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Abstract
Weconsider theDirichlet problem for a semilinear elliptic equation in an unbounded sectorial
domain� of the two-dimensional space. The problem is supplemented with a limiting behav-
ior related to a prescribed root z of the nonlinearity of the equation. The one-dimensional
setting of the problem has a unique solution Vz , and the goal of the present paper is to
construct a two-dimensional positive and bounded solution u approaching Vz(d) when
d = d(x, ∂�) → ∞. This is established using sub- and supersolutions method and employ-
ing a sliding argument.
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1 Introduction andmain result

While studying the properties of particular solutions of PDEs using some blow-up arguments,
we are naturally lead to solving PDEs in unbounded domains such as half-spaces. As an
example, we refer to [1] where the study of the boundary layer of the solution uε of the
following problem {

ε2�uε + f (x, uε) = 0,

uε = 0 on the boundary

leads to the study of an elliptic PDE in the half-space.
Positive solutions of the semilinear elliptic equation

�u + f (u) = 0 (1.1)

enjoy symmetry and monotonicity properties on symmetric domains. This is directly related
to the symmetry of the operator�. For this reason, the above equation has beenwidely studied
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on domains like balls, half-spaces or cylindrical unbounded domains. For the case of bounded
domains, we refer the reader to [5,11] and, for the case of unbounded domains, we refer to
[2,3,6,7]. These articles have been instrumental in almost all results on monotonicity and
symmetry of the solution of (1.1). They have also been crucial in investigating the properties
of bounded solutions by relying mainly on the maximum principle and the moving plane
method or the sliding method. Indeed, for bounded solutions on unbounded domains, these
methods may also be used to study the limiting profile and its relation with the zeros of
the nonlinearity f (see for instance [8,9,12]). In fact, it has been shown in [9] that, under
particular assumptions on f , any positive and bounded solution of (1.1) in the quarter-plane
converges asymptotically to a one-dimensional limiting profile. This result has been obtained
using two different approaches: PDEs and infinite-dimensional dynamical systems.

Motivated by the asymptotic behavior of solutions of (1.1) on unbounded domains, we
show how to construct a particular positive and bounded solution on an infinite sectorial
domain

� = {
(r cos θ, r sin θ) ∈ R

2; r > 0, |θ | < θ0 ≤ π/2
}
,

converging to a prescribed root z of f . More precisely, we are interested in the existence of
the Dirichlet problem {

�u + f (u) = 0 in �

u = 0 on ∂�,
(1.2)

where f : [0,∞[→ R is a locally Lipschitz continuous function. If θ0 = π
2 , then� becomes

the half-plane
{
(x1, x2) ∈ R

2; x1 > 0
}
and a bounded positive solution of (1.2) formally

converges, as x1 → ∞, to a positive root z of f . In fact, under additional assumptions on
f , it turns out that the solution of (1.2) is a function of x1 alone and it can, therefore, be
determined by solving an ODE (see for instance [4]).

In this paper, we want to look at the problem from a different point of view. By fixing a
suitable root z > 0 of f , we first consider the following ODE that could be considered as the
one-dimensional setting of our problem:⎧⎪⎨

⎪⎩
V ′′ + f (V ) = 0 in (0,∞),

V (0) = 0 < V (t) < z = V (∞) for all t > 0,

V ′(t) > 0 for all t ≥ 0.

(1.3)

This ODE has a unique regular solution

Vz ∈ C2(R+)

and, although it is a direct result, we will show it in Proposition 3.1 for the sake of complete-
ness. We aim to construct a solution of (1.2) satisfying

0 < u ≤ Vz(d) in � and (Vz(d) − u) → 0 as d → ∞, (1.4)

where
d = d(x) = d(x, ∂�)

is the distance from x to the boundary of �. The result follows by showing that u = Vz(d)

is a supersolution of (1.2) and by finding a suitable subsolution u of (1.2) with

0 ≤ u ≤ Vz(d) and u → z as d → ∞. (1.5)

We then use the fact that Vz(d) → z as d → ∞ and we employ the method of sub- and
supersolutions for semilinear elliptic equations.
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Remark 1.1 We note that the limit in (1.4) could also be obtained by taking u = z as super-
solution. However, our interest is to construct a solution that is bounded from above by Vz
which is better upper bound than the one given by z.

We now turn to the exact assumptions on f and z. Assume that f satisfies:

f (0) = 0 and lim inf
t→0+

f (t)

t
> 0. (1.6)

Note that if f is differentiable at 0 then f ′(0) > 0. Throughout all this paper, the function F
denotes a primitive of f :

F(s) =
∫ s

0
f (t)dt .

Let Z = {z ≥ 0; f (z) = 0} be the set of all nonnegative roots of f and let Z+ ⊆ Z\{0} be
the set defined by:

Z+ = {z ∈ Z\{0}; F(s) < F(z) for all 0 < s < z},
which is assumed to be nonempty Z+ 	= ∅. The following remark is useful.

Remark 1.2 Using (1.6), we note that if z ∈ Z+ then F(z) > 0.

We are now ready to state our main theorem.

Theorem 1.3 We assume that Z+ 	= ∅. Let f satisfy (1.6) and let z ∈ Z+ such that

∃ δ > 0 such that f ≥ 0 on (z − δ, z). (1.7)

Then, there exists a solution u of (1.2) satisfying (1.4).

Remark 1.4 Since Vz is a solution of (1.3) and as a consequence of (1.4), we directly get

u → z as d → ∞.

The existence result of Theorem 1.3 is based on sub- and supersolution method by carefully
constructing a sub- and a supersolution that will be denoted u and u, respectively. Those
solutions should be understood to satisfy the equation in a weak sense, i.e.,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u, u ∈ C(�), u, u = 0 on ∂�,∫
�

u�ϕ + f (u)ϕ ≥ 0, ∀ϕ ∈ C∞
0 (�), ϕ ≥ 0,∫

�

u�ϕ + f (u)ϕ ≤ 0, ∀ϕ ∈ C∞
0 (�), ϕ ≥ 0.

(1.8)

If u ≤ u, we can apply the sub- and supersolution method (see for instance [10,13]) and infer
the existence of a solution u of (1.2) such that u ≤ u ≤ u. This solution is understood to be
continuous on � and to satisfy the equation in a weak sense as described above. Moreover,
from standard elliptic estimates, the solution is of class C2(�). The fact of getting a classical
solution starting from weak sub- and supersolutions can also be reached by adapting [10,
Theorem 3] to the case of unbounded domains with boundary. This idea is already used in
[13, Theorem 4.1].

The remaining part of this paper will be organized as follows. In Sect. 2, we show how to
construct an approximate subsolution uε using variational arguments for elliptic equations.
However, the determination of the subsolution u will be postponed to Sect. 4. In Sect. 3, we
find a supersolution u given by the solution Vz of (1.3). Later, in Sect. 4, we use a sliding
argument to compare u and u and finally present the proof of Theorem 1.3.
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2 Construction of an approximate subsolution u"

As a first step to find a subsolution u satisfying (1.5), we aim to construct an approximate
subsolution of (1.2) taking a constant value (sufficiently close to z) on the set

�R = {x ∈ � : d(x) > R}.
In particular, we prove

Proposition 2.1 Assume that f satisfies (1.6) and let z ∈ Z+ satisfying (1.7). Then, for every
ε > 0 small enough, there exists R = R(ε) > 0 and a subsolution uε of (1.2) such that:

0 < z − uε < ε on �R . (2.9)

The proof is based on finding suitable radial solutions of the following Dirichlet problem on
sufficiently large balls BR = BR(0) ⊆ R

2:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�w + f (w) = 0 in BR,

0 ≤ w < z in BR,

w = 0 on ∂BR,

w(0) = max
BR

w > z − ε.

(2.10)

Since the first equation of (2.10) does not explicitly depend on the variables x1 and x2,
a translation of the solution in any direction is again a solution of (2.10) on the resulting
domain. The idea then is to move the ball completely inside the sectorial domain � and
extend the solution by zero, thus obtaining a subsolution of (1.2). By allowing the ball to be
displaced in all of �, we are lead to a family of subsolutions whose supremum is uε; and
we obtain �R as the set of all centers of BR (see Fig. 1). We now move to the details. Our
next lemma deals with the existence of radial solutions on large balls when z = z1 is the first
positive root. The only reason to write this result independently is to show that, in this case,
the arguments leading to the existence are almost immediate.

Fig. 1 Geometric interpretation of the set �R
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Lemma 2.2 Let z1 > 0 be the first positive root of f . For every ε ∈ (0, z1), there exists
R = R(ε) > 0 and a classical subsolution uε,R of (2.10) with z = z1.

Proof We consider the Dirichlet eigenvalue problem for the Laplace operator on BR :⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�φR + λRφR = 0 in BR,

φR > 0 on BR,

φR = 0 on ∂BR,

‖φR‖L∞(BR) = φR(0) = 1.

The existence and uniqueness of a positive regular eigenfunction of this problem are classical.
It is also standard that λR → 0 as R → ∞. Fix some a ∈ (z1 − ε, z1). Since f > 0 on the
interval ]0, a] and satisfies (1.6) then

k := inf
t∈[0,a]

f (t)

t
> 0.

As λR → 0 when R increases, we may find λR small enough so that

λR ≤ k.

Direct computations lead
f (t) ≥ λRt for all 0 ≤ t ≤ a. (2.11)

Setting uε,R = aφR , we obtain the required solution. ��
In order to find uε,R for z 	= z1, the tools used in Lemma 2.2 are no longer valid as f

may encounter negative values contradicting (2.11) even for large R. We rather make use of
variational arguments for semilinear elliptic equations as well as the condition (1.7).

Lemma 2.3 Let z ∈ Z+ be arbitrary. Assume (1.7) holds true. For every ε > 0 small enough,
there exists R = R(ε) > 0 and a classical solution uε,R of (2.10).

Proof The proof is divided into three steps.
Step 1. The choice of ε From (1.7), we know that f ≥ 0 on (z − δ, z) for some δ > 0. Let
f̃ be the function defined over R by:

f̃ (t) =
{
f (t) if 0 ≤ t ≤ z,
0 elsewhere,

and set

F̃(s) =
∫ z

s
f̃ (t)dt .

Using the above arguments and the fact that z ∈ Z+ with Remark 1.2, we get:⎧⎪⎨
⎪⎩

F̃ > 0 on (−∞, z),

F̃ = 0 on [z,∞),

F̃ is decreasing on (z − δ, z).

(2.12)

The function F̃ being continuous and positive on the compact [0, z−δ] ensures the existence
of α > 0 such that F̃ > α on [0, z − δ]. By the continuity of F̃ at z and as F̃(z) = 0, we
may find a small 0 < δ′ < z such that

0 < F̃ < α on (z − δ′, z).
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We then choose any ε > 0 such that

0 < ε < min{δ, δ′}. (2.13)

Step 2. Construction of a subsolution First note that the function F̃ is nonnegative and
Lipschitz on R. Let r be any positive real number. Define

Er (v) = 1

2

∫
Br

|∇v|2 +
∫
Br

F̃(v),

for all v ∈ H1
0 (Br ). This functionalEr iswell defined in H1

0 (Br ) and, fromPoincaré inequality
and the nonnegativity of F̃ , it is coercive. Therefore, by Rellich’s and Lebesgue’s theorems,
it has a minimum vr in H1

0 (Br ). The function vr is a weak and hence, from the elliptic
regularity theory, a classical C2(Br ) solution of the equation{

�vr + f̃ (vr ) = 0 in Br ,

vr = 0 on ∂Br .

Since f̃ = 0 on (−∞, 0] ∪ [z,∞), it follows from the strong maximum principle that
0 ≤ vr ≤ z in Br , consequently f̃ (vr ) = f (vr ) in Br and therefore vr is a solution of{

�vr + f (vr ) = 0 in Br ,

vr = 0 on ∂Br .

Again, the strong maximum principle and the fact that vr = 0 on ∂Br ensure vr < z in
Br . It also follows from [11] that the solution vr is radially symmetric vr (x) = vr (|x |) and
decreases with respect to |x | if vr 	≡ 0, hence attaining its maximum at the center 0. As a
conclusion, one gets:

0 ≤ vr (x) ≤ vr (0) = max
Br

vr < z in Br .

Step 3. A suitable subsolutionWefirst show that, for the above choice (2.13) of ε, the following
estimate holds

F̃(s) ≥ F̃(z − ε) for every 0 ≤ s ≤ z − ε. (2.14)

In fact, if 0 ≤ s ≤ z − δ then F̃(s) ≥ α ≥ F̃(z − ε). If z − δ ≤ s ≤ z − ε then, as F̃
decreases, we also get F̃(s) ≥ F̃(z − ε).

To complete the proof, it suffices to show that, for ε given by (2.13), there exists r > 0
such that vr (0) > z − ε. Assume otherwise that vr ≤ z − ε for all r > 0. By (2.14) and the
positivity of F̃ , we obtain:

Er (vr ) ≥
∫
Br

F̃(vr ) ≥
∫
Br

F̃(z − ε) = π F̃(z − ε)r2, ∀r > 0.

On the other hand, for r > 1, define the test function wr ∈ H1
0 (Br ) by:

wr (x) =
{
z for |x | < r − 1,

z(r − |x |) for r − 1 ≤ |x | ≤ r .

As wr ≡ z for |x | < r − 1 and since F̃(z) = 0, we deduce that |∇wr |2 and F̃(wr ) are
supported on the annulus {r − 1 ≤ |x | ≤ r}. Thus, for some constant C independent of r ,
we get:

Er (wr ) ≤ C(2r − 1), ∀r > 1.
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But since vr is the minimizer of Er , we have Er (vr ) ≤ Er (wr ) and thus

F̃(z − ε)r2 ≤ C

π
(2r − 1), ∀r > 1.

By noticing that F̃(z − ε) > 0, we may deduce that the above inequality does not hold for
large r . Therefore, there exists R > 0 such that vR(0) > z − ε. Finally, set uε,R = vR and
the proof of the lemma is complete. ��

We now turn to the existence of subsolutions of (1.1) on the whole domain R2. This is an
immediate consequence of the above lemmas. Precisely, we have

Corollary 2.4 Let uε,R be the subsolution obtained in Lemma 2.2 or the solution obtained in
Lemma 2.3. We set

uε,R =
{
uε,R in BR,

0 otherwise.

Then uε,R is a weak subsolution of (1.1) in R
2.

Proof Let ϕ ∈ C∞
0 (R2), ϕ ≥ 0. We set

O = BR ∩ supp(ϕ),

then, integrating by parts, we get∫
R2

uε,R�ϕ + f (uε,R)ϕ =
∫
O
uε,R�ϕ + f (uε,R)ϕ ≥ −

∫
∂BR

⋂
supp(ϕ)

ϕ
∂uε,R

∂ν
,

where ν is the outward normal to the boundary ∂BR ∩ supp(ϕ). We note that
∂uε,R

∂ν
< 0 on

∂BR by the Hopf Lemma and therefore
∫
R2

uε,R�ϕ + f (uε,R)ϕ ≥ 0. ��
We now present the

Proof of Proposition 2.1 For ε satisfying (2.13) and R = R(ε) > 0 given by Lemma 2.3,
let uε,R be the subsolution obtained by Corollary 2.4. Let �R be as in Theorem 1.3 and fix
y ∈ �R .

Consider uy
ε,R ; the translation of uε,R by the vector y,

uy
ε,R(x) = uε,R(x − y).

Since the space variable x appears only through the solution u in equation (1.1), it directly
follows that uy

ε,R(x) is a subsolution of (1.2). In order to obtain a subsolution satisfying (2.9),
we take

uε = sup
y∈�R

uy
ε,R

∣∣∣
�
, (2.15)

which is also (see for instance [10,13,14]) a subsolution of (1.2). Here, one can easily check
that uy

ε,R < z hence uε ≤ z and then uε < z from the strong maximum principle. Also, we
notice that uε is constant on �R for

uε(x) = uxε,R(x) = uε,R(0) = max
BR

uε,R, ∀x ∈ �R,

therefore
z − uε(x) < ε, ∀x ∈ �R,

and this ends the proof. ��
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3 Construction of a supersolution u

In this section, we construct a supersolution of (1.2) by relying on the solution Vz of the ODE
(1.3). We prove

Proposition 3.1 Let z ∈ Z+, then there exists a unique regular solution Vz of (1.3).Moreover,
the function

u = Vz(d), (3.16)

is a supersolution of (1.2).

Proof The existence of Vz is classical and uses standard shooting arguments. However, we
present the proof for the sake of completeness. In light of Remark 1.2,we know that F(z) > 0,
and therefore, we consider the following problem{

V ′′ + f (V ) = 0 in (0,∞),

V (0) = 0, V ′(0) = √
2F(z) > 0,

(3.17)

where existence and uniqueness on a maximal interval [0, b) ⊆ R follow by applying a fixed
point argument. Multiplying the first equation of (3.17) by V ′, and thanks to the initial data
in (3.17), and the fact that F ′ = f , we obtain

1

2
(V ′(t))2 + F(V (t)) = F(z), ∀t ∈ [0, b). (3.18)

Since f (z) = 0, easy computations show that the constant function g(t) = z is a solution
of the first equation of (3.17). The function V can not touch z in finite time over (0, b), for
then we would have V (t1) = z for some 0 < t1 < b and thus V ′(t1) = 0 by (3.18), which
would imply V ≡ g ≡ z. This is in contradiction with the fact that V (0) = 0. Furthermore,
V ′ cannot vanish on (0, b). Indeed, if this was not true, and since V ′(0) > 0, let t0 > 0 be
the first time where V ′ vanishes. Then, as a consequence of (3.18), we deduce that

F(V (t0)) = F(z) for 0 < V (t0) < z.

This is impossible as z ∈ Z+. All these arguments show that V is defined on [0,∞) and we
set

Vz = V .

Note that V ′
z > 0 and 0 < Vz < z on (0,∞). Thus, Vz(t) has a limit l ∈ (0, z] as t → ∞.

We now show that l = z. Since lim
t→∞ Vz

′′(t) = − f (l), we must then have f (l) = 0. We also

deduce that lim
t→∞ V ′

z (t) = 0. Letting t → ∞ in (3.18), we infer that

F(l) = F(z) for 0 < l ≤ z,

and again as z ∈ Z+, we deduce that l = z. For the uniqueness of Vz , we assume V1 another
solution of (1.3). Similar computations as above lead to

1

2
(V ′

1(t))
2 + F(V1(t)) = c, ∀t ∈ [0,∞).

Taking the limit as t → ∞ in the above equality, we get c = F(z) and hence V ′
1(0) =√

2F(z). Consequently, V1 ≡ Vz .
We now show that u given by (3.16) is a supersolution of (1.2). We first remark that

u = min{u+, u−}
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where
u+ = Vz(d

+) and u− = Vz(d
−)

and d± = d±(x) be the distance measured from the point x to the lines

{(r cos θ0,± r sin θ0) : r ∈ R}, (3.19)

respectively. We denote by e± the unitary vector directed orthogonally to the lines (3.19),
respectively. By writing u±(x) = Vz(d±(x)) = Vz(x · e±) and using the fact that Vz is a
solution of (1.3), it is easily seen that u± are both classical supersolutions of the differential
equation of (1.2).We also observe that u = 0 on ∂� since Vz(0) = 0. From all what precedes,
we finally deduce (see again [10,13,14]) that u = min{u+, u−} is a supersolution of (1.2).

��

4 Proof of Theorem 1.3

This final section is devoted to the proof of the main result. Our next proposition compares
uε and u over � by using a sliding argument.

Proposition 4.1 For ε satisfying (2.13), let uε be the subsolution of (1.2) obtained by Propo-
sition 2.1, and let u be the supersolution of (1.2) obtained by Proposition 3.1. Then,

uε ≤ u on �. (4.20)

Proof By the symmetry of u over �, it suffices to show that

uε ≤ u+ on �.

Being generated by uy
ε,R , y ∈ �R [see (2.15)] where R = R(ε) > 0 is sufficiently large (see

Lemma 2.3), we may further simplify the analysis by only comparing uy
ε,R and u+ over �.

We have
uy

ε,R = 0 ≤ Vz(d
+) = u+ on �\BR(y),

so, to complete the proof, it remains to show that, for every y ∈ �R ,

uy
ε,R ≤ u+ on BR(y) ⊂ �. (4.21)

Firstly, since uε,R satisfies the second relation in (2.10), and as uy
ε,R is a translation of uε,R ,

then we have uy
ε,R < z on the compact set BR(y). As a result, we get

uy
ε,R ≤ z − β on BR(y),

for a sufficiently small β > 0. Secondly, let R′ > 0 be large enough such that Vz(d) > z−β

in �R′ , and fix y0 such that the ball BR(y0) ⊂ �R′ . Thus

uy0
ε,R < u+ on BR(y0).

This inequality on a particular ball BR(y0) can be proved on any ball BR(y), y ∈ �R by
using a classical sliding argument. This shows (4.21). ��

We are now ready to present the proof of our theorem.
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Proof of Theorem 1.3 Let uε be the subsolution of (1.2) obtained by Proposition 2.1. From
Proposition 4.1, we know that

uε ≤ u. (4.22)

Let
u = sup uε, (4.23)

where ε ranges in (0, z1) if z = z1 or in (0,min{δ, δ′}) [see (2.13)] if z 	= z1. From (4.22),
we deduce that u is finite and again a subsolution of (1.2) with{

u ≤ u in �,

u
∣∣
∂�

= u
∣∣
∂�

= 0.

Using sub- and supersolution method (see [10,13]), we get the existence of a solution u of
(1.2) satisfying:

u ≤ u ≤ u,

hence
0 < u ≤ Vz(d) in �.

To complete the proof, we need to show the convergence in (1.4). Indeed, for any ε > 0
small enough, Proposition 2.1 ensures the existence of R = R(ε) > 0 such that

z − uε < ε for d > R,

and consequently, thanks to (4.23) and the fact that Vz < z, we get

Vz(d) − u < ε for d > R.

This terminates the proof. ��
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