞ := L+∞ + L−∞, (31)

where

(L+∞u
)
(x) := sup

y∈RN \{x}
u(y) − u(x)

|y − x |s and
(L−∞u

)
(x) := inf

y∈RN \{x}
u(y) − u(x)

|y − x |s . (32)

In the sequel, we consider, in the viscosity sense, the problem
{Lu = 0 in �

u = 0 in R
N\�,

(33)

123



2076 G. Ercole et al.

where either Lu = Lpu + �pu−1ω, with 1 < p < ∞, or

Lu = L∞u or Lu = L−∞u + |u∞|s .

We recall some definitions related to the viscosity approach for the problem (33).

Definition 13 Let u ∈ C(RN ) such that u > 0 in � and u = 0 in R
N\�. We say that u is a

viscosity supersolution of Eq. (33) if

(Lϕ)(x0) ≤ 0

for all pair (x0, ϕ) ∈ � × C1
0(R

N ) satisfying

ϕ(x0) = u(x0) and ϕ(x) ≤ u(x) ∀ x ∈ R
N .

Analogously, we say that u is a viscosity subsolution of (33) if

(Lϕ)(x0) ≥ 0

for all pair (x0, ϕ) ∈ � × C1
0(R

N ) satisfying

ϕ(x0) = u(x0) and ϕ(x) ≥ u(x) ∀ x ∈ R
N .

We say that u is a viscosity solution of (33) if it is simultaneously a subsolution and a
supersolution of (33).

The next lemma can be proved by following, step by step, the proof of Proposition 11 of
[17].

Lemma 14 Let u ∈ Ws,p
0 (�)∩C(�) be a positive weak solution of (3). Then u is a viscosity

solution of {Lpu + �pu−1ω = 0 in �

u = 0 in R
N\�.

(34)

Our main result in this section is the following, where u∞ ∈ C0,s
0 (�) is the function given

by Theorem 10.

Theorem 15 The function u∞ ∈ C0,s
0 (�), extended as zero outside �, is both a viscosity

supersolution of the problem {L∞u = 0 in �

u = 0 in R
N\� (35)

and a viscosity solution of the problem
{L−∞u + |u∞|s = 0 in �

u = 0 in R
N\�.

(36)

Moreover, u∞ is strictly positive in � and the only minimizers of |·|s on Ms are

− vs and vs . (37)

Proof We begin by proving that u∞ is a viscosity supersolution of (36). For this, let us fix
(x0, ϕ) ∈ � × C1

0(R
N ) satisfying

ϕ(x0) = u∞(x0) and ϕ(x) ≤ u∞(x) ∀ x ∈ R
N . (38)
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Without loss of generality, we can assume that

ϕ(x) < u∞(x) ∀ x ∈ R
N ,

what allows us to assure that u pn −ϕ assumes its minimum value at a point xn,with xn → x0.
Let cn := u pn (xn) − ϕ(xn). Of course, cn → 0 (due to the uniform convergence u pn →

u∞). By construction,

ϕ(xn) + cn = u pn (xn) and ϕ(x) + cn ≤ u pn (x) ∀ x ∈ R
N .

According to the previous lemma, u p is a viscosity supersolution of (34) since it is a
viscosity solution of the same problem. Therefore,

(Lpnϕ)(xn) + �pn
ω(xn)

u pn (xn)
= (Lpn (ϕ + cn))(xn) + �pn

ω(xn)

ϕ(xn) + cn
≤ 0,

an inequality that can be rewritten as

Apn−1
n + C pn−1

n ≤ B pn−1
n

where

Apn−1
n = 2

∫

RN

|ϕ(y) − ϕ(xn)|pn−2 (ϕ(y) − ϕ(xn))+

|y − x |N+spn
dy ≥ 0,

B pn−1
n = 2

∫

RN

|ϕ(y) − ϕ(xn)|pn−2 (ϕ(y) − ϕ(xn))−

|y − x |N+spn
dy ≥ 0,

and

C pn−1
n = �pn

ω(xn)

u pn (xn)
> 0.

(Here, a+ := max {a, 0} and a− := max {−a, 0} , so that a = a+ − a−.)
According to Lemma 6.1 of [13], which was adapted from Lemma 6.5 of [3], we have

lim
n→∞ An = (L+∞ϕ

)
(x0) and lim

n→∞ Bn = − (L−∞ϕ
)
(x0).

Hence, noticing that

Apn−1
n ≤ Apn−1

n + C pn−1
n ≤ B pn−1

n

we conclude that

(L∞ϕ) (x0) = (L+∞ϕ
)
(x0) + (L−∞ϕ

)
(x0) ≤ 0

since
(L+∞ϕ

)
(x0) = lim

n→∞ An ≤ lim
n→∞ Bn = − (L−∞ϕ

)
(x0).

We have proved that u∞ is a supersolution of (35). Therefore, by directly applying Lemma
22 of [17] we conclude u∞ > 0 in �.

The strict positiveness of u∞ in � and the uniqueness of the nonnegative minimizers of
|·|s on Ms imply that if w ∈ Ms is such that

|w|s = min
u∈Ms

|u|s
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then |w| = vs = (k∞)−1u∞ > 0 in � (recall that |w| is also a minimizer). The continuity of
w then implies that either w > 0 in � or w < 0 in �. Consequently, w = vs or w = −vs .

Now, recalling that

lim
n→∞(�pn )

1
pn−1 = |u∞|s

and using that ω(x0) > 0 and u∞(x0) > 0 we have

lim
n→∞Cn = |u∞|s

Hence, since

C pn−1
n ≤ Apn−1

n + C pn−1
n ≤ B pn−1

n ,

we obtain

|u∞|s = lim
n→∞Cn ≤ lim

n→∞ Bn = − (L−∞ϕ
)
(x0).

It follows that u∞ is a viscosity supersolution of (36).
Now, let us take a pair (x0, ϕ) ∈ � × C1

0(R
N ) satisfying

ϕ(x0) = u∞(x0) and ϕ(x) ≥ u∞(x) ∀ x ∈ R
N . (39)

Since

− |u∞|s ≤ u∞(x) − u∞(x0)

|x − x0|s ≤ ϕ(x) − ϕ(x0)

|x − x0|s ∀ x ∈ R
N\ {x0} ,

we have

− |u∞|s ≤ inf
x∈RN \{x0}

ϕ(x) − ϕ(x0)

|x − x0|s = (L−∞ϕ
)
(x0).

Therefore, u∞ is a viscosity subsolution of (36). ��
Since vs = (k∞)−1u∞ is the only positive minimizer of |·|s on C0,s

0 (�)\ {0} and
L−∞(ku) = kL−∞u for any positive constant k, the following corollary is immediate.

Corollary 16 The minimizer vs is a viscosity solution of the problem
{L−∞u + μs = 0 in �

u = 0 in R
N\�.
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11. Erdős, P.: Some remarks on the measurability of certain sets. Bull. Am. Math. Soc. 51, 728–731 (1945)
12. Federer H.: GeometricMeasure Theory, Grundlehren dermathematischenWissenschaften, Springer, New

York (1969)
13. Ferreira, R., Pérez-Llanos, M.: Limit problems for a Fractional p-Laplacian as p → ∞. Nonlinear Differ.

Equ. Appl. 23, 14 (2016)
14. Fukagai, N., Ito, M., Narukawa, K.: Limit as p → ∞ of p-Laplace eigenvalue problems and L∞-

inequality of the Poincaré type. Differ. Integral Equ. 12, 183–206 (1999)
15. Gray, A.: Tubes, Progr. Math., vol. 221, Birkhäuser, Basel (2004)
16. Juutinen, P., Lindqvist, P., Manfredi, J.: The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148,

89–105 (1999)
17. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)
18. Littig, S., Schuricht, F.: Convergence of the eigenvalues of the p-Laplace operator as p goes to 1. Calc.

Var. Partial Differ. Equ. 40, 707–727 (2014)
19. Mironescu, P., Sickel, W.: A Sobolev non embedding. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.

26, 291–298 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems
	Abstract
	1 Introduction
	2 Notation
	3 Finiteness of Λp
	4 The asymptotic behavior as prightarrowinfty
	5 The limit problem
	Acknowledgements
	References




