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Abstract
Relations between the symplectically harmonic cohomology and the coeffective cohomol-
ogy of a symplectic manifold are obtained. This is achieved through a generalization of the
latter, which in addition allows us to provide a coeffective version of the filtered cohomolo-
gies introduced by Tsai, Tseng and Yau. We construct closed (simply connected) manifolds
endowed with a family of symplectic forms ωt such that the dimensions of these symplectic
cohomology groups vary with respect to t . A complete study of these cohomologies is given
for 6-dimensional symplectic nilmanifolds, and concrete examples with special cohomolog-
ical properties are obtained on an 8-dimensional solvmanifold and on 2-step nilmanifolds in
higher dimensions.

Keywords Symplectic Hodge theory · Coeffective cohomology · Filtered and primitive
cohomologies · Lefschetz map

Mathematics Subject Classification 53D05 · 53D35 · 57R17

1 Introduction

Let (M2n, ω) be a symplectic manifold. The notion of symplectically harmonic form was
introduced by Brylinski [7] as a closed form α such that its symplectic star is also closed,
i.e. dα = 0 = d ∗ α. Mathieu [20] proved (see also [29] for a different proof) that every
de Rham cohomology class has a symplectically harmonic representative if and only if
(M2n, ω) satisfies the Hard Lefschetz Condition (HLC for short), i.e., the homomorphisms
Lk : Hn−k(M) −→ Hn+k(M) are surjective for every 1 ≤ k ≤ n. Here Hq(M) denotes the
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qth de Rham cohomology group of M and Lk is the homomorphism given by the cup product
with the class [ωk] ∈ H2k(M). Since there exist many symplectic manifolds which do not
satisfy the HLC, one has that the quotient Hq

hr(M) = �
q
hr(M)/(�

q
hr(M) ∩ im d), �

q
hr(M)

being the space of symplectically harmonic q-forms, counts the deRham cohomology classes
in Hq(M) containing harmonic representative.

Additional symplectic invariants of cohomological type were introduced by Bouché [6] as
follows. A differential form α is called coeffective if it annihilatesω, i.e. α∧ω = 0. The space
of coeffective forms with the (restriction of the) exterior derivative provides a subcomplex
of the de Rham complex that is elliptic in any degree q �= n. It turns out [6] that for compact
Kähler manifolds (M2n, ω) and for every q ≥ n + 1, the qth coeffective cohomology group,
that we will denote here by Hq

(1)(M), is isomorphic to the [ω]-truncated qth de Rham group.
However, this is no longer true for arbitrary compact symplectic manifolds [11]. On the other
hand, Tseng and Yau [26,27] have developed a symplectic Hodge theory by considering vari-
ous cohomologies where the primitive cohomologies PHd+d�(M), PHdd�(M), PH∂+(M)

and PH∂−(M) play a central role. Recently, Eastwood [10] has introduced an extension
of the coeffective complex which is elliptic in any degree and such that the corresponding
cohomology groups are isomorphic to the primitive cohomology groups.

The symplectically harmonic cohomology and the coeffective cohomology, to our knowl-
edge, have been studied separately in the literature. Our first goal in this paper is to obtain
some relations between both cohomologies by considering a natural generalization of the
coeffective cohomology, which in addition will allow us to provide a coeffective version of
the filtered cohomologies. The latter have recently been introduced by Tsai et al. [25], and
extend the primitive cohomologies [26,27].

Another aspect in the study of the symplectic harmonicity is the notion of flexibil-
ity, motivated by the following question, which seems to be related to some problems of
group-theoretical hydrodynamics [1], posed by Khesin and McDuff (see [29]): which closed
manifolds M possess a continuous family ωt of symplectic forms such that the dimension of
Hq
hr(M, ωt ) varies with respect to t?Yan [29] proved the existence of a 4-dimensional flexible

manifold, whereas in [16] several 6-dimensional nilmanifolds satisfying such property were
found. Recently, Cho [8] has proved the existence of simply connected flexible examples
of dimension six. Our second goal in this paper is to relate the harmonic flexibility to cor-
responding notions of flexibility for the generalized coeffective and filtered cohomologies,
as well as to construct closed manifolds which are flexible with respect to these symplectic
cohomologies.

In greater detail, the paper is structured as follows.
In Sect. 2we introduce and study the generalized coeffective cohomologies of a symplectic

manifold (M2n, ω). For each integer k, 1 ≤ k ≤ n, we consider the complex of k-coeffective
differential forms as the subcomplex of de Rham one constituted by all the forms that anni-
hilate ωk . The associated cohomology groups are denoted by Hq

(k)(M). This complex is
elliptic in any degree q �= n − k + 1, however one can define in a natural way a quotient
Ĥn−k+1(M) of Hn−k+1

(k) (M) which shares the same properties as the cohomology groups

Hq
(k)(M), q ≥ n − k + 2 (see Propositions 2.5 and 2.7). The spaces Ĥ1(M), . . . , Ĥn(M)

play an important role in this paper since they will allow us to relate the different symplectic
cohomologies involved. We will refer to the collection

Ĥn−k+1(M), Hn−k+2
(k) (M), . . . , H2n

(k)(M), 1 ≤ k ≤ n, (1)

as the generalized coeffective cohomology groups of the symplectic manifold (M2n, ω).
It turns out that these spaces are symplectic invariants that only depend on the de Rham
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class [ωk] ∈ H2k(M) (see Remark 2.10 and Lemma 2.11). When M is of finite type, in
Proposition 2.9 we prove that, for each 1 ≤ k ≤ n, the alternating sum χ(k)(M) of the
dimensions of the generalized k-coeffective cohomologygroupsonlydependson the topology
of the manifold M .

Eastwood [10] has introduced an elliptic extension of the usual coeffective complex (i.e.
k = 1) such that the corresponding cohomology groups are isomorphic to primitive coho-
mology groups defined by Tseng and Yau [26,27]. In Sect. 3, for any 1 ≤ k ≤ n, we consider
an extension of the k-coeffective complex, which is also elliptic, whose cohomology groups
Ȟq

(k)(M) (0 ≤ q ≤ 2n+2k−1) are isomorphic to the filtered cohomology groups introduced
by Tsai et al. [25] (see Remark 3.7 for details); in particular,

Ȟq
(1)(M) ∼= PHq

∂+(M), Ȟ2n−q+1
(1) (M) ∼= H2n−q

(1) (M) ∼= PHq
∂−(M), 0 ≤ q ≤ n − 1,

and

Ȟn+k−1
(k) (M) ∼= PHn−k+1

dd� (M), Ȟn+k
(k) (M) ∼= PHn−k+1

d+d� (M), 1 ≤ k ≤ n.

In Proposition 3.1, we show that these extended cohomologies also satisfy themain properties
of the generalized coeffective cohomology groups. When M is of finite type, we consider
χ̌

(k)
+ (M) as the alternating sum of the dimensions of the cohomology groups of the first half

of the extended complex, and in Corollary 3.6 we prove the following characterization of the
HLC: (M2n, ω) satisfies the HLC if and only if χ̌

(k)
+ (M) = χ(k)(M) for every 1 ≤ k ≤ n.

In Sect. 4 we obtain some relations of the generalized coeffective cohomologies (and
therefore also of the filtered cohomologies) with the symplectically harmonic cohomology.
Concretely, using the description of Hq

hr(M) obtained in [16,28,29] we prove that the gener-
alized coeffective cohomologies measure the differences between the harmonic cohomology
groups in the following sense: if (M2n, ω) is a symplectic manifold of finite type, then

dim Hn−k+1
hr (M) − dim Hn+k+1

hr (M) = dim Ĥn−k+1(M)

for every k = 1, . . . , n (see Theorem 4.4). As a consequence, we find the relation between the
dimension of the primitive cohomology group PHq

d+d�(M) and the harmonic cohomology
for q = 1, 2, 3.

We introduce in Sect. 5 the notion of generalized coeffective flexibility and filtered flex-
ibility, as an analogous notion of the concept of harmonic flexibility. We say that a closed
smoothmanifoldM2n is c-flexible (resp. f-flexible or h-flexible) ifM possesses a continuous
family of symplectic forms ωt such that the dimension of some generalized coeffective (resp.
filtered or symplectically harmonic) cohomology group varies with t . We prove in Theo-
rem 5.3 that in four dimensions M is never c-flexible, and that M is f-flexible if and only if
it is h-flexible. This result allows us to prove, for each n ≥ 2, the existence of 2n-dimensional
f-flexible closed manifolds having a continuous family of symplectic forms ωt such that the
dimension of the primitive cohomology group PH2

d+d�(M, ωt ) varies with respect to t (see
Theorem 5.6). In Theorem 5.7 we use a result in [8] to prove that, for every n ≥ 3, there
exists a 2n-dimensional simply connected closed manifold M with a continuous family ωt

for which the dimensions of the primitive groups PH3
d+d�(M, ωt ) and PH3

dd�(M, ωt ) vary
with t . In Theorem 5.8 and Proposition 5.11 we study flexibility in higher dimensions; in
particular, it turns out that in dimension 2n ≥ 6, if M is c-flexible then M is f-flexible
or h-flexible. This shows that coeffective flexibility is a stronger condition than the other
flexibilities.

All the cohomology groups can be computed explicitly for symplectic solvmanifolds
satisfying the Mostow condition, in particular for any symplectic nilmanifold. In Sect. 6
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we consider the class of 6-dimensional nilmanifolds and compute the dimensions of all
the cohomology groups for any symplectic form. This extends the previous study for the
symplectically harmonic cohomology given in [16,17]. As a consequence, we identify all
the 6-dimensional nilmanifolds which are c-flexible, f-flexible or h-flexible (see Table 1).
A solvmanifold of dimension 8 that is c-flexible, f-flexible and h-flexible is described in
Sect. 7. Section 8 is devoted to symplectic 2-step nilmanifolds, and based on results by Sakane
and Yamada [23,28], we obtain examples of arbitrary high dimension which are c-flexible,
f-flexible and h-flexible.

2 Generalized coeffective cohomologies

Let (M2n, ω) be a symplectic manifold of dimension 2n and let k be an integer such that
1 ≤ k ≤ n. Next we introduce the notion of k-coeffective forms.

Definition 2.1 A q-form α on M is said to be k-coeffective if α annihilates the form ωk , i.e.
α ∧ ωk = 0. The space of k-coeffective forms of degree q will be denoted by Cq

(k)(M, ω), or

simply C
q
(k)(M).

Remark 2.2 The above definition makes also sense in the “limit” case k = n + 1 because
ωn+1 = 0 and then C∗

(n+1)(M) = �∗(M). Also the case k = 0 makes sense if we consider

ω0 as the constant function 1, i.e. C∗
(0)(M) = {0}. Thus, there exists the following strictly

increasing sequence of differential ideals

{0} = C∗
(0)(M) ⊂ C∗

(1)(M) ⊂ · · · ⊂ C∗
(n)(M) ⊂ C∗

(n+1)(M) = �∗(M).

Since for each k the space C∗
(k)(M) is closed by d , we can consider the k-coeffective

complex

· · · d �� Cq−1
(k) (M)

d �� Cq
(k)(M)

d �� Cq+1
(k) (M)

d �� · · · , (2)

which is a subcomplex of the standard de Rham complex (�∗(M), d).

Definition 2.3 The qth k-coeffective cohomology group will be denoted by

Hq
(k)(M) =

ker
{
d : Cq

(k)(M) −→ C
q+1
(k) (M)

}

im
{
d : Cq−1

(k) (M) −→ C
q
(k)(M)

} .

It is clear that the k-coeffective cohomology groups are invariant by symplectomorphism.
Moreover, we will show below that, for each k, they are invariants of the de Rham class
[ωk] ∈ H2k(M).

Let Lk
ω : �∗(M) −→ �∗(M) be given by Lk

ω(α) = α ∧ ωk . Since Cq
(k)(M) = ker{Lk

ω :
�q(M) −→ �q+2k(M)} and the map Lk

ω : �q(M) −→ �q+2k(M) is injective for any
q ≤ n − k and surjective for any q ≥ n − k, one has that Hq

(k)(M) = 0 for q ≤ n − k and

Hq
(k)(M) ∼= Hq(M) for every q ≥ 2n − 2k + 2.
The short exact sequence

0 �� C∗
(k)(M)

i �� �∗(M)
Lk

ω �� Lk
ω(�∗(M)) �� 0,
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where i denotes the inclusion, provides the following short exact sequence of complexes

0 0 0

· · · d �� Lk
ω(�q−1(M))

d ��

��

Lk
ω(�q(M))

d ��

��

Lk
ω(�q+1(M))

��

d �� · · ·

· · · d �� �q−1(M)
d ��

Lk
ω

��

�q(M)
d ��

Lk
ω

��

�q+1(M)

Lk
ω

��

d �� · · ·

· · · d �� Cq−1
(k) (M)

d ��

i

��

C
q
(k)(M)

d ��

i

��

C
q+1
(k) (M)

i

��

d �� · · ·

0

��

0

��

0

��

Now, since Lk
ω(�q−2k(M)) = �q(M) for anyq ≥ n+k,wehave thatHq(Lk

ω(�∗(M))) =
Hq(M) for q ≥ n + k + 1, and therefore the associated long exact sequence in cohomology
is

0 �� Hn−k(M)
Lk

�� Hn+k(Lk
ω(�∗(M)))

fn−k+1 �� Hn−k+1
(k) (M)

H(i) �� Hn−k+1(M)
Lk

�� Hn+k+1(M)
fn−k+2 �� Hn−k+2

(k) (M) (3)

H(i) �� Hn−k+2(M)
Lk

�� Hn+k+2(M)
fn−k+3 �� Hn−k+3

(k) (M) · · · ,

where H(i) and Lk are the homomorphisms in cohomology naturally induced by i and
Lk

ω, respectively, and fq is the connecting homomorphism. Recall that fq is defined by
fq([α]) = [dβ], where β ∈ �q−1(M) is any (q − 1)-form satisfying Lk

ω(β) = α.

Definition 2.4 When the group Hq
(k)(M) has finite dimension, we will denote it by c(k)

q (M)

and we shall refer to it as the qth k-coeffective number of (M2n, ω).

Notice that c(k)
q (M) = 0 for any q ≤ n−k, and c(k)

q (M) = bq(M) for any q ≥ 2n−2k+2.
In what follows, by a manifold of finite typewemean amanifold, not necessarily compact,

such that its Betti numbers bq(M) = dim Hq(M) are all finite.

Proposition 2.5 Let (M2n, ω) be a symplectic manifold of finite type and let 1 ≤ k ≤ n.
Then, for every q ≥ n − k + 2, the following properties hold:

(i) Finiteness and bounds for the coeffective numbers: the group Hq
(k)(M) is finite dimen-

sional and its dimension c(k)
q (M) satisfies the inequalities

bq(M) − bq+2k(M) ≤ c(k)
q (M) ≤ bq(M) + bq+2k−1(M). (4)

(ii) Symplectic manifolds satisfying the HLC: if (M2n, ω) satisfies the HLC then the lower
bound in (4) is attained, i.e.

c(k)
q (M) = bq(M) − bq+2k(M).
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(iii) Exact symplectic manifolds: if ω is exact, then the upper bound in (4) is attained, i.e.

c(k)
q (M) = bq(M) + bq+2k−1(M).

(iv) Poincaré lemma: if U is the open unit disk in R
2n with the standard symplectic form

ω = ∑n
i=1 dx

i ∧ dxn+i , then c(k)
q (U ) = 0.

Proof From the long exact sequence (3), one has for any q ≥ n − k + 2 the five-term exact
sequence

0 �� im fq ↪→ Hq
(k)(M)

H(i) �� Hq(M)
Lk

�� Hq+2k(M)
fq+1 �� im fq+1 �� 0 . (5)

If the manifold is of finite type, then it is clear that Hq
(k)(M) has finite dimension for any

q ≥ n − k + 2. Moreover, taking dimensions in (5)

c(k)
q (M) = dim (im fq) + bq(M) − bq+2k(M) + dim (im fq+1) ,

which implies the inequalities (4). This completes the proof of (i).
Property (ii) is a direct consequence of (5) taking into account that HLC implies that

Lk : Hq−1(M) −→ Hq+2k−1(M) are surjective and then the connecting homomorphisms
fq vanish for every q ≥ n − k + 2.
Property (iii) is a consequence of (5) since Lk : Hq−1(M) −→ Hq+2k−1(M) are identi-

cally zero because ω is exact, and then the connecting homomorphisms fq are injective for
every q ≥ n − k + 2.

Finally (iv) is a direct consequence of (iii) since ω is exact on U . �

Notice that for k = 1 the previous proposition was proved by Fernández, Ibáñez and de

León [12]. It is easy to check (see [6] for k = 1) that, for each 1 ≤ k ≤ n, the k-coeffective
complex (2) is elliptic in any degree q �= n − k + 1. The coeffective group Hn−k+1

(k) (M)

can be infinite dimensional; however, in view of the sequence (3), there is a natural quotient
of this coeffective group by considering the (in general also infinite dimensional) space
Hn+k(Lk

ω(�∗(M))). Wewill see below that such quotient has finite dimension on symplectic
manifolds of finite type.

Definition 2.6 Let us consider the space

Ĥn−k+1(M) :=
{
α ∈ �n−k+1(M) | dα = 0 and α ∧ ωk = 0

}
{
dβ | β ∈ �n−k(M) and dβ ∧ ωk = 0

} .

If its dimension is finite, then we will denote it by ĉn−k+1(M).

Hence, we have an additional collection of n symplectic invariants given by Ĥn−k+1(M)

for k = 1, . . . , n, that is,

Ĥn(M), Ĥn−1(M), . . . , Ĥ2(M), Ĥ1(M).

From now on, we will refer to the collection (1) as the generalized coeffective cohomology
groups of the symplectic manifold (M2n, ω).

From the long exact sequence (3), we get the following isomorphisms

Ĥn−k+1(M) ∼= im H(i) ∼= Hn−k+1
(k) (M)/im fn−k+1,
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where im fn−k+1 ∼= Hn+k (Lk
ω(�∗(M)))

Lk (Hn−k (M))
. Hence, we can consider the short exact sequence

0 �� Ĥn−k+1(M)
ı̂ �� Hn−k+1(M)

Lk �� Hn+k+1(M)
fn−k+2 �� im fn−k+2 �� 0 ,

where ı̂ is the homomorphism naturally induced by H(i). Since ı̂ is injective, it is clear that
Ĥn−k+1(M) is finite-dimensional whenever Hn−k+1(M) is, and in such case, we have

ĉn−k+1(M) = bn−k+1(M) − bn+k+1(M) + dim(im fn−k+2).

Therefore, the properties obtained in Proposition 2.5 extend to the space Ĥn−k+1(M) as
follows:

Proposition 2.7 Let (M2n, ω) be a symplectic manifold of finite type and let 1 ≤ k ≤ n. The
following properties hold for ĉn−k+1(M):

(i) Finiteness and bounds for the coeffective number ĉn−k+1(M): the space Ĥn−k+1(M)

is finite dimensional and its dimension satisfies the inequalities

bn−k+1(M) − bn+k+1(M) ≤ ĉn−k+1(M) ≤ bn−k+1(M). (6)

(ii) Symplectic manifolds satisfying the HLC: if (M2n, ω) satisfies the HLC then the lower
bound in (6) is attained, i.e.

ĉn−k+1(M) = bn−k+1(M) − bn+k+1(M).

(iii) Exact symplectic manifolds: if ω is exact then the upper bound in (6) is attained, i.e.

ĉn−k+1(M) = bn−k+1(M).

(iv) Poincaré lemma: if U is the open unit disk in R
2n with the standard symplectic form

ω = ∑n
i=1 dx

i ∧ dxn+i , then ĉn−k+1(U ) = 0.

Inspired by the definition of the Euler characteristic of a manifold, we define the following
symplectic invariants:

Definition 2.8 Let (M2n, ω) be a symplectic manifold of finite type. For each 1 ≤ k ≤ n,
we define

χ(k)(M) = (−1)n−k+1ĉn−k+1(M) +
2n∑

i=n−k+2

(−1)i c(k)
i (M).

The next proposition shows that each χ(k)(M) is actually a topological invariant of the
manifold.

Proposition 2.9 Let (M2n, ω) be a symplectic manifold of finite type. For any 1 ≤ k ≤ n,

χ(k)(M) =
n+k∑

r=n−k+1

(−1)r br (M).

Proof The long exact sequence (3) implies

0 = ĉn−k+1 − bn−k+1 + bn+k+1 +
n+k∑
j=2

(−1) j−1
(
c(k)
n−k+ j − bn−k+ j + bn+k+ j

)
.

123
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Writing this sum in terms of χ(k) we get

(−1)n−k+1χ(k) +
n+k∑
j=1

(−1) j bn−k+ j −
n+k∑
j=1

(−1) j bn+k+ j = 0.

Since bi = 0 for i ≥ 2n + 1, the previous equality reduces to:

0 = (−1)n−k+1χ(k) +
n+k∑
j=1

(−1) j bn−k+ j −
n−k∑
j=1

(−1) j bn+k+ j

= (−1)n−k+1χ(k) +
2n∑

r=n−k+1

(−1)r−n+k br −
2n∑

r=n+k+1

(−1)r−n−k br .

Equivalently,

χ(k) =
2n∑

r=n−k+1

(−1)r br −
2n∑

r=n+k+1

(−1)r br =
n+k∑

r=n−k+1

(−1)r br .

�

Observe that the Euler characteristic of M is recovered if we allow k = n + 1 (see

Remark 2.2).

Remark 2.10 It is clear from the long exact sequence (3) that, for each k, the generalized
k-coeffective cohomology groups (1) are invariants of the de Rham cohomology class [ωk]
given by the cap product of [ω] by itself k times. Even more, if [ωk] �= 0 and we denote
by [[ωk]] the corresponding element in P(H2k(M)), then all the generalized k-coeffective
groups are invariants of [[ωk]]. In conclusion, if (M2n, ω) is a symplectic manifold and ωk

are not exact, then the generalized coeffective cohomologies only depend on the element
[[ω]] ∈ P(H2(M)).

From this remark it follows

Lemma 2.11 Let F : (M, ω) −→ (M ′, ω′) be a diffeomorphism such that F∗[ω′] = λ[ω]
for some nonzero λ ∈ R. Then, for any 1 ≤ k ≤ n, Ĥn−k+1(M ′) ∼= Ĥn−k+1(M) and
Hq

(k)(M
′) ∼= Hq

(k)(M) for every q ≥ n − k + 2.

Notice that it suffices to know the de Rham cohomology of M together with the action of
Lk on it, in order to know the generalized k-coeffective cohomology. This can be applied in
particular to solvmanifolds satisfying the Mostow condition [21], that is to say, to compact
quotients G/� of solvable Lie groups G by a lattice � satisfying that the algebraic closures
A(AdG(G)) andA(AdG(�)) are equal. In fact, under this condition, one has that the natural
map (

∧∗ g∗, d) ↪→ (�∗(M), d) from the Chevalley–Eilenberg complex of the Lie algebra
g of G to the de Rham complex of the solvmanifold M = G/� is a quasi-isomorphism, i.e.
Hq(M) ∼= Hq(g) for any 0 ≤ q ≤ dim M . The following result is straightforward from the
long exact sequence in cohomology:

Proposition 2.12 Let (M = G/�, ω) be a 2n-dimensional symplectic solvmanifold sat-
isfying the Mostow condition. Let g be the Lie algebra of G and let ω′ ∈ ∧2 g∗ be a
left-invariant symplectic form representing the de Rham class [λω] ∈ H2(M) for some
λ �= 0. Then, for any 1 ≤ k ≤ n, the inclusion

∧∗ g∗ ↪→ �∗(M) induces isomorphisms
Ĥn−k+1(M, ω) ∼= Ĥn−k+1(g, ω′) and Hq

(k)(M, ω) ∼= Hq
(k)(g, ω

′) for every q ≥ n − k + 2.
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In particular, the previous result holds for nilmanifolds [22] and in the completely solvable
case [15], i.e. when the adjoint representation adX has only real eigenvalues for all X ∈ g.

Note that for the usual coeffective cohomology, i.e. k = 1 and q ≥ n + 1, this result was
proved in [11] (see also [12]).

Remark 2.13 For other results on the de Rham cohomology of compact solvmanifolds G/�,
even in the case that the solvable Lie groupG and the lattice� do not satisfy theMostow con-
dition, see [9,14]. Notice that for infra-solvmanifolds Baues proved in [4] an analogous result
to Nomizu’s theorem about the isomorphism of its cohomology and that of a certain complex
of left-invariant forms, result that is used in [18] to study the 1-coeffective cohomology of
certain symplectic aspherical manifolds.

Remark 2.14 For general symplectic manifolds (not necessarily of finite type), from the long
exact sequence (3), one has the following isomorphism

Hq
(k)(M)

ker H(i)
∼= ker

{
Lk : Hq(M) −→ Hq+2k(M)

}

for every q ≥ n − k + 2, where ker H(i) = im fq ∼= Hq+2k−1(M)

Lk (Hq−1(M))
. In particular, if the HLC

is satisfied then Hq
(k)(M) ∼= ker{Lk : Hq(M) −→ Hq+2k(M)}. Since any compact Kähler

manifold satisfies the HLC, we conclude that, for any q ≥ n− k +2, the k-coeffective group
Hq

(k)(M) is isomorphic to the space of de Rham cohomology classes that annihilate the class

[ωk]. For k = 1 this result was proved by Bouché [6], where he refers to the latter groups as
the truncated de Rham groups. In [11,18] the relation of the 1-coeffective cohomology with
the truncated de Rham cohomology is also investigated.

3 Extension of the generalized coeffective complexes

In [10]Eastwood introduced an elliptic extensionof the usual coeffective complex and showed
that the corresponding cohomology groups are isomorphic to the primitive cohomology
groups defined by Tseng and Yau [26,27]. In this section, for every 1 ≤ k ≤ n, we consider
an extension of the k-coeffective complex and study its relation to the filtered cohomologies
of Tsai et al. [25].

Let us fix k such that 1 ≤ k ≤ n. For each q , let us consider the quotient space �̌
q
(k)(M) =

�q (M)

Lk
ω(�q−2k (M))

. We denote by ď : �̌
q
(k)(M) −→ �̌

q+1
(k) (M) the natural map induced by the

exterior differential, i.e. ď(α̌) = (dα)̌ = dα + Lk
ω(�q−2k+1(M)), for any α̌ ∈ �̌

q
(k)(M).

Then, we have the following complex

0 �� �0 ��d �� �1 d �� · · · d �� �2k−1 ď �� �̌2k
(k)

ď �� · · · ď �� �̌n+k−2
(k)

ď �� �̌n+k−1
(k)

D

��
0 �2n�� �2n−1d�� · · ·d�� �2n−2k+1d�� C2n−2k

(k)
d�� · · ·d�� Cn−k+2

(k)
d�� Cn−k+1

(k)
d��

(7)

where D is a second-order differential operator defined as D(α̌) = dγ , being γ the unique
(n − k)-form satisfying dα = Lk

ω(γ ). It can be checked that this complex is elliptic in any
degree; however, we will not use this fact in what follows since the main properties of its
cohomology groups will be derived from a long exact sequence as in Sect. 2.
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1360 L. Ugarte, R. Villacampa

Let us denote by Ȟq
(k)(M) the cohomology groups associated with the complex (7) for

0 ≤ q ≤ 2n + 2k − 1. Notice that Ȟq
(k)(M) = Hq(M) for any q ≤ 2k − 2 and Ȟq

(k)(M) =
Hq−2k+1

(k) (M) for any q ≥ n + k + 1.
Now, the sequences of complexes

�n+k−1 d �� �n+k d �� �n+k+1 d �� �n+k+2 d �� �n+k+3 d �� · · ·

�n−k−1 d ��

Lk
ω

��

�n−k d ��

Lk
ω

��

�n−k+1 d ��

Lk
ω

��

�n−k+2 d ��

Lk
ω

��

�n−k+3 d ��

Lk
ω

��

· · ·

· · · ď �� �̌n+k−3
(k)

ď �� �̌n+k−2
(k)

ď �� �̌n+k−1
(k)

D �� Cn−k+1
(k)

i

��

d �� Cn−k+2
(k)

i

��

d �� Cn−k+3
(k)

i

��

d �� · · ·

· · · d �� �n+k−3

p

��

d �� �n+k−2

p

��

d �� �n+k−1

p

��

d �� �n+k d �� �n+k+1

· · · d �� �n−k−3

Lk
ω

��

d �� �n−k−2

Lk
ω

��

d �� �n−k−1

Lk
ω

��

d �� �n−k

Lk
ω

��

d �� �n−k+1

Lk
ω

��

where i denotes the inclusion and p the natural projection, give rise to the following long
exact sequence in cohomology:

· · · f̌n−k−2 �� Hn−k−2(M)
Lk

�� Hn+k−2(M)
H(p) �� Ȟn+k−2

(k) (M)

f̌n−k−1 �� Hn−k−1(M)
Lk

�� Hn+k−1(M)
H(p) �� Ȟn+k−1

(k) (M)

f̌n−k �� Hn−k(M)
Lk

�� Hn+k(M)
f̌n−k+1 �� Ȟn+k

(k) (M) (8)

H(i) �� Hn−k+1(M)
Lk

�� Hn+k+1(M)
f̌n−k+2 �� Ȟn+k+1

(k) (M)

H(i) �� Hn−k+2(M)
Lk

�� Hn+k+2(M)
f̌n−k+3 �� Ȟn+k+2

(k) (M) · · · .

Here H(i) and H(p) are the homomorphisms induced in cohomologyby i and p, respectively,
and f̌q are the connecting homomorphisms, which are given as follows:

• for any j ≤ n + k − 1 and [α] ∈ Ȟ j
(k)(M): f̌ j−2k+1([α]) = [β], where dα = Lk

ω(β);

• for any j ≥ n + k and [α] ∈ H j (M): f̌ j−2k+1([α]) = [dβ], where α = Lk
ω(β).

Let č(k)
q (M) be the dimension of Ȟq

(k)(M) when it is finite. As in Sect. 2, using five-term
exact sequences from (8), we arrive at the following result, that provides an extension of
Proposition 2.5.

Proposition 3.1 Let (M2n, ω) be a symplectic manifold of finite type and let 1 ≤ k ≤ n.
Then, for every 0 ≤ q ≤ 2n + 2k − 1, the following properties hold:
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(i) Finiteness and bounds for the numbers č(k)
q (M): the group Ȟq

(k)(M) is finite dimensional

and its dimension č(k)
q (M) satisfies the inequalities

bq−2k+1(M) − bq+1(M) ≤ č(k)
q (M) ≤ bq−2k+1(M) + bq(M). (9)

(ii) Symplectic manifolds satisfying the HLC: if (M2n, ω) satisfies the HLC then the lower
bound in (9) is attained for every q ≥ n + k, i.e.

č(k)
q (M) = bq−2k+1(M) − bq+1(M), q ≥ n + k.

(iii) Exact symplectic manifolds: if ω is exact then the upper bound in (9) is attained, i.e.

č(k)
q (M) = bq−2k+1(M) + bq(M).

(iv) Poincaré lemma: if U is the open unit disk in R
2n with the standard symplectic form

ω = ∑n
i=1 dx

i ∧ dxn+i , then č(k)
0 (U ) = 1 = č(k)

2k−1(U ) and č(k)
q (U ) = 0 for any other

value of q.

Remark 3.2 By (ii) the lower bound in (9) is attained for every q ≥ n + k for symplectic
manifolds satisfying the HLC. Similarly, it can be proved from (8) that if (M2n, ω) satisfies
that all the maps Lk : Hn−k(M) −→ Hn+k(M) are injective then č(k)

q (M) = bq(M) −
bq−2k(M) for every q ≤ n + k − 1. In conclusion, if Lk : Hn−k(M) −→ Hn+k(M) is an
isomorphism for any 1 ≤ k ≤ n (for instance, if (M2n, ω) is a closed symplectic manifold
satisfying the HLC) then the following equalities hold:

č(k)
q (M) = bq(M) − bq−2k(M), 0 ≤ q ≤ n + k − 1;
č(k)
q (M) = bq−2k+1(M) − bq+1(M), n + k ≤ q ≤ 2n + 2k − 1.

Example 3.3 By Proposition 3.1 (iv) we have č(k)
2k−1(U ) = 1. Next we show the nonzero

cohomology class generating Ȟ2k−1
(k) (U ). Let α = ∑n

i=1 x
i ∧ dxn+i . The (2k − 1)-form

β = α ∧ ωk−1 is ď-closed because dα = ω and hence dβ = ωk ∈ Lk
ω(�0(U )). Clearly, β

is not ď-exact, because it is not d-exact. In conclusion, [β] defines a nonzero cohomology
class and Ȟ2k−1

(k) (U ) = 〈[β]〉.

Remark 3.4 Notice that the generalized coeffective space Ĥn−k+1(M) is isomorphic to a
quotient of Ȟn+k

(k) (M); concretely,

Ĥn−k+1(M) ∼=
Ȟn+k

(k) (M)

Hn+k(M)/Lk(Hn−k(M))
. (10)

Let (M2n, ω) be a symplectic manifold of finite type. For every 1 ≤ k ≤ n, we define

χ̌ (k)(M) =
2n+2k−1∑

i=0

(−1)i č(k)
i (M).

Let us write χ̌ (k)(M) = χ̌
(k)
+ (M) + χ̌

(k)
− (M), where

χ̌
(k)
+ (M) =

n+k−1∑
i=0

(−1)i č(k)
i (M), and χ̌

(k)
− (M) =

2n+2k−1∑
i=n+k

(−1)i č(k)
i (M).
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1362 L. Ugarte, R. Villacampa

Proposition 3.5 Let (M2n, ω) be of finite type. For every 1 ≤ k ≤ n:

(i) χ̌ (k)(M) = 0; consequently, χ̌ (k)
− (M) = −χ̌

(k)
+ (M).

(ii) χ̌
(k)
+ (M) = (−1)n+k+1(č(k)

n+k(M) − ĉn−k+1(M)) + χ(k)(M).

Proof Property (i) follows from (8) arguing similarly to the proof of Proposition 2.9.
For the proof of (ii), taking into account that (−1)n+k+s č(k)

n+k+s(M) = −(−1)n−k+s+1

c(k)
n−k+s+1(M) for s ≥ 1, byProposition2.9wegetχ(k)(M)+χ̌

(k)
− (M) = (−1)n+k(č(k)

n+k(M)−
ĉn−k+1(M)). Since χ̌

(k)
+ (M) = −χ̌

(k)
− (M), relation (ii) follows. �


Equality (ii) in the above proposition means that the behavior of the symplectic invariant
χ̌

(k)
+ (M) only depends on č(k)

n+k(M)− ĉn−k+1(M), because χ(k)(M) is a topological invariant
by Proposition 2.9. Moreover, one has the following characterization of the HLC in terms of
χ̌

(k)
+ (M), which in particular implies that the HLC is determined by the cohomology of the

first half of the complexes (7).

Corollary 3.6 A symplectic manifold (M2n, ω) of finite type satisfies the HLC if and only if
χ̌

(k)
+ (M) = χ(k)(M) for every 1 ≤ k ≤ n.

Proof By (10), a symplectic manifold satisfies the HLC if and only if Ĥn−k+1(M) ∼=
Ȟn+k

(k) (M) for every 1 ≤ k ≤ n. Therefore, if M is of finite type then, (M2n, ω) satisfies the

HLC if and only if ĉn−k+1(M) = č(k)
n+k(M) for every 1 ≤ k ≤ n. By Proposition 3.5 (ii), this

is equivalent to χ̌
(k)
+ (M) = χ(k)(M) for every 1 ≤ k ≤ n. �


Remark 3.7 Tsai et al. [25, Theorem 3.1] have introduced elliptic differential complexes of
filtered forms that extend the complex of primitive forms [27, Proposition 2.8] (see also [24]
for recent progress). The difference with (7) is precisely that the second half of the complex
is the image of the complex in [25] by the symplectic star operator (see Sect. 4), so in this
sense the complex (7) can be thought as a coeffective version of the filtered complex.

On the other hand, [25, Theorem 4.2] gives long exact sequences that provide a resolution
of the Lefschetz maps Lk . Comparing with (8), which also gives a resolution of the same
Lefschetz maps, one immediately concludes that the cohomology Ȟ∗

(k)(M) is isomorphic to
the (k − 1)-filtered cohomology as follows:

• Ȟn+k−s
(k) (M) ∼= Fk−1Hn+k−s+ (M), for s = 1, . . . , n + k,

• Ȟn+k+s
(k) (M) ∼= Fk−1Hn+k−s−1− (M), for s = 0, 1, . . . , n + k − 1.

In particular, for any k ≥ 1, one has the following isomorphism between the (k − 1)-filtered
cohomology group and the k-coeffective cohomology group

Fk−1Hn+k−s−1− (M) ∼= Hn−k+s+1
(k) (M) ∼= Ȟn+k+s

(k) (M), 1 ≤ s ≤ n + k − 1. (11)

For k = 1 we recover the isomorphisms proved in [10] between the extended coeffective
cohomology of Eastwood and the primitive cohomology PH = F0H of Tseng and Yau [26,
27]. More generally, the isomorphism for any primitive cohomology group is as follows:

PHq
∂+(M) ∼= F0Hq

+(M) ∼= Ȟq
(1)(M), 0 ≤ q ≤ n − 1;

PHq
∂−(M) ∼= F0Hq

−(M) ∼= Ȟ2n−q+1
(1) (M) ∼= H2n−q

(1) (M), 0 ≤ q ≤ n − 1;
PHn−k+1

dd� (M) ∼= Fk−1Hn+k−1+ (M) ∼= Ȟn+k−1
(k) (M), 1 ≤ k ≤ n;

PHn−k+1
d+d� (M) ∼= Fk−1Hn+k−1− (M) ∼= Ȟn+k

(k) (M), 1 ≤ k ≤ n.
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From now on, due to the above identifications, we will refer to the cohomology groups
Ȟq

(k)(M) as the filtered cohomology groups of (M2n, ω).

Notice that an analogous observation as Remark 2.10 is also valid for the filtered coho-
mologies. Hence, a similar result to Lemma 2.11 holds:

Lemma 3.8 Let F : (M, ω) −→ (M ′, ω′) be a diffeomorphism such that F∗[ω′] = λ[ω]
for some nonzero λ ∈ R. Then, for any 1 ≤ k ≤ n, Ȟq

(k)(M
′) ∼= Ȟq

(k)(M) for every
0 ≤ q ≤ 2n + 2k − 1.

A similar result to Proposition 2.12 for computation of the filtered cohomologies of certain
solvmanifolds is also available:

Proposition 3.9 Let (M = G/�, ω) be a 2n-dimensional symplectic solvmanifold satisfying
the Mostow condition. Let g be the Lie algebra of G and let ω′ ∈ ∧2 g∗ be a left-invariant
symplectic form representing the deRhamclass [λω] ∈ H2(M) for someλ �= 0. Then, for any
1 ≤ k ≤ n, the inclusion

∧∗ g∗ ↪→ �∗(M) induces isomorphisms Ȟq
(k)(M, ω) ∼= Ȟq

(k)(g, ω
′)

for every 0 ≤ q ≤ 2n + 2k − 1.

Remark 3.10 Tseng and Yau [26] introduced and studied more generally Bott-Chern and
Aeppli type cohomologies using d and d� for a symplectic manifold. A characterization of
the HLC in the compact case from an à la Frölicher inequality is given in [3]. Note that for
the Bott-Chern and Aeppli type symplectic cohomologies, a similar result to Proposition 3.9
is obtained in [19, Theorem 3] (see also [2, Theorem 2.31]) by using another argument.

4 Relations with the symplectically harmonic cohomology

In this section, we relate the symplectically harmonic cohomology with the cohomologies
studied in the previous sections.

Let (M2n, ω) be a symplectic manifold of dimension 2n. The symplectic star operator
∗: �q(M) −→ �2n−q(M) is defined by

α ∧ (∗β) = �q(
)(α, β)
ωn

n! ,

for every q-forms α and β, where 
 is the bivector field dual to ω, i.e. the natural Poisson
structure associated with ω.

Let δ : �q(M) −→ �q−1(M) be the operator given by δα = (−1)q+1 ∗ d ∗ α, for every
q-form α. Brylinski proved that δ = [i(
), d], where i(·) denotes the interior product.
Definition 4.1 [7] A form α is called symplectically harmonic if dα = 0 = δα.

We denote by �
q
hr(M) the linear space of symplectically harmonic q-forms. Unlike the

Hodge theory, there are nonzero exact symplectically harmonic forms.Now, followingBrylin-
ski [7], one defines the symplectically harmonic cohomology

Hq
hr(M) = �

q
hr(M)

�
q
hr(M) ∩ im d

,

for 0 ≤ q ≤ 2n. Hence, Hq
hr(M) is the subspace of the qth de Rham cohomology group

consisting of all the de Rham cohomology classes of degree q containing a symplectically
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1364 L. Ugarte, R. Villacampa

harmonic representative.By analogywith theHodge theory,Brylinski [7] conjectured that any
de Rham cohomology class admits a symplectically harmonic representative. Mathieu [20]
(and independently Yan [29]) proved that Brylinski conjecture holds, namely Hq

hr(M, ω) =
Hq(M) for every 0 ≤ q ≤ 2n, if and only if (M2n, ω) satisfies the HLC.

An important result is that for any symplectic manifold every de Rham cohomology class
up to degree 2 admits a symplectically harmonic representative [29] (see also [16] for more
general results), that is, Hq

hr(M) = Hq(M) for q = 0, 1, 2. For every q ≤ n, if we set

Pq(M) = {[α] ∈ Hq(M) | Ln−q+1[α] = 0
}
,

then Pq(M) ⊂ Hq
hr(M) [29]. Moreover, the following result (proved in [16, Corollary 2.4]

and [28, Lemma 4.3]) gives a description of the spaces Hq
hr(M):

Theorem 4.2 Let (M2n, ω) be a symplectic manifold of dimension 2n. Then,

Hq
hr(M) = Pq(M, ω) + L(Hq−2

hr (M)), for 0 ≤ q ≤ n;
Hq
hr(M) = Im

{
Lq−n : H2n−q

hr (M) −→ Hq(M)
}

, for n + 1 ≤ q ≤ 2n.

Next we suppose that (M2n, ω) is of finite type and denote by hq(M) the dimension of
Hq
hr(M).

Example 4.3 Let Mn be a manifold of dimension n and of finite type, and let (T ∗M, ω0)

be the cotangent bundle endowed with the standard symplectic form. Since ω0 is exact, the
homomorphisms Lk are identically zero, and by Theorem 4.2 we have

hq(T
∗M, ω0) = bq(M), for q ≤ n, and hq(T

∗M, ω0) = 0, for n + 1 ≤ q ≤ 2n.

For the generalized coeffective cohomology, from Propositions 2.5 (iii) and 2.7 (iii) it follows
that

ĉn−k+1(T
∗M, ω0) = bn−k+1(M)

and

c(k)
q (T ∗M, ω0) = bq(M) + bq+2k−1(M), for n − k + 2 ≤ q ≤ 2n.

Furthermore, from Proposition 3.1 (iii) we get

č(k)
q (T ∗M, ω0) = bq−2k+1(M) + bq(M), for q ≤ 2n + 2k − 1.

In the following result, we relate the generalized coeffective cohomology with the har-
monic cohomology via the coeffective groups Ĥ1(M), . . . , Ĥn(M).

Theorem 4.4 Let (M2n, ω) be a symplectic manifold of finite type. The following relation
holds for every k = 1, . . . , n:

hn−k+1(M) − hn+k+1(M) = ĉn−k+1(M).

Proof By Theorem 4.2, Hn−k+1
hr (M) = Pn−k+1(M) + L

(
Hn−k−1
hr (M)

)
. Hence,

hn−k+1(M) = dim Pn−k+1(M) + dim L
(
Hn−k−1
hr (M)

)

− dim
(
Pn−k+1(M) ∩ L

(
Hn−k−1
hr (M)

))
.
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It follows from (3) that Pn−k+1(M) is isomorphic to the space Ĥn−k+1(M), and therefore,
dim Pn−k+1(M) = ĉn−k+1(M). On the other hand,

Pn−k+1(M) ∩ L
(
Hn−k−1
hr (M)

)
= ker Lk

∣∣
L
(
Hn−k−1
hr (M)

).

Now,

hn−k+1(M) = ĉn−k+1(M) + dim L
(
Hn−k−1
hr (M)

)
− dim

(
ker Lk

∣∣
L
(
Hn−k−1
hr (M)

)
)

= ĉn−k+1(M) + dim
(
Lk+1

(
Hn−k−1
hr (M)

))

= ĉn−k+1(M) + hn+k+1(M).

�

From Proposition 2.7, we get directly upper and lower bounds for the difference

hn−k+1(M) − hn+k+1(M). Moreover, the previous theorem, together with Proposition 2.9
and (11), provides further relations between the harmonic and the filtered cohomologies.

Next we derive some concrete relations of the harmonic cohomology with the groups
Ȟq

(k)(M).

Proposition 4.5 Let (M2n, ω) be a symplectic manifold of finite type. For every 1 ≤ k ≤ n,
we have

0 ≤ č(k)
n+k(M) − ĉn−k+1(M) ≤ bn+k(M) − hn+k(M),

where the latter equality holds if and only if Lk
(
Hn−k
hr (M)

)
= Lk(Hn−k(M)).

Proof It follows from (10) that ĉn−k+1(M) = č(k)
n+k(M) − bn+k(M) + dim Lk(Hn−k(M)).

Taking into account that dim Lk(Hn−k(M)) ≥ hn+k(M) by Theorem 4.2, we conclude the
relation. �


The following consequencewill be useful later for symplecticmanifolds of lowdimension.

Corollary 4.6 Let (M2n, ω) be a symplectic manifold of finite type. Then:

č(n)
2n (M) = b1(M) + b2n(M) − h2n(M),

č(n−1)
2n−1 (M) = b2(M) + b2n−1(M) − h2n−1(M) − h2n(M),

č(n−2)
2n−2 (M) = b2n−2(M) + h3(M) − h2n−2(M) − h2n−1(M).

Proof Notice that Lk(Hn−k
hr (M)) = Lk(Hn−k(M)) is satisfied for k = n, n − 1 and n − 2

because Hq
hr(M) = Hq(M) for q = 0, 1, 2. Hence, it suffices to apply Proposition 4.5 and

use Theorem 4.4 to relate the coeffective numbers with the harmonic cohomology. �

Nextwe show some other general properties thatwewill use later in the following sections.

Proposition 4.7 Let (M2n, ω) be a symplectic manifold of finite type. Then:

(i) ĉ1(M) = b1(M), and c(n)
q (M) = bq(M) for every 2 ≤ q ≤ 2n.

(ii) For any 1 ≤ k ≤ n, č(k)
q (M) = c(k)

q−2k+1(M) for every n + k + 1 ≤ q ≤ 2n + 2k − 1.
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Proof (i) is clear from the definition of the generalized coeffective cohomology for k = n and
from the long exact sequence (3). Equalities (ii) are direct from the definition of Ȟq

(k)(M). �


For closed manifolds one has additional relations. For instance, the numbers č(k)
q (M)

satisfy certain duality (see [25, Proposition 4.8] for the corresponding duality for the fil-
tered cohomology groups), whereas the harmonic number h2n−1(M) is always even [16,
Lemma 1.14]. The proof of these facts follows from the existence of the usual non-singular
pairing p([α], [β]) = ∫

M α ∧β, for [α] ∈ Hq(M) and [β] ∈ Hm−q(M), valid on any closed
m-dimensional manifold M . In the following proposition, we collect these results together
with other properties.

Proposition 4.8 Let (M2n, ω) be a closed symplectic manifold. Then:

(i) For any 1 ≤ k ≤ n − 1, c(k)
q (M) = bq(M) for every 2n − 2k + 1 ≤ q ≤ 2n.

(ii) For any 1 ≤ k ≤ n, č(k)
q (M) = č(k)

2n+2k−q−1(M) for every 0 ≤ q ≤ n + k − 1.
(iii) h2n(M) = b2n(M), and h2n−1(M) is always even.
(iv) hn−1(M) − (č(1)

n+1(M) − ĉn(M)) ≤ hn+1(M) ≤ hn−1(M).

Proof By definition of the coeffective cohomology one always has that c(k)
q (M) = bq(M) for

any 1 ≤ k ≤ n − 1 and for every q ≥ 2n − 2k + 2. Moreover, since M is closed, H2n(M) =
〈[ωn]〉 and Lk : H2n−2k(M) −→ H2n(M) is surjective, so the long exact sequence (3)
implies c(k)

2n−2k+1(M) = b2n−2k+1(M). This proves (i).
Property (ii) follows from [25, Proposition 4.8] taking into account the identifications

given in Remark 3.7.
The proof of (iii) is a consequence of the fact that the rank of Ln−1 : H1(M) −→

H2n−1(M) is always an even number [16, Lemma 1.14].
To prove (iv), since Hn+1

hr (M) = L(Hn−1
hr (M)), we have

hn−1(M) = hn+1(M) + dim
(
ker

{
L : Hn−1

hr (M) → Hn+1(M)
})

.

Therefore,

hn−1(M) − hn+1(M) = dim
(
ker

{
L : Hn−1

hr (M) → Hn+1(M)
})

≤ dim
(
ker

{
L : Hn−1(M) → Hn+1(M)

})

= bn−1(M) − dim
(
im

{
L : Hn−1(M) → Hn+1(M)

})

= bn+1(M) − dim
(
im

{
L : Hn−1(M) → Hn+1(M)

})

= č(1)
n+1(M) − ĉn(M),

where the last equality follows from Remark 3.4. �

Notice that Theorem 4.4 does not provide any relation for hn+1, so (iv) in the above

proposition provides upper and lower bounds for the harmonic number hn+1 on closed
symplectic manifolds.

Corollary 4.9 Let (M2n, ω) be a closed symplectic manifold. Then,

ĉ1(M) = č(n)
2n (M) = b1(M) and ĉ2(M) = b2(M) − 1. (12)

Hence, the generalized coeffective cohomology groups (1) for k = n and n − 1, as well as
the n-filtered cohomology groups are topological invariants.
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Proof The formulas for χ(n) and χ(n−1) given in Proposition 2.9 together with part (i)
in Proposition 4.7 and Proposition 4.8 imply (12), so all the generalized n- and (n − 1)-
coeffective numbers are topological. For the n-filtered cohomology it suffices to use
Corollary 4.6 and the fact that č(n)

q = c(n)
q−2n+1 for 2n + 1 ≤ q ≤ 4n − 1. �


We finish this section noticing that from Theorem 4.2 it follows directly that an analogous
result to Lemmas 2.11 and 3.8 also holds for the symplectically harmonic cohomology [28,
Proposition 1], and in the case of solvmanifolds satisfying the Mostow condition, a result
similar to Propositions 2.12 and 3.9 is also valid (this was first observed in [28, Proposition 2],
see also [16,17], for the class of symplectic nilmanifolds).

5 Symplectic flexibility of closedmanifolds

In this section we focus on closed symplectic manifolds, for which we introduce a notion
of flexibility for the generalized coeffective and filtered cohomologies, as analogous notions
of the concept of harmonic flexibility introduced and studied in [16,29] and motivated by
a question raised by Khesin and McDuff. Furthermore, we study their relations with the
harmonic flexibility.

In what follows, M will refer to a closed smooth manifold admitting symplectic forms.

Definition 5.1 A 2n-dimensional M is said to be

(i) c-flexible, ifM possesses a continuous family of symplectic formsωt , where t ∈ [a, b],
such that ĉn−k+1(M, ωa) �= ĉn−k+1(M, ωb) or c

(k)
q (M, ωa) �= c(k)

q (M, ωb) for some
1 ≤ k ≤ n and n − k + 2 ≤ q ≤ 2n;

(ii) f-flexible, if M possesses a continuous family of symplectic forms ωt , t ∈ [a, b], such
that č(k)

q (M, ωa) �= č(k)
q (M, ωb) for some 1 ≤ k ≤ n and 0 ≤ q ≤ 2n + 2k − 1;

(iii) h-flexible, if M possesses a continuous family of symplectic forms ωt , t ∈ [a, b], such
that hq(M, ωa) �= hq(M, ωb) for some 0 ≤ q ≤ 2n.

Notice that h-flexible manifolds are precisely the flexible manifolds in [16].
SinceHq

hr(M) = Hq(M) forq = 1, 2,wehaveh2n−q(M) = dim(Im {Ln−q : Hq(M) −→
H2n−q(M)}) for q = 1, 2 by Theorem 4.2. Now, if ωt is a continuous family of symplectic
structures on M , t ∈ [a, b], then it is clear that

h2n−1(M, ωt ) ≥ h2n−1(M, ωa) and h2n−2(M, ωt ) ≥ h2n−2(M, ωa), (13)

that is, these symplectically harmonic numbers satisfy a “lower-semicontinuous” property.
In the following result, we observe that an “upper-semicontinuous” property holds for all

the coeffective and the filtered numbers.

Proposition 5.2 Let ωt be a continuous family of symplectic structures on M, for t ∈ [a, b].
Then, for any 1 ≤ k ≤ n the following inequalities hold:

ĉn−k+1(M, ωt ) ≤ ĉn−k+1(M, ωa),

c(k)
q (M, ωt ) ≤ c(k)

q (M, ωa), for every n − k + 2 ≤ q ≤ 2n,

č(k)
n+k(M, ωt ) ≤ č(k)

n+k(M, ωa), for every 0 ≤ q ≤ 2n + 2k − 1.

Proof It follows directly from the long exact sequences (3) and (8). �
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Next we study relations among the three different types of flexibility. We begin in dimen-
sion four.

Theorem 5.3 Let M be a 4-dimensional closed manifold. Then:

(i) M is never c-flexible;
(ii) M is f-flexible if and only if it is h-flexible.

Proof Since n = 2, we need to study the coeffective numbers c(1)
q for q = 3, 4, c(2)

q for
q = 2, 3, 4, ĉ1 and ĉ2. Proposition 4.7 (i), Proposition 4.8 (i) and Corollary 4.9 imply that
c(2)
2 = b2, c

(1)
3 = c(2)

3 = b3, c
(1)
4 = c(2)

4 = b4, ĉ1 = b1 and ĉ2 = b2 −1. Therefore, M cannot
be c-flexible and (i) is proved.

ByProposition 4.7 (ii)we have č(k)
q = c(k)

q−2k+1 for k = 1, 2 and for any 3+k ≤ q ≤ 3+2k,
so they are topological invariants. By the duality given in Proposition 4.8 (ii), it remains to
study č(1)

3 and č(2)
4 .

Since hq = bq for q = 0, 1, 2 and 4, the first two equalities in Corollary 4.6 imply that

č(2)
4 = b1 and č(1)

3 = b2 − b0 + b3 − h3, i.e.

č(1)
3 = b1 + b2 − h3 − 1.

Therefore, M is f-flexible iff M is h-flexible, since č(1)
3 (M, ωt ) varies along a family of

symplectic forms ωt iff h3(M, ωt ) varies. �

The previous proof shows that the fundamental relation between flexibilities on a 4-

dimensional manifold M is

č(1)
3 (M, ωt ) = b1(M) + b2(M) − h3(M, ωt ) − 1.

Corollary 5.4 Let M be a 4-dimensional closed manifold. If the first Betti number b1(M) ≤ 1
then M is not f-flexible.

Proof Proposition 4.8 (iii) implies that h3 is an even number for any symplectic form. Since
h3 ≤ b3 then h3 = 0 and therefore M cannot be flexible. �


In particular, there do not exist simply connected closed 4-manifolds which are f-flexible.
On the other hand,Yan [29] proved that there are noh-flexible 4-dimensional nilmanifolds.

Even more, one can see that the same holds in the bigger class of completely solvable
solvmanifolds. For that, by the classification given in [5, Table 2] it remains to check that
a solvmanifold based on the Lie algebra de1 = e13, de2 = −e23, de3 = de4 = 0 is not
h-flexible. In fact, any invariant symplectic structure is of the form ω = A e12 + B e13 +
C e23 + D e34, with AD �= 0, and the number h3 only depends on the element [[ω]] in
P(H2(M)) (see Remark 2.10), so we can suppose that A = 1 and B = C = 0 because
[e13] = [e23] = 0. Thus, it suffices to study the family ωt = e12 + t e34, with t �= 0. A direct
calculation shows

L [ωt ](H1(M)) = 〈[ωt ∧ e3], [ωt ∧ e4]〉 = 〈[e123], [e124]〉 = H3(M),

i.e. h3(ωt ) = b3 for any t �= 0, and therefore the solvmanifold is not h-flexible. Hence:

Proposition 5.5 Any 4-dimensional completely solvable solvmanifold is not c-flexible, f-
flexible or h-flexible.
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However, there exist 4-dimensional closedmanifoldswhich areh-flexible, as it was proved
in [29, Corollary 4.2] and [16, Proposition 3.2]. In fact, if (M4, ω) is a closed symplectic
manifold satisfying the conditions

(i) the homomorphism L : H1(M) −→ H3(M) is trivial,
(ii) the cup product H1(M) ⊗ H2(M) −→ H3(M) is non-trivial,

then M is h-flexible. Since Gompf [13, Observation 7] proved the existence of 4-manifolds
satisfying (i) and (ii), fromTheorem 5.3 it follows that there exists 4-dimensional closedman-
ifolds which are f-flexible. Moreover, taking symplectic products, we arrive at the following
existence result:

Theorem 5.6 For each n ≥ 2, there exist 2n-dimensional f-flexible closed manifolds.
More precisely, there exists a 2n-dimensional closed manifold M with a continuous fam-
ily of symplectic forms ωt such that the dimensions of the primitive cohomology groups
PH2

d+d�(M, ωt ) and PH2
dd�(M, ωt ) vary with respect to t .

Proof Notice first that č(n−1)
2n−1 (M) = dim PH2

d+d�(M) = dim PH2
dd�(M), and by Corol-

lary 4.6 we have č(n−1)
2n−1 (M) = b2(M) + b1(M) − h2n−1(M) − 1.

On the other hand, by [16, Proposition 5.3], we have the following formula for h2n−1 of a
product (M = N1 × N2, ω = ω1 +ω2) of two symplectic manifolds (N1, ω1) and (N2, ω2)

of respective dimensions n1 and n2:

h2n−1(M) = h2n1−1(N1) + h2n2−1(N2),

where n = n1 + n2.
Now, let N1 be a 4-dimensional closed manifold such that h3 varies along a continuous

family of symplectic forms and let N2 be, for instance, any compact Kähler manifold. Then,
on the product manifold M , there is a continuous family of symplectic forms such that
h2n−1(M), and so č(n−1)

2n−1 (M), varies. �

As we noticed above, there do not exist simply connected closed 4-manifolds which are

f-flexible. By using a recent result by Cho [8], next we prove the existence of flexible simply
connected closed manifolds in every dimension greater than or equal to six.

Theorem 5.7 For each n ≥ 3, there exist 2n-dimensional simply connected closed manifolds
which are f-flexible. More precisely, there exists a 2n-dimensional simply connected closed
manifold M with a continuous family of symplectic forms ωt such that the dimensions of the
primitive cohomology groups PH3

d+d�(M, ωt ) and PH3
dd�(M, ωt ) vary with respect to t .

Moreover, the manifold M is homotopy equivalent to some Kähler manifold.

Proof Let us first recall that Cho proves in [8, Theorem 1.3] the existence of a compact Kähler
manifold (X , ω) with dimC X = 3 such that

(1) X is simply connected,
(2) the odd Betti numbers vanish, i.e. b2k+1(X) = 0 for every integer k ≥ 0,
(3) X admits a symplectic form σ such that (X , σ ) does not satisfy the HLC, and
(4) σ is deformation equivalent to the Kähler form ω, that is, there is a path {ωt }0≤t≤1 of

symplectic forms such that ω0 = ω and ω1 = σ .

These properties imply that h4(X , ωt ) varies with t , and the manifold X is h-flexible. One
can see that ĉ3 = 0 and c(1)

4 = b2 − 1 for any symplectic form on X , so it is not c-flexible,
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but X is f-flexible because č(1)
4 = b2 − h4. Hence X provides an example in dimension 6.

Next we consider this manifold to prove that there are simply connected closed manifolds in
every higher dimension which are f-flexible.

Let M be a closed symplectic manifold of dimension 2n. From Remark 3.7 and Proposi-
tion 4.8 (ii) for k = n − 2 and q = 2n − 3, we notice that dim PH3

d+d�(M) = č(n−2)
2n−2 (M) =

č(n−2)
2n−3 (M) = dim PH3

dd�(M). On the other hand, by Corollary 4.6

č(n−2)
2n−2 (M) = b2n−2(M) + h3(M) − h2n−2(M) − h2n−1(M). (14)

Suppose that M is a product of two symplectic manifolds (N1, ω1) and (N2, ω2) of
respective dimensions n1 and n2. By [16, Proposition 5.3], we have the following formulas
for the harmonic numbers h2n−1 and h2n−2 of the manifold (M = N1 × N2, ω = ω1 +ω2):

h2n−1(M) = h2n1−1(N1) + h2n2−1(N2),

h2n−2(M) = h2n1−2(N1) + h2n1−1(N1)h2n2−1(N2) + h2n2−2(N2).
(15)

where n = n1 + n2.
Now, let N1 = X be the 6-dimensional simply connected closed manifold described

above, and let N2 = CP
n2 endowed with the standard Kähler structure defined by its natural

complex structure and the Fubini–Studymetric. Hence, themanifoldM is a simply connected
closed manifold of dimension 2n = 2(3 + n2) ≥ 8. Since all the odd Betti numbers of N1

and N2 vanish, the manifold M also has all its odd Betti numbers equal to zero. This implies
that h3(M) = 0, h2n−1(M) = 0 and h2n−2(M) = h4(X)+1 by (15), because h2n2−2(N2) =
b2n2−2(CP

n2) = 1. Moreover, by Künneth formula one arrives at b2n−2(M) = b4(X) + 1.
Therefore, equality (14) reduces to

č(n−2)
2n−2 (M) = b4(X) − h4(X).

By the properties of X described above, we conclude that on the product manifold M , there
is a continuous family of symplectic forms such that č(n−2)

2n−2 (M) varies. �


From the proofs of Theorems 5.6 and 5.7, the resulting symplectic manifolds are also
h-flexible. It is unclear if f-flexibility is implied by h-flexibility in dimension higher than or
equal to 8 (see Proposition 5.11 for the general relation). In contrast, in six dimensions we
have:

Theorem 5.8 Let M be a 6-dimensional closed manifold. Then:

(i) If M is c-flexible then M is f-flexible and h-flexible.
(ii) If M is not c-flexible then, M is f-flexible if and only if it is h-flexible.

Proof Since n = 3, the coeffective numbers to be studied are: c(1)
q for q = 4, 5, 6, c(2)

q for

q = 3, 4, 5, 6, c(3)
q for q = 2, 3, 4, 5, 6, and ĉ1, ĉ2, ĉ3. Corollary 4.9 implies that ĉ1, ĉ2 and

all c(k)
q for k = 2, 3 are topological invariants. Moreover, by Proposition 4.8 (i) we have

c(1)
q = bq for q = 5, 6. Now, the formula for χ(1) given in Proposition 2.9 implies that

ĉ3 = c(1)
4 + b3 − b2 − b1 + 1. (16)

Therefore, M is c-flexible if and only if M possesses a continuous family of symplectic
forms ωt , t ∈ [a, b], such that ĉ3(M, ωa) �= ĉ3(M, ωb).
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By Proposition 4.7 (ii) we have č(k)
q = c(k)

q−2k+1 for k = 1, 2, 3 and for any 4 + k ≤ q ≤
5 + 2k, so they are topological invariants except possibly č(1)

5 , which satisfies

č(1)
5 = c(1)

4 . (17)

By the duality given in Proposition 4.8 (ii), it remains to study č(1)
4 and č(2)

5 .
Since hq = bq for q = 0, 1, 2, 6, the equalities in Corollary 4.6 together with Theorem 4.4

imply the following relations

ĉ3 = h3 − h5, ĉ3 = č(1)
4 + h4 − b2, č(2)

5 = −h5 + b2 + b1 − 1. (18)

Therefore, the fundamental equalities that relate the different cohomologies for closed
6-dimensional manifolds are (16)–(18). Now, using these relations, a direct argument shows
(i) and (ii). �


Corollary 5.9 A 6-dimensional closed manifold is f-flexible if and only if it is h-flexible.

Remark 5.10 Notice that there exist closed 6-dimensional manifolds which are f-flexible
and h-flexible, but not c-flexible; that is to say, the converse to (i) in Theorem 5.8 does not
hold in general. Explicit examples of nilmanifolds satisfying this are given in Sect. 6.

In higher dimension, we have the following result:

Proposition 5.11 Let M be a closed manifold of dimension 2n ≥ 8. If M is c-flexible then
M is f-flexible or h-flexible.

Proof If M possesses a continuous family of symplectic forms ωt , t ∈ [a, b], such that
c(k)
q (M, ωa) �= c(k)

q (M, ωb) for some 1 ≤ k ≤ n and n − k + 2 ≤ q ≤ 2n, then it is clear
that M is f-flexible by Proposition 4.7(ii).

If M possesses a continuous family of symplectic forms ωt , t ∈ [a, b], such that
ĉn−k+1(M, ωa) �= ĉn−k+1(M, ωb) for some 1 ≤ k ≤ n, then Theorem 4.4 implies that
hn−k+1(M, ωa) �= hn−k+1(M, ωb) or hn+k+1(M, ωa) �= hn+k+1(M, ωb), therefore M is
h-flexible. �


6 Symplectic 6-dimensional nilmanifolds

In this section, we present a complete study of the dimensions of the harmonic, coeffective
and filtered cohomology groups of 6-dimensional symplectic nilmanifolds, see Table 1 below.

The symplectically harmonic numbers h4 and h5 were first computed in [16], whereas h3
was obtained in [17] (see Remark 6.2 for corrections). As a consequence of our study, we
describe all c-flexible, h-flexible or f-flexible 6-dimensional nilmanifolds.

In the proof of Theorem 5.8 we found that for 6-dimensional closed symplectic manifolds
the fundamental equalities that relate the different cohomologies are (16)–(18). In addition,
since the Euler characteristic of a nilmanifold vanishes, we have that b3 = 2(b2 − b1 + 1).
Therefore, relations (16)–(18) for 6-dimensional symplectic nilmanifolds are

ĉ3 = c(1)
4 + b2 − 3b1 + 3, h3 = ĉ3 + h5, č(1)

4 = ĉ3 − h4 + b2, č(1)
5 = c(1)

4 ,

č(2)
5 = −h5 + b2 + b1 − 1. (19)
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Recall that c(1)
4 , č(1)

4 and č(2)
5 are by Remark 3.7 dimensions of primitive cohomology groups;

concretely, c(1)
4 = dim PH2

∂−(= dim PH2
∂+), č(1)

4 = dim PH3
d+d�(= dim PH3

dd�) and

č(2)
5 = dim PH2

d+d�(= dim PH2
dd�).

It follows from Propositions 2.12 and 3.9 that the calculation of all the cohomology groups
reduces to the Lie algebra level. In Table 1 nilmanifolds of dimension 6 admitting symplectic
structure appear lexicographically with respect to the triple (b1, b2, 6 − s), where b1 and b2
are the Betti numbers (first two columns in the table) and s is the step length (third column).
The fourth column contains the description of the structure of the nilmanifold; for instance,
the notation (0, 0, 12, 13, 14, 15)means that there exists a basis {ei }6i=1 of (invariant) 1-forms
such that

de1 = de2 = 0, de3 = e1 ∧ e2, de4 = e1 ∧ e3, de5 = e1 ∧ e4, de6 = e1 ∧ e5.

The next columns show the dimensions of the non-trivial harmonic, coeffective and filtered
cohomology groups, that is, hk (k = 3, 4, 5), ĉ3, c

(1)
4 (= č(1)

5 ), č(1)
4 and č(2)

5 . Moreover,
the columns contain all the possible values when ω runs over the space S of all invariant
symplectic structures on the nilmanifold.

The last column shows the dimension of the space S, however the cohomology groups
only depend on the cohomology class of the symplectic form. This fact allows to reduce
calculations to a smaller number of parameters, and furthermore by Remark 2.10, we can
always normalize oneof the nonzero coefficients that parametrize the classes of the symplectic
forms.

When there are variations in the dimensions of the cohomology groups, they appear in
the table written accordingly to the lower-semicontinuous property (13) of the harmonic
numbers h4 and h5, or to the upper-semicontinuous property of ĉ3, c

(1)
4 , č(1)

4 and č(2)
5 (see

Proposition 5.2). Notice that the harmonic number h3 does not satisfy any lower- or upper-
semicontinuous property. Moreover, the variations in the dimensions of the cohomology
groups are in correspondence (in the sense that we explain in Example 6.3 below), except
for the nilmanifolds (0, 0, 0, 12, 13, 23) and (0, 0, 0, 12, 13, 14 + 23) (see Example 6.4 for
details on the latter).

The following result is a direct consequence of Table 1.

Theorem 6.1 (i) There exist seven nilmanifolds of dimension 6 that arec-flexible (and there-
fore f-flexible and h-flexible).

(ii) There exist three nilmanifolds of dimension 6 that are f-flexible and h-flexible, but not
c-flexible.
In conclusion, there exist ten 6-dimensional nilmanifolds that aref-flexible andh-flexible.

Notice that from (ii) it follows that the converse of Theorem 5.8 does not hold, that is,
c-flexibility is the strongest condition.

Remark 6.2 In [16,17] the following symplectically harmonic numbers need correction:

• for (0, 0, 12, 13, 14, 15) the number h4 is equal to 2 (not 3);
• for (0, 0, 12, 13, 14, 23 + 15) the number h3 is equal to 3 (not 2);
• for (0, 0, 0, 12, 14, 15 + 23) the number h3 is equal to 5 (not 4);
• for (0, 0, 0, 0, 12, 14 + 25) the number h4 is equal to 4 (not 3).

Example 6.3 Let us consider the 6-dimensional nilmanifold (0, 0, 0, 12, 14, 15 + 23 + 24).
According to Table 1, this manifold is c-flexible, f-flexible and h-flexible. In fact, consider
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č(1
)

4
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the following continuous family of symplectic structures

[ωt ] = (1 − cos t)[e13] − cos t [e16 + e25 − e34] + (1 − cos t)[e26 − e45], t ∈ R.

This familywas constructed first in [16,17] to showh-flexibility, and the symplectic structures
ωt=0 and ωt= π

2
were considered in [27] concerning the dimension of the primitive group

PH2
∂− , i.e. c

(1)
4 .

This 6-dimensional nilmanifold is the only one where all the non-trivial coeffective, har-
monic and primitive numbers vary. In Table 1 the variations are in correspondence as follows:

• h3(ω2πk) = 4, h4(ω2πk) = 3, h5(ω2πk) = 0, ĉ3(ω2πk) = 4, c(1)
4 (ω2πk) = č(1)

5 (ω2πk) =
5, č(1)

4 (ω2πk) = 6, č(2)
5 (ω2πk) = 7, for any integer k;

• h3(ωt ) = 5, h4(ωt ) = 4, h5(ωt ) = 2, ĉ3(ωt ) = 3, c(1)
4 (ωt ) = č(1)

5 (ωt ) = 4, č(1)
4 (ωt ) = 4,

č(2)
5 (ωt ) = 5, for t �= 2πk.

Example 6.4 Let us consider the 6-dimensional nilmanifold (0, 0, 0, 12, 13, 14 + 23). The
de Rham class of any symplectic form is given by

[ω] = A
[
e14

] + B
[
e15

]
+ C

[
e24

] + D
[
e35

]
+ E

[
e16 + e25

]
+ F

[
e16 − e34

]
,

where (E + F)(CD + EF) �= 0. Direct computations show that ĉ3 and h4 vary as follows:

ĉ3 =

⎧⎪⎨
⎪⎩

7, if D = E + 2F = 0,

6, if D = 0, E + 2F �= 0,

5, if D �= 0,

h4 =
{
3, if (E + F)2 = CD + EF,

4, if (E + F)2 �= CD + EF.

This nilmanifold satisfies b2 = 3b1 − 3, so (19) implies that č(1)
5 = c(1)

4 = ĉ3. Moreover,

h5 = 0 from which we get that č(2)
5 = 8 and h3 = ĉ3. Hence, using that č

(1)
4 = b2 − h4 + ĉ3

by (19), we arrive at

č(1)
4 =

⎧⎪⎨
⎪⎩

9, if D = E + 2F = 0,

8, if D = 0, E + 2F �= 0, or D �= 0, (E + F)2 = CD + EF,

7, if D �= 0, (E + F)2 �= CD + EF.

Asa consequence, concrete families canbe constructed.Let us consider the two-parametric
family

[ωt,s] = t
[
e35

]
+ (s + 2)

[
e16 + e25

]
− [

e16 − e34
]
,

where t, s ≥ 0. Then, the variations of the dimensions are:

• h3(ω0,0) = ĉ3(ω0,0) = c(1)
4 (ω0,0) = č(1)

5 (ω0,0) = 7 and č(1)
4 (ω0,0) = 9;

• h3(ωt,0) = ĉ3(ωt,0) = c(1)
4 (ωt,0) = č(1)

5 (ωt,0) = 5 and č(1)
4 (ωt,0) = 7, for t > 0;

• h3(ω0,s) = ĉ3(ω0,s) = c(1)
4 (ω0,s) = č(1)

5 (ω0,s) = 6 and č(1)
4 (ω0,s) = 8, for s > 0.

On the other hand, if we consider the family

[ωt ] = [
e24

] +
[
e35

]
+ t

[
e16 + e25

]
+ [

e16 − e34
]
,

where t ≥ 0, then the variations are:

• h4(ω0) = 3 and č(1)
4 (ω0) = 8;
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• h4(ωt ) = 4 and č(1)
4 (ωt ) = 7, for t > 0.

For compact Kähler manifolds (M2n, ω) and for every q ≥ n + 1, the coeffec-
tive cohomology group Hq

(1)(M) is isomorphic to the [ω]-truncated qth de Rham group

H̃q
[ω](M) = {[α] ∈ Hq(M) | [α] ∪ [ω] = 0}, although Fernández, Ibáñez and de León

showed that this is no longer true for arbitrary compact symplectic manifolds [11]. Kasuya
[18] has studied certain symplectic aspherical (non-Kähler) manifolds for which

Hq
(1)(M) ∼= H̃q

[ω](M) for every q ≥ n + 1. (20)

For 6-dimensional symplectic nilmanifolds, one has the following result, which suggests that
such isomorphism might be closely related to a low step of nilpotency:

Proposition 6.5 Let M be a symplectic s-step nilmanifold of dimension 6.

(i) If s ≤ 2, then there exists a symplectic form on M satisfying (20).
(ii) If s = 5 then (20) is never satisfied.

Proof Since n = 3 we only need to consider q = 4. Thus, (20) holds if and only if c(1)
4 (M) =

dim H̃4[ω](M) = b2(M) − 1, the latter equality coming from the fact that L(H4(M)) =
H6(M). Now, the result is a direct consequence of Table 1. �


Notice that there are several 3-step and several 4-step symplectic nilmanifolds of dimen-
sion 6 satisfying (20). In fact, all the cases in Table 1 where c(1)

4 = b2 −1 have such property.

Remark 6.6 Concerning other (non-primitive) cohomology groups, we recall that in [2,
Table 3] the dimensions of the symplectic Bott-Chern and Aeppli cohomologies for a partic-
ular choice of symplectic structure on each 6-dimensional nilmanifold have been computed.

7 A symplectic 8-dimensional solvmanifold

In this section we show a closed manifold of dimension 8 that is c-flexible, f-flexible and
h-flexible.

Let us consider the 8-dimensional compact solvmanifold M = S/�, where S is a simply
connected completely solvable Lie group of dimension 8 defined by left-invariant 1-forms
{ei , 1 ≤ i ≤ 8} such that

de1 = de2 = de3 = 0, de4 = −e12, de5 = −e13, de6 = −e14,

de7 = −e17, de8 = e18.

Using [15], the Betti numbers of M are b1(M) = 3, b2(M) = 7, b3(M) = 11 and b4(M) =
12 (see [11] for a description of the de Rham cohomology groups of M).

The de Rham cohomology class of a generic symplectic 2-form ω on M is given by

[ω] = A
[
e15

]
+ B

[
e16

] + C
[
e23

] + D
[
e24

] + E
[
e25 + e34

]
+ F

[
e35

]
+ G

[
e78

]
,

where the coefficients A, . . . ,G ∈ R satisfy BG(E2−DF) �= 0.Notice that byRemark 2.10,
we can suppose without loss of generality that for instance G = 1. Also notice that Propo-
sitions 2.12 and 3.9 allow us to reduce the computation of all the symplectic cohomology
groups to the level of the Lie algebra s of S.
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The generalized coeffective cohomology groups for k = 3, 4 provide no flexibility since
they are topological invariants. A direct calculation shows that the c-flexibility depends only
on ĉ3 and, moreover, ĉ3 = 8 or 9 depending on F �= 0 or F = 0, respectively.

Next we show that ĉ3 is also a key ingredient to obtain the other types of flexibility.
Using Theorem 4.4, we have that h3 − h7 = ĉ3. It turns out that the map L3 : H1 −→ H7

is identically zero, so h7 = 0 and therefore h3 = ĉ3. On the other hand, according to
Corollary 4.6, č(2)

6 = b6 + h3 − h6 − h7, thus č(2)
6 = h3 + b2 − h6, or equivalently,

č(2)
6 = ĉ3 + dim ker{L2 : H2 −→ H6}. A direct calculation shows that the dimension of
the kernel of the latter L2-map is independent of the symplectic form and it is equal to 2,
therefore č(2)

6 = ĉ3 + 2. Recall that č(2)
6 is by Remark 3.7 the dimension of the primitive

cohomology group PH3
d+d�

∼= PH3
dd� .

From this general study one concludes that the closed manifold M is c-flexible, f-flexible
and h-flexible. For instance, if we consider the following family of symplectic forms

ωt = e15 + e16 + t e23 − t e24 + e25 + e34 + t e35 + e78, t ∈ R,

then:

• ĉ3(ω0) = h3(ω0) = 9, and č(2)
6 (ω0) = 11;

• ĉ3(ωt ) = h3(ωt ) = 8, and č(2)
6 (ωt ) = 10, for any t �= 0.

Remark 7.1 The symplectic manifold (M, ω0) is considered in [11] (see also [12, page 288])
as an example of a compact symplectic manifold of dimension 8 for which (20) does not hold.
However, the 1-coeffective cohomology groups were wrongly obtained and the conclusion
is not correct. In fact, one can prove that (20) holds for any t ∈ R, in particular for t = 0.

On the other hand, by Remark 2.14, for any symplectic manifold (M2n, ω) satisfying the
HLC (in particular, for any compact Kähler manifold) the k-coeffective cohomology group
Hq

(k)(M) is isomorphic to the [ωk]-truncated de Rham group H̃q
[ωk ](M) = {[α] ∈ Hq(M) |

[α] ∪ [ωk] = 0}, for any q ≥ n − k + 2 and 1 ≤ k ≤ n. It is a natural question if such
isomorphisms hold for any k for arbitrary symplectic manifolds. A detailed study of the
symplectic manifolds (M, ωt ) above allows us to conclude that

• Hq
(k)(M, ωt ) ∼= H̃q

[ωk
t ](M) for k = 1, 3, 4 and for any q ≥ 6 − k and t ∈ R;

• Hq
(2)(M, ωt ) ∼= H̃q

[ω2
t ](M) for any q ≥ 4 if and only if t �= 0.

Therefore, for the compact symplectic manifold (M, ω0) we have that the 2-coeffective
cohomology is not isomorphic to the [ω2]-truncated de Rham cohomology. More precisely,
one has that H4

(2)(M, ω0) � H̃4
[ω2

0]
(M).

8 Flexibility of symplectic 2-step nilmanifolds

In this section we find symplectic 2-step nilmanifolds of arbitrary high dimension which are
c-flexible, f-flexible and h-flexible.

Proposition 8.1 Let M = G/� be a 2-step nilmanifold of dimension 2n ≥ 6, endowed with
a continuous family of symplectic forms ωt . Then, the harmonic number h3(M, ωt ) varies
if and only if the coeffective number ĉ3(M, ωt ) varies, if and only if the filtered number
č(n−2)
2n−1 (M, ωt ) varies.
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Proof Let us denote by g the Lie algebra of the Lie group G. By [28, Theorem 3], for any
symplectic 2-step nilmanifold

b1 − h2n−1 = dim[g, g],
which implies that the harmonic number h2n−1 does not depend on the symplectic form.
From Theorem 4.4 we get h3 − h2n−1 = ĉ3. Therefore, h3 varies if and only if ĉ3 does.

On the other hand, by Definition 2.8 and Proposition 2.9 for k = n − 2 we have

− ĉ3 +
2n∑
i=4

(−1)i c(n−2)
i = χ(n−2) =

2n−2∑
r=3

(−1)r br . (21)

Now, from Proposition 4.7 (ii) and Proposition 4.8 (i) for k = n − 2, we get the following
identities:

c(n−2)
4 = č(n−2)

2n−1 , and c(n−2)
i = bi for every 5 ≤ i ≤ 2n.

Therefore, Eq. (21) reduces to

−ĉ3 + č(n−2)
2n−1 +

2n−2∑
i=5

(−1)i bi − b2n−1 + b2n = −b3 + b4 +
2n−2∑
r=5

(−1)r br ,

which implies

č(n−2)
2n−1 = ĉ3 − b3 + b4 + b2n−1 − b2n .

Consequently, the filtered number č(n−2)
2n−1 (M, ωt ) varies if and only if the coeffective number

ĉ3(M, ωt ) varies. �

We apply Proposition 8.1 to a family of examples found by Sakane and Yamada [23]. The

conclusion is that for any k ≥ 2, there is a 6k-dimensional symplectic nilmanifold which is
c-flexible, f-flexible and h-flexible.

Example 8.2 Let k be an integer such that k ≥ 2. We consider the 6k-dimensional compact
nilmanifold M = G/�, where G is a simply connected 2-step nilpotent Lie group defined
by left-invariant 1-forms {αi , β i , 1 ≤ i ≤ 3k} satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dα1 = · · · = dα3k = 0,
dβ1 = α1 ∧ α2,

dβ2 = α2 ∧ α3,
...

dβ3k−1 = α3k−1 ∧ α3k,

dβ3k = α3k ∧ α1.

(22)

We denote by g the Lie algebra of G. Let a0 be a complementary vector subspace of the
derived algebra [g, g] in g, and consider a1 = [g, g]. So, g = a0 ⊕ a1 as a vector space, and
this decomposition induces a bigraduation

∧r g∗ = ⊕i0+i1=r
∧i0(a0)∗ ⊗ ∧i1(a1)∗, for any

r . For simplicity, we denote
∧i0,i1 = ∧i0(a0)∗ ⊗ ∧i1(a1)∗. Hence, for r = 3 we have

∧
3 g∗ =

∧
3,0 ⊕

∧
2,1 ⊕

∧
1,2 ⊕

∧
0,3.

Let Z3(g) and B3(g) denote the subspaces of
∧3 g∗ consisting of closed and exact 3-forms,

respectively.
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For any invariant symplectic form ω on M , we denote byH3(g, ω) the space of invariant
ω-harmonic 3-forms. SinceM is 2-step, by [23, Theorem 3], we have that B3(g) ⊂ H3(g, ω).
Hence, the harmonic cohomology group H3

hr(M, ω) satisfies

H3
hr(M, ω) ∼= H3(g, ω)

B3(g) ∩ H3(g, ω)
∼= H3(g, ω)

B3(g)
.

Moreover, it is easy to see that

H3(g, ω) =
∧

3,0 ⊕
(
Z3(g) ∩

∧
2,1

)
⊕

(
H3(g, ω) ∩

∧
1,2

)
,

and

B3(g) ⊂
∧

3,0 ⊕
(
Z3(g) ∩

∧
2,1

)
.

Hence, the harmonic number h3 only depends on the dimension of the spaceH3(g, ω)∩∧ 1,2.
Now, let us consider the symplectic form τ = a1 α1 ∧ β1 + · · · + a3k α3k ∧ β3k , where

a1, . . . , a3k �= 0. A direct calculation using (22) shows that

dim
(
H3(g, τ ) ∩

∧
1,2

)
= 0.

Letσ = b1(α1∧β2−α3∧β1)+· · ·+b3k−2(α
3k−2∧β3k−1−α3k∧β3k−2)+b3k−1(α

3k−1∧
β3k − α1 ∧ β3k−1). One can choose b1, . . . , b3k−1 such that σ is non-degenerate (for more
details see [23]) and, since it is closed, σ defines another symplectic form on M . Using again
the structure equations (22), one can prove thatH3(g, σ )∩∧ 1,2 = 〈α j+1∧β j ∧β j+1; j =
1, . . . , 3k〉, which implies

dim
(
H3(g, σ ) ∩

∧
1,2

)
= 3k.

We take ε > 0 sufficiently small so that the closed 2-formωt : = σ +t τ is non-degenerate
for any t ∈ [0, ε]. The space H3(g, ωt ) ∩ ∧ 1,2 has dimension 3k for t = 0, and dimension
0 for t �= 0. This proves that the harmonic cohomology group H3

hr(M, ωt ) varies with t .
Furthermore, since the harmonic number h3(M, ωt ) varies, by Proposition 8.1, we get that
the coeffective number ĉ3(M, ωt ) and the filtered number č(n−2)

2n−1 (M, ωt ) also vary with t .
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