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Abstract
In this article we review the notion of the order of a distribution and extend it to the case
of positive real numbers. We suggest to use the name Hölder distributions for such distri-
butions. The first part of the paper concerns itself with functional-analytic properties of the
Hölder test function spaces and its duals. Of particular interest are the Cr ,α+

c (�) and the
D′(r+α)+(�) spaces which have notably better properties such as reflexivity, compared to the
classical Hölder spaces.We also give a few examples and some Fourier-analytic properties of
distributions of fractional order, and at the end, we note how one can extend classical results
where estimates of the order of distributions appear, such as giving a bound on the order of
convolution of distributions.

Keywords Distributions · Fractional order · Hölder continuous · Fourier transform ·
Convolution

Mathematics Subject Classification 46F05 (primary), 46A04 , 46E15

1 Introduction

In his pioneering book on distributions [23], Schwartz introduced the notion of the order of
a distribution. A distribution u ∈ D′(X) is said to be of order smaller or equal to r if the
restriction of u to C∞c (X; K ) is continuous with respect to the topology induced by that of
Cr

c (X; K ), for every compact K ⊂ X . The order of a distribution is the smallest integer r
with such a property. A distribution of finite order can be tested against a function that is not
infinitely differentiable. In some applications, this means that if our distribution is of finite
order, we do not have to consider partial differential equations with only smooth coefficients.
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Furthermore, it allows one to obtain results like the structure theorem of distributions where,
at least locally, one can represent any distribution as a derivative of some finite order of a
continuous function.

This article is motivated by an observation that sometimes the regularity of a test function
for a distribution of finite order can be even lower than its order, but not toomuch (the classical
example being the vp.( 1x ) distribution, as discussed in, e.g., Footnote 1 on p. 18 of [24]). We
provide a mathematical framework, write down the details to explain this phenomenon, and
also provide a few examples and applications, together with a few generalisations of classical
results from distribution theory.

The structure of the article is the following. In Sect. 2, we define Hölder test function
spaces and examine their properties, and in Sect. 3, we consider their duals which we shall
call Hölder distributions. Of particular interest are the spaces Cr ,α+

c (�) and D′(r+α)+(�)

since it turns out that they have much better properties. In Sect. 4, we prove though that
they are not nuclear. The following Sect. 5 gives a few examples of distributions and their
real order. Finally, we deal with some further properties of Hölder distributions, namely
Fourier-analytic properties (Sect. 6), and the order of convolution of Hölder distributions
(Sect. 7). At the end of the article, we discuss possible further extensions and related results
(Sect. 8).

Let us remark that a special case of Hölder distributions, which we shall introduce in this
article, was already considered by Francis Bonahon in [5,6] with applications to the the-
ory of transverse structures for measured laminations on a closed surface of negative Euler
characteristic (i.e., a surface of hyperbolic type). We briefly describe the problem which
Bonahon resolved by introducing the notion of Hölder distribution. A geodesic lamination
on a surface is a lamination whose leaves are geodesic. One can consider several trans-
verse structures for a given geodesic lamination. For example, if one uses Radon measures
on arcs transverse to the lamination which satisfy some additional invariance conditions,
one constructs classical transverse measures, which have been well studied in the theory
of foliations and laminations. But one can consider things more general and use distribu-
tions on arcs. An important problem which one must overcome in this consideration is the
invariance conditions. Namely, given two homotopic arcs, the homotopy should send the
distribution defined on one arc to a distribution defined on the other arc. But this implies
that the homotopy between the two arcs must be differentiable, which seldomly happens.
In general, a geodesic lamination never admits transverse differentiable structures. But, as
Francis Bonahon noticed in [5,6], the homotopy can be chosen to be Hölder, or even Lip-
schitz, continuous. Once having shown that geodesic laminations have a transverse Hölder
structure, he introduced the notion of Hölder distributions as continuous linear functionals
on the space of all Hölder functions with compact support. This corresponds to our space
D′0+ (see Definition 8). For results and applications which stemmed from this, we refer
the reader to the survey article [7] and the unfinished monograph [8], which is available
online.

At the end of this section, let us give a notation remark. In this article, we use the usual
convention for the symbols �, �, and ∼. For example, A � B means there is a positive
constant C such that A ≤ C B, and C does not depend on relevant parameters in the given
context. A �p B means there is a constant C = C(p) such that A ≤ C B, and the constant
C depends on the parameter p. Sometimes we also use A � B (resp. A 	 B). It means that
A ≤ cB (resp. B ≤ cA) for some sufficiently small and positive constant c.
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An extension of the notion of the order of a distribution 1889

2 Properties of spaces of Hölder continuous test functions

Let � ⊆ Rd be an open set. For r ∈ N0 and α ∈ 〈0, 1], we denote by Cr ,α(�) the vector
space of functions on � which are r -times differentiable with derivatives of order r being
α-Hölder continuous functions. To avoid boundary problems, we take Cr ,α(�) to contain
only functions f whose derivatives of order r are locally Hölder continuous, i.e., for each
point z ∈ �, there is an open ball B contained in �, with center z, such that the Hölder
seminorm

sup
x,y∈B, x �=y

|∂γ f (x)− ∂γ f (y)|
|x − y|α <∞,

for all multi-indices γ with |γ | = r . For r ∈ N0 and α ∈ 〈0, 1〉, we denote by cr ,α(�) the
vector subspace of Cr ,α(�) containing functions f which have the stronger property that
there exists a family of balls (which may depend on f ) covering � such that for each ball B
in this family

lim
h→0

sup
|x−y|<h,

x,y∈B, x �=y

|∂γ f (x)− ∂γ f (y)|
|x − y|α = 0,

for all multi-indices γ with |γ | = r . We also denote by Cr (�) = cr ,0(�) the vector space
of r -times continuously differentiable functions. All of the above introduced spaces shall be
considered without a topology.

For r ∈ N0, α ∈ 〈0, 1], and a compact set K ⊂ � denote byCr ,α
K (�) the set of allCr ,α(�)

functions whose support is contained in K . Since K is compact, Cr ,α
K (�) is a Banach space

with norm given by

‖ f ‖Cr,α
K (�):=

∑

|γ |≤r

‖∂γ f ‖L∞(�) +
∑

|γ |=r

[ f ]Cγ,α(�)

where

[ f ]Cγ ,α(�):= sup
x,y∈�, x �=y

|∂γ f (x)− ∂γ f (y)|
|x − y|α <∞,

and thus, it is a locally convex space. We can take the same norms for the spaces cr ,α(�) for
r ∈ N0 and α ∈ [0, 1〉, i.e., we define ‖ f ‖cr,α

K (�):= ‖ f ‖Cr,α
K (�) and [ f ]cγ ,α(�):= [ f ]Cγ ,α(�).

Given two compact sets K and L such that Int K ⊂ L , it holds C0,α+ε
K (�) ⊂ C0,α

L (�) for
all ε sufficiently small, the embedding being continuous and compact. The same is true for
the embedding c0,α+ε

K (�) ⊂ c0,αL (�).
If ε is sufficiently small, one can approximate each function f ∈ Cr ,α+ε

K (�) by a C∞L (�)

function (Int K ⊂ L) by using a mollifier, but in the norm of Cr ,α
L (�). On the other hand,

as is also well known, one cannot approximate Cr ,α
K (�) functions by compactly supported

smooth functions in the norm of Cr ,α
L (�). The obstruction which occurs is that if one takes

a slightly more smooth function g than the functions in Cr ,α
K (�), one has (if α < 1 and

|γ | = r )

lim|x−y|→0, x �=y
|∂γ g(x)− ∂γ g(y)|

|x − y|α = 0,

and hence, any limit of smooth functions in the norm ofCr ,α
K (�) has this property too. This is

just the fact that cr ,α
K (�) is a strict Banach subspace of Cr ,α

K (�). In fact, we can approximate
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cr ,α
K (�) functions with C∞L (�) functions in the norm of cr ,α

L (�). For more on Hölder spaces,
we refer the reader to [1,15].

We shall introduce three families of Hölder test function spaces. We start with the first
two.

Definition 1 Let (Kn) be an increasing sequence of compact subsets of � which exhaust it,
i.e., � = ∪n∈NKn and Kn ⊂ Int Kn+1.
We define the space Cr ,α

c (�), r ∈ N0, 0 < α ≤ 1, as the space of all Cr ,α(�) functions
with compact support, and equip it with the strict inductive limit topology generated by the
natural inclusions Cr ,α

Kn
(�)→ Cr ,α

c (�).
We define second space cr ,α

c (�), r ∈ N0, 0 ≤ α < 1, as the space of all cr ,α(�) functions
with compact support, and also equip it with the strict inductive limit topology generated by
the natural inclusions cr ,α

Kn
(�)→ cr ,α

c (�). In the case α = 0, we also denote this space with
Cr

c (�).

Before introducing the third family of spaces, we elaborate on some properties of the
spaces Cr ,α

c (�) and cr ,α
c (�). Recall that Cr ,α

c (�) (resp. cr ,α
Kn

(�)) is a Hausdorff, complete
space as a strict inductive limit of such spaces. The space C∞c (�) embeds continuously into
Cr ,α

c (�), though not densely. On the other hand, cr ,α
c (�) hasC∞c (�) as a dense subspace, and

so it is separable. It is the case that a subset of Cr ,α
c (�) (resp. cr ,α

c (�)) is bounded if and only
if it is contained and bounded in someCr ,α

Kn
(�) (resp. cr ,α

Kn
(�)). This is called the Dieudonné–

Schwartz theorem. See, e.g., [22] or [25]. From this, it follows that Cr ,α
c (�) (resp. cr ,α

c (�))
is not a Montel space since closed and bounded sets are not compact in the Banach space
Cr ,α

Kn
(�) (resp. cr ,α

Kn
(�)). In fact, Cr ,α

c (�) and cr ,α
c (�) are not even semireflexive. Namely,

if they were semireflexive, then also their respective closed subspaces Cr ,α
Kn

(�) and cr ,α
Kn

(�)

would be semireflexive (this follows from [22, page 144, 5.5, d)]), and hence also reflexive
since Banach spaces are barrelled. But since Hölder spaces are not reflexive, this gives a
contradiction.

Now, sinceCr ,α
Kn

(�) are not separable, onemay askwhetherCr ,α
c (�) is separable. The fact

that an inductive limit of countably many separable spaces is again separable is well known
and easily proven. We are interested in a converse of this statement. Notably, separability
is not well behaved for general topological spaces, e.g., non-open subspaces of separable
topological spaces (which are not metrizable, but otherwise they can be well behaved) are
not generally separable. This also extends to topological vector spaces: There exist separable
topological vector spaces with dense or closed (even complete) non-separable subspaces (see
[10,13,18]).Despite this,we also have (see [18]) thatmetrizable subspaces of separable spaces
are again separable. Therefore, Cr ,α

c (�) is not separable. We collect the above (essentially
known) observations in a proposition.

Proposition 2 The spaces cr ,α
c (�) and Cr ,α

c (�) are neither Montel nor semireflexive. The
spaces cr ,α

c (�) are separable, and the spaces Cr ,α
c (�) are not. cr ,α

c (�) have C∞c (�) as a
dense subspace.

The most interesting family of spaces is the following one.

Definition 3 Let (Kn) be an increasing sequence of compact subsets such that � = ∪n∈NKn

and Kn ⊂ Int Kn+1. We define Cr ,α+
c (�), r ∈ N0, 0 ≤ α < 1 as the space of all cr ,α+ε(�),

0 < ε < 1−α, functions with compact support, and equip it with the inductive limit topology
(note this inductive limit is not strict) generated by the natural inclusions cr ,α+1/n

Kn
(�) →

Cr ,α+
c (�), i.e., the finest locally convex topology such that all the inclusions are continuous.

One can also define this space using the spaces Cr ,α+1/n
Kn

(�).
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One should notice that the spaceC∞c (�) embeds continuously and densely intoCr ,α+
c (�),

which can be seen using say a mollifier. In fact, the spaces Cr ,α+
c (�), r ∈ N0, 0 ≤ α < 1,

have much better properties than either of the spaces Cr ,α
c (�), r ∈ N0, 0 < α ≤ 1, or

cr ,α
c (�), r ∈ N0, 0 ≤ α < 1, the reason being that the embeddings

ın,n+1 : Cr ,α+1/n
Kn

(�)→ Cr ,α+1/(n+1)
Kn+1 (�)

are compact. We use the general theorems from the article [17, Theorem 6’, Theorem 7’]
which we adopt to our setting.

Theorem 4 For the space Cr ,α+
c (�), 0 ≤ α < 1, the following is valid.

(a) It is a separable Hausdorff complete bornological (DF) Montel space. In particular, it
is reflexive, barrelled, and webbed.

(b) If B is a bounded subset of Cr ,α+
c (�), then it is a subset of Cr ,α+1/n

Kn
(�) for some n ∈ N

and it is bounded in its Banach space topology. Also, on B the inductive topology and
the weak topology coincide.

(c) A sequence ( fn) converges in Cr ,α+
c (�) if and only if it is contained in Cr ,α+1/n

Kn
(�) for

some n ∈ N and it converges in its Banach space topology.
(d) The inductive limit topology coincides with the general (non-locally convex) inductive

limit topology.
(e) If Z is a closed subspace of Cr ,α+

c (�), then its subspace topology coincides with the
topology of the inductive limit of spaces Z ∩ Cr ,α+1/n

Kn
(�), n ∈ N.

Proof Hausdorffness follows from [17, Lemma 3]. The rest of the first statement in (a) is
precisely the first statement in [17, Theorem 6’]. Recall that all Montel spaces are reflexive
and barrelled. The fact that it is webbed follows from the fact that it is reflexive and its strong
dual is a Fréchet space (this we shall see explicitly in Theorem 13), and so we can apply [4,
Theorem 14.6.4].

The statements in (b), (c), and (d) are all contained in [17, Theorem 6’]. The part (e) is
also just an application of [17, Theorem 7’] to our case. ��
Remark 5 The fact thatCr ,α+

c (�) is Hausdorff, separable, complete, barrelled, and bornolog-
ical can alternatively be seen by using more elementary properties of (strict) inductive limits.
Separability follows by using either the density of compactly supported smooth functions,
or the fact that Cr ,α+

c (�) is a countable union of separable compact sets. The fact that it is
barrelled and bornological follows easily from the fact that each Cr ,α+1/n

Kn
(�) is such as a

Banach space, and inductive limits inherit these properties. We give sketches of alternative
proofs of Hausdorffness and completeness which are in a certain sense extrinsic. Hausdorff-
ness follows from the fact that the embedding of Cr ,α+

c (�) into cr ,α
c (�) is continuous, and

using the fact that cr ,α
c (�) is Hausdorff as a strict inductive limit.

The alternative argument for completeness is slightly more involved. Assume there exists
a Cauchy net which does not converge in Cr ,α+

c (�). As the embedding of Cr ,α+
c (�) into

cr ,α
c (�) is continuous, then the same net converges in cr ,α

c (�) in its topology (since this is a
strict inductive limit topology) to an element ϕ /∈ Cr ,α+

c (�). Therefore, if we now denote

ωϕ(h):= sup
|γ |=r ,|x−y|≤h

|∂γ ϕ(x)− ∂γ ϕ(y)|,

then for each n there exists a sequence (hn
k ) strictly decreasing to 0 such that

ωϕ(hn
k ) / (hn

k )α+1/n →+∞.
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Using this, one can easily obtain a sequence (hk) strictly decreasing to 0 such that supk hk < 1
and

ωϕ(hk) ≥ (hk)
α+1/k .

Now we construct an intermediary space Cr ,ω
c (�) of compactly supported functions whose

r th derivatives have modulus of continuity slightly stronger by a logarithmic factor than the
modulus of the r th derivatives of the function ϕ, i.e.,

ω(h):= −1
ln(min{h, 1/2}) sup

{k:hk+1<h}
ωϕ(hk).

We endow Cr ,ω
c (�) with a strict inductive topology as usual, and so it is complete. Now note

that for h ∈ 〈hk+1, hk] we have ω(h) �ε hε hα+1/k for ε small. In particular if h ≤ hk and
ε+1/k ≤ 1/n, thenω(h) �n hα+1/n . Therefore, for each n the space the space Cr ,α+1/n

Kn
(�)

embeds into Cr ,ω
c (�) continuously, and hence, Cr ,α+

c (�) embeds continuously into Cr ,ω
c (�)

too. But now on one hand ϕ is not an element of this space by construction, and on the other,
it has to be since the space Cr ,α+

c (�) embeds continuously into it and hence the given net
must converge in it, a contradiction.

We know that the space Cr ,α+
c (�) is Montel, so the next natural question to ask is whether

this space has the stronger property of being nuclear. The answer is no; this will be proved
in Sect. 4.

3 Distributions of positive real order

Definition 6 A Hölder distribution of order smaller or equal to r + α, r ∈ N0, 0 ≤ α < 1, is
any continuous linear functional on cr ,α

c (�). We denote the space of all such functionals by
D′r+α(�).

Remark 7 Note that for a distribution T , satisfying the bound

|〈T , ϕ〉| ≤ CK ‖ϕ‖Cr,1
K (�)

,

for all ϕ ∈ C∞K (�) and compact K contained in � is equivalent to T being a distribution of
classical order at most r + 1 since the Lipschitz norm is equivalent to the C1 norm.

As the space C∞c (�) is not dense in Cr ,α
c (�), 0 < α ≤ 1, we cannot naturally extend the

just defined distributions to functionals on Cr ,α
c (�). Instead, for 0 < α < 1, we view them as

functionals on the closure ofC∞c (�) in the topology ofCr ,α
c (�), which is precisely the space

cr ,α
c (�). Note that D′r+α(�) is a Fréchet space with the strong topology as a dual of a strict
inductive limit of Banach spaces. This is obvious from the fact that the Dieudonné–Schwartz
theorem is valid for cr ,α

c (�).
The following spaces are much more suitable from the viewpoint of functional analysis.

Definition 8 AHölder distribution of order smaller or equal to (r+α)+, r ∈ N0, 0 ≤ α < 1,
is any continuous linear functional on Cr ,α+

c (�). We denote the space of all such functionals
by D′(r+α)+(�).

Indeed, each Hölder distribution from D′(r+α)+(�) is a distribution in the classical sense

since C∞c (�) is dense in the space Cr ,α+
c (�) for each 0 ≤ α < 1.
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For 0 ≤ β < α, we have that every Hölder distribution of order at most β is a Hölder
distribution of order at most β+, and every Hölder distribution of order at most β+ is a
Hölder distribution of order at most α. Furthermore, it is not true that a Hölder distribution of
order at most 0+ is a distribution of classical order 0; we shall give a simple example later.
The same can be shown for α+ and α when α ∈ R>0.

Definition 9 The order of a Hölder distribution is the smallest order for which we have
continuity in the corresponding topologies.

Remark 10 This is well defined since it follows from the property of inductive limits that a
distribution T is continuous on Cr ,α+

c (�) if and only if it is continuous with respect to the
topology of c0,α+ε

c (�) for all ε > 0 sufficiently small. Therefore, the spaces Cr ,α+
c (�) are

also quite natural to consider when defining the continuous order of a distribution.

The following criteria hold, similarly to classical distributions.

Proposition 11 For a linear functional u on cr ,α
c (�), the following are equivalent

(a) u ∈ D′r+α(�),
(b) (∀K ⊂ � compact )(∃CK > 0)(∀ϕ ∈ cr ,α

K (�))

|〈u, ϕ〉| ≤ CK ‖ϕ‖cr,α
K

,

(c) (∀K ⊂ � compact )(∃CK > 0)(∀ϕ ∈ C∞K (�))

|〈u, ϕ〉| ≤ CK ‖ϕ‖cr,α
K

,

(d) for every sequence (ϕk) converging to zero in cr ,α
c (�), the scalar sequence (〈u, ϕk〉)

converges to zero.
(e) for each n ∈ N and for every sequence (ϕk) converging to zero in cr ,α

Kn
(�), the scalar

sequence (〈u, ϕk〉) converges to zero.

We omit the proof completely since it is the same as the proof for classical distributions of
finite order as the spaces cr ,α

c (�) have the same properties as the spaces Cr
c (�). In fact, the

proof is almost the same as the proof of the following analogous proposition forD′(r+α)+(�).

Proposition 12 For a linear functional u on Cr ,α+
c (�), the following are equivalent

(a) u ∈ D′(r+α)+(�),

(b) (∀K ⊂ � compact )(∀ε > 0 small )(∃CK ,ε > 0)(∀ϕ ∈ cr ,α+ε
K (�))

|〈u, ϕ〉| ≤ CK ,ε‖ϕ‖cr,α+ε
K

,

(c) (∀K ⊂ � compact )(∀ε > 0 small )(∃CK ,ε > 0)(∀ϕ ∈ C∞K (�))

|〈u, ϕ〉| ≤ CK ,ε‖ϕ‖cr,α+ε
K

,

(d) for every sequence (ϕk) converging to zero in cr ,α+
c (�) the scalar sequence (〈u, ϕk〉)

converges to zero.
(e) for each n ∈ N and for every sequence (ϕk) converging to zero in cr ,α+1/n

Kn
(�) the scalar

sequence (〈u, ϕk〉) converges to zero.
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Proof The equivalence (a)⇐⇒ (b) follows from the fact that a functional u is continuous
on cr ,α+

c (�) if and only if it is continuous for each n on cr ,α+1/n
Kn

(�). The equivalence (b)
⇐⇒ (c) is just the density of C∞(�) in cr ,α+ε(�). The implication (a) �⇒ (d) is trivial.
The implication (d) �⇒ (e) follows from the fact that cr ,α+1/n

Kn
(�) embeds continuously

into cr ,α+
c (�). Finally, the implication e) �⇒ (b) follows from the fact cr ,α+ε

K (�)) embeds

continuously into cr ,α+1/n
Kn

(�) for n sufficiently large, and the fact that cr ,α+ε
K (�)) is a Banach

space where sequential continuity implies continuity. ��
Next we give some properties of the space u ∈ D′(r+α)+(�).

Theorem 13 The space D′(r+α)+(�) with the strong topology is reflexive and a Fréchet–

Schwartz space, it is a projective limit of spaces (cr ,α+1/n
Kn

(�))′, and its topology is generated
by the increasing sequence of seminorms

‖T ‖n := sup
ϕ∈cr,α+1/n

Kn
(�)

‖ϕ‖
c
r,α+1/n
Kn

(�)
≤1

|T (ϕ)|

= ‖T ‖
(cr,α+1/n

Kn
(�))′ .

Proof First note that because of Theorem 4 it follows that D′(r+α)+(�) is reflexive, and we

know that cr ,α+
c (�) is a complete (DF) space. Therefore, we can apply [17, Theorem18, c)] to

obtain thatD′(r+α)+(�) with the strong topology is a compact projective limit of a sequence,
which, as mentioned in [17, Remark 6], means it is a Fréchet–Schwartz space. [17, Theorem
12] identifies (cr ,α+1/n

Kn
(�))′ as the sequence of the projective limit. For the last claim, one just

needs to recall that the strong topology is the topology of uniform convergence on bounded
sets. Namely, by the Dieudonné–Schwartz theorem (which is valid for cr ,α+

c (�) by Theorem
4), each bounded set can be absorbed by a set of the form {ϕ ∈ cr ,α+1/n

Kn
(�) : ‖ϕ‖

cr,α+1/n
Kn (�)

≤ 1},
and so in particular, the norms ‖ · ‖n completely determine the strong topology. ��
Remark 14 Let us mention three properties of Hölder distributions of order 0+ that classical
distributions do not generally possess. First, one can define Hölder distributions of order
at most 0+ (and even less than 1) on general metric spaces, as there Hölder functions are
well defined. The second property is that Hölder distributions of order 0+ are completely
determined by restriction to their support (see the proof of [5, Lemma 1]). This is a property
that Radon measures have, but some other distributions as δ′ do not. It proved to be crucial in
Bonahon’s work. And third, if Y is a closed subset of X , then every 0+ Hölder distribution
T on Y (in other words, T has support in Y in accordance with the restriction property
we just mentioned) can be easily extended to a 0+ Hölder distribution T̄ on the whole
X by simply setting 〈T̄ , ϕ〉 = 〈T , ϕ|Y 〉. This correspondence between 0+ distributions on
Y and 0+ distributions on X with support in Y is actually one to one (see the proof of
[5, Lemma 2]).

4 Proof of non-nuclearity of Cr,˛+
c (Ä) andD′

(r+˛)+(Ä)

In this section, we prove the following theorem.

Theorem 15 The spaces Cr ,α+
c (�) and D′(r+α)+(�), r ∈ N0,0 ≤ α < 1, are not nuclear.
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An extension of the notion of the order of a distribution 1895

Since Cr ,α+
c (�) is nuclear if and only if D′(r+α)+(�) is nuclear (see [25, page 523,

Proposition 50.6.]), it is sufficient to prove that the Fréchet spaceD′(r+α)+(�) is not nuclear.
First we shall prove this for the space D′(r+α)+(T), where T is the one-dimensional torus
(i.e., the circle), and later we shall see how the general case easily follows from this one. We
start with an auxiliary result from classical Fourier analysis.

Lemma 16 Consider a function f ∈ c0,ε(T), 0 < ε < 1 and denote by SN the Nth Fourier
partial sum operator. Then,

‖SN f − f ‖L∞(T) � ‖ f ‖c0,ε(T)

ln N

N ε
.

For a proof, see [3, Chapter IV, Section 4] and references therein.
The following lemma gives us a result interesting in itself. The same result does not hold

for classical Hölder spaces.

Lemma 17 The sequence (x �→ e2π ikx )k∈Z is a Schauder basis for Cr ,α+(T), r ∈ N0,
0 ≤ α < 1. In fact,

lim
N→∞ sup

‖ f ‖cr,α+1/n (T)
≤1
‖SN f − f ‖cr,α+1/m (T) = 0

for all m > n > 1/(1− α). Here SN denotes the partial sum operator, i.e., SN f = DN ∗ f ,
where DN is the Dirichlet kernel.

Proof Since the differential operator ∂r commutes with SN , it is sufficient to prove the
theorem for r = 0. The convergence of the Hölder seminorm follows from the bound

| f (x)− f (y)− f (x − t)+ f (y − t)| ≤ 2‖ f ‖c0,α+1/n(T) min{|x − y|α+1/n, |t |α+1/n}
≤ 2‖ f ‖c0,α+1/n(T)|x − y|α+1/m |t |1/n−1/m,

valid for f ∈ c0,α+1/n(T). One just needs to apply Lemma 16 to t �→ f (t) with ε < 1/n
in order to obtain L∞ convergence, and to t �→ f (x) − f (y) − f (x − t) + f (y − t) with
ε = 1/n − 1/m in order to obtain convergence of the c0,α+1/m(T) seminorm. ��
Corollary 18 The sequence (x �→ e2π inx )n∈Z is a Schauder basis for D′(r+α)+(T), in the
strong topology.

Proof Since SN is self-adjoint, one has

〈SN T − T , f 〉 = 〈T , SN f − f 〉
and so the claim follows by Lemma 17. ��

We begin with the proof of Theorem 15.
Step 1 Proof that D′(r+α)+(T) is not nuclear.

If D′(r+α)+(T) were a nuclear space, then also its associated Köthe space would be nuclear

(see, e.g., [11]). We shall prove that this is not the case. We denote by en(x) = e2π inx the
elements of the Schauder basis of D′(r+α)+(T), and by ‖ · ‖k the seminorm ‖ · ‖

(cr,α+1/k
Kn

(T))′

of D′(r+α)+(T). Define ak
n = ‖en‖k . Then, the associated Köthe space is defined as

K (a) =
{

ξ = (ξ)n∈Z : |ξ |k =
∑

n∈Z
|ξn |ak

n <∞
}

,

123



1896 M. Mišur, L. Palle

with seminorms | · |k which make it into a Fréchet space. If D′(r+α)+(T) were nuclear, then
the Köthe space would also be nuclear and it would satisfy the condition

(∀k ∈ N)(∃ j ∈ N)
∑

n∈Z

ak
n

a j
n

<∞. (1)

Let us calculate

ak
n = ‖en‖k = sup

ϕ∈cr,α+1/k (T)
‖ϕ‖cr,α+1/k (T)

≤1

|en(ϕ)|

= sup
ϕ∈cr,α+1/k (T)
‖ϕ‖cr,α+1/k (T)

≤1

|ϕ̂(n)|,

and therefore |ak
n | � |n|−(r+α+1/k) for some C > 0 since this is a well-known decay

property of the Fourier coefficients of Hölder continuous functions (see, e.g., [14] or [27]).
For an estimate below of |ak

n |, we just need a rough one (actually the upper bound is also
stronger than needed), obtained by considering ϕ = en . Therefore, we have

|ak
n | ≥

1

‖en‖cr,α+1/k (T)

� 1

‖en‖Cr+1(T)

� 1

|n|r+1 .

for n �= 0 and some C > 0. Finally, we see that for all k, j ∈ N

∑

n∈Z

ak
n

a j
n

�
∑

n∈Z\{0}

|n|r+α+1/ j

|n|r+1 = ∞

and so the condition (1) is not satisfied. Therefore,D′(r+α)+(T) cannot be nuclear, and so the
same is true for Cr ,α+(T).

Step 2 Proof that Cr ,α+
c (�) is not nuclear for open sets � ⊆ Rd when d > 1.

Let � ⊆ Rd be an open set with d > 1, and consider T as a (compact) submanifold of �

(this obviously cannot be done for d = 1). Note that the restriction map π : Cr ,α+
c (�) →

Cr ,α+(T) is continuous and surjective since it is continuous and surjective as a map π :
cr ,α+1/k

Kk
(�) → cα+1/k(T) for all k ∈ N large enough. By an open mapping theorem (see

[12, page 450,Theorem6.7.2]),π : Cr ,α+
c (�)→ Cr ,α+(T) is an openmapping.Weconclude

that Cr ,α+(T) is isomorphic as a topological vector space to a quotient space of Cr ,α+
c (�).

Hence, Cr ,α+
c (�) is not nuclear since quotients (by closed subspaces) of nuclear spaces are

nuclear.
Step 3 Proof that Cr ,α+

c (�) is not nuclear for open sets � ⊆ R.
In the one-dimensional case, we have exactly the same proof as in the higher dimensions,
except we use a different quotient map. Note that it is sufficient to consider only� = R since
open intervals are diffeomorphic to R. For general open sets, non-nuclearity follows from
the interval case since open sets of R are disjoint unions of open intervals, and restriction to
one such interval gives a quotient map.

The quotient map we use in the case � = R is the periodization map defined on the space
Cr ,α+

c (R) and given by
Pϕ(x) =

∑

l∈Z
ϕ(x + l).

Since the function ϕ is compactly supported, the above sum is finite for each x ∈ R In
fact, the above sum is finite for each bounded subset of R, and from this, one easily sees
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that P maps cr ,α+1/k
Kk

(R) continuously into cr ,α+1/k(T) (considered as the space of periodic
functions with period 1). The proof of surjectivity is the same as in the well-known C∞ case.
Namely, take a compactly supported smooth function ψ with

∫
R ψ(x)dx = 1 and define

the function φ = ψ ∗ χ[0,1). Then, φ is smooth, compactly supported, and Pφ = 1. From
this, one easily obtains that P(φ f ) = f for all f ∈ cr ,α+1/k(T). Surjectivity follows since
φ f ∈ cr ,α+1/k

Kk
(R) for all k ∈ N large enough. This concludes the proof of Theorem 15.

Remark 19 Another strategy for (dis)proving nuclearity, which the authors have not pur-
sued, would be to use the ε-entropy of compact sets and Mityagin’s condition (see [20]).
It should be sufficient to use the entropy numbers of embeddings of Besov spaces (see
[26, Theorem 1.97.]).

5 Examples of Hölder distributions

In this section,we give several examples ofHölder distributions. The first example has already
been mentioned in Introduction:

Example 20 Let us consider the distribution vp.
( 1

x

)
on R whose action on ϕ ∈ C∞c (R) can

be defined equivalently by
〈
vp.

(
1

x

)
, ϕ

〉
= lim

ε→0+

∫

R\[−ε,ε]
ϕ(x)

x
dx =

∫ +∞

0

ϕ(x)− ϕ(−x)

x
dx .

It is an example of a distribution whose classical order is precisely 1. We shall demonstrate
by a simple calculation that it is actually a Hölder distribution of order at most α for any
0 < α < 1, and hence of order 0+. Indeed, fix one arbitrary α ∈ 〈0, 1〉 and take ϕ ∈ C∞c (R).
Denote K = supp ϕ. Using the second integral in the above definition, we get

∣∣∣∣

〈
vp.

(
1

x

)
, ϕ

〉∣∣∣∣ =
∣∣∣∣
∫ +∞

0

ϕ(x)− ϕ(−x)

x
dx

∣∣∣∣

≤
∫ 1

0

|ϕ(x)− ϕ(−x)|
x

dx +
∫ +∞

1

|ϕ(x)− ϕ(−x)|
x

dx .

The second integral can be bounded by:

∫ +∞

1

|ϕ(x)− ϕ(−x)|
x

dx ≤ 2max
x∈K

|xϕ(x)|
∫ +∞

1

dx

x2
= 2max

x∈K
|xϕ(x)| ≤ 2|K |‖ϕ‖L∞(K ).

Concerning the first integral, we can write

∫ 1

0

|ϕ(x)− ϕ(−x)|
x

dx = 2
∫ 1

0

|ϕ(x)− ϕ(−x)|
|2x |α|2x |1−α

dx ≤ 2α sup
x,y∈K , x �=y

|ϕ(x)− ϕ(y)|
|x − y|α

∫ 1

0

dx

x1−α

≤ 2α

1− α
sup

x,y∈K , x �=y

|ϕ(x)− ϕ(y)|
|x − y|α .

Taking CK = max
{
2|K |, 2α

1−α

}
, we just need to apply the part (b) of Proposition 12 to finish

the proof.
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Example 21 For β ∈ 〈1, 2〉, consider a distribution Pf. 1
xβ
+
whose action on ϕ ∈ C∞c (R) can

be defined equivalently by
〈
Pf.

1

xβ
+

, ϕ

〉
= lim

ε→0+

(∫ +∞

ε

ϕ(x)

xβ
dx − 2ϕ(0)

εβ−1

)
=

∫ +∞

0

ϕ(x)− ϕ(0)

xβ
dx .

Its classical order is equal to 1, yet we will show that it is a Hölder distribution of order at
most α for any α ∈ 〈β − 1, 1〉, and hence of order at most (β − 1)+. Similarly as in the
above example, we have
∣∣∣∣∣

〈
Pf.

1

xfi+
, ϕ

〉∣∣∣∣∣=
∣∣∣∣
∫ +∞

0

ϕ(x)− ϕ(0)

xβ
dx

∣∣∣∣=
∫ 1

0

|ϕ(x)− ϕ(0)|
xβ

dx +
∫ +∞

1

|ϕ(x)− ϕ(0)|
xβ

dx

≤ sup
x,y∈K , x �=y

|ϕ(x)− ϕ(y)|
|x − y|α

∫ 1

0

dx

xβ−α
+ 2|K |‖ϕ‖L∞(K ).

Since β − α < 1, the integral in the last line is finite and is equal to 1
1−β+α

.

Example 22 Finite part (partie finie) of 1
x2
, defined for ϕ ∈ C∞c (�) by

〈
Pf.

1

x2
, ϕ

〉
= lim

ε→0+

(∫ −ε

−∞
ϕ(x)

x2
dx +

∫ +∞

ε

ϕ(x)

x2
dx − 2ϕ(0)

ε

)

is a distribution of order at most 1+ α for every α ∈ 〈0, 1〉 and hence of order 1+. Indeed,
this follows easily once we remark that Pf. 1

x2
= − (

vp.
( 1
x

))′
. Its classical order is 2.

6 Fourier-analytic properties of distributions of real order and their
test functions

In this section, we use classical results to obtain some further properties of the introduced
distributions of positive real order and their test functions. We start from a result in Sect.
4. There we obtained in Lemma 17 that the Fourier basis constitutes a Schauder basis for
Cr ,α+(T), a result which does not hold for Cr ,α(T). We have the same result for the general
d-dimensional case:

Theorem 23 The sequence (x �→ e2π ik·x)k∈Zd is a Schauder basis for Cr ,α+(Td), r ∈ N0,
0 ≤ α < 1. In fact,

lim
N→∞ sup

‖ f ‖cr,α+1/n (Td )
≤1
‖SN f − f ‖cr,α+1/m (Td ) = 0

for all m > n 	 1. Here SN denotes the (cubic) Fourier partial sum operator.

The proof is the same (up to obvious modifications), though we need a substitute for
Lemma 16 (sometimes referred to as Jackson’s theorem), which can be found in [2].

Some other classical results we are interested in are [16, Theorem 7.3.1., Theorem 7.6.6.,
and Theorem 7.9.3.]. We have the following consequence of [16, Lemma 7.9.2, Theorem
7.9.3.] and the inclusion [16, (7.9.6)]

Theorem 24 C
[d( 1

p− 1
2 )],(d( 1

p− 1
2 )−[d( 1

p− 1
2 )])+

c (Rd), 1 ≤ p < 2, is continuously embedded into
the space of functions having Fourier transform in L p(Rd), and each distribution having
Fourier transform in Lq(Rd), q = 1/(1− 1/p) ∈ 〈2,∞〉, is of order at most d( 1p − 1

2 )+.
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The fact that this is essentially the best result possible is contained in Theorem 7.6.6. in
[16]. Namely, there one obtains by scaling that the classical order in general cannot be less
than d( 1p − 1

2 ). The same is also true for our real order, and one easily sees that the same

proof can be applied as in [16] as soon as one notices that for 0 < α < 1, t 	 1, ξ ∈ Rd in
a fixed bounded set, and f smooth

sup
h �=0

|eit f (ξ+h) − eit f (ξ)|
|h|α ≤ C( f )tα. (2)

This inequality is applied to the expression [16, (7.6.12)] when calculating the Hölder norms
of derivatives of the test functions ut = û ei t |ξ |2 considered in the proof.

We also have the following extension (of one part) of the Paley–Wiener–Schwartz theorem.

Theorem 25 Let K ⊂ Rd be a open ball of radius R and centre 0. If u is a Hölder distribution
with order α ≥ 0 and with support contained in K , then

|U (ζ )| � (1+ ‖ζ‖)αe2π R‖ Im ζ‖, (3)

where ζ ∈ Cd and U is the Fourier–Laplace transform of u.

We omit the proof since it is again a straightforward modification of the first part of the
proof of [16, Theorem 7.3.1.]. One again needs inequality (2), and it is essentially the only
additional ingredient needed to prove Theorem 25.

As is well known, the reverse of Theorem 25 does not hold. The simplest example is if
we take the distribution χ[−1,1] pv. 1x , then its Fourier-Laplace transform is up to a constant
the complex sine integral function Si which satisfies (3) for α = 0. On the other hand, we
know that χ[−1,1] pv. 1x is not of order 0, but 0+. Actually, Theorem 24 hints that in general
the gap can be much worse (up to d/2).

In the remainder of this section, we give an example of a completely different proof of
sharpness of Theorem 24 for the case d = 1 and p = 1. It is based on a concrete example
and functional-analytic arguments.

We begin by giving an example of a compactly supported Hölder continuous function of
degree 1/2 on the real line which does not have an absolutely integrable Fourier transform.
Our plan is to use a modification of a well-known example of a periodic Hölder continuous
function whose Fourier series does not converge absolutely. This function is defined by the
conditionally convergent series

f (x) =
∞∑

k=2

eik ln k

k
e2π ikx . (4)

The proof of the fact that this converges (and in fact uniformly) and of the fact that f is
Hölder continuous of order 1/2 can be found in [27, Chapter VI, Theorem 3.1., p. 240] (see
also [27, Chapter V, Theorem 4.2., p. 197]). There are two main steps in this proof. The first
step (and the more difficult one) is to prove the estimate

sup
x∈R

∣∣∣
N∑

k=2
eik ln ke2π ikx

∣∣∣ ≤ C
√

N

by using the van der Corput lemma. In the second step, one proves that the series converges
(uniformly) to a Hölder continuous function of order 1/2 using the above estimate and
summation by parts. Now one can modify this example by considering it as a function on the
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real line and using an appropriate cutoff function (though it seems not any). The point of the
following lemma is not the statement itself but rather the way we transfer example (4) from
T to the real line.

Lemma 26 There exists a C
0, 12
c (R) function which is not in the Wiener algebra, i.e., it does

not have an absolutely integrable Fourier transform.

Proof Denote Sn(x) = ∑n
k=2 eik ln k

k e2π ikx . We have Sn → f uniformly and hence also in
S ′(R). On the other hand, we know

FSn(ξ) =
n∑

k=2

eik ln k

k
δk(ξ),

and since FSn → F f in S ′(R), we have

F f (ξ) =
∞∑

k=2

eik ln k

k
δk(ξ),

of course in S ′(R).
Take an arbitrary smooth function ψ̃ with compact support and Fψ̃(0) = 1/2. Define

ψ = ψ̃ ∗ χ[−1,1],

where χ[−1,1] is the characteristic function of the set [−1, 1]. Then, ψ is again a compactly
supported smooth function with Fourier transform

Fψ(ξ) = Fψ̃(ξ)Fχ[−1,1](ξ) = Fψ̃(ξ)
sin(2πξ)

πξ
.

The two main properties of the Fourier transform of ψ we are going to use are that it is a
Schwartz function and also that it has a zero at each integer, excluding the point ξ = 0 where
it is equal to 1.

Now consider the function g(x) = f (x) ψ(x). It is Hölder continuous of order 1/2 and
has compact support, so it only remains to prove that its Fourier transform is not absolutely
integrable. We have

Fg(ξ) = F̄ f ∗ F̄ψ(ξ) = 〈F̄ f , τξFψ〉 = 〈F̄ lim
n

Sn, τξFψ〉

= lim
n

n∑

k=2

eik ln k

k
〈F̄e2π ikx , τξFψ〉

= lim
n

n∑

k=2

eik ln k

k
〈δ−k, τξFψ〉

= lim
n

n∑

k=2

eik ln k

k
τξFψ(−k)

=
∞∑

k=2

eik ln k

k
Fψ(−k − ξ),

where in the fourth equality we used the fact that Sn → f in S ′(R). First, one should notice
that Fg(−l) = eil ln l/l for l > 1 an integer, and so |Fg(−l)| = |eil ln l/l| = 1/l (here we
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used that Fψ(l) = 0 for l �= 0). To prove that Fg is not absolutely integrable, it is sufficient
to show that there exists a δ ∈ 〈0, 1/2〉 such that

|Fg(−l + ξ)| > 1

2
|Fg(−l)|

for each l > 1 an integer and all |ξ | < δ (the point is that the choice of δ is independent of
l). From this, it would follow that

∫

R
|g(ξ)|dξ ≥

∞∑

l=2

∫

|ξ |<δ

|Fg(−l + ξ)|dξ ≥ 1

2

∞∑

l=2

∫

|ξ |<δ

|Fg(−l)|dξ ≥ δ

∞∑

l=2

1

l
,

where the right-hand side diverges.
To obtain the desired δ, one should notice that it is enough to prove that (Fg)′ is O( 1

|ξ | )
as |ξ | → +∞, i.e., there exists a constant A > 0 such that |(Fg)′| ≤ A

|ξ | for |ξ | > 1. Then,

we could take δ = min{1/(4A), 1/4} since by the mean value theorem there is a ξ̃ between
−l and −l + ξ such that

|Fg(−l + ξ)− Fg(−l)| = |(Fg)′(−l + ξ̃ )||ξ |
≤ A|ξ |
| − l + ξ̃ | ≤

1/4

l − 1/4
= 1

4l − 1
<

1

2l
= 1

2
|Fg(−l)|,

and so we would get the desired inequality

1

2
|Fg(−l)| ≤ 1

2
|Fg(−l)− Fg(−l + ξ)| + 1

2
|Fg(−l + ξ)|

<
1

4
|Fg(−l)| + 1

2
|Fg(−l + ξ)|,

that is |Fg(−l + ξ)| > 1
2 |Fg(−l)|, for |ξ | < δ.

Finally, we need to prove the decay property at infinity of (Fg)′. Recall Fg(ξ) = F̄ f ∗
F̄ψ(ξ), so we have

(Fg)′(ξ) = F̄ f ∗ (F̄ψ)′(ξ).

Then, by a similar calculation as before, one obtains

(Fg)′(ξ) =
∞∑

k=2

eik ln k

k
ϕ(−k − ξ),

where ϕ is some Schwartz function. Since the above expression is a convolution between the
functions of decay 1/k and of arbitrary decay, the decay of the convolution is at best O( 1

|ξ | ).
This concludes the proof of the lemma. ��

In particular, nowweknow that the space ofC0,1/2
c (R) is not a subset of theWiener algebra,

and therefore, also c0,1/2−ε
c (R) is not a subset of the Wiener algebra for any 0 < ε < 1/2.

But from this it is not immediately clear that a distribution satisfying

|〈T , ϕ〉| ≤ C‖Fϕ‖L1(R)

is not generally of order at most 1/2. We prove that there exist distributions satisfying the
above bound, but which are of order at least 1/2− ε for ε arbitrarily small. For convenience,
denote by X the Wiener algebra (a Banach space with norm ‖x‖X = ‖Fx‖L1(R), and hence,
its dual X ′ is the space of distributions with Fourier transform in L∞(R), the uniform norm
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being ‖T ‖X ′ = ‖FT ‖L∞(R), T ∈ X ′) and by Y the space c0,1/2−ε
c (R), a strict inductive limit

of Banach spaces Yk = c0,1/2−ε
Kk

(R), for a fixed small ε. Recall also that Y ′ is a Fréchet space
with the strong topology. We need the following simple lemma.

Lemma 27 Assume that each distribution which can be extended to an element of X ′ can
also be extended to an element of Y ′. Also assume that the induced embedding of X ′ → Y ′ is
continuous in the pair of topologies (uniform topology on X ′, weak* topology on Y ′). Then,
Y embeds continuously into X.

Proof First, we have to prove that the extensions are compatible, i.e., the actions coincide
on the set X ∩ Y . By continuity, it is enough to construct for each y ∈ X ∩ Y a sequence
in C∞c (R) which converges in X and Y topologies at the same time. This is easily done by
using the standard mollifier.

Now by assumption, X ′ embeds into Y ′, and as the restriction operator maps Y ′ to Y ′k ,
we can ask whether a bound of the form ‖ f ‖Y ′k ≤ Ck‖ f ‖X ′ holds. This indeed holds by the
following argument. Consider the bilinear form on X ′ × Yk defined by ( f , y) �→ 〈 f , y〉 =
f (y). This form satisfies the bound |〈 f , y〉| ≤ Cy‖ f ‖X ′ by continuity of the inclusion

X ′ → Y ′ and the bound |〈 f , y〉| ≤ C f ‖y‖Y ′k by continuity of f on Y ′k . By the uniform

boundedness principle, we have |〈 f , y〉| ≤ Ck‖y‖Y ′k ‖ f ‖X ′ .
Finally, one should notice that for y ∈ Yk we have

‖y‖X = sup
f ∈�

‖ f ‖X ′≤1
|〈 f , y〉| ≤ sup

f ∈�
‖ f ‖Y ′k≤Ck

|〈 f , y〉| ≤ sup
f ∈�

‖ f ‖Y ′k≤Ck

‖ f ‖Y ′k‖y‖Yk ≤ Ck‖y‖Yk .

Here � denotes the subspace of X ′ of all distributions whose Fourier transform are simple
functions on R vanishing outside a set of finite measure, and so as the Fourier transform of
y is a C0(R) function as y is integrable, the (first) equality is justified by the converse of
Hölder inequality. Therefore, we conclude that Yk embeds continuously into X for each k in
the pair of norm topologies, and so Y also embeds continuously into X . ��
Remark 28 One could circumvent using the converse Hölder inequality if X were reflexive,
but this is not the case since it is isomorphic to L1 as a Banach space. On the other hand, a
proof using density should work. Indeed, if we additionally assume y ∈ X , we have

‖y‖X = sup
f ∈X ′

‖ f ‖X ′≤1
|〈 f , y〉|,

and so we have an embedding of X ∩Yk into X in the pair of norm topologies of Yk and X . It
remains to prove that X ∩Yk is dense in Yk (this is not that simple; it is sufficient to prove that
C∞Kk

is dense in Yk , but since mollifying will push the support outside Kk , one needs to use a
cutoff function and analyse what is happening at the boundary, and for this, a usual strategy
for higher dimensions is first to straighten the boundary for which one needs to assume some
smoothness on ∂Kk). In trying to circumvent even a density argument, one could conclude
that X ∩ Y → X is continuous in the pair of the inductive limit topology of the sequence
(X ∩ Yk)k and the norm topology of X . Unfortunately, the inductive limit topology of the
sequence (X ∩ Yk)k on X ∩ Y does not in general coincide with the subspace topology on
X ∩ Y inherited from Y . In fact, in general it can be strictly finer than the subspace topology
when considering strict inductive limits of Fréchet spaces even if the subspace is closed (see
[25, Remark 13.2.]). One should compare this with Theorem 3 e).
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Theorem 29 The dual of the Wiener algebra does not embed into D1/2−ε(R) for any ε, where
both spaces are considered as subsets of the space of distributions.

Proof Now since we know that Y = c0,1/2−ε
c (R) does not embed into the Wiener algebra X ,

by the previous lemma, it follows that either X ′ is not a subset of Y ′, or that the embedding
X ′ → Y ′ is not continuous in the pair of norm and weak* topology. We argue that the
latter case is not possible. Assume that we have the (not necessarily continuous) embedding
X ′ → Y ′. Its graph is closed in the pair of strong topologies, since both X ′ and Y ′ with strong
topologies embed continuously into the space of distributions (with say the weak* topology).
But since both X ′ and Y ′ are Fréchet in these topologies, the closed graph theorem is valid
and we obtain an even stronger continuity than needed. ��

We conclude that there exists a distribution satisfying

|〈T , ϕ〉| ≤ C‖Fϕ‖L1(R)

which is not of order at most 1/2 − ε and hence has order strictly larger than 1/2 − ε.
Therefore, we see that we cannot lower the order below 1

2 . We could say that a distribution
on the real line having an a.e. bounded Fourier transform is of order somewhere between
“ 12−” and 1

2+.
Of course, it would be of interest to provide examples for greater dimensions. This would

likely entail an appropriate modification of (4) and proving the associated estimates.

7 Convolution of Hölder distributions

Let u ∈ D′r+α(Rd) and v ∈ D′q+β(Rd), where r , q ∈ N0 and α, β ∈ [0, 1〉, and assume the
following compatibility condition on their supports Ku and Kv:

For any compact set K ⊂ Rd , there exist compact sets K1, K2 ⊂ Rd such that
(
x ∈ Ku, y ∈ Kv ∧ x + y ∈ K

)
�⇒ x ∈ K1, y ∈ K2 . (5)

Since u and v are distributions, it is standard to define their convolution u ∗ v ∈ D′(Rd)

by its action on a test function ϕ ∈ C∞K (Rd) (with obvious abuse of notation)

〈u ∗ v, ϕ〉 = 〈
u(x)⊗ v(y), ρ1(x)ρ2(y)ϕ(x + y)

〉
,

where ρ1 ∈ C∞c (Rd) is equal to one on a neighborhood of K1 and ρ2 ∈ C∞c (Rd) is equal
to one on a neighborhood of K2. The definition does not depend on the choice of cutoff
functions ρ1 and ρ2, and furthermore, the following formula holds:

〈u ∗ v, ϕ〉 = 〈
v(y), 〈u(x), ϕ(x + y)〉〉 = 〈

u(x), 〈v(y), ϕ(x + y)〉〉.
We will show that u ∗ v is in fact a Hölder distribution of order at most r +q+α+β. Recall
that for α, β ≥ 0 we denote by [α + β] the greatest integer less than α + β and by {α + β}
the difference α + β − [α + β] ∈ [0, 1〉.

Let us first show the following result.

Lemma 30 Let �1 ⊂ Rd1 and �2 ⊂ Rd2 be open subsets and take r , q ∈ N0 and α, β ∈
[0, 1〉. Assume that ϕ ∈ cr+q+[α+β],{α+β}(�1 ×�2) satisfies:

(∀y′ ∈ �2)
(∃U (y′) ⊂ �2 neighborhood of y′

)
(∃K (y′) ⊂ �1 compact ) :

supp (ϕ(., y)) ⊂ K (y′), ∀y ∈ U (y′). (6)
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Then for any u ∈ D′r+α(�1), one has:

y �→ 〈u(x), ϕ(x, y)〉 ∈ cq,β(�2).

In particular, if ϕ is infinitely differentiable, then the same is true for

y �→ 〈u(x), ϕ(x, y)〉.
Proof Notice that for every fixed y ∈ �2, function x �→ ϕ(x, y) belongs to cr ,α

c (�1). Thus,
the function

�(y) = 〈u(x), ϕ(x, y)〉
is well defined. It remains to show that � belongs to the space cq,β(�2). Let us first prove
continuity. For h such that |h| < δ, define

ϕh(x, y) = ϕ(x, y+ h)− ϕ(x, y),

and write

�(y+ h)−�(y) = 〈u(x), ϕh(x, y)〉.
Note that if we take δ small enough, then ϕh(x, y) have supports contained in a fixed compact
set independent of h. In order to show that � is continuous, it is enough to show that
ϕh(., y)→ 0 in cr ,α

c (�1) as |h| → 0. This immediately follows from
∣∣∂γ ϕh(x, y)

∣∣ = ∣∣∂γ ϕ(x, y+ h)− ∂γ ϕ(x, y)
∣∣ ≤ Cγ

U (y)(h) |h|α,

where by Cγ
U (y)(h) we have denoted the Hölder seminorm of the function ∂γ ϕ with respect

to the second variable on the set U (y), and by γ a multi-index such that |γ | ≤ r . It remains
to recall that Cγ

U (y)(h)→ 0 as |h| → 0.
Next we prove that � is a q times differentiable function and that we have the formula

∂γ �(y) = 〈u(x), ∂
γ
y ϕ(x, y)〉,

for all |γ | ≤ q . Let us assume that � is k − 1 < q times differentiable and that the formula
is true for all |γ | ≤ k − 1. We consider the function (for h ∈ 〈0, δ〉)

θh(x, y) = ∂γ ϕ(x, y+ he j )− ∂γ ϕ(x, y)
h

− ∂y j ∂
γ ϕ(x, y),

where e j is a vector of the standard basis of Rd2 , and write

∂γ �(y+ he j )− ∂γ �(y)
h

− 〈u(x), ∂y j ∂
γ ϕ(x, y)〉 = 〈u(x), θh(x, y)〉.

To show that � is of class Ck , it would be enough to show that θh(., y) → 0 in cr ,α
c (�1) as

h → 0. This can be done in precisely the same way as it was done for ϕh above after one
uses the mean value theorem to rewrite θh as

θh(x, y) = ∂y j ∂
γ ϕ(x, y+ h̃(x, y)e j )− ∂y j ∂

γ ϕ(x, y),

where |h̃(x, y)| ≤ h.
The final step is to prove that partial derivatives of order q are Hölder of order β. We

can take β > 0 as the case β = 0 is actually already proven. Take an arbitrary y′ ∈ �2,
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An extension of the notion of the order of a distribution 1905

and δ > 0 such that an open ball of radius δ centered around y′ is contained in U (y′). For
y, ŷ ∈ K (y′, δ) ⊂ U (y′), and |γ | = q , we write:

|∂γ �(y)− ∂γ �(ŷ)|
|y− ŷ|β =

∣∣∣∣

〈
u(x),

∂γ ϕ(x, y)− ∂γ ϕ(x, ŷ)
|y− ŷ|β

〉∣∣∣∣

�
∑

|γ 1|≤r+q

∥∥∥∥
∂γ 1ϕ(x, y)− ∂γ 1ϕ(x, ŷ)

|y− ŷ|β
∥∥∥∥

L∞x

+
∑

|γ 2|=r+q

sup
x �=x̂

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
|y− ŷ|β |x − x̂|α .

(7)

Since |y− ŷ|β = |(x, y)− (x, ŷ)|β , the terms in the first sum in the above bound are bounded
by the β-Hölder seminorms of the functions ∂γ+γ 1ϕ. In fact, they go to 0 when |y− ŷ| → 0
since ϕ is in cr+q,β

c (�1 ×�2) and the variables go over a precompact set K (y′)× K (0, δ),
where K (y′) is the compact set as in support condition (6).

For the second sum, we have to consider two cases separately. In the case when α+β < 1,
using the inequality

min
{|x − x̂|α+β, |y− ŷ|α+β

}

|x − x̂|α|y− ŷ|β ≤ 1, (8)

one gets

sup
y �=ŷ

sup
x �=x̂

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
|y− ŷ|β |x − x̂|α

≤ 2 sup
z �=ẑ

|∂γ 2ϕ(z)− ∂γ 2ϕ(ẑ)|
|z− ẑ|α+β

,

where y, ŷ go over K (y′, δ), and z, ẑ go over K (y′) × K (y′, δ). Thus, � ∈ Cq,β(�2). We
can in fact show � ∈ cq,β(�2). Namely, we have for any sufficiently small η > 0

sup
y �=ŷ

|y−ŷ|<η

sup
x �=x̂

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
|y− ŷ|β |x − x̂|α

≤ 2 sup
z �=ẑ

|z−ẑ|<η

|∂γ 2ϕ(z)− ∂γ 2ϕ(ẑ)|
|z− ẑ|α+β

,

and so we get that the second sum in (7) also tends to 0 as |y− ŷ| → 0.
In the case α + β ≥ 1, we need the inequalities

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
� |x − x̂| sup

x̃∈[x,x̂]
sup

|γ 3|=r+q+1
|∂γ 3ϕ(x̃, y)− ∂γ 3ϕ(x̃, ŷ)| (9)

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
� |y− ŷ| sup

ỹ∈[y,ŷ]
sup

|γ 3|=r+q+1
|∂γ 3ϕ(x, ỹ)− ∂γ 3ϕ(x̂, ỹ)| (10)
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obtained by applying the mean value theorem to functions x �→ ∂γ 2ϕ(x, y) − ∂γ 2ϕ(x, ŷ)
and y �→ ∂γ 2ϕ(x, y)− ∂γ 2ϕ(x̂, y). Here [x, x̂] (resp. [y, ŷ]) is the line segment connecting
the points x and x̂ (resp. y and ŷ). Therefore, if M :=min{|x − x̂|, |y− ŷ|}, then

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
� M sup

|z−ẑ|≥M
sup

|γ 3|=r+q+1
|∂γ 3ϕ(z)− ∂γ 3ϕ(ẑ)|. (11)

Now using inequalities (8) and (11), we get

sup
y �=ŷ

sup
x �=x̂

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
|y− ŷ|β |x − x̂|α

� sup
|γ 3|=r+q+1

sup
z �=ẑ

|∂γ 3ϕ(z)− ∂γ 3ϕ(ẑ)|
|z− ẑ|α+β−1 ,

where z, ẑ go over K (y′)×K (y′, δ). Thus,� ∈ Cq,β(�2). We can actually prove the needed
stronger result � ∈ cq,β(�2), though in a slightly different way than in the case α + β < 1.
Namely, using the geometric mean of (9) with weight (1 − β)/(2 − α − β) and (10) with
weight (1− α)/(2− α − β), one easily gets the inequality

|∂γ 2ϕ(x, y)− ∂γ 2ϕ(x, ŷ)− ∂γ 2ϕ(x̂, y)+ ∂γ 2ϕ(x̂, ŷ)|
|y− ŷ|β |x − x̂|α

� sup
|γ 3|=r+q+1

sup
|z−ẑ|=|x−x̂|

( |∂γ 3ϕ(z)− ∂γ 3ϕ(ẑ)|
|z− ẑ|α+β−1

) 1−α
2−α−β

× sup
|γ 3|=r+q+1

sup
|z−ẑ|=|y−ŷ|

( |∂γ 3ϕ(z)− ∂γ 3ϕ(ẑ)|
|z− ẑ|α+β−1

) 1−β
2−α−β

.

Our claim follows now easily since the second factor on the right-hand side of the previous
inequality goes to 0 when |y− ŷ| → 0 because ϕ ∈ cr+q+1,α+β−1(�1 ×�2). ��
Remark 31 For ζ ∈ cr ,α

c (Rd), the function ϕ : Rd ×Rd → C defined by ϕ(x, y) = ζ(x+y)
satisfies the support condition assumed in the Lemma 30. It is clear that ϕ ∈ cr ,α(Rd ×Rd),
and we can take U (y′) to be the open unit ball around y′ and K (y′) to be the set difference
between supp (ζ ) and the closure of U (y′).

Theorem 32 Assume u ∈ D′r+α(Rd) and v ∈ D′q+β(Rd) satisfy the compatibility condition

on their supports (5). Then, u ∗ v ∈ D′r+q+α+β(Rd).

Proof Take ϕ ∈ C∞c (Rd). We already know that u ∗ v is a distribution from the classical
theory, so we only have to show continuity. Similarly as before, define

�(y) = ρ2(y)〈u(x), ρ1(x)ϕ(x + y)〉
which is a function of class C∞ with compact support by Lemma 30. Here ρ1 and ρ2 are
cutoff functions equal to 1 on K1 and K2 as given in condition (5). The proof of Lemma 30
gives us

‖�‖cq,β (K2)
� ‖ϕ‖cr+q+[α+β],{α+β}(K1×K2)

.

Therefore,
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An extension of the notion of the order of a distribution 1907

|〈u ∗ v, ϕ〉| = |〈v(y), ρ2(y)〈u(x), ρ1(x)ϕ(x + y)〉〉|
= |〈v(y),�(y)〉|
� ‖�‖cq,β (K2)

� ‖ϕ‖cr+q+[α+β],{α+β}(K1×K2)
,

which proves our claim. ��

Corollary 33 Assume u ∈ D′(r+α)+(Rd) and v ∈ D′q+β(Rd) satisfy the compatibility condi-

tion on their supports (5). Then, u ∗ v ∈ D′(r+q+α+β)+(Rd).

8 Further extensions

We see no obstacle in extending the notion of real positive order to currents in the sense of
de Rham and distributions on manifolds. For example, the construction could follow the one
presented in [9].

Luc Tartar posed to us an interesting question which we were not able to answer so far:
What can one say about the order of a fractional derivative of a Radon measure? A standard
way to calculate the upper bound on the order of a derivative of a distribution is to use
partial integration of its action on test functions. However, partial integration depends on the
Leibniz formula, but there is no Leibniz formula for a fractional derivative of a product, so
this question is not trivial. We believe that the notion of Hölder distributions might prove
suitable to answer this question.

This leads us to a result by Ornstein [21], whose consequence is an answer to a question
by Laurent Schwartz: Does there exist a distribution u ∈ D(R2) such that ∂x u and ∂yu are of
order 1, but u is not of order 0? He constructed an example of a distribution in R2 which is
not a measure, but whose first-order derivatives were distributions of order 1. Can we use the
notion of Hölder distributions to determine the order of u given by Ornstein? Is it possible
to give an estimate on the order of all such distributions?

These are closely related to the question of extending two important results in distribution
theory. The first one is the structure theorem of distributions which states that any distribution
can be locally represented as a finite derivative of a continuous function. Is it possible to have
an optimal (in some sense) representation ofHölder distributions using fractional derivatives?
The second one is the Schwartz kernel theorem, which states that for every continuous linear
map K : D(Y )→ D′(X) there exists a unique k ∈ D′(X×Y ) such that 〈Kv, u〉 = 〈k, u⊗v〉.
The connection between the order of distributions in the image of K and the order of the
distribution k was done in the PhD thesis of the first author [19] (it is available online). The
structure theoremwas vital. Is it possible to obtain a similar result in the case when the image
of the operator K is a subset of Hölder distributions?

We hope that some of these questions will be resolved soon.
At the end, let us mention an interesting extension communicated to us by an anonymous

referee: Instead of using norms of Hölder spaces, one could use norms of more general
function spaces. For example, Hölder–Zygmund spaces coincide with Hölder spaces in the
case where � is the whole Rd and exponent is a positive non-integer real number, but these
spaces do not have C∞c as a dense subset since they are not separable (as discussed in Sect. 2).
But generally for Besov spaces the approach considered in this article should work. It would
be of interest to follow the suggested alternative approach and to investigate the topological
properties of the resulting spaces.
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