Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems

G. Ercole ${ }^{1}$ (1) \cdot G. A. Pereira ${ }^{1} \cdot$ R. Sanchis ${ }^{1}$

Received: 9 July 2018 / Accepted: 6 April 2019 / Published online: 29 April 2019
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Let Ω be a smooth, bounded domain of \mathbb{R}^{N}, ω be a positive, L^{1}-normalized function, and $0<s<1<p$. We study the asymptotic behavior, as $p \rightarrow \infty$, of the pair $\left(\sqrt[p]{\Lambda_{p}}, u_{p}\right)$, where Λ_{p} is the best constant C in the Sobolev-type inequality

$$
C \exp \left(\int_{\Omega}\left(\log |u|^{p}\right) \omega \mathrm{d} x\right) \leq[u]_{s, p}^{p} \quad \forall u \in W_{0}^{s, p}(\Omega)
$$

and u_{p} is the positive, suitably normalized extremal function corresponding to Λ_{p}. We show that the limit pairs are closely related to the problem of minimizing the quotient $|u|_{s} / \exp \left(\int_{\Omega}(\log |u|) \omega \mathrm{d} x\right)$, where $|u|_{s}$ denotes the s-Hölder seminorm of a function $u \in C_{0}^{0, s}(\bar{\Omega})$.

Keywords Asymptotic behavior • Fractional p-Laplacian • Singular problem • Viscosity solution

Mathematics Subject Classification 35D40 • 35R11 • 35J60

1 Introduction

Let Ω be a smooth (at least Lipschitz) domain of \mathbb{R}^{N}, and consider the fractional Sobolev space

$$
W_{0}^{s, p}(\Omega):=\left\{u \in L^{p}\left(\mathbb{R}^{N}\right): u=0 \text { in } \mathbb{R}^{N} \backslash \Omega \quad \text { and } \quad[u]_{s, p}<\infty\right\}, \quad 0<s<1<p,
$$

[^0]where
$$
[u]_{s, p}:=\left(\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{1}{p}}
$$

It is well known that the Gagliardo seminorm $[\cdot]_{s, p}$ is a norm in $W_{0}^{s, p}(\Omega)$ and that this Banach space is uniformly convex. Actually,

$$
W_{0}^{s, p}(\Omega)={\overline{C_{c}^{\infty}(\Omega)}}^{[\cdot]_{s, p}} .
$$

Let ω be a nonnegative function in $L^{1}(\Omega)$ satisfying $\|\omega\|_{L^{1}(\Omega)}=1$, and define

$$
\mathcal{M}_{p}:=\left\{u \in W_{0}^{s, p}(\Omega): \int_{\Omega}(\log |u|) \omega \mathrm{d} x=0\right\}
$$

and

$$
\begin{equation*}
\Lambda_{p}:=\inf \left\{[u]_{s, p}^{p}: u \in \mathcal{M}_{p}\right\} . \tag{1}
\end{equation*}
$$

In the recent paper [9], it is proved that $\Lambda_{p}>0$ and that

$$
\begin{equation*}
\Lambda_{p} \exp \left(\int_{\Omega}\left(\log |u|^{p}\right) \omega \mathrm{d} x\right) \leq[u]_{s, p}^{p} \quad \forall u \in W_{0}^{s, p}(\Omega), \tag{2}
\end{equation*}
$$

provided that $\Lambda_{p}<\infty$. Moreover, the equality in this Sobolev-type inequality holds if, and only if, u is a scalar multiple of the function $u_{p} \in \mathcal{M}_{p}$ which is the only weak solution of the problem

$$
\begin{cases}\left(-\Delta_{p}\right)^{s} u=\Lambda_{p} u^{-1} \omega & \text { in } \Omega \tag{3}\\ u>0 & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega .\end{cases}
$$

Here, $\left(-\Delta_{p}\right)^{s}$ is the s-fractional p-Laplacian, formally defined by

$$
\left(-\Delta_{p}\right)^{s} u(x)=-2 \int_{\mathbb{R}^{N}} \frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|y-x|^{N+s p}} \mathrm{~d} y .
$$

We recall that a weak solution of the equation in (3) is a function $u \in W_{0}^{s, p}(\Omega)$ satisfying

$$
\left\langle\left(-\Delta_{p}\right)^{s} u, \varphi\right\rangle=\Lambda_{p} \int_{\Omega} u^{-1} \varphi \omega \mathrm{~d} x \quad \forall \varphi \in W_{0}^{s, p}(\Omega)
$$

where

$$
\left\langle\left(-\Delta_{p}\right)^{s} u, \varphi\right\rangle:=\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^{N+s p}} \mathrm{~d} x \mathrm{~d} y
$$

is the expression of $\left(-\Delta_{p}\right)^{s}$ as an operator from $W_{0}^{s, p}(\Omega)$ into its dual.
The purpose of this paper is to determine both the asymptotic behavior of the pair $\left(\sqrt[p]{\Lambda_{p}}, u_{p}\right)$, as $p \rightarrow \infty$, and the corresponding limit problem of (3). In our study $s \in(0,1)$ is kept fixed.

After introducing, in Sect. 2, the notation used throughout the paper, we prove in Sect. 3 that $\Lambda_{p}<\infty$ by constructing a function $\xi \in C_{0}^{0,1}(\bar{\Omega}) \cap \mathcal{M}_{p}$. In the simplest case $\omega \equiv|\Omega|^{-1}$ this was made in [10] where the inequality (2) corresponding to the standard Sobolev Space $W_{0}^{1, p}(\Omega)$ has been derived.

In Sect. 4, we show that the limit problem is closely related to the problem of minimizing the quotient

$$
Q_{s}(u):=\frac{|u|_{s}}{\exp \left(\int_{\Omega}(\log |u|) \omega \mathrm{d} x\right)}
$$

on the Banach space $\left(C_{0}^{0, s}(\bar{\Omega}),|\cdot|_{s}\right)$ of the s-Hölder continuous functions in $\bar{\Omega}$ that are zero on the boundary $\partial \Omega$. Here, $|u|_{s}$ denotes the s-Hölder seminorm of u (see (6)).

We prove that if $p_{n} \rightarrow \infty$ then (up to a subsequence)

$$
u_{p_{n}} \rightarrow u_{\infty} \in C_{0}^{0, s}(\bar{\Omega}) \text { uniformly in } \bar{\Omega}, \quad \text { and } \quad \sqrt[p_{n}]{\Lambda_{p_{n}}} \rightarrow\left|u_{\infty}\right|_{s} .
$$

Moreover, the limit function u_{∞} satisfies

$$
\int_{\Omega}\left(\log \left|u_{\infty}\right|\right) \omega \mathrm{d} x \geq 0 \quad \text { and } \quad Q_{s}\left(u_{\infty}\right) \leq Q_{s}(u) \quad \forall u \in C_{0}^{0, s}(\bar{\Omega}) \backslash\{0\}
$$

and the only minimizers of the quotient Q_{s} are the scalar multiples of u_{∞}.
One of the difficulties we face in Sect. 4 is that $C_{c}^{\infty}(\Omega)$ is not dense in $\left(C_{0}^{0, s}(\Omega),|\cdot|_{s}\right)$. This makes it impossible to directly exploit the fact that u_{p} is a weak solution of (3). We overcome this issue by using a convenient technical result proved in [18, Lemma 3.2] and employed in [2] to deal with a similar approximation matter.

In Sect. 5, motivated by [3,13,17], we derive the limit problem of (3). Assuming that ω is continuous and positive in Ω, we prove that u_{∞} is a viscosity solution of

$$
\begin{cases}\mathcal{L}_{\infty}^{-} u+|u|_{s}=0 & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where

$$
\left(\mathcal{L}_{\infty}^{-} u\right)(x):=\inf _{y \in \mathbb{R}^{N} \backslash\{x\}} \frac{u(y)-u(x)}{|y-x|^{s}} .
$$

We also show u_{∞} is a viscosity supersolution of

$$
\left\{\begin{array}{l}
\mathcal{L}_{\infty} u=0 \text { in } \Omega \\
u=0 \quad \text { in } \quad \mathbb{R}^{N} \backslash \Omega
\end{array}\right.
$$

where

$$
\mathcal{L}_{\infty}:=\mathcal{L}_{\infty}^{+}+\mathcal{L}_{\infty}^{-}
$$

and

$$
\left(\mathcal{L}_{\infty}^{+} u\right)(x):=\sup _{y \in \mathbb{R}^{N} \backslash\{x\}} \frac{u(y)-u(x)}{|y-x|^{s}} .
$$

This fact guarantees that $u_{\infty}>0$ in Ω.
The existing literature on the asymptotic behavior (as $p \rightarrow \infty$) of solutions of problems involving the p-Laplacian is most focused on the local version of the operator, that is, on the problem

$$
\begin{cases}-\Delta_{p} u=f(x, u) & \text { in } \tag{4}\\ u=0 & \text { on } \\ u=\end{cases}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the standard p-Laplacian. This kind of asymptotic behavior has been studied for at least three decades (see $[1,14,16]$) and many new results, adding
the dependence of p in the term $f(x, u)$, are still being produced (see [4-6,8]). The solutions of (4) are obtained in the natural Sobolev space $W_{0}^{1, p}(\Omega)$, and an important property related to this space, crucial in the study of the asymptotic behavior of the corresponding family of solutions $\left\{u_{p}\right\}$, is the inclusion

$$
W_{0}^{1, p_{2}}(\Omega) \subset W_{0}^{1, p_{1}}(\Omega) \text { whenever } 1<p_{1}<p_{2} .
$$

It allows us to show that any uniform limit function u_{∞} of the sequence $\left\{u_{p_{n}}\right\}$ (with $p_{n} \rightarrow \infty$) is admissible as a test function in the weak formulation of (4), so that u_{∞} inherits certain properties of the functions of $\left\{u_{p_{n}}\right\}$.

Since the inclusion $W_{0}^{s, p_{2}}(\Omega) \subset W_{0}^{s, p_{1}}(\Omega)$ does not hold when $0<s<1<p_{1}<p_{2}$ (see [19]), the asymptotic behavior, as $p \rightarrow \infty$, of the solutions of the problem

$$
\left\{\begin{array}{lll}
\left(-\Delta_{p}\right)^{s} u=f(x, u) & \text { in } & \Omega \tag{5}\\
u=0 & \text { in } & \mathbb{R}^{N} \backslash \Omega
\end{array}\right.
$$

is more difficult to be determined. For example, in the case considered in the present paper ($f(x, u)=\omega(x) / u)$ we cannot ensure that the property

$$
\int_{\Omega}\left(\log \left|u_{p_{n}}\right|\right) \omega \mathrm{d} x=0
$$

is inherited by the limit function u_{∞} (see Remark 12). Actually, we are able to prove only that

$$
\int_{\Omega}\left(\log u_{\infty}\right) \omega \mathrm{d} x \geq 0
$$

As a consequence, the limit functions of the family $\left\{u_{p}\right\}_{p>1}$ might not be unique.
The study of the asymptotic behavior, as $p \rightarrow \infty$, of the solutions of (5) is quite recent and restricted to few works. In [17] the authors considered $f(x, u)=\lambda_{p}|u|^{p-2} u$ where λ_{p} is the first eigenvalue of the s-fractional p-Laplacian. Among other results, they proved that

$$
\lim _{p \rightarrow \infty} \sqrt[p]{\lambda_{p}}=R^{-s}
$$

where R is the radius of the largest ball inscribed in Ω, and that limit function u_{∞} of the family $\left\{u_{p}\right\}$ is a positive viscosity solution of

$$
\max \left\{\mathcal{L}_{\infty} u, \mathcal{L}_{\infty}^{-} u+R^{-s} u\right\}=0
$$

The equation in (5) with $f=0$ and under the nonhomogeneous boundary condition $u=g$ in $\mathbb{R}^{N} \backslash \Omega$ was first studied in [3]. It is shown that the limit function is an optimal s-Hölder extension of $g \in C^{0, s}(\partial \Omega)$ and also a viscosity solution of the equation

$$
\mathcal{L}_{\infty} u=0 \text { in } \partial \Omega .
$$

Moreover, some tools for studying the behavior as $p \rightarrow \infty$ of the solutions of (5) are developed there.

In [13], also under the boundary condition $u=g$ in $\mathbb{R}^{N} \backslash \Omega$, the cases $f=f(x)$ and $f=f(u)=|u|^{\theta(p)-2} u$ with $\Theta:=\lim _{p \rightarrow \infty} \theta(p) / p<1$ are studied. In the first case, different limit equations involving the operators $\mathcal{L}_{\infty}, \mathcal{L}_{\infty}^{+}$and \mathcal{L}_{∞}^{-}are derived according to the sign of the function $f(x)$, what resembles the known results obtained in [1], where the standard p-Laplacian is considered. For example, the limit function u_{∞} is a viscosity solution of

$$
-\mathcal{L}_{\infty}^{-} u=1 \text { in }\{f>0\} .
$$

As for the second case, the limit equation is

$$
\min \left\{-\mathcal{L}_{\infty}^{-} u-u^{\Theta},-\mathcal{L}_{\infty} u\right\}=0
$$

which is consistent with the limit equation obtained in [4] for the standard p-Laplacian and $f(u)=|u|^{\theta(p)-2} u$ satisfying $\Theta:=\lim _{p \rightarrow \infty} \theta(p) / p<1$.

2 Notation

The ball centered at $x \in \mathbb{R}^{N}$ with radius ρ is denoted by $B(x, \rho)$, and δ stands for the distance function to the boundary $\partial \Omega$, defined by

$$
\delta(x):=\min _{y \in \partial \Omega}|x-y|, \quad x \in \bar{\Omega} .
$$

We recall that $\delta \in C_{0}^{0,1}(\bar{\Omega})$ and satisfies $|\nabla \delta|=1$ a.e. in Ω. Here,

$$
C_{0}^{0, \beta}(\bar{\Omega}):=\left\{u \in C^{0, \beta}(\bar{\Omega}): u=0 \text { on } \partial \Omega\right\}, \quad 0<\beta \leq 1,
$$

where $C^{0, \beta}(\bar{\Omega})$ is the well-known β-Hölder space endowed with the norm

$$
\|u\|_{0, \beta}=\|u\|_{\infty}+|u|_{\beta}
$$

with $\|u\|_{\infty}$ denoting the sup norm of u and $|u|_{\beta}$ denoting the β-Hölder seminorm, that is,

$$
\begin{equation*}
|u|_{\beta}:=\sup _{x, y \in \bar{\Omega}, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\beta}} . \tag{6}
\end{equation*}
$$

We recall that $\left(C_{0}^{0, \beta}(\bar{\Omega}),\left.|\cdot|\right|_{\beta}\right)$ is a Banach space. The fact that the β-Hölder seminorm $|\cdot|_{\beta}$ is a norm in $C_{0}^{0, \beta}(\bar{\Omega})$ equivalent to $\|u\|_{0, \beta}$ is a consequence of the estimate

$$
\|u\|_{\infty} \leq|u|_{\beta}\|\delta\|_{\infty}^{\beta} \quad \forall u \in C_{0}^{0, \beta}(\bar{\Omega}),
$$

which in turn follows from the following

$$
\begin{equation*}
|u(x)|=\left|u(x)-u\left(y_{x}\right)\right| \leq|u|_{\beta}\left|x-y_{x}\right|^{\beta}=|u|_{\beta} \delta(x)^{\beta} \quad \forall x \in \Omega, \tag{7}
\end{equation*}
$$

where $y_{x} \in \partial \Omega$ is such that $\delta(x)=\left|x-y_{x}\right|$.
We also define

$$
C_{c}^{\infty}(\Omega):=\left\{u \in C^{\infty}(\Omega): \operatorname{supp}(f) \subset \subset \Omega\right\}
$$

where

$$
\operatorname{supp}(u):=\{x \in \Omega: u(x) \neq 0\}
$$

is the support of u and $X \subset \subset Y$ means that \bar{X} is a compact subset of Y. Analogously, we define E_{c} if E is a space of functions (e.g., $C_{c}\left(\mathbb{R}^{N}\right), C_{c}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right), C_{c}^{0, \beta}(\bar{\Omega})$).

3 Finiteness of $\boldsymbol{\Lambda}_{\boldsymbol{p}}$

Let us recall the Federer's co-area formula (see [12])

$$
\int_{\Omega} g(x)|\nabla f(x)| \mathrm{d} x=\int_{-\infty}^{\infty}\left(\int_{f^{-1}\{t\}} g(x) \mathrm{d} \mathcal{H}_{N-1}\right) \mathrm{d} t
$$

which holds whenever $g \in L^{1}(\Omega)$ and $f \in C^{0,1}(\bar{\Omega})$. (In this formula \mathcal{H}_{N-1} stands for the ($N-1$)-dimensional Hausdorff measure).

In the particular case $f=\delta$, the above formula becomes

$$
\begin{equation*}
\int_{\Omega} g(x) \mathrm{d} x=\int_{0}^{\|\delta\|_{\infty}}\left(\int_{\delta^{-1}\{t\}} g(x) \mathrm{d} \mathcal{H}_{N-1}\right) \mathrm{d} t . \tag{8}
\end{equation*}
$$

Proposition 1 Let $\omega \in L^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \omega \mathrm{d} x=1 \text { and } \omega \geq 0 \text { a.e. in } \Omega . \tag{9}
\end{equation*}
$$

There exists a nonnegative function $\xi \in C(\bar{\Omega})$ that vanishes on the boundary $\partial \Omega$ and satisfies

$$
\int_{\Omega}(\log |\xi|) \omega \mathrm{d} x=0
$$

If, in addition,

$$
\begin{equation*}
K_{\epsilon}:=\underset{0 \leq t \leq \epsilon}{\operatorname{ess}} \int_{\delta^{-1}\{t\}} \omega \mathrm{d} \mathcal{H}_{N-1}<\infty \tag{10}
\end{equation*}
$$

for some $\epsilon>0$, then $\xi \in C_{0}^{0,1}(\bar{\Omega})$.
Proof Let $\sigma:\left[0,\|\delta\|_{\infty}\right] \rightarrow[0,1]$ be the ω-distribution associated with δ, that is,

$$
\sigma(t):=\int_{\Omega_{t}} \omega \mathrm{~d} x, \quad t \in\left[0,\|\delta\|_{\infty}\right]
$$

where

$$
\Omega_{t}:=\{x \in \Omega: \delta(x)>t\}
$$

is the t-superlevel set of δ.
We remark that σ is continuous at each point $t \in\left[0,\|\delta\|_{\infty}\right]$ since the t-level set $\delta^{-1}\{t\}$ has Lebesgue measure zero. This follows, for example, from the Lebesgue density theorem (see [11], where the distance function to a general closed set in \mathbb{R}^{N} is considered).

Thus, there exists a nonincreasing sequence $\left\{t_{n}\right\} \subset\left[0,\|\delta\|_{\infty}\right]$ such that

$$
\sigma\left(t_{n}\right)=1-\frac{1}{2^{n}}
$$

Now, choose a nondecreasing, piecewise linear function $\varphi \in C\left(\left[0,\|\delta\|_{\infty}\right]\right)$ satisfying

$$
\varphi(0)=0 \quad \text { and } \quad \varphi\left(t_{n}\right)=\frac{1}{2^{n}},
$$

and take the function

$$
\xi_{1}:=\varphi \circ \delta \in C_{0}(\bar{\Omega})
$$

Taking into account that

$$
t_{n+1} \leq \delta(x) \leq t_{n} \quad \text { a.e. } x \in \Omega_{t_{n+1}} \backslash \Omega_{t_{n}}
$$

one has

$$
\frac{1}{2^{n+1}}=\varphi\left(t_{n+1}\right) \leq \xi_{1}(x) \leq \varphi\left(t_{n}\right)=\frac{1}{2^{n}} \quad \text { a.e. } x \in \Omega_{t_{n+1}} \backslash \Omega_{t_{n}} .
$$

Consequently,

$$
\begin{aligned}
\int_{\Omega}\left|\xi_{1}\right|^{\epsilon} \omega \mathrm{d} x & \geq \int_{\Omega_{t_{1}}}\left|\xi_{1}\right|^{\epsilon} \omega \mathrm{d} x+\sum_{k=1}^{n} \int_{\Omega_{t_{k+1}} \backslash \Omega_{t_{k}}}\left|\xi_{1}\right|^{\epsilon} \omega \mathrm{d} x \\
& \geq \frac{1}{2^{\epsilon}} \int_{\Omega_{t_{1}}} \omega \mathrm{~d} x+\sum_{k=1}^{n} \frac{1}{2^{\epsilon(k+1)}} \int_{\Omega_{t_{k+1}} \backslash \Omega_{t_{k}}} \omega \mathrm{~d} x \\
& =\frac{1}{2^{\epsilon}} \sigma\left(t_{1}\right)+\sum_{k=1}^{n} \frac{1}{2^{\epsilon(k+1)}}\left(\sigma\left(t_{k+1}\right)-\sigma\left(t_{k}\right)\right) \\
& =\frac{1}{2^{\epsilon}} \frac{1}{2}+\sum_{k=1}^{n} \frac{1}{2^{\epsilon(k+1)}} \frac{1}{2^{k+1}}=\sum_{k=1}^{n+1}\left((1 / 2)^{\epsilon+1}\right)^{k} .
\end{aligned}
$$

It follows that

$$
\lim _{\epsilon \rightarrow 0}\left(\int_{\Omega}\left|\xi_{1}\right|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}} \geq \lim _{\epsilon \rightarrow 0}\left(\sum_{k=1}^{\infty}\left((1 / 2)^{\epsilon+1}\right)^{k}\right)^{\frac{1}{\epsilon}}=\lim _{\epsilon \rightarrow 0}\left(\frac{(1 / 2)^{\epsilon+1}}{1-(1 / 2)^{\epsilon+1}}\right)^{\frac{1}{\epsilon}}=\frac{1}{4}
$$

Taking $\xi:=k \xi_{1}$ with

$$
k=\lim _{\epsilon \rightarrow 0}\left(\int_{\Omega}\left|\xi_{1}\right|^{\epsilon} \omega \mathrm{d} x\right)^{-\frac{1}{\epsilon}}
$$

we obtain, by L'Hôpital's rule,

$$
1=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{\Omega}|\xi|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}}=\exp \left(\int_{\Omega}(\log |\xi|) \omega \mathrm{d} x\right)
$$

Hence,

$$
\int_{\Omega}(\log |\xi|) \omega \mathrm{d} x=0
$$

We now prove that $\xi_{1} \in C^{0,1}(\bar{\Omega})$ under the additional hypothesis (10). Since the nondecreasing function φ can be chosen such that φ^{\prime} is bounded in any closed interval contained in $\left(0,\|\delta\|_{\infty}\right]$, we can assume that $\nabla \xi_{1} \in L_{\text {loc }}^{\infty}(\Omega)$ (note that $\left|\nabla \xi_{1}\right|=\left|\varphi^{\prime}(\delta) \nabla \delta\right|=\left|\varphi^{\prime}(\delta)\right|$ a.e. in Ω).

Thus, it suffices to show that the quotient

$$
Q(x, y):=\frac{\left|\xi_{1}(x)-\xi_{1}(y)\right|}{|x-y|}
$$

is bounded uniformly with respect to $y \in \partial \Omega$ and $x \in \Omega_{\epsilon}^{c}:=\{x \in \bar{\Omega}: \delta(x) \leq \epsilon\}$, where ϵ is given by (10).

Let $x \in \Omega_{\epsilon}^{c}$ and $y \in \partial \Omega$ be fixed and chose $n \in \mathbb{N}$ sufficiently large such that

$$
t_{n+1}<\delta(x) \leq t_{n} \leq \epsilon .
$$

Since $\xi_{1}(y)=0$ and φ is nondecreasing, one has

$$
\left|\xi_{1}(x)-\xi_{1}(y)\right|=\xi_{1}(x) \leq \varphi\left(t_{n}\right)=\frac{1}{2^{n}} .
$$

Moreover,

$$
t_{n+1}<\delta(x) \leq|x-y| .
$$

Hence,

$$
Q(x, y) \leq \frac{1}{2^{n} t_{n+1}} \quad \text { whenever } y \in \partial \Omega \text { and } x \in \Omega_{\epsilon}^{c} .
$$

Applying the co-area formula (8) with $g=\omega$ and $\Omega=\Omega_{t_{n}+1}^{c}$, we find

$$
\frac{1}{2^{n+1}}=\int_{\Omega_{t_{n}+1}^{c}} \omega \mathrm{~d} x=\int_{0}^{t_{n+1}}\left(\int_{\delta^{-1}\{t\}} \omega \mathrm{d} \mathcal{H}_{N-1}\right) \mathrm{d} t \leq K_{\epsilon} t_{n+1} .
$$

It follows that

$$
\begin{equation*}
Q(x, y) \leq \frac{1}{2^{n} t_{n+1}} \leq \frac{K_{\epsilon} 2^{n+1}}{2^{n}}=2 K_{\epsilon} \quad \text { whenever } y \in \partial \Omega \text { and } x \in \Omega_{\epsilon}^{c}, \tag{11}
\end{equation*}
$$

concluding thus the proof that $\xi_{1} \in C^{0,1}(\bar{\Omega})$.
Remark 2 The estimate (11) can also be obtained from the Weyl's Formula (see [15]) provided that ω is bounded on an ϵ-tubular neighborhood of $\partial \Omega$.

In the remaining of this section, ξ denotes the function obtained in Proposition 1 extended as zero outside Ω. So,

$$
\xi \in C_{0}^{0,1}(\bar{\Omega}) \text { and } \int_{\Omega}(\log |\xi|) \omega \mathrm{d} x=0 .
$$

Since $C_{0}^{0,1}(\bar{\Omega}) \subseteq W_{0}^{1, p}(\Omega) \subseteq W_{0}^{s, p}(\Omega)$, we have $\xi \in \mathcal{M}_{p}$ (for a proof of the second inclusion see [7]). Therefore,

$$
\begin{equation*}
\Lambda_{p} \leq[\xi]_{s, p}^{p} \quad \forall p>1 . \tag{12}
\end{equation*}
$$

Combining (12) with the results proved in [9, Section 4] (which requires $\omega \in L^{r}(\Omega)$, for some $r>1$), we have the following theorem.

Theorem 3 Let ω be a function in $L^{r}(\Omega)$, for some $r>1$, satisfying (9)-(10). For each $p>1$, the infimum Λ_{p} in (1) is attained by a function $u_{p} \in \mathcal{M}_{p}$ which is the only positive weak solution of

$$
\left(-\Delta_{p}\right)^{s} u=\Lambda_{p} u^{-1} \omega, \quad u \in W_{0}^{s, p}(\Omega) .
$$

Summarizing,

$$
\begin{equation*}
\left[u_{p}\right]_{s, p}^{p}=\Lambda_{p}:=\min \left\{[u]_{s, p}^{p}: u \in \mathcal{M}_{p}\right\} \leq[\xi]_{s, p}^{p} \quad \forall p>1, \tag{13}
\end{equation*}
$$

and u_{p} is the unique function in $W_{0}^{1, p}(\Omega)$ satisfying

$$
u_{p}>0 \text { in } \Omega \text { and }\left\langle\left(-\Delta_{p}\right)^{s} u_{p}, \phi\right\rangle=\Lambda_{p} \int_{\Omega} \omega\left(u_{p}\right)^{-1} \phi \mathrm{~d} x \quad \forall \phi \in W_{0}^{s, p}(\Omega)
$$

We also have

$$
0<\sqrt[p]{\Lambda_{p}} \leq \frac{[u]_{s, p}}{\exp \left(\int_{\Omega}(\log |u|) \omega \mathrm{d} x\right)} \quad \forall u \in W_{0}^{s, p}(\Omega)
$$

since the quotient is homogeneous.
Remark 4 It is worth pointing out that

$$
\begin{equation*}
\int_{\Omega}(\log |u|) \omega \mathrm{d} x=-\infty \tag{14}
\end{equation*}
$$

for any function $u \in L^{\infty}(\Omega)$ whose $\operatorname{supp} u$ is a proper subset of supp ω. Indeed, in this case we have
$0 \leq \exp \left(\int_{\Omega}(\log |u|) \omega \mathrm{d} x\right)=\lim _{t \rightarrow 0^{+}}\left(\int_{\Omega}|u|^{t} \omega \mathrm{~d} x\right)^{\frac{1}{t}} \leq\|u\|_{\infty} \lim _{t \rightarrow 0^{+}}\left(\int_{\text {supp| }|u|} \omega \mathrm{d} x\right)^{\frac{1}{t}}=0$.
Thus, if $\omega>0$ almost everywhere in Ω then (14) holds for every $u \in C_{c}^{\infty}(\Omega) \backslash\{0\}$.

4 The asymptotic behavior as $\boldsymbol{p} \rightarrow \infty$

In this section, we assume that the weight ω satisfies the hypothesis of Theorem 3. Our goal is to relate the asymptotic behavior (as $p \rightarrow \infty$) of the pair $\left(\sqrt[p]{\Lambda_{p}}, u_{p}\right)$ with the problem of minimizing the homogeneous quotient $Q_{s}: C_{0}^{0, s}(\bar{\Omega}) \backslash\{0\} \rightarrow(0, \infty)$ defined by

$$
Q_{s}(u):=\frac{|u|_{s}}{k(u)} \quad \text { where } \quad k(u):=\exp \left(\int_{\Omega}(\log |u|) \omega \mathrm{d} x\right) .
$$

Note that $k(u)=0$ if, and only if, u satisfies (14). In particular, according to Remark 4,

$$
\omega>0 \quad \text { a.e. in } \Omega \Longrightarrow Q_{s}(u)=\infty \quad \forall u \in C_{c}^{\infty}(\Omega) \backslash\{0\} .
$$

We also observe that

$$
\begin{equation*}
0 \leq k(u) \leq \int_{\Omega}|u| \omega \mathrm{d} x<\infty \quad \forall u \in C_{0}^{0, s}(\bar{\Omega}) \backslash\{0\}, \tag{15}
\end{equation*}
$$

where the second inequality is consequence of the Jensen's inequality (since the logarithm is concave):

$$
\begin{equation*}
\int_{\Omega}(\log |u|) \omega \mathrm{d} x \leq \log \left(\int_{\Omega}|u| \omega \mathrm{d} x\right) . \tag{16}
\end{equation*}
$$

Now, let us define

$$
\mu_{s}:=\inf _{u \in C_{0}^{0, s}(\bar{\Omega}) \backslash\{0\}} Q_{s}(u) .
$$

Thanks to the homogeneity of Q_{s}, we have

$$
\mu_{s}=\inf _{u \in \mathcal{M}_{s}}|u|_{s}
$$

where

$$
\mathcal{M}_{s}:=\left\{u \in C_{0}^{0, s}(\bar{\Omega}): k(u)=1\right\} .
$$

Combining (15) and (7), we obtain

$$
1 \leq \int_{\Omega}|u| \omega \mathrm{d} x \leq|u|_{s} \int_{\Omega} \delta^{s} \omega \mathrm{~d} x \quad \forall u \in \mathcal{M}_{s},
$$

what yields the following positive lower bound to μ_{s}

$$
\left(\int_{\Omega} \delta^{s} \omega \mathrm{~d} x\right)^{-1} \leq \mu_{s}
$$

In the sequel we show that μ_{s} is in fact a minimum, attained at a unique nonnegative function. Before this, let us make an important remark.

Remark 5 If v minimizes $|\cdot|_{s}$ in \mathcal{M}_{s} the same holds for $|v|$, since the function $w=|v|$ belongs to \mathcal{M}_{s} and satisfies $|w|_{s} \leq|v|_{s}$.

Proposition 6 There exists a unique nonnegative function $v \in \mathcal{M}_{s}$ such that

$$
\mu_{s}=|v|_{s} .
$$

Proof Let $\left\{v_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{M}_{s}$ be such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|v_{n}\right|_{s}=\mu_{s} . \tag{17}
\end{equation*}
$$

Since the function $w_{n}=\left|v_{n}\right|$ belongs to \mathcal{M}_{s} and satisfies $\left|w_{n}\right|_{s} \leq\left|v_{n}\right|_{s}$, we can assume that $v_{n} \geq 0$ in Ω.

It follows from (17) that $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C_{0}^{0, s}(\bar{\Omega})$. Hence, the compactness of the embedding $C_{0}^{0, s}(\bar{\Omega}) \hookrightarrow C_{0}(\bar{\Omega})$ allows us to assume (by renaming a subsequence) that $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to a function $v \in C_{0}(\bar{\Omega})$. Of course, $v \geq 0$ in Ω.

Letting $n \rightarrow \infty$ in the inequality

$$
\left|v_{n}(x)-v_{n}(y)\right| \leq\left|v_{n}\right|_{s}|x-y|^{s} \quad \forall x, y \in \bar{\Omega}
$$

and taking (17) into account, we obtain

$$
|v(x)-v(y)| \leq \mu_{s}|x-y|^{s} \quad \forall x, y \in \bar{\Omega} .
$$

This implies that $v \in C_{0}^{0, s}(\bar{\Omega})$ and

$$
\begin{equation*}
|v|_{s} \leq \mu_{s} . \tag{18}
\end{equation*}
$$

Thus, to prove that $\mu_{s}=|v|_{s}$ it suffices to verify that $v \in \mathcal{M}_{s}$. Since

$$
1=k\left(v_{n}\right)=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{\Omega}\left|v_{n}\right|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}} \leq\left(\int_{\Omega}\left|v_{n}\right|^{t} \omega \mathrm{~d} x\right)^{\frac{1}{t}} \quad \forall t>0
$$

the uniform convergence $v_{n} \rightarrow v$ yields

$$
1 \leq\left(\int_{\Omega}|v|^{t} \omega \mathrm{~d} x\right)^{\frac{1}{t}} \quad \forall t>0 .
$$

Hence,

$$
1 \leq \lim _{t \rightarrow 0^{+}}\left(\int_{\Omega}|v|^{t} \mathrm{~d} x\right)^{\frac{1}{t}}=k(v) .
$$

Thus, noticing that $(k(v))^{-1} v \in \mathcal{M}_{s}$ and taking (18) into account, we obtain

$$
\mu_{s} \leq\left|(k(v))^{-1} v\right|_{s}=(k(v))^{-1}|v|_{s} \leq|v|_{s} \leq \mu_{s} .
$$

Therefore, $k(v)=1, v \in \mathcal{M}_{s}$ and $|v|_{s}=\mu_{s}$.
Now, let $u \in \mathcal{M}_{s}$ be a nonnegative minimizer of $|\cdot|_{s}$ and consider the convex combination

$$
w:=\theta u+(1-\theta) v \quad \text { with } 0<\theta<1 .
$$

Since the logarithm is a concave function, we have

$$
\begin{aligned}
\int_{\Omega}(\log w) \omega \mathrm{d} x & \geq \int_{\Omega}(\theta \log (u)+(1-\theta) \log (v)) \omega \mathrm{d} x \\
& =\theta \int_{\Omega}(\log u) \omega \mathrm{d} x+(1-\theta) \int_{\Omega}(\log v) \omega \mathrm{d} x=0 .
\end{aligned}
$$

This implies that $c^{-1} w \in \mathcal{M}_{s}$ where $c:=k(w) \geq 1$.
Hence,

$$
\mu_{s} \leq c^{-1}|w|_{s} \leq|w|_{s} \leq \theta|u|_{s}+(1-\theta)|v|_{s}=\theta \mu_{s}+(1-\theta) \mu_{s}=\mu_{s} .
$$

It follows that $c=1$ and the convex combination w minimizes $|\cdot|_{s}$ in \mathcal{M}_{s}. Consequently,

$$
0=\int_{\Omega}[\log (\theta u+(1-\theta) v)] \omega \mathrm{d} x \geq \int_{\Omega}[\theta \log (u)+(1-\theta) \log (v)] \omega \mathrm{d} x=0 .
$$

Since the concavity of the logarithm is strict, one must have $u=C v$ for some positive constant C. Taking account that $1=k(u)=C k(v)=C$, we have $u=v$.

From now on, $v_{s} \in \mathcal{M}_{s}$ denotes the only nonnegative minimizer of $|\cdot|_{s}$ on \mathcal{M}_{s}, given by Proposition 6. The main result of this section, proved in the sequence, shows that if $p_{n} \rightarrow \infty$ then a subsequence of $\left\{u_{p_{n}}\right\}_{n \in \mathbb{N}}$ converges uniformly to a scalar multiple of v_{s}, say $u_{\infty}=k_{\infty} v_{s}$ where $k_{\infty} \geq 1$.

In the next section (see (37)), we show that u_{∞} is strictly positive in Ω, implying thus that $-v_{s}$ and v_{s} are the only minimizers of $|\cdot|_{s}$ on \mathcal{M}_{s}. As consequence, the minimizers of Q_{s} on $C_{0}^{0, s}(\bar{\Omega}) \backslash\{0\}$ are precisely the scalar multiples of v_{s} (or, equivalently, the scalar multiples of u_{∞}). Further, we derive an equation satisfied by v_{s} and μ_{s} in the viscosity sense (see Corollary 16).

Lemma 7 Let $u \in C_{0}^{0, s}(\bar{\Omega})$ be extended as zero outside Ω. If $u \in W^{s, q}(\Omega)$ for some $q>1$, then $u \in W_{0}^{s, p}(\Omega)$ for all $p \geq q$ and

$$
\begin{equation*}
\lim _{p \rightarrow \infty}[u]_{s, p}=|u|_{s} . \tag{19}
\end{equation*}
$$

Proof First, note that the inequality

$$
|u(x)-u(y)| \leq|u|_{s}|x-y|^{s}
$$

is valid for all $x, y \in \mathbb{R}^{N}$, not only for those $x, y \in \bar{\Omega}$. In fact, this is obvious when $x, y \in \mathbb{R}^{N} \backslash \bar{\Omega}$. Now, if $x \in \Omega$ and $y \in \mathbb{R}^{N} \backslash \bar{\Omega}$ then take $y_{1} \in \partial \Omega$ such that $\left|x-y_{1}\right| \leq|x-y|$ (such y_{1} can be taken on the straight line connecting x to y). Since $u(y)=u\left(y_{1}\right)=0$, we have

$$
|u(x)-u(y)|=|u(x)|=\left|u(x)-u\left(y_{1}\right)\right| \leq|u|_{s}\left|x-y_{1}\right|^{s} \leq|u|_{s}|x-y|^{s} .
$$

For each $p>q$, we have

$$
[u]_{s, p}^{p}=\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p-q}}{|x-y|^{s(p-q)}} \frac{|u(x)-u(y)|^{q}}{|x-y|^{N+s q}} \mathrm{~d} x \mathrm{~d} y \leq\left(|u|_{s}\right)^{(p-q)}[u]_{s, q}^{q}
$$

Thus, $u \in W_{0}^{s, p}(\Omega)$ and

$$
\begin{equation*}
\limsup _{p \rightarrow \infty}[u]_{s, p} \leq \lim _{p \rightarrow \infty}|u|_{s}^{(p-q) / p}[u]_{s, q}^{q / p}=|u|_{s} . \tag{20}
\end{equation*}
$$

Now, noticing that (by Fatou's lemma)

$$
\int_{\Omega} \int_{\Omega}\left(\frac{|u(x)-u(y)|}{|x-y|^{s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y \leq \liminf _{p \rightarrow \infty} \int_{\Omega} \int_{\Omega}\left(\frac{|u(x)-u(y)|}{|x-y|^{\frac{N}{p}+s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y
$$

and (by Hölder's inequality)

$$
\begin{aligned}
\int_{\Omega} \int_{\Omega}\left(\frac{|u(x)-u(y)|}{|x-y|^{\frac{N}{p}+s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y & \leq|\Omega|^{2\left(1-\frac{q}{p}\right)}\left(\int_{\Omega} \int_{\Omega}\left(\frac{|u(x)-u(y)|}{|x-y|^{\frac{N}{p}+s}}\right)^{p} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{q}{p}} \\
& \leq|\Omega|^{2\left(1-\frac{q}{p}\right)}[u]_{s, p}^{q}
\end{aligned}
$$

we obtain

$$
\left(\int_{\Omega} \int_{\Omega}\left(\frac{|u(x)-u(y)|}{|x-y|^{s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{1}{q}} \leq|\Omega|^{2 / q} \liminf _{p \rightarrow \infty}[u]_{s, p}
$$

Hence, taking into account that

$$
|u|_{s}=\lim _{q \rightarrow \infty}\left(\int_{\Omega} \int_{\Omega}\left(\frac{|u(x)-u(y)|}{|x-y|^{s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{1}{q}}
$$

we arrive at

$$
|u|_{s} \leq \lim _{q \rightarrow \infty}|\Omega|^{2 / q}\left(\liminf _{p \rightarrow \infty}[u]_{s, p}\right)=\liminf _{p \rightarrow \infty}[u]_{s, p} .
$$

This estimate combined with (20) leads us to (19).
It is known (see [7, Theorem 8.2]) that if $p>\frac{N}{S}$ then there exists of a positive constant C such that

$$
\begin{equation*}
\|u\|_{C^{0, \beta}(\bar{\Omega})} \leq C[u]_{s, p} \quad \forall u \in W_{0}^{s, p}(\Omega), \tag{21}
\end{equation*}
$$

where $\beta:=s-\frac{N}{p} \in(0,1)$. As pointed out in [13, Remark 2.2] the constant C in (21) can be chosen uniform with respect to p.

We remark that the family of positive numbers $\left\{\sqrt[p]{\Lambda_{p}}\right\}_{p>1}$ is bounded. Indeed, combining (12) with the previous lemma we obtain

$$
\limsup _{p \rightarrow \infty} \sqrt[p]{\Lambda_{p}} \leq|\xi|_{s}
$$

The next lemma, where Id stands for the identity function, is extracted of the proof of [18, Lemma 3.2]. It helps us to overcome the fact that $C_{c}^{\infty}(\Omega)$ is not dense in $C_{0}^{0, s}(\bar{\Omega})$.

Lemma 8 [see [18, Lemma 3.2]]Let $\Omega \subset \mathbb{R}^{N}$ be a Lipschitz bounded domain. There exist $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and $0<\tau_{0}<\left(|\phi|_{1}\right)^{-1}$ such that, for each $0 \leq \tau \leq \tau_{0}$, the map

$$
\Phi_{\tau}:=\operatorname{Id}+\tau \phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

is a diffeomorphism satisfying

1. $\Phi_{\tau}(\bar{\Omega}) \subset \subset \Omega$,
2. $\Phi_{\tau} \rightarrow \mathrm{Id}$ and $\left(\Phi_{\tau}\right)^{-1} \rightarrow$ Id as $\tau \rightarrow 0^{+}$uniformly on \mathbb{R}^{N},
3. $\left|\left(\Phi_{\tau}\right)^{-1}(x)-\left(\Phi_{\tau}\right)^{-1}(y)\right| \leq \frac{|x-y|}{1-\tau|\phi|_{1}}$.

Lemma 9 Let $u \in C_{0}^{0, s}(\bar{\Omega})$ be a nonnegative function extended as zero outside Ω. There exists a sequence of nonnegative functions $\left\{u_{k}\right\}_{k \in \mathbf{N}} \subset C_{0}^{0, s}(\bar{\Omega}) \cap W_{0}^{s, p}(\Omega)$, for all $p>1$, converging uniformly to u in $\bar{\Omega}$ and such that

$$
\limsup _{k \rightarrow \infty}\left|u_{k}\right|_{s} \leq|u|_{s} .
$$

Proof For each $k \in \mathbb{N}$ let Ψ_{k} denote the inverse of $\Phi_{1 / k}$, given by Lemma 8, and set

$$
\Omega_{k}:=\Phi_{1 / k}(\bar{\Omega}) .
$$

Since $\Omega_{k} \subset \subset \Omega$ there exists U_{k}, a subdomain of Ω, such that

$$
\overline{\Omega_{k}} \subset U_{k} \subset \overline{U_{k}} \subset \Omega
$$

Let $\eta \in C^{\infty}\left(\mathbb{R}^{N}\right)$ be a standard convolution kernel: $\eta(z)>0$ if $|z|<1, \eta(z)=0$ if $|z| \geq 1$ and $\int_{|z| \leq 1} \phi(z) \mathrm{d} z=1$.

Define the function

$$
u_{k}=\left(u \circ \Psi_{k}\right) * \eta_{k} \in C^{\infty}\left(\mathbb{R}^{N}\right),
$$

where

$$
\eta_{k}(x):=\left(\epsilon_{k}\right)^{-N} \eta\left(\frac{x}{\epsilon_{k}}\right), \quad x \in \mathbb{R}^{N}
$$

and $\epsilon_{k}<\operatorname{dist}\left(\Omega_{k}, \partial U_{k}\right)$. Note that $\epsilon_{k} \rightarrow 0$.
Since

$$
B\left(x, \epsilon_{k}\right) \subset \mathbb{R}^{N} \backslash \Omega_{k} \quad \forall x \in \mathbb{R}^{N} \backslash U_{k},
$$

we have

$$
\Psi_{k}\left(B\left(x, \epsilon_{k}\right)\right) \subset \mathbb{R}^{N} \backslash \Omega \quad \forall x \in \mathbb{R}^{N} \backslash U_{k} .
$$

Hence, observing that

$$
u_{k}(x)=\int_{\mathbb{R}^{N}} \eta_{k}(x-z) u\left(\Psi_{k}(z)\right) \mathrm{d} z=\int_{B(0,1)} \eta(z) u\left(\psi_{k}\left(x-\epsilon_{k} z\right)\right) \mathrm{d} z \quad \forall x \in \mathbb{R}^{N}
$$

and that

$$
\left|x-\epsilon_{k} z-x\right| \leq \epsilon_{k} \quad \forall z \in B(0,1)
$$

we conclude that

$$
u_{k}(x)=0 \quad \forall x \in \mathbb{R}^{N} \backslash U_{k}
$$

Therefore, $u_{k} \in C_{c}^{\infty}(\Omega) \subset W_{0}^{1, p}(\Omega)$ for all $p>1$.
Now, let $x, y \in \bar{\Omega}$ be fixed. According to item 3 of Lemma 8,

$$
\begin{aligned}
\left|u_{k}(x)-u_{k}(y)\right| & \leq \int_{B(0,1)} \eta(z)\left|u\left(\Psi_{k}\left(x-\epsilon_{k} z\right)\right)-u\left(\Psi_{k}\left(y-\epsilon_{k} z\right)\right)\right| \mathrm{d} z \\
& \leq|u|_{s} \int_{B(0,1)} \eta(z)\left|\Psi_{k}\left(x-\epsilon_{k} z\right)-\Psi_{k}\left(y-\epsilon_{k} z\right)\right|^{s} \mathrm{~d} z \\
& \leq \frac{|u|_{s}}{\left(1-(1 / k)|\phi|_{1}\right)^{s}} \int_{B(0,1)} \eta(z)|x-y|^{s} \mathrm{~d} z \\
& =\frac{|u|_{s}}{\left(1-(1 / k)|\phi|_{1}\right)^{s}}|x-y|^{s} .
\end{aligned}
$$

It follows that $u_{k} \in C_{0}^{0, s}(\bar{\Omega})$ and

$$
\limsup _{k \rightarrow \infty}\left|u_{k}\right|_{s} \leq \lim _{k \rightarrow \infty} \frac{|u|_{s}}{\left(1-(1 / k)|\phi|_{1}\right)^{s}}=|u|_{s} .
$$

Consequently, up to a subsequence, $u_{k} \rightarrow \widetilde{u} \in C(\bar{\Omega})$ uniformly in $\bar{\Omega}$. Hence, $\widetilde{u}=u$ since item 2 of Lemma 8 implies that

$$
\lim _{k \rightarrow \infty} u_{k}(x)=\int_{B(0,1)} \eta(z) u\left(\lim _{k \rightarrow \infty} \Psi_{k}\left(x-\epsilon_{k} z\right)\right) \mathrm{d} z=u(x) \int_{B(0,1)} \eta(z) \mathrm{d} z=u(x) .
$$

Theorem 10 Let $p_{n} \rightarrow \infty$. Up to a subsequence, $\left\{u_{p_{n}}\right\}_{n \in \mathbb{N}}$ converges uniformly to a nonnegative function $u_{\infty} \in C_{0}^{0, s}(\bar{\Omega})$ such that

$$
\left|u_{\infty}\right|_{s}=\lim _{n \rightarrow \infty} \sqrt[p_{n}]{\Lambda_{p_{n}}} .
$$

Furthermore,

$$
\begin{equation*}
v_{s}=\left(k_{\infty}\right)^{-1} u_{\infty} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{\infty}:=k\left(u_{\infty}\right)=\exp \left(\int_{\Omega}\left(\log \left|u_{\infty}\right|\right) \omega \mathrm{d} x\right) \geq 1 . \tag{23}
\end{equation*}
$$

Proof Let $p_{0}>\frac{N}{s}$ be fixed and take $\beta_{0}=s-\frac{N}{p_{0}}$. For each $(x, y) \in \Omega \times \Omega$, with $x \neq y$, we obtain from (21)

$$
\begin{aligned}
\frac{\left|u_{p}(x)-u_{p}(y)\right|}{|x-y|^{s-\frac{N}{p_{0}}}} & =\frac{\left|u_{p}(x)-u_{p}(y)\right|}{|x-y|^{s-\frac{N}{p}}}|x-y|^{N\left(\frac{1}{p_{0}}-\frac{1}{p}\right)} \\
& \leq C\left[u_{p}\right]_{s, p} \operatorname{diam}(\Omega)^{N\left(\frac{1}{p_{0}}-\frac{1}{p}\right)}, \quad \forall p \geq p_{0},
\end{aligned}
$$

where C is uniform with respect to p and $\operatorname{diam}(\Omega)$ is the diameter of Ω. Hence, in view of (13) and (12) the family $\left\{u_{p}\right\}_{p \geq p_{0}}$ is bounded in $C_{0}^{0, \beta_{0}}(\bar{\Omega})$, implying that, up to a subsequence, $u_{p_{n}} \rightarrow u_{\infty} \in C(\bar{\Omega})$ uniformly in $\bar{\Omega}$. Of course, the limit function u_{∞} is nonnegative in Ω and vanishes on $\partial \Omega$.

Letting $n \rightarrow \infty$ in the inequality (which follows from (21))

$$
\frac{\left|u_{p_{n}}(x)-u_{p_{n}}(y)\right|}{|x-y|^{s-\frac{N}{p_{n}}}} \leq C\left[u_{p_{n}}\right]_{s, p_{n}}=C \sqrt[p_{n}]{\Lambda_{p_{n}}}
$$

and taking (12) into account, we conclude that $u_{\infty} \in C_{0}^{0, s}(\bar{\Omega})$.
Up to another subsequence, we can assume that

$$
\sqrt[p_{n}]{\Lambda_{p_{n}}} \rightarrow L .
$$

Let $q>\frac{N}{s}$ be fixed. By Fatou's Lemma and Hölder's inequality,

$$
\begin{aligned}
& \int_{\Omega} \int_{\Omega}\left(\frac{\left|u_{\infty}(x)-u_{\infty}(y)\right|}{|x-y|^{s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y \\
& \quad \leq \liminf _{n \rightarrow \infty} \int_{\Omega} \int_{\Omega}\left(\frac{\left|u_{p_{n}}(x)-u_{p_{n}}(y)\right|}{|x-y|^{\frac{N}{p_{n}}+s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y \\
& \quad \leq \liminf _{n \rightarrow \infty}|\Omega|^{2\left(1-\frac{q}{p_{n}}\right)}\left(\int_{\Omega} \int_{\Omega}\left(\frac{\left|u_{p_{n}}(x)-u_{p_{n}}(y)\right|}{|x-y|^{\frac{N}{p_{n}}+s}}\right)^{p_{n}} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{q}{p_{n}}} \\
& \quad \leq|\Omega|^{2} \liminf _{n \rightarrow \infty}\left[u_{p_{n}}\right]_{s, p_{n}}^{q}=|\Omega|^{2} \lim _{n \rightarrow \infty}\left(\sqrt[p_{n}]{\Lambda_{p_{n}}}\right)^{q}=|\Omega|^{2} L^{q} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|u_{\infty}\right|_{s}=\lim _{q \rightarrow \infty}\left(\int_{\Omega} \int_{\Omega}\left(\frac{\left|u_{\infty}(x)-u_{\infty}(y)\right|}{|x-y|^{s}}\right)^{q} \mathrm{~d} x \mathrm{~d} y\right)^{1 / q} \leq \lim _{q \rightarrow \infty}|\Omega|^{\frac{2}{q}} L=L . \tag{24}
\end{equation*}
$$

To prove that $k_{\infty} \geq 1$, we first note that
$\lim _{t \rightarrow 0^{+}}\left(\int_{\Omega}\left|u_{p_{n}}\right|^{t} \omega \mathrm{~d} x\right)^{\frac{1}{t}}=\inf _{0<t<1}\left(\int_{\Omega}\left|u_{p_{n}}\right|^{t} \omega \mathrm{~d} x\right)^{\frac{1}{t}} \leq\left(\int_{\Omega}\left|u_{p_{n}}\right|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}} \quad \forall \epsilon \in(0,1)$.
Consequently,

$$
1=k\left(u_{p_{n}}\right)=\lim _{t \rightarrow 0^{+}}\left(\int_{\Omega}\left|u_{p_{n}}\right|^{t} \omega \mathrm{~d} x\right)^{\frac{1}{t}} \leq\left(\int_{\Omega}\left|u_{p_{n}}\right|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}} .
$$

The uniform convergence $u_{p_{n}} \rightarrow u_{\infty}$ then yields

$$
1 \leq \lim _{n \rightarrow \infty}\left(\int_{\Omega}\left|u_{p_{n}}\right|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}}=\left(\int_{\Omega}\left|u_{\infty}\right|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}} .
$$

Therefore,

$$
k_{\infty}=k\left(u_{\infty}\right)=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{\Omega}\left|u_{\infty}\right|^{\epsilon} \omega \mathrm{d} x\right)^{\frac{1}{\epsilon}} \geq 1 .
$$

It follows that $\left(k_{\infty}\right)^{-1} u_{\infty} \in \mathcal{M}_{s}$, so that

$$
\begin{equation*}
\mu_{s} \leq\left|\left(k_{\infty}\right)^{-1} u_{\infty}\right|_{s}=\left(k_{\infty}\right)^{-1}\left|u_{\infty}\right|_{s} . \tag{25}
\end{equation*}
$$

In the next step, we prove that

$$
\begin{equation*}
\int_{\Omega} \frac{u}{u_{\infty}} \omega \mathrm{d} x \leq \frac{|u|_{s}}{L} \quad \forall u \in C_{0}^{0, s}(\bar{\Omega}) . \tag{26}
\end{equation*}
$$

According to Lemma 9, there exists a sequence of nonnegative functions $\left\{u_{k}\right\}_{k \in \mathbf{N}} \subset$ $C_{0}^{0, s}(\bar{\Omega}) \cap W_{0}^{s, p}(\Omega)$, for all $p>1$, converging uniformly to u in $C(\bar{\Omega})$ and such that

$$
\limsup _{k \rightarrow \infty}\left|u_{k}\right|_{s} \leq|u|_{s} .
$$

Since u_{p} is the weak solution of (3) and $\Lambda_{p}=\left[u_{p}\right]_{s, p}^{p}$, we use Hölder's inequality to get

$$
\Lambda_{p} \int_{\Omega} \frac{u_{k}}{u_{p}} \omega \mathrm{~d} x=\left\langle\left(-\Delta_{p}\right)^{s} u_{p}, u_{k}\right\rangle \leq\left[u_{p}\right]_{s, p}^{p-1}\left[u_{k}\right]_{s, p}=\left(\Lambda_{p}\right)^{\frac{p-1}{p}}\left[u_{k}\right]_{s, p}
$$

It follows that

$$
\sqrt[p_{n}]{\Lambda_{p_{n}}} \int_{\Omega} \frac{u_{k}}{u_{p_{n}}} \omega \mathrm{~d} x \leq\left[u_{k}\right]_{s, p_{n}} .
$$

Combining Fatou's lemma with the uniform convergence $u_{p_{n}} \rightarrow u_{\infty}$ and Lemma 7, we obtain

$$
L \int_{\Omega} \frac{u_{k}}{u_{\infty}} \omega \mathrm{d} x \leq L \liminf _{n \rightarrow \infty} \int_{\Omega} \frac{u_{k}}{u_{p_{n}}} \omega \mathrm{~d} x \leq \liminf _{n \rightarrow \infty}\left[u_{k}\right]_{s, p_{n}}=\left|u_{k}\right|_{s},
$$

that is,

$$
L \int_{\Omega} \frac{u_{k}}{u_{\infty}} \omega \mathrm{d} x \leq\left|u_{k}\right|_{s} .
$$

Letting $k \rightarrow \infty$ and applying Fatou's lemma again, we arrive at (26):

$$
L \int_{\Omega} \frac{u}{u_{\infty}} \omega \mathrm{d} x \leq L \liminf _{k \rightarrow \infty} \int_{\Omega} \frac{u_{k}}{u_{\infty}} \omega \mathrm{d} x \leq \liminf _{k \rightarrow \infty}\left|u_{k}\right|_{s} \leq|u|_{s} .
$$

Taking $u=u_{\infty}$ in (26), we obtain

$$
L \leq\left|u_{\infty}\right|_{s}
$$

and combining this with (24) we conclude that

$$
\begin{equation*}
L=\left|u_{\infty}\right|_{s} . \tag{27}
\end{equation*}
$$

Now, let $0 \leq u \in \mathcal{M}_{s}$ be fixed. Then (16) yields

$$
\begin{aligned}
-\int_{\Omega}\left(\log u_{\infty}\right) \omega \mathrm{d} x & =\int_{\Omega}(\log u) \omega \mathrm{d} x-\int_{\Omega}\left(\log u_{\infty}\right) \omega \mathrm{d} x \\
& =\int_{\Omega}\left(\log \left(\frac{u}{u_{\infty}}\right)\right) \omega \mathrm{d} x \leq \log \left(\int_{\Omega} \frac{u}{u_{\infty}} \omega \mathrm{d} x\right) .
\end{aligned}
$$

Hence, (26) and (27) imply that

$$
\begin{equation*}
\left(k_{\infty}\right)^{-1} \leq \int_{\Omega} \frac{u}{u_{\infty}} \omega \mathrm{d} x \leq \frac{|u|_{s}}{\left|u_{\infty}\right|_{s}} \quad \text { whenever } \quad 0 \leq u \in \mathcal{M}_{s} . \tag{28}
\end{equation*}
$$

Combining these estimates at $u=v_{s}$ with (25), we obtain

$$
\left(k_{\infty}\right)^{-1} \leq \int_{\Omega} \frac{v_{s}}{u_{\infty}} \omega \mathrm{d} x \leq \frac{\left|v_{s}\right|_{s}}{\left|u_{\infty}\right|_{s}}=\frac{u_{s}}{\left|u_{\infty}\right|_{s}} \leq\left(k_{\infty}\right)^{-1}
$$

which leads us to conclude that

$$
\mu_{s}=\left|\left(k_{\infty}\right)^{-1} u_{\infty}\right|_{s} \quad \text { and } \quad\left(k_{\infty}\right)^{-1}=\int_{\Omega} \frac{v_{s}}{u_{\infty}} \omega \mathrm{d} x
$$

Since v_{s} is the only nonnegative minimizer of $|\cdot|_{s}$ on \mathcal{M}_{s}, we get (22).

Corollary 11 The following inequalities hold

$$
\begin{equation*}
k(u) \leq \int_{\Omega} \frac{|u|}{v_{s}} \omega \mathrm{~d} x \leq \frac{|u|_{s}}{\mu_{s}} \quad \forall u \in C_{0}^{0, s}(\bar{\Omega}) . \tag{29}
\end{equation*}
$$

Proof Since we already know that $L=\left|u_{\infty}\right|_{s}$ and $u_{\infty}=k_{\infty} v_{s}$, the second inequality in (29) follows from (26), with u replaced with $w=|u|$ (note that $|w|_{s} \leq|u|_{s}$). The first inequality in (29) is obvious when $k(u)=0$ and, when $k(u)>0$, it follows from the first inequality in (28), with $w=(k(u))^{-1}|u| \in \mathcal{M}_{s}$.

Remark 12 In contrast with what happens in similar problems driven by the standard p Laplacian, we are not able to prove that $u_{\infty} \in W_{0}^{s, q}(\Omega)$ for some $q>1$. Such a property would guarantee that $u_{\infty}=v_{s}$ and, consequently,

$$
\lim _{p \rightarrow \infty} u_{p}=v_{s}
$$

(that is, v_{s} would be the only limit point of the family $\left\{u_{p}\right\}_{p>1}$, as $p \rightarrow \infty$). Indeed, if $u_{\infty} \in W_{0}^{s, q}(\Omega)$ for some $q>1$ then, according to Lemma $7, u_{\infty} \in W_{0}^{s, p_{n}}(\Omega)$ for all n sufficiently large (such that $p_{n} \geq q$) and

$$
\lim _{n \rightarrow \infty}\left[u_{\infty}\right]_{s, p_{n}}=\left|u_{\infty}\right|_{s} .
$$

Hence, proceeding as in the proof of Theorem 10, we would arrive at

$$
1 \leq k_{\infty} \leq \int_{\Omega} \frac{u_{\infty}}{u_{p_{n}}} \omega \mathrm{~d} x \leq \frac{\left[u_{\infty}\right]_{s, p_{n}}}{\sqrt[p_{n}]{\Lambda_{p_{n}}}} .
$$

Since $\lim _{n \rightarrow \infty}\left[u_{\infty}\right]_{s, p_{n}}=\lim _{n \rightarrow \infty} \sqrt[p_{n}]{\Lambda_{p_{n}}}=\left|u_{\infty}\right|_{s}$ we would conclude that $k_{\infty}=1$ and $u_{\infty}=v_{s}$.

5 The limit problem

For a matter of compatibility with the viscosity approach, we add the hypotheses of continuity and strict positiveness to the weight ω. So, we assume in this section that

$$
\omega \in C(\Omega) \cap L^{r}(\Omega), r>1, \quad \omega>0 \quad \text { in } \Omega, \quad \text { and } \quad \int_{\Omega} \omega \mathrm{d} x=1 .
$$

Note that such ω satisfies the hypotheses of Theorem 3.
For $1<p<\infty$ we write the s-fractional p-Laplacian, in its integral version, as $\left(-\Delta_{p}\right)^{s}=$ $-\mathcal{L}_{p}$ where

$$
\begin{equation*}
\left(\mathcal{L}_{p} u\right)(x):=2 \int_{\mathbb{R}^{N}} \frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|y-x|^{N+s p}} \mathrm{~d} y . \tag{30}
\end{equation*}
$$

Corresponding to the case $p=\infty$, we define operator \mathcal{L}_{∞} by

$$
\begin{equation*}
\mathcal{L}_{\infty}:=\mathcal{L}_{\infty}^{+}+\mathcal{L}_{\infty}^{-}, \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\mathcal{L}_{\infty}^{+} u\right)(x):=\sup _{y \in \mathbb{R}^{N} \backslash\{x\}} \frac{u(y)-u(x)}{|y-x|^{s}} \text { and }\left(\mathcal{L}_{\infty}^{-} u\right)(x):=\inf _{y \in \mathbb{R}^{N} \backslash\{x\}} \frac{u(y)-u(x)}{|y-x|^{s}} . \tag{32}
\end{equation*}
$$

In the sequel, we consider, in the viscosity sense, the problem

$$
\left\{\begin{array}{l}
\mathcal{L} u=0 \text { in } \Omega \tag{33}\\
u=0 \text { in } \mathbb{R}^{N} \backslash \Omega,
\end{array}\right.
$$

where either $\mathcal{L} u=\mathcal{L}_{p} u+\Lambda_{p} u^{-1} \omega$, with $1<p<\infty$, or

$$
\mathcal{L} u=\mathcal{L}_{\infty} u \quad \text { or } \quad \mathcal{L} u=\mathcal{L}_{\infty}^{-} u+\left|u_{\infty}\right|_{s} .
$$

We recall some definitions related to the viscosity approach for the problem (33).
Definition 13 Let $u \in C\left(\mathbb{R}^{N}\right)$ such that $u>0$ in Ω and $u=0$ in $\mathbb{R}^{N} \backslash \Omega$. We say that u is a viscosity supersolution of Eq. (33) if

$$
(\mathcal{L} \varphi)\left(x_{0}\right) \leq 0
$$

for all pair $\left(x_{0}, \varphi\right) \in \Omega \times C_{0}^{1}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\varphi\left(x_{0}\right)=u\left(x_{0}\right) \quad \text { and } \quad \varphi(x) \leq u(x) \quad \forall x \in \mathbb{R}^{N} .
$$

Analogously, we say that u is a viscosity subsolution of (33) if

$$
(\mathcal{L} \varphi)\left(x_{0}\right) \geq 0
$$

for all pair $\left(x_{0}, \varphi\right) \in \Omega \times C_{0}^{1}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\varphi\left(x_{0}\right)=u\left(x_{0}\right) \quad \text { and } \quad \varphi(x) \geq u(x) \quad \forall x \in \mathbb{R}^{N} .
$$

We say that u is a viscosity solution of (33) if it is simultaneously a subsolution and a supersolution of (33).

The next lemma can be proved by following, step by step, the proof of Proposition 11 of [17].

Lemma 14 Let $u \in W_{0}^{s, p}(\Omega) \cap C(\bar{\Omega})$ be a positive weak solution of (3). Then u is a viscosity solution of

$$
\begin{cases}\mathcal{L}_{p} u+\Lambda_{p} u^{-1} \omega=0 & \text { in } \tag{34}\\ u=0 & \text { in } \\ \mathbb{R}^{N} \backslash \Omega .\end{cases}
$$

Our main result in this section is the following, where $u_{\infty} \in C_{0}^{0, s}(\bar{\Omega})$ is the function given by Theorem 10.

Theorem 15 The function $u_{\infty} \in C_{0}^{0, s}(\bar{\Omega})$, extended as zero outside Ω, is both a viscosity supersolution of the problem

$$
\left\{\begin{array}{lll}
\mathcal{L}_{\infty} u=0 & \text { in } & \Omega \tag{35}\\
u=0 & \text { in } & \mathbb{R}^{N} \backslash \Omega
\end{array}\right.
$$

and a viscosity solution of the problem

$$
\left\{\begin{array}{lll}
\mathcal{L}_{\infty}^{-} u+\left|u_{\infty}\right|_{s}=0 & \text { in } & \Omega \tag{36}\\
u=0 & \text { in } & \mathbb{R}^{N} \backslash \Omega .
\end{array}\right.
$$

Moreover, u_{∞} is strictly positive in Ω and the only minimizers of $|\cdot|_{s}$ on \mathcal{M}_{s} are

$$
\begin{equation*}
-v_{s} \text { and } v_{s} . \tag{37}
\end{equation*}
$$

Proof We begin by proving that u_{∞} is a viscosity supersolution of (36). For this, let us fix $\left(x_{0}, \varphi\right) \in \Omega \times C_{0}^{1}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\begin{equation*}
\varphi\left(x_{0}\right)=u_{\infty}\left(x_{0}\right) \text { and } \varphi(x) \leq u_{\infty}(x) \quad \forall x \in \mathbb{R}^{N} . \tag{38}
\end{equation*}
$$

Without loss of generality, we can assume that

$$
\varphi(x)<u_{\infty}(x) \quad \forall x \in \mathbb{R}^{N},
$$

what allows us to assure that $u_{p_{n}}-\varphi$ assumes its minimum value at a point x_{n}, with $x_{n} \rightarrow x_{0}$.
Let $c_{n}:=u_{p_{n}}\left(x_{n}\right)-\varphi\left(x_{n}\right)$. Of course, $c_{n} \rightarrow 0$ (due to the uniform convergence $u_{p_{n}} \rightarrow$ $\left.u_{\infty}\right)$. By construction,

$$
\varphi\left(x_{n}\right)+c_{n}=u_{p_{n}}\left(x_{n}\right) \text { and } \varphi(x)+c_{n} \leq u_{p_{n}}(x) \quad \forall x \in \mathbb{R}^{N} .
$$

According to the previous lemma, u_{p} is a viscosity supersolution of (34) since it is a viscosity solution of the same problem. Therefore,

$$
\left(\mathcal{L}_{p_{n}} \varphi\right)\left(x_{n}\right)+\Lambda_{p_{n}} \frac{\omega\left(x_{n}\right)}{u_{p_{n}}\left(x_{n}\right)}=\left(\mathcal{L}_{p_{n}}\left(\varphi+c_{n}\right)\right)\left(x_{n}\right)+\Lambda_{p_{n}} \frac{\omega\left(x_{n}\right)}{\varphi\left(x_{n}\right)+c_{n}} \leq 0,
$$

an inequality that can be rewritten as

$$
A_{n}^{p_{n}-1}+C_{n}^{p_{n}-1} \leq B_{n}^{p_{n}-1}
$$

where

$$
\begin{aligned}
& A_{n}^{p_{n}-1}=2 \int_{\mathbb{R}^{N}} \frac{\left|\varphi(y)-\varphi\left(x_{n}\right)\right|^{p_{n}-2}\left(\varphi(y)-\varphi\left(x_{n}\right)\right)^{+}}{|y-x|^{N+s p_{n}}} \mathrm{~d} y \geq 0, \\
& B_{n}^{p_{n}-1}=2 \int_{\mathbb{R}^{N}} \frac{\left|\varphi(y)-\varphi\left(x_{n}\right)\right|^{p_{n}-2}\left(\varphi(y)-\varphi\left(x_{n}\right)\right)^{-}}{|y-x|^{N+s p_{n}}} \mathrm{~d} y \geq 0,
\end{aligned}
$$

and

$$
C_{n}^{p_{n}-1}=\Lambda_{p_{n}} \frac{\omega\left(x_{n}\right)}{u_{p_{n}}\left(x_{n}\right)}>0 .
$$

(Here, $a^{+}:=\max \{a, 0\}$ and $a^{-}:=\max \{-a, 0\}$, so that $a=a^{+}-a^{-}$.)
According to Lemma 6.1 of [13], which was adapted from Lemma 6.5 of [3], we have

$$
\lim _{n \rightarrow \infty} A_{n}=\left(\mathcal{L}_{\infty}^{+} \varphi\right)\left(x_{0}\right) \text { and } \lim _{n \rightarrow \infty} B_{n}=-\left(\mathcal{L}_{\infty}^{-} \varphi\right)\left(x_{0}\right) .
$$

Hence, noticing that

$$
A_{n}^{p_{n}-1} \leq A_{n}^{p_{n}-1}+C_{n}^{p_{n}-1} \leq B_{n}^{p_{n}-1}
$$

we conclude that

$$
\left(\mathcal{L}_{\infty} \varphi\right)\left(x_{0}\right)=\left(\mathcal{L}_{\infty}^{+} \varphi\right)\left(x_{0}\right)+\left(\mathcal{L}_{\infty}^{-} \varphi\right)\left(x_{0}\right) \leq 0
$$

since

$$
\left(\mathcal{L}_{\infty}^{+} \varphi\right)\left(x_{0}\right)=\lim _{n \rightarrow \infty} A_{n} \leq \lim _{n \rightarrow \infty} B_{n}=-\left(\mathcal{L}_{\infty}^{-} \varphi\right)\left(x_{0}\right) .
$$

We have proved that u_{∞} is a supersolution of (35). Therefore, by directly applying Lemma 22 of [17] we conclude $u_{\infty}>0$ in Ω.

The strict positiveness of u_{∞} in Ω and the uniqueness of the nonnegative minimizers of $|\cdot|_{s}$ on \mathcal{M}_{s} imply that if $w \in \mathcal{M}_{s}$ is such that

$$
|w|_{s}=\min _{u \in \mathcal{M}_{s}}|u|_{s}
$$

then $|w|=v_{s}=\left(k_{\infty}\right)^{-1} u_{\infty}>0$ in Ω (recall that $|w|$ is also a minimizer). The continuity of w then implies that either $w>0$ in Ω or $w<0$ in Ω. Consequently, $w=v_{s}$ or $w=-v_{s}$.

Now, recalling that

$$
\lim _{n \rightarrow \infty}\left(\Lambda_{p_{n}}\right)^{\frac{1}{p_{n}-1}}=\left|u_{\infty}\right|_{s}
$$

and using that $\omega\left(x_{0}\right)>0$ and $u_{\infty}\left(x_{0}\right)>0$ we have

$$
\lim _{n \rightarrow \infty} C_{n}=\left|u_{\infty}\right|_{s}
$$

Hence, since

$$
C_{n}^{p_{n}-1} \leq A_{n}^{p_{n}-1}+C_{n}^{p_{n}-1} \leq B_{n}^{p_{n}-1}
$$

we obtain

$$
\left|u_{\infty}\right|_{s}=\lim _{n \rightarrow \infty} C_{n} \leq \lim _{n \rightarrow \infty} B_{n}=-\left(\mathcal{L}_{\infty}^{-} \varphi\right)\left(x_{0}\right)
$$

It follows that u_{∞} is a viscosity supersolution of (36).
Now, let us take a pair $\left(x_{0}, \varphi\right) \in \Omega \times C_{0}^{1}\left(\mathbb{R}^{N}\right)$ satisfying

$$
\begin{equation*}
\varphi\left(x_{0}\right)=u_{\infty}\left(x_{0}\right) \quad \text { and } \quad \varphi(x) \geq u_{\infty}(x) \quad \forall x \in \mathbb{R}^{N} \tag{39}
\end{equation*}
$$

Since

$$
-\left|u_{\infty}\right|_{s} \leq \frac{u_{\infty}(x)-u_{\infty}\left(x_{0}\right)}{\left|x-x_{0}\right|^{s}} \leq \frac{\varphi(x)-\varphi\left(x_{0}\right)}{\left|x-x_{0}\right|^{s}} \quad \forall x \in \mathbb{R}^{N} \backslash\left\{x_{0}\right\}
$$

we have

$$
-\left|u_{\infty}\right|_{s} \leq \inf _{x \in \mathbb{R}^{N} \backslash\left\{x_{0}\right\}} \frac{\varphi(x)-\varphi\left(x_{0}\right)}{\left|x-x_{0}\right|^{s}}=\left(\mathcal{L}_{\infty}^{-} \varphi\right)\left(x_{0}\right)
$$

Therefore, u_{∞} is a viscosity subsolution of (36).
Since $v_{s}=\left(k_{\infty}\right)^{-1} u_{\infty}$ is the only positive minimizer of $|\cdot|_{s}$ on $C_{0}^{0, s}(\bar{\Omega}) \backslash\{0\}$ and $\mathcal{L}_{\infty}^{-}(k u)=k \mathcal{L}_{\infty}^{-} u$ for any positive constant k, the following corollary is immediate.

Corollary 16 The minimizer v_{s} is a viscosity solution of the problem

$$
\begin{cases}\mathcal{L}_{\infty}^{-} u+\mu_{s}=0 & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

Acknowledgements G. Ercole was partially supported by CNPq/Brazil (306815/2017-6) and Fapemig/Brazil (CEX-PPM-00137-18). R. Sanchis was partially supported by CNPq/Brazil (310392/2017-9) and Fapemig/ Brazil (CEX-PPM-00600-16). G. A. Pereira was partially supported by Capes/Brazil (Finance Code 001).

References

1. Bhatthacharya T. , DiBenedetto, E., Manfredi, J.: Limits as $p \rightarrow \infty$ of $\Delta_{p} u_{p}=f$ and related extremal problems, Rendiconti del Sem. Mat., Fascicolo Speciale Non Linear PDE's, Univ. Torino, pp. 15-68 (1989)
2. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16, 419-458 (2014)
3. Chambolle, A., Lindgren, E., Monneau, R.: A Hölder infinity Laplacian. ESAIM Control Optim. Calc. Var. 18, 799-835 (2012)
4. Charro, F., Peral, I.: Limits branch of solutions as $p \rightarrow \infty$ for a family of subdiffusive problems related to the p-Laplacian. Commun. Part. Differ. Equ. 32, 1965-1981 (2007)
5. Charro, F., Parini, E.: Limits as $p \rightarrow \infty$ of p-Laplacian problems with a superdiffusive power-type nonlinearity: positive and sign-changing solutions. J. Math. Anal. Appl. 372, 629-644 (2010)
6. Charro, F., Parini, E.: Limits as $p \rightarrow \infty$ of p-Laplacian eigenvalue problems perturbed with a concave or convex term. Calc. Var. Partial Differ. Equ. 46, 403-425 (2013)
7. Di Nezza, R., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012)
8. Ercole, G., Pereira, G.: Asymptotics for the best Sobolev constants and their extremal functions. Math. Nachr. 289, 1433-1449 (2016)
9. Ercole, G., Pereira, G.: Fractional Sobolev inequalities associated with singular problems. Math. Nachr. 291, 1666-1685 (2018)
10. Ercole, G., Pereira, G.: On a singular minimizing problem. J. Anal. Math. 135, 575-598 (2019)
11. Erdős, P.: Some remarks on the measurability of certain sets. Bull. Am. Math. Soc. 51, 728-731 (1945)
12. Federer H.: Geometric Measure Theory, Grundlehren der mathematischen Wissenschaften, Springer, New York (1969)
13. Ferreira, R., Pérez-Llanos, M.: Limit problems for a Fractional p-Laplacian as $p \rightarrow \infty$. Nonlinear Differ. Equ. Appl. 23, 14 (2016)
14. Fukagai, N., Ito, M., Narukawa, K.: Limit as $p \rightarrow \infty$ of p-Laplace eigenvalue problems and $L^{\infty}{ }_{-}$ inequality of the Poincaré type. Differ. Integral Equ. 12, 183-206 (1999)
15. Gray, A.: Tubes, Progr. Math., vol. 221, Birkhäuser, Basel (2004)
16. Juutinen, P., Lindqvist, P., Manfredi, J.: The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89-105 (1999)
17. Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795-826 (2014)
18. Littig, S., Schuricht, F.: Convergence of the eigenvalues of the p-Laplace operator as p goes to 1 . Calc. Var. Partial Differ. Equ. 40, 707-727 (2014)
19. Mironescu, P., Sickel, W.: A Sobolev non embedding. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, 291-298 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: G. Ercole
 grey@mat.ufmg.br
 G. A. Pereira
 gilbertoapereira@yahoo.com.br
 R. Sanchis
 rsanchis@mat.ufmg.br
 1 Universidade Federal de Minas Gerais, Belo Horizonte, MG 30.123-970, Brazil

