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Abstract
In this paper, we study a class of nonlinear parabolic problems including the p-Laplacian
equation. The initial datum and the forcing term are allowed to be summable functions
or Radon measures. We prove that these equations have surprising regularizing properties.
Moreover, we study the behavior in time of these solutions proving that decay estimates hold
true also for nonzero reaction terms. Finally, we study the autonomous case.
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1 Introduction

Let us consider the following nonlinear parabolic problem
⎧
⎨

⎩

ut − div(a(x, t,∇u)) = f (x, t) in �T ,

u = 0 on �,

u(x, 0) = u0(x) on �,

(1.1)

where�T = �×(0, T ),� is an openbounded set ofRN , N > 2,T > 0 and� = ∂�×(0, T ),
with ∂� regular.

Here the function a(x, t, ξ) : � × (0, T ) × R
N → R

N is a Caratheodory function1

satisfying, for a.e. (x, t) ∈ �T and for every ξ and η ∈ R
N the following structure conditions

a(x, t, 0) = 0, (1.2)

[a(x, t, ξ) − a(x, t, η)][ξ − η] ≥ α|ξ − η|p, α > 0, 2 < p < N , (1.3)

1 i.e., it is continuous with respect to ξ for almost every (x, t) ∈ �T , and measurable with respect to (x, t)
for every ξ ∈ R

N .
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and

|a(x, t, ξ)| ≤ β[|ξ |p−1 + h(x, t)], β > 0, h ∈ L p′
(�T )

1

p
+ 1

p′ = 1 (1.4)

Notice that assumptions (1.2) and (1.3) are equivalent to require that (1.3) and the following
coercivity condition hold true

a(x, t, ξ)ξ ≥ α|ξ |p, (1.5)

since (1.5) implies (1.2).
We recall that under the previous structural assumptions, also in presence of only

summable data f ∈ L1(�T ) and u0 ∈ L1(�), there exists at least a solution u of (1.1)
(see [7] and Definition 2.1). Generally, these solutions are not unique. To guarantee the
uniqueness further requirements are needed even when the forcing term f is identically zero
(see [1,3–5,11,21,28] and the references therein).

The model we have in mind is the p-Laplacian equation
⎧
⎨

⎩

ut − 	pu = f (x, t) in �T ,

u = 0 on �,

u(x, 0) = u0(x) on �,

(1.6)

which is widely studied since it appears in a lot of applicative problems modeling dif-
fusive problems arising in various different contexts like, for example, fluid dynamics
(non-Newtonian fluids), biology (evolution of biological species and populations), hydrology,
glaciology etc. (see [29] and the references therein).

It is well known that in the absence of the forcing term f, i.e., when (1.6) becomes
⎧
⎨

⎩

ut = 	pu in �T ,

u = 0 on �,

u(x, 0) = u0(x) on �,

(1.7)

a very strong regularization property appears: there exists a solution u of (1.7) which becomes
“immediately bounded” also if the initial datum u0 is only a summable function (see [15] if
N = 1, [9,13,14,20,29,30] and the references therein). Moreover, this solution satisfies the
following decay estimate

‖u(t)‖L∞(�) ≤ c.
‖u0‖

p
N (p−2)+p

L1(�)

t
N

N (p−2)+p

(1.8)

(see [20,29]).
Indeed, also the following bound holds true

‖u(t)‖L∞(�) ≤ c

t
1

p−2

(1.9)

where c depends only on N , p, α and |�| (see [20]). This last estimate is noticeable different
from (1.8) because it does not depend on the initial datum u0. Bounds like (1.9) (i.e., inde-
pendent of u0) are often referred in the literature as “universal estimates”. Notice that the
value 1

p−2 is larger than the decay exponent that appears in (1.8) and consequently this last
inequality is a better estimate for large values of t .

Finally, all the previous results remain true for problem (1.7) replaced by
⎧
⎨

⎩

ut = div(a(x, t,∇u)) in �T ,

u = 0 on �,

u(x, 0) = u0(x) on �,

(1.10)
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Asymptotic behavior and regularity properties of strongly… 1805

when (1.2)–(1.4) are retained and also estimates (1.8)–(1.9) still hold true in this more general
setting (see [10,20]).

In addition, it is also unique the solution that has this regularizing property (see [21]) and
it is also possible to show that if the summability of the initial datum increases, for example
if u0 belongs to Lr0(�) with r0 > 1, then this higher summability influences the decay
estimates (1.8) that becomes

‖u(t)‖L∞(�) ≤ c
‖u0‖

pr0
N (p−2)+pr0
Lr0 (�)

t
Nr0

N (p−2)+pr0

(1.11)

(see [20]).
We point out that, although this equation is widely studied, it seems an open problem

to understand what happens to these decay estimates and to this strong L∞-regularization
property when f is not identically zero and the initial datum u0 belongs to L1(�).

Hence, this “open case” is the contempt of this paper.
We prove here that if f is a function satisfying

f ∈ Lm(0, T ; Ls(�)) s ≥ 1 m ≥ 1 (1.12)

and
u0 ∈ L1(�) (1.13)

then there exists a solution of (1.1) which immediately increases its regularity reaching the
same summability properties of the solution u0 (obtained by approximation) of the following
problem ⎧

⎨

⎩

(u0)t − div(a(x, t,∇u0)) = f (x, t) in �T ,

u0 = 0 on �,

u0(x, 0) = 0 on �.

(1.14)

Hence, for every ε ∈ (0, T ) we have

u0 ∈ Lδ(ε, T ; Lν(�)) 
⇒ u ∈ Lδ(ε, T ; Lν(�)). (1.15)

In particular, when f ≡ 0 being u0 ∈ L∞(�T ) (indeed in this case u0 ≡ 0) we obtain the
L∞-regularization property recalled above for null data f. Notice that u0 belongs to L∞(�T )

also when f is a function not identically zero satisfying (1.12) and

1

m
+ N

ps
< 1 (1.16)

Thus, there exists a solution u of (1.1) that becomes immediately bounded also for sufficiently
regular data f (i.e., satisfying (1.16)) even if u0 is only a summable function.

We point out that (1.15) holds true for every u0 ∈ L1(�) and for every forcing term
satisfying (1.12); hence also if f does not satisfy (1.16), an improvement in summability
immediately appears and again u(t) immediately reaches the same summability of u0 (see
Corollary 2.2 for further details). To our knowledge, this regularizing phenomenon is not
known in the literature.

Moreover, we prove that the following estimate holds true for almost every t ∈ (0, T )

‖u(t) − u0(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
, (1.17)
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where Ci , i = 0, 1 are positive constants depending only on p, N and the coercivity constant
α defined in (1.5). Notice that the previous result includes, as particular cases, the decay
estimates (1.8) and (1.9), since, as recalled above, when the forcing term f is identically zero
also u0 is identically zero.

We notice that the previous estimate is rather surprising since it holds true for every choice
of f and hence, also when the condition (1.16) is not satisfied and hence when generally both
u(t) and u0(t) are not in L∞(�). Thus, the difference between these solutions u and u0 is
bounded although it may happen that both these solutions are unbounded!

Indeed, we will show that there exists a global solution u of (1.1) (see Definition 2.2)
satisfying the bound (1.17) for almost every t > 0. This last result allows to describe the
asymptotic behavior in time of u(t) and implies that

lim
t→+∞ ‖u(t) − u0‖L∞(�) = 0.

In other words, for t large the solution u(t) forgets its “initial value u0” and has the same
behavior of the solution u0 which satisfies a null condition.

In this paper, we also study the autonomous case:

a(x, t,∇u) = a(x,∇u) f (x, t) = f (x)

and we prove that for every u0 ∈ L1(�) and f ∈ L1(�) there exists a global solution u(t)
of (1.1) that satisfies

lim
t→+∞ ‖u(t) − w‖L∞(�) = 0,

where w is the solution (obtained by approximation) of the associate stationary problem
{− div(a(x,∇w)) = f (x) in �,

w = 0 on ∂�.
(1.18)

In other words, u(t) tends in the L∞(�)-norm to the solution w of the nonlinear elliptic
problem (1.18) even when both these solutions, u(t) and w, do not belong to L∞(�)!

Finally,we investigatewhat happens to the results described above in themore general case
of Radon measures as initial data which is an open problem even in the case of null function
f. We complete our investigation considering the case of forcing term f Radon measure too
and extending our study also to the semilinear case p = 2 being this last case not present in
the literature (see [2,8,16,23] and the references therein).

We show that most of the results remain true in this more general setting. In particular, the
instantaneous regularizing property (1.15) holds true and the L∞-estimate (1.17) described
above in the framework of measure data becomes

‖u(t) − u0(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2

and

‖u(t) − u0(t)‖L∞(�) ≤ min

{

C2
‖u0‖M(�)

t
N
2 eσ t

, C1
‖u0‖M(�)

t
N
2

}

if p = 2

where C0 and C1 are the same positive constants in (1.17) (hence they depend only on N , p
and α), C2 is a positive constant depending only on N and α and σ is a positive constant
depending only on α, |�| and N (see formula (4.52)).
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The plan of the paper is the following: in Sect. 2 we state all our results. In Sect. 3, for the
convenience of the reader, we recall some known results which we use in the proofs. Finally,
Sect. 4 is devoted to the proofs of all the results.

2 Main results

We state here our results in all the details. We start considering the case of data in Lebesgue
spaces and then (in Sect. 2.2) we will study what happens in the presence of measure data.

2.1 Data in Lebesgue spaces

Before enouncing our results, we recall what we mean by a solution of (1.1).

Definition 2.1 Assume that the data f and u0 satisfy

f ∈ L1(�T ) u0 ∈ L1(�). (2.1)

Then a measurable function u ∈ L∞(0, T ; L1(�)) ∩ L1(0, T ; W 1,1
0 (�)) is a solution of

(1.1) if a(x, t,∇u) ∈ (L1(�T ))N and
∫∫

�T

[

−u
∂ϕ

∂t
+ a(x, t,∇u)∇ϕ

]

dxdt =
∫

�

u0ϕ(0)dx +
∫∫

�T

f ϕ, (2.2)

for every ϕ ∈ W 1,∞(0, T ; L∞(�)) ∩ L∞(0, T ; W 1,∞
0 (�)) satisfying ϕ(T ) = 0.

We observe that under the structure conditions (1.2)–(1.4) and the assumption (2.1) on the
data, there exists at least one solution of (1.1) (see [7]). As noticed above, these solutions (in
absence of further requirements) are not unique.

One of the main results of this paper is the following L∞-estimate which describes the
behavior in time of the distance between two solutions of (1.1) satisfying different initial
data in L1(�) and that can be considered as a sort of “continuous dependence of the initial
data” (see also Remark 2.1). The importance of this estimate relies not only in the estimate
itself, which is rather surprising, but also in various interesting properties of the solutions that
it implies and that we will explain below. In detail, let us consider the following nonlinear
parabolic equation ⎧

⎨

⎩

vt − div(a(x, t,∇v)) = f (x, t) in �T ,

v = 0 on �,

v(x, 0) = v0 on �,

(2.3)

(i.e., problem (1.1) with initial datum v0) where

v0 ∈ L1(�). (2.4)

We have the following result

Theorem 2.1 Let (1.2)–(1.4) be satisfied. Assume (2.1) and (2.4). Then there exists at least a
solution u ∈ C([0, T ]; L1(�)) of (1.1) and there is at least a solution v ∈ C([0, T ]; L1(�))

of (2.3) such that the following estimate holds

‖u(t) − v(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0 − v0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
for almost every t ∈ (0, T )

(2.5)
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1808 M. M. Porzio

where C0 and C1 are positive constants depending only on N , p and α.
Moreover, u and v are obtained as the limit (a.e. in �T ) of “classical” solutions of the

approximating problems (respectively) (4.1) and (4.4).
Finally, if u and v are two solutions of, respectively (1.1) and (2.3), obtained as the limit

(a.e. in �T ) of solutions of the approximating problems (respectively) (4.1) and (4.4), then
they satisfy (2.5).

As noticed in Introduction, estimate (2.5) is rather amazing since in general both the solution
u and v are not bounded.

We observe that the previous result can be generalized to global solutions. To show the
existence of these global solutions, let us assume

h ∈ L p′
loc([0,+∞); L p′

(�)) (2.6)

(where h is the function in (1.4)) and

f ∈ L1
loc([0,+∞); L1(�)), u0 ∈ L1(�). (2.7)

The following result holds true.

Theorem 2.2 Let (1.2)–(1.4) and (2.6) be satisfied. Assume (2.7) and (2.4). Then there exists
at least a global solution u ∈ Cloc([0,+∞); L1(�)) of (1.1) and there is at least a global
solution v ∈ Cloc([0,+∞); L1(�)) of (2.3) such that the following estimate is satisfied

‖u(t) − v(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0 − v0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
for almost every t > 0

(2.8)
where C0 and C1 are the same constants in (2.5), hence positive constants depending only
on N , p and α.

In particular, it results
lim

t→+∞ ‖u(t) − v(t)‖L∞(�) = 0. (2.9)

Finally, u and v are obtained as limit of regular approximating solutions.

We recall that here by a global solution we mean the following.

Definition 2.2 Ameasurable function u is a global solution of (1.1) if it is a solution of (1.1)
for every T > 0 arbitrarily fixed. We also denote a global solution of (1.1) as a solution of
the following problem

⎧
⎨

⎩

ut − div(a(x, t,∇u)) = f (x, t) in �∞,

u = 0 on ∂� × (0,+∞),

u(x, 0) = u0(x) on �.

(2.10)

Remark 2.1 We point out that the global solutions u and v constructed in Theorem 2.2 are
obtained by approximation. We recall that the solutions in �T constructed by approximation
are unique, i.e., if you change the approximation sequences of the data you always get (passing
to the limit) the same solution named for this reason “solution obtained by approximation”
(see [11]). Hence, the result of Theorem 2.2 is valid not only for the particular solutions
constructed here but for all the solutions constructed by approximation. In particular, this
implies that all the global solutions constructed by approximation have the same asymptotic
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Asymptotic behavior and regularity properties of strongly… 1809

behavior for t → +∞ independently from the initial datum that they satisfy. In other words,
the initial data do not influence the behavior for large value of t of all these solutions.

Moreover, a continuous dependence from the initial data holds true for all the solutions
of problem (1.1) constructed by approximation.

In the autonomous case

a(x, t, ξ) = a(x, ξ) f (x, t) = f (x) (2.11)

the previous result imply the following.

Corollary 2.1 Let (1.2)–(1.4), (2.6), (2.7) and (2.11) be satisfied. Then there exists a global
solution u ∈ Cloc([0,+∞); L1(�)) of (1.1) (that is the unique solution constructed by
approximation) such that

lim
t→+∞ ‖u(t) − w‖L∞(�) = 0, (2.12)

where w is the (unique) solution of the stationary problem (2.14) obtained by approximation.
Moreover, the following estimate is satisfied

‖u(t) − w‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0 − w‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
for almost every t > 0

(2.13)
where C0 and C1 are the same constants in (2.5).

Here, by a solution w of
{− div(a(x,∇w)) = f (x) in �,

w = 0 on ∂�,
(2.14)

we mean a function w ∈ W 1,1
0 (�) such that a(x,∇w) ∈ (L1(�))N and

∫

�

a(x,∇w)∇ϕ dx =
∫

�

f ϕ,

for every ϕ ∈ W 1,∞
0 (�). Moreover, we say that w is a solution of (2.14) constructed by

approximation if it is obtained as limit in L1(�) of the solutions wn ∈ W 1,p
0 (�) ∩ L∞(�)

of the following approximating problems
{− div(a(x,∇wn)) = fn(x) in �,

wn = 0 on ∂�,
(2.15)

where fn ∈ L∞(�) satisfies

fn(x) → f (x) in L1(�). (2.16)

Hence, in the autonomous case,whatever is the choice of the initial datumu0, the “correspond-
ing” global solution of (1.1) which take u0 as initial datum and is obtained by approximation,
converges (letting t → +∞) to the (unique) solution of the associate stationary problem
(2.14) obtained by approximation. We show now that the estimates proved in the previous
theorems allow to prove also interesting information on the regularity of the solutions of
(1.1).
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1810 M. M. Porzio

To this aim, let u0 be as in Introduction the (unique) solution of (1.1) constructed by
approximation which assume zero initial datum. Thus, u0 solves (1.14) and is the a.e. limit
in �T of the regular solutions u0

n of the following approximating problems
⎧
⎨

⎩

(u0
n)t − div(a(x, t,∇u0

n)) = fn(x, t) in �T ,

u0
n = 0 on �,

u0
n(x, 0) = 0 on �,

(2.17)

where
fn ∈ L∞(�T ) fn → f in L1(�T ). (2.18)

Recall that under the assumptions of Theorem 2.2 (i.e., (1.2)–(1.4), (2.6) and f as in (2.7))
u0 has a global extension in � × (0,+∞).

We notice explicitly that in all what follows the solution u0 can be replaced by any solution
v of (2.3) (constructed by approximation) that satisfy a bounded initial condition.

Theorem 2.3 Assume (1.2)–(1.4) and (2.1). Let u0 be the solution of (1.14) defined above.
Then there exists a solution u ∈ C([0, T ]; L1(�)) of (1.1) which in every set � × (ε, T ),
ε ∈ (0, T ), has the same summability properties of u0, i.e., for every ε ∈ (0, T )

u0 ∈ Lδ(ε, T ; Lν(�)) 
⇒ u ∈ Lδ(ε, T ; Lν(�)) (2.19)

where δ and ν belong to the set [1,+∞]. In particular, it results

u0 ∈ Lδ(0, T ; Lν(�)) 
⇒ u ∈ Lδ
loc((0, T ]; Lν(�))

Moreover, the following estimate holds true for every ε ∈ (0, T )

‖u‖Lδ(ε,T ;Lν (�)) ≤ ‖u0‖Lδ(ε,T ;Lν (�)) + min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 1ν (T − ε)

1
δ

(2.20)
with C0 and C1 as in (2.5), and where (here and throughout the paper) we adopt the convention
that 1

+∞ = 0 and we denote |�| the measure of �. In particular, the following universal
estimate is satisfied

‖u‖Lδ(ε,T ;Lν (�)) ≤ ‖u0‖Lδ(ε,T ;Lν (�)) + C0

ε
1

p−2

|�| 1ν (T − ε)
1
δ . (2.21)

Finally, u is obtained as the limit (a.e. in �T ) of the approximating solutions un of problem
(4.1) and under the further “global assumptions” (2.6) and (2.7) it can be extended to a
global solution (denoted again u) satisfying the assert of Theorem 2.2.

Thus, thanks to the previous result, we can assert that, although the initial datum u0 is only a
summable function, instantaneously the solution u reaches the same regularity of the solution
u0 which satisfy a bounded initial datum condition. Moreover, for every ε > 0 arbitrarily
fixed, it is possible to estimate the normofu in every set�×(ε, T )with a constant independent
of u0. Universal estimates are known in the literature when f ≡ 0 and in the framework of
bounded solutions. Hence, estimate (2.21) allows to conclude that universal estimates remain
true also for nonzero data f and for possibly unbounded solutions.

An immediate consequence of Theorem 2.3 is the following regularity result.
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Corollary 2.2 Assume (1.2)–(1.4), u0 ∈ L1(�) and f ∈ Lm(0, T ; Ls(�)) with m and s in
(1,+∞]. Then there exists a solution u ∈ C([0, T ]; L1(�)) of (1.1) satisfying, for every
ε > 0, the following regularity properties

u ∈ L∞(� × (ε, T )) if 1
m + N

ps < 1

u ∈ Lq(� × (ε, T )) if 1 < 1
m + N

ps ≤ N
pm + 1, m ≥ p′, s > 1,

u ∈ Lq(� × (ε, T )) if 1< 1
m + N

ps ≤ N
pm +1 + N

2

(
1 − 1

p − 1
m

)
, 1 ≤ m < p′, s ≥ 1

where

q = sm(N + p) + N (p − 2)(ms − s + m)

Nm − pr(m − 1)

Indeed, there is “an immediate improvement in regularity” also of the gradient of u if the
datum f is not too irregular. In detail, it results:

Theorem 2.4 Let (1.2)–(1.4) be satisfied. Assume u0 ∈ L1(�) and f ∈ Lm(0, T ; Ls(�))

with m and s in (1,+∞] satisfying
1

m
+ N

ps
< 1. (2.22)

Then there exists a solution u of (1.1) (which is the same solution that appears inTheorems 2.1
and 2.2 ) satisfying

u ∈ L∞(ε, T ; L∞(�)) ∩ C([0, T ]; L1(�)) ∩ L p(ε, T ; W 1,p
0 (�)) (2.23)

for every 0 < ε < T and verifying the following estimates for almost every t ∈ (0, T )

‖u(t)‖L∞(�) ≤ A(t) ≡ c0 ‖ f ‖Lm (0,T ;Ls (�)) + min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
, (2.24)

and ∫ T

t

∫

�

|∇u|p ≤ 1

α
A(t)

( |�|
2

A(t) + ‖ f ‖L1(�T )

)

(2.25)

where c0 = c0(T , |�|, N , α) and C0 and C1 are exactly the same constants that appear in
(2.5). In particular, the following universal estimates hold true

‖u(t)‖L∞(�) ≤ B(t) ≡ c0 ‖ f ‖Lm (0,T ;Ls (�)) + C0

t
1

p−2

, (2.26)

∫ T

t

∫

�

|∇u|p ≤ 1

α
B(t)

( |�|
2

B(t) + ‖ f ‖L1(�T )

)

. (2.27)

Moreover, the solution u is obtained as the limit (a.e. in �T ) of the approximating solutions
un of (4.1). Finally, u is Hoelder continuous (of exponent β with respect to x and β

p with

respect to t) in � × (ε, T ), for every 0 < ε < T . In particular, it results

u ∈ C(� × (0, T )) ∩ C((0, T ); L2(�)). (2.28)

Remark 2.2 We notice that the previous result reveals that although the initial datum u0 is
only in L1(�) there exists a solution u which becomes immediately bounded and whose
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1812 M. M. Porzio

gradient increases its summability too. Moreover, universal estimates, i.e., estimate which
are not influenced at all by the initial datum u0 are satisfied both by the L∞-norm of u and by
the L p-norm of the gradient of u. To our knowledge these universal estimates are not known
in the literature for nonzero data f.

Remark 2.3 We recall that it is well known that if f belongs to Lm(0, T ; Ls(�)) with m and
s satisfying (2.22), also without any information on the initial datum u0, all the solution
of (1.1) belonging to C(0, T ; L2(�)) ∩ L p(0, T ; W 1,p

0 (�)) are bounded (see [12] and the
references therein). Moreover, the result has a local nature, i.e., if u is a local solution
belonging toCloc(0, T ; L2

loc(�))∩L p
loc(0, T ; W 1,p

loc (�)) and f is in Lm
loc(0, T ; Ls

loc(�)) (with
m and s as before) then u is locally bounded (see [12,17] and the references therein). The
difference herewith the classical L∞-theory is that the “starting regularity”C(0, T ; L2(�))∩
L p(0, T ; W 1,p

0 (�)) is not assumed since we do not know if solutions with L1-initial data
have such a regularity. Moreover, the L∞-estimates that we derive are completely different
from the classical ones since they do not depend at all from the solution itself.

Indeed, even if the initial datum is only a summable function, it is sufficient that f belongs
to the space L p′

(0, T ; W −1,p′
(�)) to have solutions that immediately belong to the energy

space C((0, T ); L2(�)) ∩ L p
loc(0, T ; W 1,p

0 (�)) as the following result shows.

Theorem 2.5 Let (1.2)–(1.4) be satisfied. Assume u0 ∈ L1(�) and f ∈ L p′
(0, T ; W −1,p′

(�)), i.e., f = f0−div( f1), with fi ∈ L p′
(�T ), i = 0, 1. Then there exists a solution2

u of (1.1) belonging to C([0, T ]; L1(�)) ∩ C((0, T ); L2(�)) ∩ L p
loc(0, T ; W 1,p

0 (�))3 and
satisfying the following estimates

‖u‖L∞(ε,T ;L2(�)) ≤ Cα

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

] p′
2

+ min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12 , (2.30)

∫ T

t

∫

�

|∇u|p ≤ c0
[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

]p′

+ p′

α
min

⎧
⎪⎨

⎪⎩

C2
0

t
2

p−2

, C2
1

‖u0‖
2p

N (p−2)+p

L1(�)

t
2N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�|, for every 0 < t ≤ T , (2.31)

where Cα =
[

2

p′α
1

p−1
(max{1, cP })p′

] 1
2

, cP is the Poincaré constant defined in (4.36) and

c0 = p′
α

C2
α + 1

α p′ (max{1, cP })p′
.

2 Here, similarly to Definition 2.1, by a solution of (1.1) we mean a measurable function u ∈
L∞(0, T ; L1(�)) ∩ L1(0, T ; W 1,1

0 (�)) such that a(x, t, ∇u) ∈ (L1(�T ))N and

∫∫

�T

[

−u
∂ϕ

∂t
+ a(x, t, ∇u)∇ϕ

]

dxdt =
∫

�
u0ϕ(0)dx +

∫∫

�T

[ f0ϕ + f1∇ϕ], (2.29)

for every ϕ ∈ W 1,∞(0, T ; L∞(�)) ∩ L∞(0, T ; W 1,∞
0 (�)) satisfying ϕ(T ) = 0.

3 By L p
loc(0, T ; W 1,p

0 (�)) we mean the space L p
loc((0, T ]; W 1,p

0 (�)).
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In particular the following universal estimates hold true

‖u‖L∞(ε,T ;L2(�)) ≤ Cα

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

] p′
2 + C0

ε
1

p−2

|�| 12 , (2.32)

∫ T

t

∫

�

|∇u|p ≤ c0
[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

]p′
+ c1

t
2

p−2

, for every 0 < t ≤ T ,

(2.33)

where c1 = C2
0 p′
α

|�|. Finally, u is the same solution satisfying Theorems 2.1–2.3 and hence
it is obtained as the limit (a.e. in �T ) of the regular solution un of (4.1).

We prove now that under the assumptions of the previous theorem, the solutions that imme-
diately regularize are unique. In detail we have the following result.

Theorem 2.6 Under the assumptions of Theorem 2.5 there exists only one solution u of (1.1)
belonging to C([0, T ]; L1(�)) ∩ C((0, T ); L2(�)) ∩ L p

loc(0, T ; W 1,p
0 (�)).

Moreover, if v is a solution of (2.3) with v0 ∈ L1(�) and if u is a solution of (1.1) and if
both u and v belong to C([0, T ]; L1(�)) ∩ C((0, T ); L2(�)) ∩ L p

loc(0, T ; W 1,p
0 (�)) then

the following estimate (“continuous dependence from the initial data”) holds true

‖u(t) − v(t)‖L∞(�) ≤ C1

‖u0 − v0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

for almost every t ∈ (0, T ) (2.34)

where C1 is the same constant (depending only on N , p and α) that appears in (2.5).

Remark 2.4 An immediate consequence of the previous result together with Theorem 2.5 (see
also Remark 4.2) is that the solutions constructed by approximation are unique. We point
out that it is well known in the literature that the solutions constructed by approximation
are unique (and also in a more general setting) but here the proof of this result is com-
pletely different and shows that indeed the uniqueness holds in the set of the solutions that
immediately increase their regularity. Thus, the “reason” of the uniqueness of the solutions
constructed by approximation is their regularity C([0, T ]; L1(�)) ∩ C((0, T ); L2(�)) ∩
L p

loc(0, T ; W 1,p
0 (�)).

We conclude this section showing (in the following subsection) that most of the previous
results remain true in the more general framework of Radon measure data.

2.2 Measure data

Let us denote M(O) the set of (finite) Radonmeasures on O . As usual, if f is a Radonmeasure
on O , we identify the measure f with the application ϕ → ∫

O ϕd f defined on C(O). If we
assume

u0 ∈ M(�) (2.35)

and
f ∈ M(�T ) (2.36)

by a solution of (1.1) we mean the following
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1814 M. M. Porzio

Definition 2.3 Under the assumptions (2.35) and (2.36) a function u ∈ L1(0, T ; W 1,1
0 (�))

is a solution of (1.1) if a(x, t,∇u) ∈ (L1(�T ))N and
∫∫

�T

[

−u
∂ϕ

∂t
+ a(x, t,∇u)∇ϕ

]

dxdt =
∫

�

ϕ(0) du0 +
∫∫

�T

ϕ d f , (2.37)

for every ϕ ∈ C∞(�T ) which is zero in a neighborhood of � ∪ (� × {T }).
As noticed above, here we investigate both the semilinear case p = 2 and the degenerate
case p > 2. The singular case p < 2 will be the subject of a forthcoming paper (see [26]).
We recall that if the data u0 and f are finite Radon measures and if the structure conditions
(1.2)–(1.4) are satisfied with p ≥ 2, then there exists at least one solution of (1.1) (see [7]).
We have the following results:

Theorem 2.7 Let (1.2)–(1.4) be satisfied with p ≥ 2. Assume (2.35), (2.36) and v0 in M(�).
Then there exist u and v solutions of, respectively, (1.1) and of (2.3) such that the following
estimates hold true for almost every t ∈ (0, T )

‖u(t) − v(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0 − v0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2 (2.38)

and

‖u(t) − v(t)‖L∞(�) ≤ min

{

C2
‖u0 − v0‖M(�)

t
N
2 eσ t

, C1
‖u0 − v0‖M(�)

t
N
2

}

if p = 2 (2.39)

where C0 and C1 are the same positive constants defined in (2.5), C2 is a positive constant
depending only on N and α and σ is a positive constant depending only on α, |�| and N
(see formula (4.52)).

Moreover, these solutions u and v are obtained as the limit (a.e. in �T ) of “classical”
solutions of the approximating problems (respectively) (4.46) and (4.49).

As already noticed in the case of L1-data, the previous estimates are rather unexpected being
the data only bounded Radon measures. We point out that in the particular case

f ≡ 0

choosing v0 = 0, by the previous Theorem it follows that there exists a solution u of (1.1)
satisfying the following estimates for almost every t ∈ (0, T )

‖u(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2 (2.40)

and

‖u(t)‖L∞(�) ≤ min

{

C2
‖u0‖M(�)

t
N
2 eσ t

, C1
‖u0‖M(�)

t
N
2

}

if p = 2 (2.41)

(being in this case v ≡ 0). To our knowledge, estimates (2.40) and (2.41) seem not known
in literature and show that the L∞-regularization property, well known (when f ≡ 0) for
L1-initial data, appears also for measure initial data. Notice that if p > 2 by (2.40) it follows
the universal estimate

‖u(t)‖L∞(�) ≤ C0

t
1

p−2

for almost every t ∈ (0, T ) (2.42)
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and hence again, as in the case of initial data in Lebesgue spaces, the L∞ norm of the solution
can be estimate by quantity independent of the initial datum itself.

We show now that also in the case of measure data there exist global solutions (according
to Definition 2.2) having the same asymptotic behavior in time. We point out that the proof
of the existence of such global solutions is different from the previous case of L1-data since
now the solutions in �T (generally) do not belong to C([0, T ]; L1(�)). In detail, we have:

Theorem 2.8 Let (1.2)–(1.4) and (2.6) be satisfied with p ≥ 2. Assume (2.35) and v0 in
M(�). If (2.36) holds for every T > 0, then there exist a global solution u of (1.1) and a
global solution v of (2.3) such that estimate (2.38) if p > 2 and (2.39) if p = 2 are satisfied
for almost every t > 0.

In particular, the limit (2.9) holds true, i.e.,

lim
t→+∞ ‖u(t) − v(t)‖L∞(�) = 0.

Corollary 2.3 (Autonomous case) Let (2.11), (1.2)–(1.4) and (2.6) be satisfied with p ≥ 2.
Assume (2.35) and f in M(�). Then there exists a global solution u of (1.1) such that for
almost every t > 0

‖u(t) − w‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0 − w‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2 (2.43)

and

‖u(t) − w‖L∞(�) ≤ min

{

C2
‖u0 − w‖M(�)

t
N
2 eσ t

, C1
‖u0 − w‖M(�)

t
N
2

}

if p = 2 (2.44)

where C0 and C1 are the same positive constants defined in (2.5), C2 and σ are the same
positive constants defined in (2.39) and w is a solution (constructed by approximation) of the
associated stationary problem (2.14). In particular, it results

lim
t→+∞ ‖u(t) − w‖L∞(�) = 0.

Here, by a solution w of the stationary problem (2.14) with datum f in M(�) we mean a
function w ∈ W 1,1

0 (�) such that a(x,∇w) ∈ (L1(�))N and
∫

�

a(x,∇w)∇ϕ dx =
∫

�

ϕd f ,

for every ϕ ∈ C∞
0 (�).

We point out that the assumptions of Corollary 2.3 guarantee the existence of a solution
w of (2.14) (see [7]).

The following result shows that also in the case of measure initial data there exists at least
a solution which “immediately” improves its regularity reaching the same regularity of the
solutions verifying bounded initial data. In details, let us assume

v0 ∈ L∞(�) and f ∈ M(�T ) (2.45)

and let v a solution of (2.3) obtained as limit (a.e. in �T ) of vn ∈ L∞(�T ) ∩
C([0, T ]; L2(�)) ∩ L p(0, T ; W 1,p

0 (�)) solutions of
⎧
⎨

⎩

(vn)t − div(a(x, t,∇vn)) = fn(x, t) in �T ,

vn = 0 on �,

v(x, 0) = v0 on �,

(2.46)
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1816 M. M. Porzio

where

fn ∈ C∞
0 (�T ) : fn converges to f in the weak- ∗ topology of measures. (2.47)

We recall that under the assumptions (1.2)–(1.4), there exists such a solution v (see [7]).
Moreover, in this more general setting of measure, we do not know if the solutions of (2.3)
obtained by approximation are unique. Anyway, we have the following regularity result:

Theorem 2.9 Let (1.2)–(1.4) be satisfied with p ≥ 2. Assume (2.45) and (2.35). If v is as
above a solution of (2.3) constructed by approximation, then there exists a solution u of (1.1)
having the same summability properties of v, i.e., for every ε ∈ (0, T ) it results

v ∈ Lδ(ε, T ; Lν(�)) 
⇒ u ∈ Lδ(ε, T ; Lν(�)) (2.48)

where δ and ν belong to the set [1,+∞]. In particular, it results

v ∈ Lδ(0, T ; Lν(�)) 
⇒ u ∈ Lδ
loc((0, T ]; Lν(�))

Moreover, if p > 2 the following estimate holds true for every ε ∈ (0, T )

‖u‖Lδ(ε,T ;Lν (�)) ≤ ‖v‖Lδ(ε,T ;Lν (�)) + min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1
‖u0 − v0‖

p
N (p−2)+p

M(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 1ν (T − ε)

1
δ

(2.49)
with C0 and C1 as in (2.5) (positive constants depending only on p, N and α). In particular,
the following universal estimate holds

‖u‖Lδ(ε,T ;Lν (�)) ≤ ‖v‖Lδ(ε,T ;Lν (�)) + C0

ε
1

p−2

|�| 1ν (T − ε)
1
δ . (2.50)

If otherwise p = 2, for every ε ∈ (0, T ) it results

‖u‖Lδ(ε,T ;Lν (�)) ≤ ‖v‖Lδ(ε,T ;Lν (�))

+ min

{

C2
‖u0 − v0‖M(�)

ε
N
2 eσε

, C1
‖u0 − v0‖M(�)

ε
N
2

}

|�| 1ν (T − ε)
1
δ (2.51)

with C2 and σ as in (2.39). Finally, u is obtained by approximation.

Hence, an interesting consequence of the previous result is that if f is in Lm(0, T ; Ls(�))

with m and s satisfying (2.22) and u0 is in M(�), then there exists a solution of (1.1) which
immediately becomes bounded, despite the fact that the initial datum is only aRadonmeasure.
The following result shows that, analogously to the case of summable initial data, also the
gradient of the solution improves instantaneously its regularity.

Theorem 2.10 Let (1.2)–(1.4) be satisfied with p ≥ 2. Assume u0 ∈ M(�) and f ∈
Lm(0, T ; Ls(�)) with m and s in (1,+∞] satisfying (2.22). Then there exists a solution
u of (1.1) satisfying

u ∈ L∞(ε, T ; L∞(�)) ∩ L p(ε, T ; W 1,p
0 (�)) (2.52)

for every 0 < ε < T . Moreover, for almost every t ∈ (0, T ) the following estimates hold
true

‖u(t)‖L∞(�) ≤ A(t), (2.53)
∫ T

t

∫

�

|∇u|p ≤ 1

α
A(t)

( |�|
2

A(t) + ‖ f ‖L1(�T )

)

(2.54)
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where

A(t) = c0 ‖ f ‖Lm (0,T ;Ls (�)) + min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2 (2.55)

and

A(t) = c0 ‖ f ‖Lm (0,T ;Ls (�)) + min

{

C2
‖u0‖M(�)

t
N
2 eσ t

, C1
‖u0‖M(�)

t
N
2

}

if p = 2, (2.56)

with c0 = c0(T , |�|, N , α) as in (2.24) and Ci (i = 0, 1, 2) and σ as in Theorem 2.7.
In particular, if p > 2 the universal estimates (2.26) and (2.27) are satisfied.
Finally u is Hoelder continuous in � × (ε, T ) and the regularity property (2.28) holds.

An immediate consequence of the previous theorem is the following interesting result.

Corollary 2.4 Let (1.2)–(1.4) be satisfied with p ≥ 2. Assume u0 ∈ M(�). Then there exists a
solution u of (1.10) belonging to L∞(ε, T ; L∞(�))∩L p(ε, T ; W 1,p

0 (�))∩C([ε, T ]; L2(�))

and Holder continuous in �×(ε, T ), for every ε ∈ (0, T ). Moreover, the following universal
decay estimates hold if p > 2

‖u(t)‖L∞(�) ≤ C0

t
1

p−2

,

∫ T

t

∫

�

|∇u|p ≤ C3

t
2

p−2

and the following exponential decay estimates are true if p = 2

‖u(t)‖L∞(�) ≤ C2
‖u0‖M(�)

t
N
2 eσ t

,

(∫ T

t

∫

�

|∇u|2
) 1

2

≤ C4
‖u0‖M(�)

t
N
2 eσ t

where C3 = C2
0 |�|
2α , C4 = C2

√|�|√
2α

with C0, C2 and σ as in Theorem 2.7.

Indeed, although the initial data are only Radonmeasures, to have an immediate improvement
in the regularity of the gradient of the solutions (again as in the case of summable initial data)
it is sufficient that the data f belong to L p′

(0, T ; W −1,p′
(�)), as the following result clarify.

Theorem 2.11 Let (1.2)–(1.4) be satisfied with p ≥ 2. Assume u0 ∈ M(�) and f ∈
L p′

(0, T ; W −1,p′
(�)), i.e., f = f0−div( f1), with fi ∈ L p′

(�T ), i = 0, 1. Then there
exists a solution u of (1.1) belonging to L p

loc(0, T ; W 1,p
0 (�)) ∩ Cloc(0, T ; L2(�)) and sat-

isfying the following estimates

‖u‖L∞(ε,T ;L2(�)) ≤ Cα

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

] p′
2 + B(ε) (2.57)

∫ T

t

∫

�

|∇u|p ≤ c0
[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

]p′
+ p′

α
[B(t)]2 for every 0 < t ≤ T

(2.58)

where

B(ε) = min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12 , if p > 2
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B(ε) = min

⎧
⎪⎨

⎪⎩
C2

‖u0‖M(�)

ε
N
2 eσε

, C1
‖u0‖

p
N (p−2)+p

M(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12 , if p = 2

where Cα and c0 as in Theorem 2.5.
In particular, if p > 2 the universal estimates (2.32) and (2.33) hold true.
Finally, u is obtained as the limit (a.e. in �T ) of the regular solution un of (4.46).

3 Preliminary results

We recall here some known results about L∞-decay estimates proved in [20] that will be
essential in the proofs of the outcomes presented here.We observe that in the theorems below
only integral estimates are assumed (hence a priori the functions involved could not solve
any partial differential equation). Moreover, the proofs of all the results stated in this section
make use only of elementary tools (a Lemma on suitable continuous functions proved in
[27] and a classical Lemma on nonnegative real numbers often used in the framework of
boundedness). We point out that further developments and applications of regularity results
proved simply by means of suitable integral inequalities can be found in [19–26].

In detail, let us define
Gk(s) = (|s| − k)+ sign(s). (3.1)

We have:

Theorem 3.1 (Theorem 2.1 in [20]) Assume that

u ∈ C((0, T ); Lr (�)) ∩ Lb(0, T ; Lq(�)) ∩ C([0, T ); Lr0(�)) (3.2)

where � is an open set of RN , N ≥ 1, 0 < T ≤ +∞ and

1 ≤ r0 < r < q ≤ +∞, b0 < b < q, b0 = (r − r0)

1 − r0
q

. (3.3)

Suppose that u satisfies the following integral estimates for every k > 0
∫

�

|Gk(u)|r (t2)dx −
∫

�

|Gk(u)|r (t1)dx

+ c1

∫ t2

t1
‖Gk(u)(τ )‖b

Lq (�)dτ ≤ 0 for every 0 < t1 < t2 < T (3.4)

‖Gk(u)(t)‖Lr0 (�) ≤ c2‖Gk(u)(t0)‖Lr0 (�) for every 0 ≤ t0 < t < T , (3.5)

where c1 and c2 are positive constants independent of k and

u0 ≡ u(x, 0) ∈ Lr0(�). (3.6)

Then there exists a positive constant C1 (see formula (4.19) in [20]) depending only on N,
c1, c2, r , r0, q and b such that

‖u(t)‖L∞(�) ≤ C1
‖u0‖h0

Lr0 (�)

th1
for every t ∈ (0, T ), (3.7)

where

h1 = 1

b − (r − r0) − r0b
q

, h0 = h1

(

1 − b

q

)

r0. (3.8)
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Moreover, if � has finite measure we have universal bounds if b > r and exponential
estimates if b = r . More in detail we have the following results.

Theorem 3.2 (Theorem 2.2 in [20]) Let the assumptions of Theorem 3.1 hold true.
If � has finite measure and b > r we have the following universal bound

‖u(t)‖L∞(�) ≤ C�

th2
for every t ∈ (0, T ), (3.9)

where

h2 = h1 + h0

b − r
= 1

b − r
, (3.10)

and C�, (see formula (4.19) in [20]), is a constant depending only on r, r0, q, b, c1, c2 and
the measure of �.

Theorem 3.3 (Theorem 2.2 in [20]) Let the assumptions of Theorem 3.1 hold true.
If � has finite measure and b = r the following exponential bound holds

‖u(t)‖L∞(�) ≤ C2
‖u0‖Lr0 (�)

th1eσ t
, for every t ∈ (0, T ), (3.11)

where C2 is a positive constant depending only on N, c1, c2, r , r0, b and q, h1 is as in (3.8)
and

σ = c1κ

4(r − r0)|�|1− b
q

, κ arbitrarily fixed in
(
0, 1 − r0

r

)
. (3.12)

4 Proofs of results

In this section, we prove all the results stated in Sect. 2.

4.1 Proof of Theorem 2.1

Let u be a solution u of (1.1) obtained as the a.e. limit in�T of the solutions un ∈ L∞(�T )∩
C([0, T ]; L2(�)) ∩ L p(0, T ; W 1,p

0 (�)) of the following approximating problems
⎧
⎨

⎩

(un)t − div(a(x, t,∇un)) = fn(x, t) in �T ,

un = 0 on �,

un(x, 0) = u0,n(x) on �,

(4.1)

where the data u0,n(x) ∈ L∞(�) and fn(x, t) ∈ L∞(�T ) satisfy

u0,n(x) → u0 in L1(�), (4.2)

fn(x, t) → f (x, t) in L1(�T ), (4.3)

(see [7]). Notice that being un in C([0, T ]; L2(�)) we can choose in (2.2) also test functions
ϕ not satisfying ϕ(T ) = 0 and in these last cases in the left-hand side of (2.2) will appear
also the integral on � of un(T )ϕ(T ). Indeed, it results

u ∈ Lq(0, T ; W 1,q
0 (�)) for every 1 ≤ q <

p(N + 1) − N

N + 1

(see again [7]) and

u ∈ C([0, T ]; L1(�)),
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(see [28]). Analogously, let v ∈ C([0, T ]; L1(�)) ∩ Lq(0, T ; W 1,q
0 (�)) be a solution of

(2.3) obtained as the a.e. limit in �T of the sequence vn ∈ L∞(�T ) ∩ C([0, T ]; L2(�)) ∩
L p(0, T ; W 1,p

0 (�)) solutions of the following approximating problems

⎧
⎨

⎩

(vn)t − div(a(x, t,∇vn)) = fn(x, t) in �T ,

vn = 0 on �,

vn(x, 0) = v0,n(x) on �,

(4.4)

where v0,n(x) ∈ L∞(�) satisfies

v0,n(x) → v0 in L1(�), (4.5)

and with fn the same approximating sequence defined in (4.3). Let k a positive constant
arbitrarily fixed and Gk(s) the real function defined in (3.1). Choose Gk(un − vn) as test
function in (4.1) and in (4.4). Notice that these choices, together with the following ones
can be made rigorous by means of the Steklov averaging process. Subtracting the equations
obtained in this way we get for every 0 < t1 < t2 < T

1

2

∫

�

|Gk(un − vn)(t2)|2 − 1

2

∫

�

|Gk(un − vn)(t1)|2

+
∫ t2

t1

∫

�

[a(x, t,∇un) − a(x, t,∇vn)]∇Gk(un − vn) = 0.

By (1.3) the previous estimate implies

1

2

∫

�

|Gk(un − vn)(t2)|2 − 1

2

∫

�

|Gk(un − vn)(t1)|2

+α

∫ t2

t1

∫

�

|∇Gk(un − vn)|p ≤ 0, (4.6)

and hence, thanks to the Sobolev inequality4 we obtain

∫

�

|Gk(un−vn)(t2)|2−
∫

�

|Gk(un−vn)(t1)|2+2αcs

∫ t2

t1
‖Gk(un−vn)‖p

L p∗
(�)

≤ 0.

(4.8)
Notice that the previous inequality is equivalent to require that the assumption (3.4) is satisfied
by un − vn with c1 = 2αcs , r = 2, b = p and q = p∗. Observe also that the previous choice
of the coefficients r, b and q satisfies the condition (3.3) with r0 = 1. Moreover, it results
b > r . Hence to apply Theorem 3.2, we need to prove that also (3.5) is verified. To this aim,

let δ > 1 arbitrarily fixed and take as test function ϕ =
{
1 − 1

[1+|Gk (un−vn)|]δ
}
sign(un −vn)

in both the problems (4.1) and (4.4); subtracting the equations obtained in this way we get
for every 0 ≤ t0 < t < T

4 The Sobolev inequality: there exists a constant cs depending only on N and p (N > 2) such that

cs

(∫

�
|v|p∗

dx

) p
p∗ ≤

∫

�
|∇v|pdx for every v ∈ W 1,p

0 (�), p∗ = pN

N − p
. (4.7)
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∫

�

|Gk(un − vn)|(t) + 1

1 − δ

∫

�

{

1 − 1

[1 + |Gk(un − vn)|(t)]δ−1

}

+ δ

∫ t

t0

∫

�

[a(x, t,∇un) − a(x, t,∇vn)]∇Gk(un − vn)
1

[1 + |Gk(un − vn)|(t)]δ+1

≤
∫

�

|Gk(un − vn)|(t0) + 1

1 − δ

∫

�

{

1 − 1

[1 + |Gk(un − vn)|(t0)]δ−1

}

,

from which, thanks to assumption (1.3), we obtain for every 0 ≤ t0 < t < T and δ > 1
∫

�

|Gk(un − vn)|(t) ≤
∫

�

|Gk(un − vn)|(t0) + 1

δ − 1

∫

�

1

[1 + |Gk(un − vn)|(t)]δ−1

≤
∫

�

|Gk(un − vn)|(t0) + |�|
δ − 1

.

Hence (letting δ → +∞) we deduce
∫

�

|Gk(un − vn)|(t) ≤
∫

�

|Gk(un − vn)|(t0), (4.9)

i.e., (3.5) is satisfied. Thus we can apply Theorem 3.2 obtaining the following universal
estimate

‖un(t) − vn(t)‖L∞(�) ≤ C�

t
1

p−2

for every t ∈ (0, T ), (4.10)

where the positive constant C� depends only on N , p and α. Noticing that un −vn converges
a.e. to u − v in �T by the previous estimate we deduce

‖u(t) − v(t)‖L∞(�) ≤ C0

t
1

p−2

for almost every t ∈ (0, T ), (4.11)

where C0 = C�. We observe that also the assumptions of Theorem 3.1 are satisfied and
consequently also the following estimate holds true

‖un(t) − vn(t)‖L∞(�) ≤ C1

‖u0,n − v0,n‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

for every t ∈ (0, T ), (4.12)

where C1 is a positive constant depending only on N , p and α. Hence by (4.12) we obtain

‖u(t) − v(t)‖L∞(�) ≤ C1

‖u0 − v0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

for almost every t ∈ (0, T ). (4.13)

By (4.11) and (4.13) it follows that estimate (2.5) holds true. ��
Remark 4.1 We notice that if in (4.1) we change the approximation of the initial datum u0,
i.e., if we consider another approximation, as for example

⎧
⎨

⎩

(zn)t − div(a(x, t,∇zn)) = fn(x, t) in �T ,

zn = 0 on �,

zn(x, 0) = z0,n(x) on �,

(4.14)

where the data z0,n(x) ∈ L∞(�) satisfy

z0,n(x) → u0 in L1(�),
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and fn(x, t) ∈ L∞(�T ) are as in (4.3) then by estimate (4.12) it follows that

‖un(t) − zn(t)‖L∞(�) ≤ C1

‖u0,n − z0,n‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

for every t ∈ (0, T ),

and hence both these approximations will converge to the same solution u of (1.1). In other
words, changing the approximation of the initial datum, the solution u that we obtain as a
limit does not change. The uniqueness of the solutions obtained by approximation is a known
result but here we obtain a different proof that make use of the “continuity estimate” (4.12)
(or, equivalently, of (4.13)).

4.2 Proof of Theorem 2.2

Let T0 > 0 arbitrarily fixed. By Theorem 2.1 there exists a solution U0 ∈ C([0, T0]; L1(�))

of ⎧
⎨

⎩

(U0)t − div(a(x, t,∇U0)) = f (x, t) in �T0 ,

U0 = 0 on ∂� × (0, T0),
U0(x, 0) = u0(x) on �,

(4.15)

obtained as a.e. limit in�×(0, T0) of regular solutions un ∈ L∞(�T0)∩C([0, T0]; L2(�))∩
L p(0, T0; W 1,p

0 (�)) of the following approximating problems

⎧
⎨

⎩

(un)t − div(a(x, t,∇un)) = f 0n (x, t) in �T0 ,

un = 0 on ∂� × (0, T0),
un(x, 0) = u0,n(x) on �,

(4.16)

where the data u0,n(x) ∈ L∞(�) are as in (4.2) and f 0n (x, t) ∈ L∞(�T0) satisfy

f 0n (x, t) → f (x, t) in L1(�T0). (4.17)

With a similar construction and again by Theorem 2.1, we obtain a solution U1 belonging to
C([T0, 2T0]; L1(�)) of

⎧
⎨

⎩

(U1)t − div(a(x, t,∇U1)) = f (x, t) in � × (T0, 2T0),
U1 = 0 on ∂� × (T0, 2T0),
U1(x, T0) = U0(T0) on �,

(4.18)

obtained as a.e. limit in�×(T0, 2T0) of regular solutions (that for sake of notation we denote
again un) problems un ∈ L∞(�×(T0, 2T0))∩C([T0, 2T0]; L2(�))∩L p(T0, 2T0; W 1,p

0 (�))

of the following approximating problems

⎧
⎨

⎩

(un)t − div(a(x, t,∇un)) = f 1n (x, t) in � × (T0, 2T0),
un = 0 on ∂� × (T0, 2T0),
un(x, 0) = u1,n(x) on �,

(4.19)

where the data u1,n(x) ∈ L∞(�) are regular approximations of U0(T0) (hence satisfying
similar converging properties in (4.2)) and f 1n (x, t) ∈ L∞(� × (T0, 2T0)) satisfy

f 1n (x, t) → f (x, t) in L1(� × (T0, 2T0)). (4.20)
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Iterating this process, we construct a sequence of solutions Ui in C([iT0, (i + 1)T0]; L1(�))

(i ∈ N) of
⎧
⎨

⎩

(Ui )t − div(a(x, t,∇Ui )) = f (x, t) in � × (iT0, (i + 1)T0),
Ui = 0 on ∂� × (iT0, (i + 1)T0),
Ui (x, iT0) = Ui−1(iT0) on �,

(4.21)

obtained by approximation. We define u = Ui in � × [iT0, (i + 1)T0], for every i ∈ N.
By construction it follows that u is a global solution (according to Definition 2.2). In a
similar way, using the same approximation of f defined above (i.e., fn(x, t) = f i

n (x, t) in
� × (iT0, (i + 1)T0) for every i ∈ N) we construct a global solution v of (2.3). Now the
assert follows by Theorem 2.1. ��

4.3 Proof of Corollary 2.1

Let w be the solution of the stationary problem (2.14) obtained as the limit in L1(�) of the
solutions wn ∈ W 1,p

0 (�) ∩ L∞(�) of (2.15) where fn ∈ L∞(�) satisfy (2.16). Passing
eventually to subsequences, we can assume that wn converges a.e. in � to w. We observe
that w(x, t) ≡ w(x) is also a global solution (according to Definition 2.2) of the following
problem ⎧

⎨

⎩

wt − div(a(x,∇w)) = f (x) in �T ,

w = 0 on �,

w(x, 0) = w(x) on �.

(4.22)

Moreover, the approximating functions wn(x) ≡ wn(x, t) are global solutions too but of the
following problems

⎧
⎨

⎩

(wn)t − div(a(x,∇wn)) = fn(x) in �T ,

wn = 0 on �,

wn(x, 0) = wn(x) on �.

(4.23)

Let u be the global solution of (1.1) constructed in the proof of Theorem 2.2, i.e., u is
the a.e. limit in �T (for every arbitrarily fixed T > 0) of the solutions un ∈ L∞(�T ) ∩
C([0, T ]; L2(�)) ∩ L p(0, T ; W 1,p

0 (�)) of the following approximating problems

⎧
⎨

⎩

(un)t − div(a(x,∇un)) = fn(x) in �T ,

un = 0 on �,

un(x, 0) = u0,n(x) on �,

(4.24)

where the data u0,n(x) ∈ L∞(�) satisfy (4.2) and fn is the same sequence chosen above in
(4.23). Now the assert follows applying Theorem 2.1. ��

4.4 Proof of Theorem 2.3

Let u0 be (as in the statement of the theorem) the solution of (1.14) obtained as limit of
the approximating solutions u0

n of (2.17). Construct u as the solution in C([0, T ]; L1(�))

obtained as the limit (a.e. in �T ) of the solutions of the approximating problems (4.1) where
fn is the same approximating sequence of f chosen in (2.17). Hence, byTheorem2.1 (applied
choosing v = u0) we deduce that (2.5) holds true, i.e.,
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‖u(t) − u0(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
for almost every t ∈ (0, T )

from which it follows that for almost every (x, t) ∈ �T

|u(x, t)| ≤ |u0(x, t)| + min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
. (4.25)

Now the claims (2.19) and (2.20) gather by the previous estimate. ��

4.5 Proof of Corollary 2.2

The assertions follow by the results in Theorem 2.3 together with the regularity results
(applied to u0) in [6,12,18]. ��

4.6 Proof of Theorem 2.4

By Theorem 2.3 there exists a solution u of (1.1) which belongs to C([0, T ]; L1(�)) and
satisfies (2.19) and (2.20). Moreover, u is obtained as the limit (a.e. in �T ) of the approxi-
mating solution un ∈ L∞(�T ) ∩ C([0, T ]; L2(�)) ∩ L p(0, T ; W 1,p

0 (�)) of (4.1). It is not
restrictive to assume that the approximating sequence fn satisfy

‖ fn‖L1(�T ) ≤ ‖ f ‖L1(�T ). (4.26)

Since assumption (2.22) implies that u0 belongs to L∞(�T ), it follows that for every ε ∈
(0, T ) arbitrarily fixed, u belongs to L∞(ε, T ; L∞(�)) and satisfies

‖u‖L∞(ε,T ;L∞(�)) ≤ ‖u0‖L∞(ε,T ;L∞(�)) + min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
.

By the previous estimate and recalling that u0 satisfies the classical L∞-estimate

‖u0‖L∞(�T ) ≤ c0 ‖ f ‖Lm (0,T ;Ls (�)), (4.27)

(where c0 depends only on T , N , α, p and |�|) we conclude that estimate (2.24) holds true.
We show now that also the gradient of u has an immediate improvement in regularity and
satisfies estimate (2.25).

To this aim, take un as test function in (4.1). We deduce that for every 0 < t ≤ T

1

2

∫

�

|un(T )|2 + α

∫ T

t

∫

�

|∇un |p ≤ 1

2

∫

�

|un(t)|2 +
∫ T

t

∫

�

fnun . (4.28)

Notice that we can estimate the right-hand side of the previous inequality as follows. Thanks
to (2.24) we have

1

2

∫

�

|un(t)|2 ≤ |�|
2

[A(t)]2, (4.29)
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where A(t) is as in (2.24). Moreover, it results (thanks to (4.26))
∫ T

t

∫

�

fnun ≤ ‖un‖L∞(�×(t,T ))‖ f ‖L1(�T ).

Hence, using again estimate (2.24) we deduce

‖un‖L∞(�×(t,T )) ≤ sup
τ∈(t,T )

‖un(τ )‖L∞(�) ≤ sup
τ∈(t,T )

A(τ ) = A(t) (4.30)

Thus by the previous inequalities we obtain
∫ T

t

∫

�

fnun ≤ A(t)‖ f ‖L1(�T ). (4.31)

By (4.28)–(4.31) we conclude that
∫ T

t

∫

�

|∇un |p ≤ 1

α
A(t)

( |�|
2

A(t) + ‖ f ‖L1(�T )

)

, (4.32)

which implies the assertion (2.25).
We observe that fromwhat proved above it follows that u belongs toC((0, T ); L2(�)). As

a matter of fact, the sequence un is a Cauchy sequence in C([0, T ]; L1(�)) and by (4.30) it is
also equi-bounded in [ε, T ]×� (by A(ε)) for every ε > 0 arbitrarily fixed. Hence un is also
a Cauchy sequence in C([ε, T ]; L2(�)) for every ε > 0 arbitrarily fixed and consequently u
belongs toC([ε, T ]; L2(�)) (for every ε > 0 arbitrarily fixed), i.e., u is inC((0, T ); L2(�)).

Now, observing that u belongs to L∞((ε, T ); L∞(�)) ∩ C((0, T ); L2(�)) ∩ L p((ε, T );
W 1,p

0 (�)) (for every ε ∈ (0, T ) arbitrarily fixed) the Hoelder continuity of u in � × (ε, T )

follows by the result in [13] (see also [12]). ��

4.7 Proof of Theorem 2.5

Since the datum f is in the dual space L p′
(0, T ; W −1,p′

(�)), we can construct a solution u
of (1.1) as the a.e. limit in �T of the solutions un ∈ C([0, T ]; L2(�))∩ L p(0, T ; W 1,p

0 (�))

of the approximating problems
⎧
⎨

⎩

(un)t − div(a(x,∇un)) = f in �T ,

un = 0 on �,

un(x, 0) = u0,n(x) on �,

(4.33)

where the sequence u0,n satisfies (4.2) and, differently from the previous approximation
problems (4.1) above, now it is not necessary to approximate also the datum f with more
regular data fn . Hence now, differently from above, generally un doesn’t belong to L∞(�T ).
Anyway, the regularity of the approximating sequence un is enough to conclude (doing
the same calculations in the proofs of Theorems 2.1 and 2.3 ) that also now (2.19) and
(2.20) hold true with u0 the unique solution of (1.14) belonging to C([0, T ]; L2(�)) ∩
L p(0, T ; W 1,p

0 (�)).
Thus, being u0 in L∞(0, T ; L2(�)), by (2.19) and (2.20) it follows that u belongs to

L∞(ε, T ; L2(�)) (for every positive ε) and verifies

‖u‖L∞(ε,T ;L2(�)) ≤ ‖u0‖L∞(ε,T ;L2(�)) + min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12 , (4.34)
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where C0 and C1 are as in (2.5). Hence, to obtain an estimate for u by the previous inequality
we need to estimate the norm ‖u0‖L∞(ε,T ;L2(�)). To this aim taking u0 as test function in
(1.14) and using (1.5) we deduce for every 0 < t ≤ T

1

2

∫

�

|u0(t)|2 + α

∫ t

0

∫

�

|∇u0|p

≤
∫ t

0

∫

�

f0u0 +
∫ t

0

∫

�

f1∇u0. (4.35)

We estimate now the right-hand side of the previous inequality. We have (using Young and
Poincaré5 inequalities)

∫ t

0

∫

�

f0u0+
∫ t

0

∫

�

f1∇u0≤‖ f0‖L p′
(�T )

‖u0‖L p(�×(t,T )) + ‖ f1‖L p′
(�T )

‖∇u0‖L p(�×(t,T ))

≤
[
‖ f0‖L p′

(�T )
cP + ‖ f1‖L p′

(�T )

]
‖∇u0‖L p(�×(t,T ))

≤ α

p

∫ T

t

∫

�

|∇u0|p + 1

p′α
1

p−1

[
‖ f0‖L p′

(�T )
cP + ‖ f1‖L p′

(�T )

]p′

≤ α

p

∫ T

t

∫

�

|∇u0|p + 1

p′α
1

p−1

(max{1, cP })p′ [‖ f0‖L p′
(�T )

+ ‖ f1‖L p′
(�T )

]p′
, (4.37)

where cP is the Poincaré constant defined in (4.36). By the previous two estimates, we deduce
that for every 0 < t ≤ T

1

2

∫

�

|u0(t)|2 + α

p′

∫ t

0

∫

�

|∇u0|p

≤ 1

p′α
1

p−1

(max{1, cP })p′ [‖ f0‖L p′
(�T )

+ ‖ f1‖L p′
(�T )

]p′
, (4.38)

which implies

‖u0‖L∞(0,T ;L2(�)) ≤ Cα

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

] p′
2

, (4.39)

where Cα =
[

2

p′α
1

p−1
(max{1, cP })p′

] 1
2

. By (4.39) and (4.34) it follows

‖u‖L∞(ε,T ;L2(�)) ≤ Cα

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

] p′
2 + min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1

‖u0‖
p

N (p−2)+p

L1(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12 ,

(4.40)
and hence estimate (2.30) is proved.

We show now that also the gradient of u has an immediately improvement in regularity.
To this aim, choose un as test function in (4.33). We obtain

5 The Poincaré inequality: there exists a constant cP depending only on �, N and p such that

‖v‖L p(�) ≤ cP‖∇v‖L p(�) for every v ∈ W 1,p
0 (�). (4.36)
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1

2

∫

�

|un(T )|2 + α

∫ T

t

∫

�

|∇un |p

≤ 1

2

∫

�

|un(t)|2 +
∫ T

t

∫

�

f0un +
∫ T

t

∫

�

f1∇un, for every 0 < t ≤ T . (4.41)

Proceeding as in the proof of (4.40) we deduce that

‖un‖L∞(ε,T ;L2(�)) ≤ Cα

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

] p′
2 + min

⎧
⎪⎪⎨

⎪⎪⎩

C0

ε
1

p−2

, C1

‖u0,n‖
p

N (p−2)+p

L1(�)

ε
N

N (p−2)+p

⎫
⎪⎪⎬

⎪⎪⎭

|�| 12 .

(4.42)
Moreover, by reasoning exactly as in (4.37) we get

∫ T

t

∫

�

f0un +
∫ T

t

∫

�

f1∇un

≤ α

p

∫ T

t

∫

�

|∇un |p + 1

p′α
1

p−1

(max{1, cP })p′ [‖ f0‖L p′
(�T )

+ ‖ f1‖L p′
(�T )

]p′
.

(4.43)

By (4.41)–(4.43) it follows

α

p′

∫ T

t

∫

�

|∇un |p

≤ 1

2

⎡

⎢
⎣Cα

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

] p′
2 + min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1

‖u0,n‖
p

N (p−2)+p

L1(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12

⎤

⎥
⎦

2

+ 1

p′α
1

p−1

(max{1, cP })p′ [‖ f0‖L p′
(�T )

+ ‖ f1‖L p′
(�T )

]p′
, for every 0 < t ≤ T ,

(4.44)

that is
∫ T

t

∫

�

|∇un |p

≤ p′

α
C2

α

[
‖ f0‖L p′

(�T )
+ ‖ f1‖L p′

(�T )

]p′
+ p′

α
min

⎧
⎪⎨

⎪⎩

C2
0

t
2

p−2

, C2
1

‖u0,n‖
2p

N (p−2)+p

L1(�)

t
2N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�|

+ 1

α p′ (max{1, cP })p′ [‖ f0‖L p′
(�T )

+ ‖ f1‖L p′
(�T )

]p′
, for every 0 < t ≤ T ,

(4.45)

from which the assert (2.31) follows. To conclude the proof it remains to show that u belongs
also toC((0, T ); L2(�))∩C([0, T ]; L1(�)). The regularityC((0, T ); L2(�)) follows by the
regularity L p

loc(0, T ; W 1,p
0 (�)) proved above together with the structure assumption (1.4).

Finally, the regularity C([0, T ]; L1(�)) can be proved proceeding exactly as in the proof of
Theorem 1.7 (first step) in [21] and hence we omit it. ��
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Remark 4.2 We point out that the previous proof shows that under the assumptions of Theo-
rem 2.5 every solution u constructed by approximation (i.e., as the limit of regular solutions
un of (4.33)) immediately increases its regularity, since it belongs to C([0, T ]; L1(�)) ∩
C((0, T ); L2(�)) ∩ L p

loc(0, T ; W 1,p
0 (�)). Moreover, it also satisfies all the estimates stated

in Theorem 2.5.

4.8 Proof of Theorem 2.6

It is sufficient to prove estimate (2.34), since the uniqueness result immediately follows
applying such an estimate to (eventually different) solutions belonging toC([0, T ]; L1(�))∩
C((0, T ); L2(�)) ∩ L p

loc(0, T ; W 1,p
0 (�)) and satisfying the same initial datum u0. Hence,

let u and v as in the statement of the theorem. Now the proof of (2.34) follows proceeding
exactly as in the proof of estimate (4.12) (simply replacing un with u and vn with v in the
proof above) since the regularity on u and v is sufficient to repeat exactly the same calculation
done before. ��

4.9 Proof of Theorem 2.7

Let u be a solution u of (1.1) obtained as the a.e. limit in�T of the solutions un ∈ L∞(�T )∩
C([0, T ]; L2(�)) ∩ L p(0, T ; W 1,p

0 (�)) of the following approximating problems
⎧
⎨

⎩

(un)t − div(a(x, t,∇un)) = fn(x, t) in �T ,

un = 0 on �,

un(x, 0) = u0,n(x) on �,

(4.46)

where the data satisfy

u0,n(x) ∈ L∞(�), u0,n(x) → u0 in the weak- ∗ topology of measures, (4.47)

fn(x, t) ∈ L∞(�T ), fn(x, t) → f in the weak- ∗ topology of measures,

(4.48)

(see [7]). We recall that also in the case of measure data it results

u ∈ Lq(0, T ; W 1,q
0 (�)) for every 1 ≤ q <

p(N + 1) − N

N + 1

(see again [7]). Analogously, let v ∈ Lq(0, T ; W 1,q
0 (�)) be a solution of (2.3) obtained as

the a.e. limit in�T of the sequence vn ∈ L∞(�T )∩C([0, T ]; L2(�))∩ L p(0, T ; W 1,p
0 (�))

solutions of the following approximating problems
⎧
⎨

⎩

(vn)t − div(a(x, t,∇vn)) = fn(x, t) in �T ,

vn = 0 on �,

vn(x, 0) = v0,n(x) on �,

(4.49)

where fn is the same approximating sequence defined in (4.48) and v0,n(x) satisfies

v0,n(x) ∈ L∞(�) v0,n(x) → v0 in the weak- ∗ topology of measures. (4.50)

We also choose the approximating sequence u0,n(x) verifying

‖v0,n(x) − u0,n(x)‖L1(�) ≤ ‖v0 − u0‖M(�). (4.51)
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Choosing Gk(un −vn) (k > 0) as test function in (4.46) and in (4.49) and proceeding exactly
as in the proof of Theorem 2.1 we deduce that estimate (4.10) if p > 2 and (4.12) if p ≥ 2
hold true. Indeed, if p = 2, proceeding as in the proof of (4.10) but applying Theorem 3.3
(instead of Theorem 3.2) we deduce that also the following estimate holds

‖un(t) − vn(t)‖L∞(�) ≤ C2
‖u0,n − v0,n‖L1(�)

t
N
2 eσ t

where C2 is a positive constant depending only on N and α and σ is given by the following
formula

σ = αcsκ

2|�| 2
N

, κ arbitrarily fixed in

(

0,
1

2

)

. (4.52)

Hence, by the previous estimates and (4.51) it follows that for almost every t ∈ (0, T )

‖un(t) − vn(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0 − v0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2, (4.53)

and

‖un(t) − vn(t)‖L∞(�) ≤ min

{

C2
‖u0 − v0‖M(�)

t
N
2 eσ t

, C1
‖u0 − v0‖M(�)

t
N
2

}

if p = 2,

(4.54)
which imply the claims. ��
Remark 4.3 We notice that the proof above shows that if u and v are two solutions of,
respectively (1.1) and (2.3), obtained as the limit (a.e. in�T ) of solutions of the approximating
problems (respectively) (4.46) and (4.49) with the approximating data u0,n , v0,n and fn

satisfying (4.47), (4.50) and (4.48), then if p > 2 it results

‖u(t) − v(t)‖L∞(�) ≤ C0

t
1

p−2

for almost every t ∈ (0, T ).

Moreover, if we also assume (4.51), then also estimate (2.38) holds true if p > 2 together
with (2.39) if p = 2.

4.10 Proof of Theorem 2.8

We observe that in the case of data in L1, the construction of a global solution done in the
proof of Theorem 2.2 above make use of the regularity C([0, T ]; L1(�)) of the solution,
which now fails having only measure data. Hence, it is necessary to proceed in a different
way. The proof proceeds by steps.
Step 1 The goal of this step is the construction of a global solution u of (1.1). To this aim, let
us consider the following parabolic problems

⎧
⎨

⎩

(un)t − div(a(x, t,∇un)) = fn(x, t) in � × (0,+∞),

un = 0 on ∂� × (0,+∞),

un(x, 0) = u0,n(x) on �,

(4.55)

where u0,n satisfies (4.47) and fn(x, t) belong to L∞
loc([0,+∞); L∞(�)) and satisfy

for every T > 0 : fn(x, t) → f in the weak- ∗ topology of measures on �T .

(4.56)

123



1830 M. M. Porzio

We recall that for every fixed n ∈ N, there exists a unique global solution un of (4.55) in
L∞

loc([0,+∞); L∞(�))∩Cloc([0,+∞]; L2(�))∩ L p
loc([0,+∞); W 1,p

0 (�)). Moreover, for
every arbitrarily fixed T > 0, there exists a subsequence of the sequence un converging a.e.
in �T (indeed a stronger convergence holds) to a solution of our problem (1.1) in �T (see
[7]). Hence, let T1 > 0 arbitrarily fixed. As said above, there exists a subsequence of un , that
we denote u(1)

n , such that

u(1)
n → u1 a.e. in �T1

where u1 is a solution of our problem (1.1) in �T1 . We recall that every term of the sequence
u(1)

n is a global solution, and thus it is also a solution in �2T1 . Hence, again by the results in

[7], there exists a subsequence of u(1)
n , that we denote u(2)

n , such that

u(2)
n → u2 a.e. in �2T1

where u2 is a solution of our problem (1.1) in �2T1 .
Iterating this procedure, we define a function u in � × (0,+∞) in the following way

for every T > 0 : u(x, t) = um(x, t) a.e. in �T ,

where m ∈ N is such that mT0 > T . We notice that the definition of u is well posed since
(by construction) if h ∈ N is such that hT0 > T then it results

um(x, t) = uh(x, t) a.e. in �T .

We point out that for every arbitrarily fixed T > 0 u solves (1.1) and hence is a global
solution.
Step 2 We conclude here the proof of the theorem. Let v be the global solution constructed
exactly as in the previous step but only changing the approximating sequence u0,n with
a sequence v0,n satisfying (4.50) and (4.51) (hence we do not change the approximating
sequence fn of f). Let now T > 0 arbitrarily fixed. Proceeding exactly as in the proof of
Theorem 2.7 we deduce that estimate (2.38) if p > 2 and (2.39) if p = 2 hold true. Hence
the assertion follows by the arbitrariness of T . ��

4.11 Proof of Corollary 2.3

As just recalled above, under the assumptions of Corollary 2.3 there exists a solution w of
the stationary problem (2.14). Moreover, w can be constructed as the a.e. limit in � (indeed
further convergences are true) of the solutions wn of (2.15) with fn satisfying

fn ∈ L∞(�), fn(x) → f in the weak- ∗ topology of measures.

Let now u be the global solution of (1.1) constructed as in the proof of Theorem 2.8 but
using the same approximation fn of f done above to construct w (this is possible being f
independent of the variable t). It is not restrictive to assume also that the approximation
sequence u0,n in (4.55) satisfies

‖u0,n − wn‖L1(�) ≤ ‖u0 − w‖M(�).

Now the proof proceeds similarly at all to that of Corollary 2.1 and hence we omit it. ��
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4.12 Proof of Theorem 2.9

The proof is similar at all to that of Theorem 2.3. Let v as in the statement of the
theorem a solution of (2.3) constructed as the limit (a.e. in �T ) of vn solutions in
L∞(�T ) ∩ C([0, T ]; L2(�)) ∩ L p(0, T ; W 1,p

0 (�)) of (2.46) with fn as in (2.47). By The-
orem 2.7 and its proof we deduce that there exists a solution u of (1.1) satisfying (2.38) if
p > 2 and (2.39) if p = 2. Consequently, it results for almost every (x, t) ∈ �T

|u(x, t)| ≤ |v(x, t)| + min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2

and

|u(x, t)| ≤ |v(x, t)| + min

{

C2
‖u0‖M(�)

t
N
2 eσ t

, C1
‖u0‖M(�)

t
N
2

}

if p = 2

Now all the assertions are immediate consequences of the previous estimates. ��

4.13 Proof of Theorem 2.10

Let us choose v0 = 0 and v = u0,where u0 is, as above, the solution of (1.14) obtained as limit
of the approximating solutions u0

n of (2.17).We recall that u0 is bounded and satisfies the L∞-
estimate (4.27). Hence, by Theorem 2.9 there exists a solution u (obtained by approximation)
satisfying

‖u‖L∞(ε,T ;L∞(�)) ≤ ‖u0‖L∞(ε,T ;L∞(�)) + min

⎧
⎪⎨

⎪⎩

C0

ε
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

ε
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2

and

‖u‖L∞(ε,T ;L∞(�)) ≤ ‖u0‖L∞(ε,T ;L∞(�)) + min

{

C2
‖u0‖M(�)

ε
N
2 eσε

, C1
‖u0‖M(�)

ε
N
2

}

if p = 2

Now the proof of the theorem proceeds exactly as that of Theorem 2.4 and hence we omit it.
��

4.14 Proof of Theorem 2.11

The proof follows closely the outline of the proof of Theorem 2.5 and hence we only
describe the changes. Let u0 be the unique solution of (1.14) belonging toC([0, T ]; L2(�))∩
L p(0, T ; W 1,p

0 (�)). Since the datum f is sufficiently regular, we can construct u by approx-
imating only the initial datum u0. In detail, let u be the almost everywhere limit in �T of the
solution un of (4.33) where we choose the sequence u0,n satisfying (4.47) and the following
bound

‖u0,n‖L1(�) ≤ ‖u0‖M(�). (4.57)

We point out that the regularity of un and u0 is enough to conclude (choosing Gk(un − u0)

as test functions in (4.33) and in (1.14) and proceeding exactly as in the proof Theorem 2.7)
that estimates (4.53) and (4.54) hold true with vn replaced by u0, i.e., it results
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‖un(t) − u0(t)‖L∞(�) ≤ min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
if p > 2,

and

‖un(t) − u0(t)‖L∞(�) ≤ min

{

C2
‖u0‖M(�)

t
N
2 eσ t

, C1
‖u0‖M(�)

t
N
2

}

if p = 2,

with C0 and C1 as in (2.5) and C2 and σ as in (2.39). Hence, by the previous estimates we
deduce (proceeding as in the proof of Theorem 2.9) that for every ε ∈ (0, T ) the following
estimates hold

‖un‖L∞(ε,T ;L2(�)) ≤ ‖u0‖L∞(ε,T ;L2(�)) + min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12 if p > 2,

‖un‖L∞(ε,T ;L2(�)) ≤ ‖u0‖L∞(ε,T ;L2(�)) + min

{

C2
‖u0‖M(�)

t
N
2 eσ t

, C1
‖u0‖M(�)

t
N
2

}

|�| 12 if p = 2,

‖u‖L∞(ε,T ;L2(�)) ≤ ‖u0‖L∞(ε,T ;L2(�)) + min

⎧
⎪⎨

⎪⎩

C0

t
1

p−2

, C1
‖u0‖

p
N (p−2)+p

M(�)

t
N

N (p−2)+p

⎫
⎪⎬

⎪⎭
|�| 12 if p > 2,

and

‖u‖L∞(ε,T ;L2(�)) ≤ ‖u0‖L∞(ε,T ;L2(�)) + min

{

C2
‖u0‖M(�)

t
N
2 eσ t

, C1
‖u0‖M(�)

t
N
2

}

|�| 12 if p = 2.

Hence, estimate (2.57) follows by the previous estimates recalling the L∞(ε, T ; L2(�))-
estimate (4.39) of u0.

Now the remaining estimate (2.58) on the gradient of u follows proceeding as in the proof
of the bound (2.31) of Theorem 2.5, i.e., combining the L∞(ε, T ; L2(�))-estimates above
with (4.41) and (4.43). ��
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