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Abstract
The parabolic–elliptic version of the logistic Keller–Segel system given by

{
ut = �u − χ∇ · (u∇v) + κu − μu2, x ∈ Ω, t > 0,
0 = �v − m(t) + u, m(t) := 1

|Ω|
∫
Ω
u(x, t)dx, x ∈ Ω, t > 0,

(�)

is considered in the ball Ω = BR(0) ⊂ R
n with n ≥ 1 and R > 0, and with parameters

κ ∈ R, χ > 0 and μ > 0. The focus is on the question how the zero-order dissipative term
−μu2 herein, forming the apparently most essential difference between (�) and the classical
parabolic–elliptic Keller–Segel system, affects the evolution of supposedly present singular
structures. For this purpose, a Neumann-type initial boundary value problem for (�) with
μ > χ is studied for radially decreasing nonnegative initial data u0 ∈ C1(Ω\{0}) fulfilling
u0(x) ≤ Kφ(|x |) for all x ∈ Ω\{0} with some K > 0 and some function φ : (0,∞) →
[1,∞) which, besides some technical assumptions, complies with the key condition

∫ 1

0
rn−1 ln φ(r)dr < ∞.

It is seen that for this class of data, including any such u0 satisfying

u0(x) ≤ Keλ|x |−α

for all x ∈ Ω\{0}
with some positive constants K , λ and α < n, the problem in question in fact admits a global
solution (u, v) which is smooth and classical in Ω × (0,∞) and attains the initial data in the
topology of C0

loc(Ω\{0}) as t ↘ 0. In view of the well-known fact that in the unperturbed
Keller–Segel system already some finite-mass Radon measure-type singularities give rise to
persistently singular solutions, and that hence no significant smoothing action can be expected
there when infinite-mass distributions are initially present, these results reveal that zero-order
quadratic degradation indeed may have a substantial effect on cross-diffusive interaction by
enforcing instantaneous smoothing even of initial data exhibiting some exponentially strong
singularities.
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1 Introduction

Understanding chemotaxis-driven dynamics of population distributions far from spatial
homogeneity is forming a recurrent theme in several disciplines from biology and especially
in corresponding theoretical studies [30]. Stimulated by findings on spontaneous forma-
tion of aggregates and, more generally, on various facets of complex collective behavior in
chemotactically migrating populations when distributed in a strongly heterogeneous manner,
substantial efforts in mathematical analysis have led to considerable insight into numerous
qualitative aspects related to the destabilizing potential of taxis-type cross-diffusion, as con-
stituting the apparently most characteristic common ingredient not only in the celebrated
Keller–Segel model for such processes [18], in its simplest form reducing to the parabolic
system {

ut = �u − ∇ · (u∇v),

vt = �v − v + u,
(1.1)

for the population density u = u(x, t) and the chemoattractant concentration v = v(x, t), but
beyond this also in a large class of relatives thereof [15,30]. Here the knowledge seems most
comprehensive with regard to the question under which circumstances solutions may develop
singularities either in finite or infinite time. In the context of (1.1), for instance, it is known that
such unboundedness phenomena do occur in spatially two- or higher-dimensional settings
[14,42], but that any such explosion is ruled out in the associated one-dimensional version
[29]; in fact, a large literature has revealed remarkably detailed information on corresponding
dichotomies in several refinements and derivates of (1.1) [8,12,23,27,36,40,46], in its most
delicate part, namely arguments concernedwith blowup detection, typically relying on certain
simplifications in which the chemoattractant evolution is governed by an elliptic equation
[3,16,22,26,37,47].

In comparison to this,much less seems knownwith regard to the question how chemotactic
evolution copes with locally extreme population concentrations in the sense of singularities
which are supposedly present at some instant. Here adaptation and refinement of straightfor-
ward functional analytical approaches, e.g., based on transformation to integral equations via
Duhamel formulae, and on design of suitable fixed point frameworks, have made it possible
to construct certain generalized local-in-time solutions, instantaneously becoming smooth
and classical, for initial data with quite low integrability properties. In the prototypical setup
of the Neumann problem for (1.1) in bounded domains Ω ⊂ R

n , n ≥ 2, for instance,
immediate regularization in this sense has been shown to occurs for all initial data (u0, v0)
from L1(Ω)×W 1,n(Ω), and actually even for slightly larger classes involving either Radon
measure-type distributions in the first component when n = 2, or suitable Morrey spaces
in both components when n ≥ 3 [4,5,33]; requirements of this flavor apparently cannot be
substantially relaxed even when beyond this, more subtle use is made of a priori estimates
implied from the well-known gradient-flow structure of the particular cross-diffusive interac-
tion in (1.1) [6,7]. This is further supported by observations indicating absence of smoothing
in presence of initial data close to the above spaces: In some two-dimensional Keller–Segel
systems, namely, some finite-mass but measure-valued cell distributions are known to evolve
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into persistent measure-type singularities ([13,24]; cf. also [2,34]); in the case n ≥ 3, the
stationary singularities becoming manifest in the so-called Chandrasekhar solutions to a sim-
plified parabolic–elliptic variant of (1.1), as determined by u(x, t) := 2(n−2)

|x |2 , x 
= 0, even

provide explicit examples that strongly indicate criticality of spatial L
n
2 spaces as regards the

possibility of instantaneous regularization.

1.1 Main results: detecting additional regularization effects of logistic dampening

The purpose of the present study is to investigate how far the evolution of singular struc-
tures may be affected by the presence of logistic-type growth restrictions. In fact, a large
literature suggests that accordingly obtained logistic Keller–Segel systems can be viewed
as a natural first step to adapt the prototypical and hence quite simple model (1.1) so as to
account for mechanisms of competition-induced overcrowding prevention which seem vir-
tually ubiquitous in numerous situations of biological relevance (see, e.g., [11,35,39] or [32]
for some examples, or also [15,30] for a broader overview). In fact, several precedents have
been indicating that on the way from (1.1) to fully realistic models, despite their increased
complexity and especially their apparent lack of appropriate energy structures, such logistic
chemotaxis systems remain accessible to a considerably large variety of mathematical tools;
accordingly, not only quite comprehensive conclusions are available in the fields of global
classical solvability for smooth data [28,38,41,48], of constructing attractors [1,28,29], and
of proving asymptotic homogenization in cases of strong dampening [9,43] (cf. also [21]), but
beyond this even some facets of the rich dynamics of such systems, as reported by numerical
findings [31], could be captured by some rigorous results on emergence of extremely large
cell densities at possibly intermediate time scales [17,20,44,45].

In contract to this, the knowledge with regard to the smoothing potential of logistic death
terms when confronted with locally large distributions seems quite thin; after all, the appar-
ently furthest reaching explicitly formulated results in this respect, addressing cases of L2

initial values in two-dimensional domains [28], seem to allow extension, through adaptation
of the arguments, e.g., in [5], at least to L

n
2 data in general n-dimensional settings. To our

impression, however, covering classes of initial data substantially larger than those known
to be admissible already for (1.1) has nowhere been achieved so far. Our main results in this
direction now identify a genuine supplementary smoothing action of quadratic degradation,
as forming the essential additional ingredient in logistic Keller–Segel systems when com-
pared to (1.1). Indeed, we shall see that in such systems instantaneous smoothing may in fact
occur for initial data exhibiting singular behavior much more extreme than power-type, even
up to some exponential strength, and thus far below levels of integrability.

Tomake this more precise, let us resort to a setting as simple as possible but yet potentially
capturing the main characteristics of the problem context under consideration, and hence
consider radially symmetric solutions to the parabolic–elliptic problem

⎧⎪⎪⎨
⎪⎪⎩

ut = �u − χ∇ · (u∇v) + κu − μu2, x ∈ Ω, t > 0,
0 = �v − m(t) + u, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(·, 0) = u0(x), x ∈ Ω,

(1.2)

in the ball Ω = BR(0) ⊂ R
n with n ≥ 1 and R > 0, where χ > 0, κ ∈ R, μ > 0 and

m(t) := 1

|Ω|
∫

Ω

u(x, t)dx, t > 0. (1.3)
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1618 M. Winkler

Our standing assumption on the initial data will be that{
u0 ∈ C1(Ω\{0}) is nonnegative and radially symmetric

and nonincreasing with respect to |x | ∈ (0, R], (1.4)

and in most places we will furthermore suppose that

u0(r) ≤ Kφ(r) for all r ∈ (0, R), (1.5)

where

φ ∈ C2((0,∞)) is such thatφ ≥ 1 and φ′ < 0, and thatφ(r) ↗ +∞ as r ↘ 0. (1.6)

Here and throughout the sequel, whenever this appears convenient and without any risk to
cause confusion, we shall tacitly switch to the usual notation using radial variables, thus ad
lib replacing, e.g., u0(x) with u0(r) for r = |x |.

Now our main results will require that the singular behavior of φ, and hence of u0, can
be controlled in such a way that besides the technical but otherwise comparatively mild
hypotheses that

φ′′(r) ≤ K1φ
2(r) for all r ∈ (0, 1) (1.7)

and that
φ(2r) ≤ K2r

nφ(r) for all r ∈ (0, 1), (1.8)

the crucial logarithmic integrability condition
∫ 1

0
rn−1 ln φ(r)dr < ∞ (1.9)

is satisfied. In this general framework, we shall obtain the following statement on global
existence of solutions which immediately become smooth and classical, and which attain the
prescribed and possibly singular initial trace locally uniformly outside the spatial origin:

Theorem 1.1 Let Ω = BR(0) ⊂ R
n with some n ≥ 1 and R > 0, and let κ ∈ R, χ > 0 and

μ > 0 be such that
μ > χ. (1.10)

Moreover, assume that u0 satisfies (1.4) and (1.5) with some K > 0 and some function
φ : (0,∞) → R for which there exist K1 > 0 and K2 > 0 such that (1.6)–(1.9) hold. Then
one can find a pair (u, v) of nonnegative radially symmetric functions{

u ∈ C0((Ω\{0}) × [0,∞)) ∩ C2,1(Ω × (0,∞)) and
v ∈ C2,0(Ω × (0,∞))

(1.11)

which solves the boundary value problem in (1.2) in the classical sense in Ω × (0,∞), for
which the total mass functional enjoys the integrability property

∫ T

0

∫
Ω

u(x, t)dx < ∞ for all T > 0, (1.12)

and which is such that furthermore

u(·, t) → u0 in C0
loc(Ω\{0}) as t ↘ 0. (1.13)

When specified to the particular choice of functions φ representing exponential singularities,
this directly implies the following concrete consequence.
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Corollary 1.2 Let n ≥ 1, R > 0 and Ω = BR(0) ⊂ R
n, let κ ∈ R, χ > 0 and μ > χ , and

suppose that u0 satisfies (1.4) as well as

u0(r) ≤ Keλr−α

for all r ∈ (0, R) (1.14)

with some positive constants K , λ and α such that

α < n. (1.15)

Then there exists a pair (u, v) of functions for which the conclusion from Theorem 1.1 holds.

1.2 Main ideas

As thanks to the comparatively simple parabolic–elliptic structure of (1.2), assumption (1.10)
can be seen to entail a pointwise upper bound for t

t+1u by means of a comparison argument

(Lemma 2.2), constructing a smooth limit in Ω × (0,∞) of solutions to an appropriately
regularized problem can be achieved by quite well-established bootstrap and compactness
reasonings (Lemmas 2.6, 2.7). The main challenge will thus consist in asserting the claimed
behavior of this solution to the boundary value problem in (1.2), and it turns out that for
this it is not only sufficient but also essentially necessary (see Proposition 3.1) to control the
asymptotic behavior of the nonlocal ingredient m(t) in (1.2), and hence of the total mass
functional

∫
Ω
u(x, t)dx , in the sense of time integrability near t = 0 as in (1.12). This will

be achieved on the basis of a second comparison argument, which will rely on the fact that
thanks to (1.7) large multiples of φ become stationary supersolutions to an equivalent version
of the first equation in (1.2) when restricted to radially nonincreasing functions u and v [see
Lemma 3.2 and (2.8)], which forms the major motivation for the initial monotonicity, as
assumed in (1.4) and fortunately inherited not only by u(·, t) but also by v(·, t) for t > 0
(Lemmas 2.4, 2.5).

Since (1.8) and (1.9) guarantee that a combination of the above two pointwise inequalities
for u entails an estimate of the mass functional against an integrable function of time (Lem-
mas 3.3, 3.4), through the second equation in (1.2) thus having at hand suitable bounds for
∇v, yet L1 with respect to time, we will firstly conclude that the initial trace is attained in
the topology ofW 2,1

0 (Ω\Bδ(0)))� for each δ ∈ (0, R) (Lemma 3.7). Secondly, this L1 infor-
mation on ∇v will enable us to derive precompactness in C0

loc(Ω\{0}) of (u(·, t))t∈(0,1) and
hence imply the desired convergence property (1.13), through a two-step regularity argument
(Lemmas 3.8, 3.9).

2 Approximate problems and their limit behavior for t > 0

2.1 A family of approximate problems and a fundamental pointwise estimate

Let us introduce a convenient regularization of (1.2) through approximation of a given and
possibly nonsmooth initial function u0 by a family (u0ε)ε∈(0,1) of suitably smooth functions
on Ω in the sense that

0 
≡ u0ε ∈ C2(Ω) is radially symmetric for all ε ∈ (0, 1), (2.1)

that, when expressed in the variable r = |x | ∈ [0, R], their gradients u0εr satisfy
u0εr (r) ≤ 0 for all r ∈ [0, R] andε ∈ (0, 1) (2.2)
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as well as the compatibility condition

u0εr (R) = 0 for all ε ∈ (0, 1), (2.3)

and that u0ε approaches u0 in the sense that

u0ε ≤ u0 + 1 inΩ\{0} for all ε ∈ (0, 1) (2.4)

and
u0ε → u0 in C1

loc(Ω\{0}) as ε ↘ 0. (2.5)

Then for each ε ∈ (0, 1), well-established arguments [25,47] assert local solvability of the
approximate version of (1.2) given by

⎧⎪⎪⎨
⎪⎪⎩

uεt = �uε − χ∇ · (uε∇vε) + κuε − μu2ε x ∈ Ω, t > 0,
0 = �vε − mε(t) + uε, mε(t) := 1

|Ω|
∫
Ω
uε(·, t), x ∈ Ω, t > 0,

∂uε

∂ν
= ∂vε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

(2.6)

in the following sense:

Lemma 2.1 Let χ > 0, κ ∈ R and μ > 0, and suppose that u0 and u0ε satisfy (1.4) and
(2.1)–(2.5). Then for all ε ∈ (0, 1) there exist Tmax,ε ∈ (0,∞] and a uniquely determined
classical solution (uε, vε) ∈ (C0(Ω × [0,∞)) ∩C2,1(Ω × (0,∞)))2 such that uε(·, t) and
vε(·, t) are positive and radially symmetric in Ω for all t > 0, and that

if Tmax,ε < ∞, then lim sup
t↗T

‖uε(·, t)‖L∞(Ω) = ∞. (2.7)

For later reference in several places, let us observe on combining the first two equations in
(2.6) that uε actually solves the Neumann problem for the scalar parabolic equation

uεt = �uε−χ∇uε ·∇vε−χmε(t)uε+κuε−(μ−χ)u2ε, x ∈ Ω, t ∈ (0, Tmax,ε), (2.8)

with the coefficient function ∇vε in fact forming a nonlocal ingredient due to its dependence
on uε through the second equation in (2.6).

Here with regard to our overall goal of achieving regularization, the rightmost summand
appears to be favorable ifχ andμ complywith the hypotheses fromTheorem1.1. Throughout
the sequel, we shall accordingly assume that

μ > χ,

and then may draw a first but substantial conclusion thereof through parabolic comparison
with spatially flat functions as follows.

Lemma 2.2 Let κ ∈ R and 0 < χ < μ, and suppose that (1.4) holds. Then for each
ε ∈ (0, 1), the solution (uε, vε) of (2.6) is global in time and satisfies

uε(x, t) ≤ 1

(μ − χ)t
+ κ+

μ − χ
for all x ∈ Ω and t > 0. (2.9)

Proof For fixed ε ∈ (0, 1)wemay use the regularity statement in Lemma 2.1 to pick c1(ε) >

0 such that
uε(x, t) ≤ c1(ε) for all x ∈ Ω and t ∈ (0, Tε), (2.10)
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where Tε := min{1, 1
2Tmax,ε}. Then given τ0 > 0, for any such ε we can fix τ = τ(ε, τ0) > 0

such that τ ≤ τ0 and τ < Tε as well as

τ ≤ 1

(μ − χ)c1(ε)
, (2.11)

because μ > χ . Introducing

u(x, t) := 1

(μ − χ)t
+ κ+

μ − χ
, x ∈ Ω, t ≥ τ, (2.12)

from (2.10) and (2.11) we therefore obtain that

u(x, τ ) ≥ 1

(μ − χ)τ
≥ c1(ε) ≥ uε(x, τ ) for all x ∈ Ω,

and clearly ∂u(x,t)
∂ν

= 0 = ∂uε(x,t)
∂ν

for all x ∈ ∂Ω and t ∈ (τ, Tmax,ε). Furthermore, differen-
tiating in (2.12) we see that

ut − �u + χ∇vε · ∇u + χmε(t)u − κu + (μ − χ)u2

= ut + χmε(t)u − κu + (μ − χ)u2

≥ ut − κ+u + (μ − χ)u2

= − 1

(μ − χ)t2
− κ+ ·

{ 1

(μ − χ)t
+ κ+

μ − χ

}
+ (μ − χ) ·

{ 1

(μ − χ)t
+ κ+

μ − χ

}2

= κ+
(μ − χ)t

≥ 0 for all x ∈ Ω and t ∈ (τ, Tmax,ε),

whence in view of (2.8) the comparison principle applies so as to assert the inequality u ≥ uε

throughout Ω × [τ, Tmax,ε) ⊃ Ω × [τ0, Tmax,ε). Firstly fixing, e.g., τ0 := Tε here, from
the extensibility criterion in Lemma 2.1 we thereby infer that indeed Tmax,ε = ∞ for all
ε ∈ (0, 1), whereupon we secondly achieve (2.9) upon taking τ0 ↘ 0. ��

2.2 Downward radial monotonicity of both solution components

Besides the mere radial symmetry, a further indispensable prerequisite for the most essen-
tial among our subsequent arguments will be provided by the observation that the initially
assumed monotonicity property expressed in (1.4) and (2.2) is inherited by uε and hence in
fact also carries over to vε . Both these statements rely on the following elementary fact.

Lemma 2.3 Let κ ∈ R and 0 < χ < μ, and assume (1.4). Then for all ε ∈ (0, 1), we have

rn−1vεr (r , t) = 1

n
mε(t)r

n −
∫ r

0
ρn−1uε(ρ, t)dρ for all r ∈ (0, R) and t > 0. (2.13)

Proof Since when written in radial variables the second equation in (2.6) becomes

(rn−1vεr )r = rn−1mε(t) − rn−1uε(r , t) for all r ∈ (0, R) and t > 0,

the claim directly results upon integration over (0, r) for r ∈ (0, R). ��
Indeed, this enables us to suitably reduce the differentiated version of (2.8) so as to conclude,
again by comparison and againmaking use of the assumptionμ > χ , that uε remains radially
nonincreasing.
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Lemma 2.4 Assume that κ ∈ R and 0 < χ < μ, and that (1.4) holds. Then for each
ε ∈ (0, 1),

uεr (r , t) ≤ 0 for all r ∈ (0, R) and t > 0. (2.14)

Proof We fix ε ∈ (0, 1) and T > 0 and then choose λε > 0 large enough fulfilling

λε > κ+ + 3χ‖uε‖L∞(Ω×(0,T )), (2.15)

and for η > 0 we let

zεη(r , t) := uεr (r , t) − ηeλε t , r ∈ [0, R], t ∈ [0, T ].
Then sincedue to (2.1) and (2.3) classical parabolic theory [19] ensures thatuεr ∈ C0([0, R]×
[0, T ])∩C2,1([0, R]×(0, T ]) and that uεr (0, t) = uεr (R, t) = 0 for all t ∈ [0, T ], it follows
that zεη belongs to the same space and satisfies

zεη(0, t) = zεη(R, t) = −ηeλε t < 0 for all t ∈ [0, T ] (2.16)

as well as
zεη(r , 0) = u0εr (r) − η ≤ −η < 0 for all r ∈ [0, R] (2.17)

according to (2.2). Moreover, differentiating the identity (2.8) with respect to r = |x |, we
see that

uεr t = uεrrr + aε(r , t)uεrr + bε(r , t)uεr for all r ∈ (0, R) and t ∈ (0, T ),

with

aε(r , t) := n − 1

r
− χvεr , r ∈ (0, R), t ∈ (0, T ),

and

bε(r , t) := −n − 1

r2
− χvεrr − χmε(t) + κ − 2(μ − χ)uε, r ∈ (0, R), t ∈ (0, T ),

and that hence

zεηt = zεηrr + aε(r , t)zεηr + bε(r , t)zεη +
(
bε(r , t) − λε

)
· ηeλε t

for all r ∈ (0, R) and t ∈ (0, T ). (2.18)

Here from the second equation in (2.6), we know that

vεrr = mε(t) − uε − n − 1

r
vεr for all r ∈ (0, R) and t ∈ (0, T ),

and that, by Lemma 2.3,

vεr (r , t) = 1

n
mε(t)r − r1−n

∫ r

0
ρn−1uε(ρ, t)dρ ≤ 1

n
mε(t)r

for all r ∈ (0, R) and t ∈ (0, T ),

whence

−χvεrr ≤ −χmε(t) + χuε + (n − 1)χ

r
· 1
n
mε(t)r = −χ

n
mε(t) + χuε ≤ χuε

for all r ∈ (0, R) and t ∈ (0, T ). Therefore, (2.15) ensures that

bε(r , t) ≤ χuε − χmε(t) + κ − 2(μ − χ)uε ≤ κ+ + 3χuε ≤ λε
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for all r ∈ (0, R) and t ∈ (0, T ),

and that thus

zεηt ≤ zεηrr + aε(r , t)zεηr + bε(r , t)zεη for all r ∈ (0, R) and t ∈ (0, T )

according to (2.18). As a consequence of (2.16) and (2.17), it thus follows from a standard
maximum principle argument that in none of the domains [0, R] × [0, T0], T0 ∈ (0, T ], zεη
can attain its maximal value 0, and that hence zεη actually must remain negative throughout
[0, R] × [0, T ], which on taking η ↘ 0 implies (2.14). ��
Fortunately, the structure of the equation in (2.6) governing vε , actually reducing to (2.13),
is simple enough so as to allow for a similar conclusion concerning the second solution
component:

Lemma 2.5 If κ ∈ R, 0 < χ < μ and (1.4) holds, then for arbitrary ε ∈ (0, 1),

vεr (r , t) ≤ 0 for all r ∈ (0, R) and t > 0. (2.19)

Proof We fix t > 0 and then obtain from the downward monotonicity of [0, R] � r �→
uε(r , t), as asserted by Lemma 2.4, that for all r ∈ (0, R),

n

rn

∫ r

0
ρn−1uε(ρ, t)dρ = 1

|Br (0)|
∫
Br (0)

uε(x, t)dx

≥ 1

|BR(0)|
∫
BR(0)

uε(x, t)dx

= mε(t).

In view of (2.13), this precisely means that vεr (r , t) ≤ 0 for all r ∈ (0, R). ��

2.3 Constructing a smooth limit in × (0,∞)

Returning to the outcome of Lemma 2.2, we can now proceed to the construction of a radially
decreasing limit couple (u, v) which is smooth for t > 0 and solves the corresponding
identities in (1.2) classically in this region. Indeed, by quite a straightforward reasoning we
obtain the following result on higher regularity away from the temporal origin.

Lemma 2.6 Let κ ∈ R and 0 < χ < μ, and assume (1.4). Then for all τ ∈ (0, 1) and T > 1
there exist θ = θ(τ, T ) ∈ (0, 1) and C(τ, T ) > 0 such that

‖uε‖
C2+θ,1+ θ

2 (Ω×[τ,T ]) + ‖vε‖
C2+θ, θ

2 (Ω×[τ,T ]) ≤ C(τ, T ) for all ε ∈ (0, 1). (2.20)

Proof On the basis of the uniform bound for uε in L∞(Ω × (τ,∞)) provided by Lemma 2.2
for each τ ∈ (0, 1), this can be seen by adapting a standard bootstrap procedure to the present
setting in a straightforward manner (cf., e.g., [10, Section 5]). ��
The compactness features thereby provided directly entail the announced existence result.

Lemma 2.7 Assume that κ ∈ R and 0 < χ < μ, and that (1.4) holds. Then there exists
(ε j ) j∈N ⊂ (0, 1) such that ε j ↘ 0 as j → ∞, and such that as ε = ε j ↘ 0 we have

uε → u in C2,1
loc (Ω × (0,∞)) (2.21)
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and
vε → v in C2,0

loc (Ω × (0,∞)) (2.22)

with some nonnegative functions u and v which form a classical solution of the boundary
value problem in (1.2) in Ω × (0,∞). Moreover, u(·, t) and v(·, t) are radially symmetric
and nonincreasing with respect to |x | for all t > 0.

Proof According to Lemma 2.6, this can readily be derived by using the Arzelà–Ascoli
theorem and an appropriate limit passage in (2.6), Lemmas 2.4 and 2.5. ��

3 Linking regularity at t = 0 to time integrability of total mass

We next approach the core of our analysis by focusing on the initial behavior of the solution
(u, v) obtained in Lemma 2.7, and it will turn out that a crucial role in this regard is played by
the behavior of the total mass functional

∫
Ω
u(x, t)dx near t = 0, which through the nonlocal

coupling expressed in (2.13) is closely linked to regularity of the cross-diffusive gradient vεr .
Here bearing in mind our ultimate goal of treating initial data merely fulfilling, e.g., (1.14),
we may by far not expect boundedness of this functional, while on the other hand the bound
therefore trivially implied by the upper estimate for uε from Lemma 2.2 appears to be too
rough by only yielding a multiple of 1

t for t < 1 as a majorant not integrable near t = 0.
Driven by the observation that, as we shall see by an independent reasoning in Sect. 3.1, such
an integrability feature seems essential for any nontrivial solution behavior near t = 0, in
Sect. 3.2 we will employ another comparison argument to derive a further pointwise upper
bound for uε which is now singular at the spatial origin but uniform in time. In Sect. 3.3
this will be seen to imply an integrable control for the mass functional, which will thereafter
entail attainment of the initial trace firstly with respect to some quite rough topology (Sect.
3.4), and finally, upon another spatially local regularity reasoning in Sect. 3.5, also in the
desired locally uniform sense (Sect. 3.6).

3.1 Necessity of temporal mass integrability for nontrivial initial traces

Our further considerations can be motivated by the following observation indicating a crucial
role that integrability of the total mass functional plays with regard to nontrivial attainment
of initial traces.

Proposition 3.1 Let κ ∈ R and 0 < χ < μ, and suppose that for some T > 0, (u, v) ∈
C2,1(Ω × (0, T ]) ×C2,0(Ω × (0, T ]) is a classical solution of the boundary value problem
in (1.2) in Ω × (0, T ] which is such that u(·, t) and v(·, t) are radially symmetric and
nonincreasing with respect to |x | ∈ (0, R) for all t ∈ (0, T ), and such that

∫ T

0

∫
Ω

u(x, t)dxdt = ∞. (3.1)

If, apart from that,
lim inf
t↘0

u(x, t) < ∞ for some x ∈ Ω, (3.2)

then for all r0 ∈ (|x |, R) we have

lim inf
t↘0

‖u(·, t)‖L∞(Ω\Br0 (0)) = 0. (3.3)
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In particular, if there exists û0 : Ω → R such that

u(·, t) → û0 a.e. in Ω as t ↘ 0, (3.4)

then
û0 = 0 a.e. in Ω. (3.5)

Proof Fixing x ∈ Ω such that (3.2) holds, this hypothesis states the existence of c1 > 0 and
(tk)k∈N ⊂ (0, T ) such that tk ↘ 0 as k → ∞, and such that writing r� := |x | ∈ [0, R) and
again using radial variables we have u(r�, tk) ≤ c1 for all k ∈ N. As also by assumption we
know that ur (·, tk) ≤ 0 in (0, R), this in particular entails that

y(t) :=
∫ R

r�

(r − r�)
4u(r , t)dr , t ∈ (0, T ), (3.6)

satisfies

y(tk) ≤ c2 := c1

∫ R

r�
(r − r�)

4dr = c1(R − r�)5

5
for all k ∈ N. (3.7)

Now if (3.3)was false for some r0 ∈ (r�, R), thenwecouldfind c3 > 0 and τ ∈ (0, T )with the
property that u(r0, t) ≥ c3 for all t ∈ (0, τ ), again by monotonicity of (0, R) � r �→ u(r , t)
meaning that

y(t) ≥ c4 := c3 ·
∫ r0

r�
(r − r�)

4dr = c3(r0 − r�)5

5
for all t ∈ (0, τ ). (3.8)

To derive a contradiction from this, in full analogy to (2.8), we combine the first two equations
in (1.2) to see that

ut = urr + n − 1

r
ur −χurvr −χm(t)u+κu− (μ−χ)u2 for r ∈ (0, R) and t ∈ (0, T ),

(3.9)
with m(t) = n

Rn

∫ R
0 rn−1u(r , t)dr , t ∈ (0, T ), fulfilling

∫ τ

0
m(t)dt = ∞ (3.10)

as a consequence of (3.1). Moreover, since our assumptions ensure that ur and vr are non-
negative, (3.9) implies that

ut ≤ urr − χm(t)u + κu − (μ − χ)u2 in (0, R) × (0, T ),

and that thus the function y from (3.6) satisfies

y′(t) ≤
∫ R

r�
(r − r�)

4urr (r , t)dr − χm(t)y(t) + κ y(t)

−(μ − χ)

∫ R

r�
(r − r�)

4u2(r , t)dr for all t ∈ (0, T ). (3.11)

Here two integrations by parts show that since ur (R, t) = 0 for all t ∈ (0, T ),
∫ R

r�
(r − r�)

4urr (r , t)dr = 12
∫ R

r�
(r − r�)

2u(r , t)dr

+
[
(r − r�)

4ur (r , t) − 4(r − r�)
3u(r , t)

]r=R

r=r�
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= 12
∫ R

r�
(r − r�)

2u(r , t)dr − 4(R − r�)
3u(R, t)

≤ 12
∫ R

r�
(r − r�)

2u(r , t)dr for all t ∈ (0, T ),

so that using Young’s inequality along with our assumption that μ > χ we obtain that
∫ R

r�
(r − r�)

4urr (r , t)dr ≤ μ − χ

2

∫ R

r�
(r − r�)

4u2(r , t)dr + c5 for all t ∈ (0, T )

with c5 := 72(R−r�)
μ−χ

> 0. As, by the same token, writing c6 := κ2+
2(μ−χ)

∫ R
r�

(r − r�)4dr =
κ2+(r−r�)5

10(μ−χ)
, we have

κ y(t) ≤ μ − χ

2

∫ R

r�
(r − r�)

4u2(r , t)dr + c6 for all t ∈ (0, T ),

from (3.11) we infer that

y′(t) + χm(t)y(t) ≤ c5 + c6 for all t ∈ (0, T ),

and that hence, after integration,

y(τ ) + χ

∫ τ

tk
m(t)y(t)dt ≤ y(tk) + (c5 + c6) · (τ − tk) for all k ≥ k0

if we let k0 ∈ N be large enough such that tk < τ for all k ≥ k0. In view of (3.8) and (3.7),
however, this particularly entails that

c4χ
∫ τ

tk
m(t)dt ≤ c2 + (c5 + c6)τ for all k ≥ k0,

which, due to the positivity ofχ , in the limit k → ∞ contradicts (3.10) and thereby completes
the proof. ��

3.2 A spatially singular but temporally uniform pointwise upper bound for u"

Relying on the fact that (1.7) guarantees a favorable supersolution property enjoyed by large
multiples of φ for solutions of (2.8) with nonincreasing derivatives uεr and vεr , we can turn
our hypothesis (1.5) into a second pointwise bound for uε of the announced flavor.

Lemma 3.2 Assume that κ ∈ R and 0 < χ < μ, and suppose that beyond (1.4), u0 satisfies
(1.5) with some K > 0 and some φ fulfilling (1.6) and (1.7) with a certain K1 > 0. Then
there exists C > 0 such that for each ε ∈ (0, 1),

uε(r , t) ≤ Cφ(r) for all r ∈ (0, R) and t > 0. (3.12)

Proof Using that μ > χ and that φ(R) is positive, we choose a positive constant c1 large
enough such that

c1 ≥ 2K1

μ − χ
(3.13)

and

c1 ≥ 2κ+
(μ − χ)φ(R)

(3.14)

123



How strong singularities can be regularized by logistic… 1627

as well as

c1 ≥ K + 1

φ(R)
. (3.15)

For fixed ε ∈ (0, 1) and δ0 ∈ (0, R)wemay then rely on the boundedness of uε inΩ×(0,∞),
as asserted by Lemma 2.1 when combined with Lemma 2.2, to find c2(ε) > 0 such that

uε(r , t) ≤ c2(ε) for all r ∈ (0, R) and t > 0, (3.16)

and recall that by (1.6) we have φ(r) ↗ +∞ as r ↘ 0, so that we can pick δ = δ(ε, δ0) ∈
(0, R) such that δ ≤ δ0 and

φ(δ) ≥ c2(ε)

c1
. (3.17)

Here the latter together with (3.16) ensures that

u(r , t) := c1φ(r), r ∈ [0, R], t ≥ 0,

satisfies
u(δ, t) = c1φ(δ) ≥ c2(ε) ≥ uε(δ, t) for all t > 0. (3.18)

Moreover, by monotonicity of φ,

ur (R, t) = c1φ
′(R) ≤ 0 = uεr (R, t) for all t > 0, (3.19)

and at the initial time, our assumption (1.5) along with (2.4) warrants that due to (3.15) we
have

u(r , 0) = Kφ(r) + (c1 − K )φ(r)

≥ Kφ(r) + (c1 − K )φ(R)

≥ u0(r) + 1

≥ u0ε(r) for all r ∈ (δ, R). (3.20)

Now computing

ut − urr − n − 1

r
ur − κu + (μ − χ)u2 = c1φ

′′(r) − c1 · n − 1

r
φ′(r)

−c1κφ(r) + c21(μ − χ)φ2(r), r ∈ (δ, R), t > 0, (3.21)

we see that again due to the monotonicity of φ, by using (3.14) we may estimate

−c1 · n − 1

r
φ′(r) ≥ 0 for all r ∈ (δ, R)

and

c1κφ(r)
1
2c

2
1(μ − χ)φ2(r)

= 2κ

c1(μ − χ)φ(r)
≤ 2κ+

c1(μ − χ)φ(R)
≤ 1 for all r ∈ (δ, R).

As finally (1.7) in view of (3.13) implies that also

c1φ′′(r)
1
2c

2
1(μ − χ)φ2(r)

= 2φ′′(r)
(μ − χ)c1φ2(r)

≤ 2K1

(μ − χ)c1
≤ 1 for all r ∈ (δ, R),

from (3.21) it follows that

ut ≥ urr + n − 1

r
ur + κu − (μ − χ)u2 for all r ∈ (δ, R) and any t > 0,
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while thanks to the inequalities uεr ≤ 0 and vεr ≤ 0 asserted by Lemmas 2.4 and 2.5,
respectively, from (2.8) we obtain that

uεt = uεrr + n − 1

r
uεr − χuεrvεr − χmε(t)uε + κuε − (μ − χ)u2ε

≤ uεrr + n − 1

r
uεr + κuε − (μ − χ)u2ε for all r ∈ (δ, R) and t > 0.

On the basis of (3.18)–(3.20), we may therefore conclude by a comparison argument that
u(r , t) ≥ uε(r , t) for all r ∈ (δ(ε, δ0), R) and t > 0, which since δ(ε, δ0) ≤ δ0 entails that

uε(r , t) ≤ c1φ(r) for all r ∈ (δ0, R) and t > 0

and therefore establishes (3.12) in the limit δ0 ↘ 0. ��

3.3 Uniform integrability of themass functional

Now having at hand the upper inequalities for uε both from Lemma 2.2 and from Lemma 3.2,
on combining these and relying on the technical assumption (1.8),we can construct amajorant
for the mass functional in the following sense.

Lemma 3.3 Let κ ∈ R and 0 < χ < μ, and assume that (1.4) and (1.5) hold with some
K > 0 and some φ satisfying (1.6) and (1.7) as well as (1.8) with some K1 > 0 and K2 > 0.
Then there exist t0 ∈ (0, 1) and C > 0 such that for any ε ∈ (0, 1) we have

∫
Ω

uε(x, t)dx ≤ C ·
[
φ−1

( 1
t

)]n
t

for all t ∈ (0, t0). (3.22)

Proof According to Lemma 2.2, we can find c1 > 0 such that for all ε ∈ (0, 1),

uε(r , t) ≤ c1
t

for all r ∈ (0, R) and each t ∈ (0, 1), (3.23)

while Lemma 3.2 provides c2 > 0 fulfilling

uε(r , t) ≤ c2φ(r) for all r ∈ (0, R) and t > 0 (3.24)

whenever ε ∈ (0, 1). Thus, if we let t0 ∈ (0, 1) be such that t0 ≤ 1
φ( R

2 )
, then for t ∈ (0, t0)

we have 2φ−1( 1t ) < 2φ−1(φ( R
2 )) = R, and hence splitting

∫ R

0
rn−1uε(r , t)dr =

∫ 2φ−1
(
1
t

)

0
rn−1uε(r , t)dr +

∫ R

2φ−1
(
1
t

) rn−1uε(r , t)dr , (3.25)

we can combine (3.23) with (3.24) to estimate

∫ 2φ−1
(
1
t

)

0
rn−1uε(r , t)dr ≤ c1

t
·
∫ 2φ−1

(
1
t

)

0
rn−1dr

= 2nc1
n

·
[
φ−1

( 1
t

)]n
t

and ∫ R

2φ−1
(
1
t

) rn−1uε(r , t)dr ≤ c2φ
(
2φ−1

(1
t

))
·
∫ R

2φ−1
(
1
t

) rn−1dr
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≤ c2Rn

n
· φ

(
2φ−1

(1
t

))

for all t ∈ (0, t0). Now since (1.8) ensures that herein

φ
(
2φ−1

(1
t

))
≤ K2 ·

[
2φ−1

(1
t

)]n · φ
(
φ−1

(1
t

))

= 2nK2 ·
[
φ−1

( 1
t

)]n
t

for all t ∈ (0, 1),

from (3.25) it follows that if we abbreviate c3 := 2nc1
n + c2Rn

n · 2nK2, then

∫ R

0
rn−1uε(r , t)dr ≤ c2 ·

[
φ−1

( 1
t

)]n
t

for all t ∈ (0, t0),

which precisely yields (3.22). ��
Now our final and most crucial hypothesis (1.9) ensures integrability of the right-hand side
in (3.22) near t = 0:

Lemma 3.4 Suppose that φ satisfies (1.6) as well as (1.9). Then
∫ t0

0

[
φ−1

( 1
t

)]n
t

dt < ∞ for all t0 ∈ (0, 1). (3.26)

Proof Substituting r = φ−1( 1t ) and integrating by parts, for δ ∈ (0, t0) we can rewrite

∫ t0

δ

[
φ−1

( 1
t

)]n
t

dt = −
∫ φ−1

(
1
t0

)

φ−1
(
1
δ

) rn

1
φ(r)

· φ′(r)
φ2(r)

dr

= −
∫ φ−1

(
1
t0

)

φ−1
(
1
δ

) rn · d

dr
ln φ(r)dr

= n
∫ φ−1

(
1
t0

)

φ−1
(
1
δ

) rn−1 ln φ(r)dr

−
[
φ−1

( 1

t0

)]n · ln 1

t0
+

[
φ−1

(1
δ

)]n · ln 1

δ
. (3.27)

Here, clearly,

∫ φ−1
(

1
t0

)

φ−1
(
1
δ

) rn−1 ln φ(r)dr ≤ n
∫ 1

0
rn−1 ln φ(r)dr + n

∫ φ−1
(

1
t0

)

1
rn−1 ln φ(1)dr

≤ c1 := n
∫ 1

0
rn−1 ln φ(r)dr +

[
φ−1

( 1

t0

)]n· ln φ(1)

for all δ ∈ (0, t0), (3.28)

with c1 being finite and positive by (1.9) and (1.6). Apart from that, (1.9) ensures that there
must exist (r j ) j∈N ⊂ (0, φ−1( 1

t0
)) such that r j ↘ 0 as j → ∞ and rn−1

j ln φ(r j ) ≤ 1
r j

for

all j ∈ N, for otherwise
∫ 1
0 rn−1 ln φ(r)dr ≥ ∫ 1

0
dr
r = ∞. The numbers δ j := 1

φ(r j )
, j ∈ N

thus satisfy δ j < t0 as well as[
φ−1

( 1

δ j

)]n · ln 1

δ j
= rnj ln φ(r j ) ≤ 1
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for all j ∈ N, whence (3.27) along with (3.28) entails that
∫ t0

δ j

[
φ−1

( 1
t

)]n
t

dt ≤ c1 + 1 for all j ∈ N,

because ln 1
t0
is positive. Since the assumed convergence property of (r j ) j∈N together with

(1.6) warrants that δ j ↘ 0 as j → ∞, this establishes (3.26). ��
A further and quite immediate consequence of Lemma 3.3 on vεr will be of substantial
importance both in Lemma 3.6 and in Lemma 3.8.

Lemma 3.5 Let κ ∈ R and 0 < χ < μ, and assume that (1.4), (1.5) and (1.6)–(1.8) hold
with some K > 0, K1 > 0 and K2 > 0. Then there exist t0 ∈ (0, 1) and C > 0 such that for
any choice of ε ∈ (0, 1),

|vεr (r , t)| ≤ Cr1−n ·
[
φ−1

( 1
t

)]n
t

for all r ∈ (0, R) and each t ∈ (0, t0). (3.29)

Proof As on the right-hand side of (2.13), we can estimate

1

n
mε(t)r

n −
∫ r

0
ρn−1uε(ρ, t)dρ ≥ −

∫ R

0
ρn−1uε(ρ, t)dρ

= − 1

n|B1(0)| ·
∫

Ω

uε(·, t)
for all r ∈ (0, R), t > 0 and ε ∈ (0, 1),

thanks to Lemma 2.5 this directly results from Lemma 3.3. ��

3.4 Approaching initial traces in (W2,1
0 (\Bı(0)))�

Through (2.13), the information gained in Lemmas 3.3 and 3.4 now provides regularity
properties of the gradient ∇vε that are sufficient for the derivation of the following statement
on compactness in appropriately large dual spaces.

Lemma 3.6 Let κ ∈ R and 0 < χ < μ, and suppose that (1.4) and (1.5) hold as well as
(1.6)–(1.9) with some positive constants K , K1 and K2. Then for each δ ∈ (0, R) and any
T > 1,

(uε)ε∈(0,1) is relatively compact in C0
(
[0, T ]; (W 2,1

0 (Ω\Bδ(0)))
�
)
. (3.30)

Proof For fixed δ ∈ (0, R), Lemma 3.2 together with (1.6) allows us to fix c1 = c1(δ) > 0
such that

uε ≤ c1 in (Ω\Bδ(0)) × (0,∞) for all ε ∈ (0, 1), (3.31)

and Lemma 3.5 in conjunction with Lemma 2.6 states that if we let t0 ∈ (0, 1) be as given
by Lemma 3.5, and define

f (t) :=
{ [

φ−1
(
1
t

)]n
t , t ∈ (0, t0),

1, t ≥ t0,
(3.32)

then for all T > 1 we can find c2 = c2(δ, T ) > 0 fulfilling

|∇vε| ≤ c2 f (t) in (Ω\Bδ(0)) × (0, T ) for all ε ∈ (0, 1). (3.33)
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For arbitrary t ∈ (0, T ) and ψ ∈ C∞
0 (Ω\Bδ(0)), by going back to (2.6) we can thus use

(3.31) and (3.33) to estimate∣∣∣∣
∫

Ω

uεt (x, t)ψ(x)dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

uε�ψ + χ

∫
Ω

uε∇vε · ∇ψ + κ

∫
Ω

uεψ − μ

∫
Ω

u2εψ

∣∣∣∣
≤ c1‖�ψ‖L1(Ω) + c1c2χ f (t)‖∇ψ‖L1(Ω) + c1|κ| · ‖ψ‖L1(Ω)

+c21μ‖ψ‖L1(Ω)

for all ε ∈ (0, 1), whence by completion we obtain that with some c3 = c3(δ, T ) > 0,

‖uεt (·, t)‖(W 2,1
0 (Ω\Bδ(0)))�

≤ c3 · ( f (t) + 1) for all t ∈ (0, T ) and any ε ∈ (0, 1).

In particular, this entails that whenever t ∈ [0, T ] and s ∈ [0, t],

‖uε(·, t) − uε(·, s)‖(W 2,1
0 (Ω\Bδ(0)))�

=
∥∥∥∥

∫ t

s
uεt (·, σ )dσ

∥∥∥∥
(W 2,1

0 (Ω\Bδ(0)))�

≤ c3

∫ t

s
( f (σ ) + 1)dσ for all ε ∈ (0, 1),(3.34)

where we note that since f + 1 belongs to L1((0, T )) due to (3.32) and Lemma 3.4, the

uniform continuity of [0, T ] � t̂ �→ ∫ t̂
0 ( f (σ ) + 1)dσ thereby implied ensures that

sup
0 ≤ s ≤ t ≤ T

|s − t | < η

∫ t

s
( f (σ ) + 1)dσ → 0 as η ↘ 0.

Accordingly, (3.34) entails that (uε)ε∈(0,1) is equi-continuous on [0, T ] as a family of
(W 2,1

0 (Ω\Bδ(0)))�-valued functions, so that since furthermore, for each fixed t ∈ [0, T ],
(uε(·, t))ε∈(0,1) is bounded in L∞(Ω\Bδ(0)) ↪→↪→ (W 2,1

0 (Ω\Bδ(0)))� by (3.31), the
claimed compactness property (3.30) becomes a consequence of the Arzelà–Ascoli theo-
rem. ��
A natural consequence of the latter completes the following key step in our reasoning.

Lemma 3.7 Assume that κ ∈ R and 0 < χ < μ, and suppose that (1.4) and (1.5) hold as
well as (1.6)–(1.9) with some positive constants K , K1 and K2. Then the limit function u
obtained in Lemma 2.7 has the property that for all δ ∈ (0, R),

u(·, t) → u0 in
(
W 2,1

0 (Ω\Bδ(0))
)�

as t ↘ 0. (3.35)

Proof This is immediately implied by Lemma 3.6 when combined with Lemma 2.6 and the
fact that uε(·, 0) → u0 in L∞(Ω\Bδ(0))) as ε ↘ 0 according to (2.5). ��

3.5 Additional consequences of uniformmass integrability on regularity near t = 0

Let us now make sure that outside the spatial origin the upper bound for uε from Lemma 3.2,
together with the mass control implied by Lemmas 3.3 and 3.4, actually implies further com-
pactness properties of (uε(·, t))t∈(0,1). By means of a standard testing procedure involving
appropriate localization, Lemma 3.5 together with Lemma 3.2 indeed entails the following.
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Lemma 3.8 Assume that κ ∈ R and 0 < χ < μ, and suppose that (1.4) and (1.5) are valid
with K > 0 and φ fulfilling (1.6) and (1.7) with some K1 > 0. Then for each δ ∈ (0, R) and
any T > 0 one can find C(δ, T ) > 0 such that

∫ T

0

∫
Ω\Bδ(0)

|∇uε(x, t)|2dx ≤ C(δ, T ) for all ε ∈ (0, 1). (3.36)

Proof Given δ ∈ (0, R) and T > 0, we once more invoke Lemma 3.2, (1.6), Lemmas 2.6, 3.4
and 3.5 to find c1 = c1(δ) > 0, c2 = c2(δ, T ) > 0 and f ∈ L1((0, T )) such that

uε ≤ c1 in (Ω\B δ
2
(0)) × (0,∞) for all ε ∈ (0, 1) (3.37)

and
|∇vε| ≤ c2 f (t) in (Ω\B δ

2
(0)) × (0, T ) for all ε ∈ (0, 1). (3.38)

We then pick a cutoff function ζ ∈ C∞(Ω) such that 0 ≤ ζ ≤ 1 in Ω , ζ ≡ 1 in Ω\Bδ(0)
and ζ ≡ 0 in B δ

2
(0), and test the first equation in (2.6) against ζuε in a standard manner to

see that for each ε ∈ (0, 1),

1

2

d

dt

∫
Ω

ζ(x)u2ε(x, t)dx =
∫

Ω

ζuε ·
{
�uε − χ∇ · (uε∇vε) + κuε − μu2ε

}

= −
∫

Ω

ζ |∇uε|2 −
∫

Ω

uε∇uε · ∇ζ

+χ

∫
Ω

ζuε∇uε · ∇vε + χ

∫
Ω

u2ε∇vε · ∇ζ

+ κ

∫
Ω

ζu2ε − μ

∫
Ω

ζu3ε for all t > 0. (3.39)

Here upon another integration by parts, we can use (3.37) to estimate

−
∫

Ω

uε∇uε · ∇ζ = 1

2

∫
Ω

u2ε�ζ ≤ c21
2

‖�ζ‖L1(Ω) for all t > 0, (3.40)

and similarly we may treat the third summand on the right of (3.39) to find that due to the
second equation from (2.6) and our assumption that μ > χ >

χ
2 ,

χ

∫
Ω

ζuε∇uε · ∇vε + χu2ε∇vε · ∇ζ − μ

∫
Ω

ζu3ε

= −χ

2

∫
Ω

ζu2ε�vε + χ

2

∫
Ω

u2ε∇vε · ∇ζ − μ

∫
Ω

ζu3ε

= −χ

2
mε(t) ·

∫
Ω

ζu2ε −
(
μ − χ

2

) ∫
Ω

ζu3ε + χ

2

∫
Ω

u2ε∇vε · ∇ζ

≤ χ

2

∫
Ω

u2ε∇vε · ∇ζ

≤ χ

2
c21c2‖∇ζ‖L1(Ω) · f (t) for all t ∈ (0, T ). (3.41)

As clearly, also by (3.37), ∫
Ω

ζu2ε ≤ c21|Ω| for all t > 0, (3.42)
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from (3.39)–(3.41) we infer the existence of c3 = c3(δ, T ) > 0 such that for arbitrary
ε ∈ (0, 1),

d

dt

∫
Ω

ζu2ε + 2
∫

Ω

ζ |∇uε|2 ≤ c3 · ( f (t) + 1) for all t ∈ (0, T ),

which on integration yields∫
Ω

ζu2ε(·, T ) + 2
∫ T

0

∫
Ω

ζ |∇uε|2 ≤
∫

Ω

ζu20ε + c3

∫ T

0
( f (t) + 1)dt for all ε ∈ (0, 1).

(3.43)
Since (2.4) and (1.5) alongwith the fact that supp ζ ⊂ Ω\B δ

2
(0) enforce that supε∈(0,1)

∫
Ω

ζu20ε
is finite, and since f + 1 belongs to L1((0, T )), recalling that ζ is nonnegative and satisfies
ζ ≡ 1 in Ω\Bδ(0) we obtain (3.36) as a consequence of (3.43). ��
One final regularity argument, now using a localization slightly more subtle and thereby
favorably cooperating with our knowledge on radial symmetry and monotonicity, yields
even certain temporally uniform bounds for ∇uε in annular regions.

Lemma 3.9 Let κ ∈ R and 0 < χ < μ, and let (1.4)–(1.7) be satisfied with some K > 0 and
K1 > 0. Then for any δ ∈ (0, R) and T > 0 there exists C(δ, T ) > 0 such that whenever
ε ∈ (0, 1), ∫

Ω\Bδ(0)
|∇uε(x, t)|2dx ≤ C(δ, T ) for all t ∈ (0, T ). (3.44)

Proof For fixed δ ∈ (0, R), we choose a cutoff function ζ ∈ C∞(Ω) such that again ζ ≡ 0
in B δ

2
(0) and ζ ≡ 1 in Ω\Bδ(0), but such that now, in contrast to the requirements from the

proof of Lemma 3.8, ζ additionally is radially symmetric and nondecreasing with respect to
r = |x | ∈ [0, R]. Then upon several integrations by parts, we obtain from (2.8) that for all
ε ∈ (0, 1),

1

2

d

dt

∫
Ω

ζ 2(x)|∇uε(x, t)|2dx =
∫
Ω

ζ 2∇uε · ∇
{
�uε − χ∇uε · ∇vε − χmε(t)uε

+ κuε − (μ − χ)u2ε
}

= −
∫
Ω

ζ 2|�uε|2 − 2
∫
Ω

ζ(∇uε · ∇ζ )�uε

−χ

∫
Ω

ζ 2∇uε · ∇(∇uε · ∇vε) − χmε(t)
∫
Ω

ζ 2|∇uε|2

+κ

∫
Ω

ζ 2|∇uε|2 − 2(μ − χ)

∫
Ω

ζ 2uε|∇uε|2 for all t > 0,

(3.45)

where by Young’s inequality,

− 2
∫

Ω

ζ(∇uε · ∇ζ )�uε ≤
∫

Ω

ζ 2|�uε|2 +
∫

Ω

|∇ζ |2|∇uε|2 for all t > 0. (3.46)

In the crucial third summand on the right of (3.45), we resort to the radial notation again to
see upon further integration by parts that thanks to the boundary condition uεr (R, ·) ≡ 0 and
the second equation in (2.6),

−
∫ R

0
rn−1ζ 2(r)uεr · (uεrvεr )rdr
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= −
∫ R

0
rn−1ζ 2(r)uεr uεrrvεrdr −

∫ R

0
rn−1ζ 2(r)u2εrvεrrdr

= 1

2

∫ R

0
rn−1ζ 2(r)u2εr

(
vεrr + n − 1

r
vεr

)
dr +

∫ R

0
rn−1ζ(r)ζr (r)u

2
εrvεrdr

−
∫ R

0
rn−1ζ 2(r)u2εrvεrrdr

= −1

2

∫ R

0
rn−1ζ 2(r)u2εr

(
vεrr + n − 1

r
vεr

)
dr +

∫ R

0
rn−1ζ(r)ζr (r)u

2
εrvεrdr

+(n − 1)
∫ R

0
rn−2ζ 2(r)u2εrvεrdr

= −1

2
mε(t)

∫ R

0
rn−1ζ 2(r)u2εrdr + 1

2

∫ R

0
rn−1ζ 2(r)uεu

2
εrdr

+
∫ R

0
rn−1ζ(r)ζr (r)u

2
εrvεrdr + (n − 1)

∫ R

0
rn−2ζ 2(r)u2εrvεrdr for all t > 0.

Since uεr ≤ 0 and vεr ≤ 0 by Lemma 2.4 and Lemma 2.5, our requirement on upward radial
monotonicity of ζ thus ensures that, besides the fourth last and the last, also the second last
summand herein is nonpositive for all ε ∈ (0, 1) and t > 0. Therefore,

−χ

∫
Ω

ζ 2∇uε · ∇(∇uε · ∇vε) ≤ χ

2

∫
Ω

ζ 2uε|∇uε|2 for all t > 0,

whence (3.45) and (3.46) along with our assumption that μ > χ imply that

1

2

d

dt

∫
Ω

ζ 2|∇uε|2 ≤
∫

Ω

|∇ζ |2|∇uε|2 + κ+
∫

Ω

ζ 2|∇uε|2 + χ

2

∫
Ω

ζ 2uε|∇uε|2

for all t > 0.

Again relying on Lemma 3.2 and (1.6), we thus conclude that for any such δ and each T > 0
we can find c1 = c1(δ, T ) > 0 fulfilling

d

dt

∫
Ω

ζ 2|∇uε|2 ≤ c1

∫
Ω\B δ

2
(0)

|∇uε|2 for all t ∈ (0, T ) and any ε ∈ (0, 1)

and that accordingly, for each ε ∈ (0, 1),
∫

Ω

ζ 2(x)|∇uε(x, t)|2dx ≤
∫

Ω

ζ 2(x)|∇u0ε(x)|2dx + c1

∫ T

0

∫
Ω\B δ

2
(0)

|∇uε|2

for all t ∈ (0, T ).

In view of (2.5), the outcome of Lemma 3.8 therefore warrants validity of (3.44) with some
suitably large C(δ, T ) > 0. ��

3.6 Locally uniform initial trace attainment: proof of themain results

One last time making use of radial symmetry, from Lemma 3.9 and the compactness of the
embedding W 1,2((δ, R)) ↪→ C0([δ, R]) for δ ∈ (0, R), we can finally infer the following.
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Lemma 3.10 Assume that κ ∈ R and 0 < χ < μ, and suppose that (1.4) and (1.5) as well
as (1.6)–(1.9) hold with some positive constants K , K1 and K2. Then the function u given
by Lemma 2.7 belongs to C0((Ω\{0}) × [0,∞)) and satisfies

u(·, t) → u0 in C0
loc(Ω\{0}) as t ↘ 0. (3.47)

Proof As u0 is continuous in Ω\{0}, in view of the regularity properties asserted by
Lemma 2.7, it is sufficient to verify (3.47). In fact, if this was false then there would exist
δ ∈ (0, R) and (tk)k∈N ⊂ (0, 1) such that tk ↘ 0 as k → ∞ and

inf
k∈N ‖u(·, tk) − u0‖C0(Ω\Bδ(0))

> 0. (3.48)

On the other hand, combining Lemma 3.9 with the convergence statement from Lemma 2.7
provides c1 > 0 such that, again in radial coordinates, we have∫ R

δ

rn−1u2r (r , t)dr ≤ c1 for all t ∈ (0, 1)

and hence, by the Cauchy–Schwarz inequality,
∣∣∣u(r2, t) − u(r1, t)

∣∣∣ =
∣∣∣∣
∫ r2

r1
ur (r , t)dr

∣∣∣∣
≤

{∫ r2

r1
rn−1u2r (r , t)dr

} 1
2 ·

{∫ r2

r1
r1−ndr

} 1
2

≤ c
1
2
1 δ

1−n
2 (r2 − r1)

1
2 for all r1 ∈ [δ, R], r2 ∈ [r1, R] and t ∈ (0, 1).

Together with Lemma 3.2 and (1.6), by the Arzelà–Ascoli theorem this equi-continuity
property warrants that (u(·, tk))k∈N is relatively compact in C0(Ω\Bδ(0)), so that for some
subsequence (tk j ) j∈N of (tk)k∈N we can find z ∈ C0(Ω\Bδ(0)) such that u(·, tk j ) → z in
C0(Ω\Bδ(0)) as j → ∞. But since from Lemma 3.7 we already know that u(·, t) → u0 in
(W 2,1

0 (Ω\Bδ(0)))� as t ↘ 0, this necessarily implies that z = u0 and thereby contradicts
(3.48). ��
Proving our main results thereby essentially reduces to collecting tesserae:

Proof of Theorem 1.1 We only need to combine the results from Lemma 2.7, 3.3 and 3.4 with
the convergence statement asserted by Lemma 3.10. ��
Proof of Corollary 1.2 Setting φ(r) := eλr−α

, r > 0, we immediately see that (1.5) and (1.6)
hold, and computing

φ′(r) = −αλr−α−1eλr−α

and φ′′(r) = α2λ2r−2α−2eλr−α + α(α + 1)λr−α−2eλr−α

,

r > 0,

we see that

φ′′(r)
φ2(r)

= α2λ2r−2α−2e−λr−α + α(α + 1)λr−α−2e−λr−α → 0 as r ↘ 0,

which implies (1.7) for some suitably large K1 > 0. Likewise, (1.8) can be achieved upon
observing that

φ(2r)

rnφ(r)
= r−ne−(1−2−α)λr−α → 0 as r ↘ 0,

whereas (1.9) is a direct consequence of the hypothesis (1.15). ��
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