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Abstract
Applying Élie Cartan’s classical method, we show that the biholomorphic equivalence prob-
lem to a totally nondegenerate Beloshapka’s model of CR dimension one and codimension
k > 1, whence of real dimension 2 + k, is reducible to some absolute parallelism, namely
to an {e}-structure on a certain prolonged manifold of real dimension either 3 + k or 4 + k.
The proof relies upon a careful weight analysis on the structure equations associated with
the mentioned problem of equivalence. As one of the applications of the achieved results, we
also reconfirm in CR dimension one Beloshapka’s maximum conjecture on the holomorphic
rigidity of his models in certain lengths equal or greater than three.
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1 Introduction

The notion of totally nondegenerate CR manifolds has a close connection with the theory of
free Lie algebras. In order to explain this connection in CR dimension one, let h1 and h2 be
two linearly independent elements of a certain vector space over the field C. By definition
[20,22,26], the rank two complex free Lie algebra F is the smallest non-commutative and
non-associative C-algebra having h1 and h2 as its elements, with bilinear multiplication
(h, h′) �→ [h, h′] ∈ F , satisfying the skew-symmetry and Jacobi-like identity:

0 = [h, h′] + [h′, h],
0 = [

h, [h′, h′′]]+ [
h′′, [h, h′]]+ [

h′, [h′′, h]],
for arbitrary elements h, h′ h′′ ∈ F . Such an algebra F is unique up to isomorphism.
Importantly, no linear relation exists between iterated multiplications, i.e., between iterated
Lie brackets, except those generated only by skew-symmetry and Jacobi identity: this is the
freeness of the algebra.

Then, the elements of F , designated as words, can be rewritten as iterated Lie brackets
between the letters h1 and h2; for instance:

[[h1, h2], h1
]
,
[
h1,

[
h1, [h2, h1]

]]
,
[[h2, h1],

[
h1, [h2, h1]

]]
.

We define the length of each word to be the number of h1, h2 elements in it. DefineF1 to be
theC-vector space generated by h1, h2 and for � � 2, letF� be theC-vector space generated
by all words of the lengths � �. Then clearly F = ⋃

��1 F� and we have the following
filtration:

F1 ⊂ F2 ⊂ F3 ⊂ · · · (1)

on F . Also let us denote by n�, dimension of the complex vector space F� which can
be computed by means of the recursive relation, introduced in [20, Theorem 2.6]. By an
induction based on the Jacobi identity, it follows that each length � word can be expressed
as a linear combination of some specific words of the form:

[
hi1 ,

[
hi2 ,

[
. . .
[
hi�−1 , hi�

]
. . .
]]

,

which are called simple words of the length �. Hence, for each � > 1 we have F� :=
F�−1 + [F1,F�−1]. The collection of all simple words generates F as a vector space over
C, though actually it is not a basis.1

Let F� := F�/F�−1 be the C-vector space generated by all (simple) words of length �.
Then, F� is of dimension m� := n� − n�−1 and [F�1 ,F�2 ] ⊂ F�1+�2 for each �1, �2 � 1.

1 One basis for the free Lie algebra F is the so-called Hall–Witt basis (see [20, Definition 2.5 and Theorem
2.6]).
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Consequently, our infinite dimensional free algebra F is graded of the form:

F1 ⊕ F2 ⊕ F3 ⊕ . . . . (2)

Now, let us turn our attention to the subject of totally nondegenerate CR manifolds in
CR dimension one. Let M ⊂ C

1+k be a real analytic generic submanifold of codimension
k and hence of real dimension 2 + k. As is known [1,8,20,21], the holomorphic subbundle
T 1,0M of its complexified bundle C ⊗ T M can be generated by a single holomorphic vector
field L . Let D1 := T 1,0M + T 0,1M , where T 0,1M := T 1,0M and define successively
Dj = Dj−1 + [D1, Dj−1] for j > 1. As is customary in the Lie–Cartan theory, we assume
strong uniformity, that is: for each j � 1, the dimension of Dj is fully constant on the points
of M if it is thought of as being local. So, all Dj s are subbundles ofC⊗T M . It is also natural
to assume that M is minimal [1,20,21], in the sense that:

Di = C ⊗ T M for all i � i∗ large enough.

Lastly, as a first step in the study of such differential structures, it is also natural to assume
that the ranks of the subbundles D1, D2, D3, . . . increase as much as possible.

Definition 1.1 An arbitrary (local) real analytic CR generic submanifold M ⊂ C
1+k of CR

dimension one and codimension k is called totally nondegenerate—or completely nondegen-
erate or maximally minimal (cf. [21])—whenever C ⊗ T M can be generated by means of
the minimum possible number of iterated Lie brackets between the generators L and L of
D1, increasing maximally through a filtration:

D1 � D2 � · · · � Dρ = C ⊗ T M .

In this case, the length ρ of this filtration is also called by length of M .

Set h1 := L and h2 := L . Rephrasing this in the language of free Lie algebras, a real
analytic CR generic submanifold M ⊂ C

1+k of CR dimension one is totally nondegenerate
of the length ρ whenever for each � = 1, . . . , ρ − 1, the vector space D� can be identified
by its correspondingF�. More precisely, whenever the rank of D� is maximum, equal to the
dimension n� ofF� and D� behaves precisely as an n�-dimensionalC-vector space generated
by the maximum possible number

∑
l�� ml of (simple) iterated Lie brackets between L

and L of lengths l ≤ �. As is the case with the free Lie algebra F , no linear relation exists
between the iterated brackets ofL andL in the lengths ≤ ρ − 1, except those generated by
skew-symmetry and Jacobi identity. However, the case of the last bundle Dρ = C ⊗ T M is
in part a different matter. Careful inspection of the above definition shows that the length ρ

of a k-codimensional submanifold M is indeed the smallest integer � satisfying:

rank C ⊗ T M ≤ dimF�

or equivalently 2+ k � n�. It is of course possible in certain codimensions k that ρ satisfies
2+k � nρ . Such a constraint on the rank of the complexified bundleC⊗T M in comparison
with the maximal freedom nρ may cause an encounter with a length ρ simple iterated bracket
Tρ ∈ Dρ/Dρ−1 which is not independent of the other length ρ simple brackets evenmodulo
skew-symmetry and Jacobi identity.

1.1 Existence of totally nondegenerate CRmanifolds in arbitrary codimensions

For a CR generic submanifold M ⊂ C
1+k of codimension k, consider the complex tangent

space T cM := Re (T 1,0M). If L := X + i Y is the single generator of T 1,0M , then clearly
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1124 M. Sabzevari

X, Y generate T cM . As is known [1,8,20]:

C ⊗ T cM = T 1,0M ⊕ T 0,1M .

SetD1 := T cM and define, as above, the subbundlesD j := D1+[D1,D j−1], j � 1 of the real
bundle T M . Thanks to the equality D1 = C⊗D1 and [C⊗D1, C⊗D j−1] = C⊗[D1,D j−1],
one verifies by means of a simple induction that Dj = C ⊗ D j for each j � 1. Therefore, it
is possible to restate the definition of total nondegeneracy in terms of the real distributions
D j as follows:2 M is a length ρ totally nondegenerate submanifold of C

1+k if and only if its
associated tangent bundle T M can be generated by means of the minimum possible number
of iterated Lie brackets between the generators X := ReL and Y := ImL of D1 = T cM ,
increasing maximally through the filtration:

D1 � D2 � · · · � Dρ = T M .

Roughly speaking, M is a length ρ totally nondegenerate CR manifold whenever after
setting h1 := x and h2 := Y, the behavior of the above filtration and also Lie brackets between
x, Y can be identified by (simple) words of lengths ≤ ρ, belonging to the rank two (real) free
Lie algebra.

Now, let us consider the existence of totally nondegenerate CR manifolds, a question
which may arise naturally at this time. For a fixed positive integer k—which will take over
the role of the codimension for the sought CR manifolds—let ρ be the smallest length �

such that n� := dimF� � 2 + k. Then by [20, Theorem 2.7], one finds a rank two real
subdistribution D1 := 〈X, Y〉 of T R

2+k , defined on a neighborhood � ⊂ R
2+k of the origin

such that:

(i) dimD�(0) = n� for each � < ρ and
(ii) dimDρ(0) = 2 + k or equivalently Dρ(0) = T0 R

2+k ,

where as above, D j := D j−1 + [D1,D j−1] and where D�(0) ⊂ T0R2+k is the image space
of D j at the origin. By definition [1, p. 74], the second property (ii) indicates that the origin
0 ∈ R

2+k is a finite type point of the distribution D1 of the full type 2 + k. Since Dρ has the
maximum possible dimension at 0, one finds a certain open subset M of �, including the
origin, such that Dρ(p) is again of the maximum possible dimension for each p ∈ M , i.e.,
Dρ(p) = TpR

2+k . Then M , as an open subset of R
2+k , is a real submanifold of dimension

2 + k and we claim that it is actually a CR generic submanifold of C
1+k ≡ R

2+2k of
codimension k. Indeed, defining the complex structure map J : D1 → D1 on the subbundle
D1 := D1 |M of T M by J (X) = Y and J (Y) = −X, the complexified bundle C ⊗ D1 can be
decomposed as (cf. [13, p. 1573]):

C ⊗ D1 := D1,0 ⊕ D0,1

where D1,0 and D0,1 are generated by the single vector fieldsL := X+i Y andL := X−i Y,
respectively. The rank one complex subbundle D1,0 ⊂ C ⊗ T M is involutive. Then by
definition [13], D1 is a CR structure and the real submanifold M is a CR manifold of CR
dimension 1 = 1

2 rank D1 and codimension k = dimR M − 2CRdim M . As before, we can
denote D1, D1,0 and D0,1 by T cM , T 1,0M and T 0,1M , respectively. Moreover, as M is
an open subset of R

2+k , then it is real analytic. Hence according to [21, Proposition 3.3]
(expanded version) we can assume that M , regarded locally, is a generic submanifold of
C
1+k . Finally, two properties (i) and (ii) guarantee that M is also totally nondegenerate.

2 For technical reasons, we prefer to keep this definition in terms of the complexified distributions Dj as
Definition 1.1.

123



Biholomorphic equivalence to totally nondegenerate model CR… 1125

By definition, on the other hand, for every arbitrary real analytic totally nondegenerate
submanifold M ⊂ C

1+k of codimension k, passing through the origin and with D1 = T cM ,
the above two items (i) and (ii) are satisfied. This indicates that the so-called Hörmander num-
bers of M (see [1] for definition) are 2, 3, 4, . . . , ρ with the maximum possible multiplicities
m2,m3, . . . ,mρ−1,m′

ρ , respectively, where, m j := n j − n j−1 for j = 1, . . . , ρ − 1—as

was in the case of the rank two free Lie algebra—and m′
ρ := k −∑ρ−1

j=1 m j � mρ . Then,
by summing up the results and applying Theorems 4.3.2 and 4.5.1 of [1], we can state that;

Theorem 1.1 (i) In each codimension k, totally nondegenerate real analytic CR generic sub-
manifolds M ⊂ C

1+k , passing through the origin, exist. The length ρ of such manifolds
is determined as the smallest integer � such that n� � 2 + k.

(ii) In agreement with the above notations, consider the canonical coordinates (z,w2, . . . ,

wρ−1,wρ) ofC1+k , with z ∈ C, withw j ∈ C
m j for j = 2, . . . , ρ−1 andwithwρ ∈ C

m′
ρ .

Assign the weight 1 to z and the weight j to each component of the vector w j and to
its real and imaginary parts, as well, for j = 1, . . . , ρ. Then, the already mentioned
submanifolds M ⊂ C

1+k can be represented locally near the origin as the graph of some
k real analytic functions:

Imw j := � j

(
z, z,Rew2, . . . ,Rew j−1

)
+ O( j) ( j=2,...,ρ), (3)

where � j is a weighted homogeneous vector-valued polynomial of the weight j and
where O( j) is some certain (possibly vanishing) sum of monomials of weights � j + 1.
Moreover, denoting by � j := � j + O( j), the right hand sides of the above equations,
we have:

� j (0, z,Rew) ≡ � j (z, 0,Rew) ≡ 0.

In 2004, Valerii Beloshapka established in [5] his universal model surfaces associatedwith
totally nondegenerate CR manifolds and designed an effective method to construct them. It
was actually along the celebrated approach initiated first by Poincaré [25] in 1907 to study real
submanifolds in the complex space C

2 by means of the associated model surface, namely the
Heisenberg sphere [22]. Several years later in 1974, Chern and Moser in their seminal work
[9] notably developed this approach by associating appropriate models to nondegenerate real
hypersurfaces in complex spaces. In this framework, many questions about automorphism
groups, classification, invariants and others can be reduced to similar problems about the
associated models.

To the best of author’s knowledge, Beloshapka’s work is the most general model-
construction in the class of totally nondegenerate CR manifolds of arbitrary dimensions.
Roughly speaking and after appropriate weight assignments (see Sect. 2 for more details), a
Beloshapka’s model of totally nondegenerate manifolds in CR dimension one (as is our spe-
cific case), codimension k and accordingly determined length ρ is represented as the graph
of some weighted homogeneous polynomial functions of the form:

Imw j := � j

(
z, z,Rew2, . . . ,Rew j−1

)
( j=2,...,ρ),

obtained actually by removing the non-homogeneous parts O( j) from the general defining
equations (3) ofmanifolds belonging to this class. Beloshapka’smodels are all homogeneous,
of finite type and enjoy several other nice properties [5, Theorem 14] that exhibit their signif-
icance. Two totally nondegenerate CR manifolds are holomorphically equivalent whenever
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their associated models are as well. Moreover, they are most symmetric nondegenerate sur-
faces in the sense that dimension of the group of automorphisms (see below for definition)
of a totally nondegenerate manifold does not exceed that of its associated model.

Convention 1.2 Let us stress that throughout this paper, we mainly deal with Beloshapka’s
totally nondegenerate CR generic models in CR dimension one which, for the sake of brevity,
are also termed as “CR models” or “models”. We fix the notation Mk for such CR models in
codimension k.

For a length ρ CR model Mk ⊂ C
1+k in coordinates (z, w1, . . . , wk), a holomorphic

vector field:

X := Z(z, w)
∂

∂z
+

k∑

l=1

Wl(z, w)
∂

∂wl

is called an infinitesimal CR automorphism whenever its real part is tangent to Mk , that is
(X + X)|Mk ≡ 0. The collection of all infinitesimal CR automorphisms associated with Mk

form a Lie algebra, denoted by autCR(Mk). It is the CR symmetry Lie algebra of Mk in the
terminology of Sophus Lie’s symmetry theory [18] and is of finite dimension, of polynomial
type and graded of the form [5,31]:

autCR(Mk) := g−ρ ⊕ · · · g−1︸ ︷︷ ︸
g−

⊕g0 ⊕ g1 ⊕ · · · ⊕ g�︸ ︷︷ ︸
g+

, �, ρ ∈ N, (4)

with [gi , g j ] ⊂ gi+ j . Viewing the real analyticCRgenericmodelMk in a purely intrinsicway,
one may consider the local Lie group AutCR(Mk), associated with autCR(Mk), comprising
automorphisms of the CR structure, namely of local C∞ diffeomorphisms h : Mk → Mk

satisfying:

h∗
(
T cMk

) = T cMk .

In other words, h belongs to AutCR(Mk) if and only if it is a (local) biholomorphism of Mk

[19]. Corresponding to (4), one may write:

AutCR(Mk) := G− · G0 · G+. (5)

Beloshapka [5] showed that the Lie group G− associated with the above subalgebra g− of
autCR(Mk) is (2 + k)-dimensional, acts on Mk freely and can naturally be identified with
Mk , itself. Also, G0 associated with the subalgebra g0 comprises all linear automorphisms
of Mk in the isotropy subgroup Aut0(Mk) of AutCR(Mk) at 0 ∈ Mk while G+, associated
with g+, comprises as well all the nonlinear ones.

Determining such Lie algebras of infinitesimal CR automorphisms is a question which
lies pivotally at the heart of the problem of classifying local analytic CR manifolds up to
biholomorphisms (see, e.g., [7] and the references therein). In fact, the groundbreakingworks
of Sophus Lie and his followers show that the most fundamental question in concern here is
to draw up lists of possible such Lie algebras which would classify all possible manifolds
according to their CR symmetries.

From a computational point of view, although computing the nonpositive part g− ⊕ g0 of
autCR(Mk) is partly convenient—in particular by means of the algorithm designed in [31]—
unfortunately for g+ one needs highly complicated computations which rely on constructing
and solving arising systems of partial differential equations [21,30,32]. Nevertheless, after
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several years of experience in computing these algebras in various dimensions, Beloshapka
[2] conjectured that;3

Conjecture 1.3 (Beloshapka’s Maximum Conjecture) Each of Beloshapka’s totally nonde-
generate CR models M of length ρ ≥ 3 has holomorphic rigidity; that is: in its associated
graded algebra autCR(M), the subalgebra g+ is trivial or equivalently � = 0 [cf. (4)].

Holding this conjecture true may bring about having several other facts about CR models
and their associated totally nondegenerate CR manifolds (see, e.g., [3]). At present, there are
only a few considerable results that verify it in some specific cases. For instance, Gammel
and Kossovskiy [12] confirmed it in the specific length ρ = 3. Kossovskiy also proved this
conjecture in [14] for length four model CR manifolds with reflection. Both of these proofs
are based on the structure of the envelopes of holomorphy of the corresponding models.
Furthermore, the author in [27] provided a short proof for this conjecture in CR dimension
one. In that paper, it is also shown that in each arbitrary length ρ ≥ 3, there exists at least
one CR model—called by full-model—with holomorphic rigidity. These results of [27] are
proved by means of some certain facts arisen in the Tanaka theory of prolongations. Two
more relevant (partial) results in this setting are as follows:

• if ρ = 4, then � � 1 [6, Corollary 7],
• if ρ = 5, then � � k, where k is the CR codimension of M [34, Proposition 2.2].

In these works the results are achieved by means of directly computing the associated desired
Lie algebras. But the difficulty of this method which lies in the incredible differential-
algebraic complexity involved (cf. [30]), may convince one to also consider this conjecture
through other ways.

On the other hand, recently in [21] and in particular in Sect. 5 of that paper, we attempted
to study by means of Cartan’s classical approach, the biholomorphic equivalence problem to
the 5-dimensional length 3 cubic model M3 ⊂ C

4—denoted there by M5
c—represented as

the graph of three defining equations:

Imw1 = zz, Imw2 = zz(z + z), Imw3 = zz(z − z).

Just as a consequence of the results, we observed that the associated 7-dimensional CR
automorphism algebra:

autCR(M3) := g−3 ⊕ g−2 ⊕ g−1 ⊕ g0,

computed in Sect. 3 of that paper, is surprisingly isomorphic to that defined by the final
constant type structure equations of the already mentioned equivalence problem (cf. [21,
Theorem 5.1]). This observation was our original motivation to look upon Cartan’s classical
approach as an appropriate way to study Beloshapka’s maximum conjecture. Examining this
idea on some other CR models like those studied in [22,24,29,32] also convinced us more
about its effectiveness. Indeed, the systematic approach developed in recent years by Joël
Merker, Samuel Pocchiola and the present author provides a unified way toward treating the
wide variety of biholomorphic equivalence problems between CR manifolds.

Cartan’s classical method for solving equivalence problems includes three major parts:
absorption, normalization and prolongation. In the CR context, usually all steps require
advanced computations, the size of which increases considerably as soon as the dimension of
CRmanifolds increases, even by one unit. In particular, among the absorption-normalization

3 Although Beloshapka introduced his conjecture in 2012 but he and his students had been aware of it since
several years before (see, e.g., [3,12]).
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steps, one encounters some arising polynomial systems, the solutions of which determine the
value of some group parameters associatedwith the problem.As is quite predictable due to the
arbitrariness of dimension, one of our main obstacles for solving the equivalence problem,
under question, will be actually solving these arising polynomial systems in this general
manner. In order to bypass and manipulate this critical complexity, our main weapon in this
paper is in fact some helpful results achieved by a careful weight analysis of the equivalence
problems, under study. Such analysis enables us to provide amuchmore convenient weighted
homogeneous subsystem of the already mentioned systemwhich is deceptively hidden inside
the original one and opens ourwayof finding the desired general outcomeof the normalization
process.

This paper is organized as follows. In the next preliminary section, Sect. 2, we present
a brief description of constructing defining equations of Beloshapka’s CR models in CR
dimension one. Next in Sect. 3, we endeavor to find certain expression of the structure
equations associatedwith the biholomorphic equivalence problembetween an arbitrary length
ρ CRmodel Mk and any arbitrary totally nondegenerate CR manifoldMk of the same length
and codimension (cf. Theorem 1.1). For this purpose, first we construct, in an almost explicit
manner, an initial frame:

L := {
L1,1,L1,2,L2,3, . . . ,Lρ,2+k

}

on C⊗T Mk , whereL1,1 andL1,2 = L1,1 are the single generators of T 1,0Mk and T 0,1Mk ,
respectively, and where eachL�,i is a length � iterated Lie bracket between them constructed
as a simple word. We also consider a so-called lifted frameL := {L1,1,L1,2, . . . ,Lρ,2+k} on
C ⊗ TMk , constructed in a similar manner as simple words written by the single generators
L1,1 and L1,2 := L1,1. Let � := {σ1,1, σ1,2, . . . , σρ,2+k} and 	 := {	1,1, 	1,2, . . . , 	ρ,2+k}
be two coframes on C ⊗ T ∗Mk and C ⊗ T ∗Mk , dual to the frames L and L, respectively.
We realize that for a general biholomorphic equivalence map h : Mk → Mk , the associated
matrix of the induced complexified linear pull-back h∗ : C⊗T ∗Mk → C⊗T ∗Mk , expressed
in terms of the coframes 	 and � is an invertible (2+ k) × (2+ k) lower triangular matrix:

g :=

⎛

⎜⎜⎜⎜⎜
⎝

a p
1 a

q
1 ·· 0 0 0 0

...
...

...
...

...
...

a• . . . a3 a1a1 0 0
a• . . . a5 −a2 a1 0
a• . . . a4 a2 0 a1

⎞

⎟⎟⎟⎟⎟
⎠

with a1 �= 0,

for some certain complex-valued functions a1, a2, a3, . . ., in terms of coordinates of C
1+k .

Only some powers of a1 and a1 are visible at the diagonal of g. As is standard in the
terminology of Cartan’s theory, we call this matrix the ambiguity matrix (or G-structure) of
the mentioned equivalence problem and its nonzero entries a• the group parameters. The
collection of all such matrices forms a Lie group G which is called the structure Lie group
of the equivalence problem.

The main focus of Sect. 4 is a weight analysis on the structure equations, constructed in
the preceding section by applying necessary differentiations and computations on the already
obtained equality	 = g·�. In particular, after appropriateweight assignment to the appearing
group parameters and also after inspecting carefully the inverse of the ambiguity matrix g,
we discover that all the torsion coefficients appearing through the structure equations are of
the same weight zero (cf. Proposition 4.4).

Next in Sect. 5, we consider the outcome of the absorption and normalization steps on
the constructed structure equations. It is in this section that we extract a subtle weighted
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homogeneous subsystem of the polynomial system, arising among the absorption and nor-
malization steps. Solving this subsystem by means of some computational techniques from
weighted algebraic geometry [11], we conclude that except a1, all the other group parameters
a2, a3, . . . must be vanishing;

Proposition 1.4 (cf. Proposition 5.5) All the appearing group parameters a2, a3, . . . vanish
identically after sufficient steps of absorption and normalization.

This key result converts our structure equations into a delicate constant type form (cf.
Proposition 5.6):

d 	�,i := (pi α + qi α) ∧ 	�,i + ∑

l+m=�

j,n

cij,n 	l, j ∧ 	m,n (�=1,...,ρ, i=1,...,2+k). (6)

Here, pi , qi , cij,n are some constant integers and α := da1
a1

is the only remaining Maurer–
Cartan form. For the only not-yet-determined parameter a1, we discover that it is either
normalizable to a real (or imaginary) group parameter or it is never normalizable. We also
provide a simple criterion, concerning this normalization (cf. Proposition 5.7). In the former
case, the structure group G of the above ambiguity matrices will be reduced to Gred of real
dimension 1 while in the later case Gred is of real dimension 2. Next, we start the last part,
namely prolongation, of Cartan’s method. Accordingly, the original equivalence problem to
our model Mk converts by that to the prolonged space Mk × Gred of real dimension either
3 + k or 4 + k. Finding the structure equations of this new equivalence problem is easy, it
suffices adding the equation dα = 0 to the above structure equations (6). This provides us
with the following main result of this paper;

Theorem 1.2 (cf. Theorem 5.1) The biholomorphic equivalence problem of a totally non-
degenerate CR model Mk of codimension k and real dimension 2 + k is reducible to some
absolute parallelisms, namely to some certain {e}-structures on prolonged manifolds of real
dimension either 3 + k or 4 + k.

In the short Sect. 6, we prove the maximum conjecture 1.3 in CR dimension one as
a consequence of the achieved results. According to the principles of Cartan’s theory [23],
once we receive the final constant type structure equations of the equivalence problem to each
CR model Mk , we can plainly attain the structure of its symmetry Lie algebra autCR(Mk).
Computing this algebra, we realize that it is graded without any positive part as was the
assertion of the maximum conjecture.

Proposition 1.5 (cf. Proposition 6.1) The Lie algebra autCR(Mk) of a k-codimensional
weight ρ totally nondegenerate model Mk, of CR dimension one, is graded of the form:

autCR(Mk) := g−ρ ⊕ · · · ⊕ g−1︸ ︷︷ ︸
g−

⊕g0

where g− is (2 + k)-dimensional and where g0 is Abelian of dimension either 1 or 2. Thus,
we have:

dim
(
autCR(Mk)

) = 3 + k or 4 + k.

As mentioned, one finds in [27] a very shorter proof of the maximum conjecture in CR
dimension one based upon some results and techniques in the Tanaka theory of transitive
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prolongations. However, it is extremely important to notice that solving biholomorphic equiv-
alence problem to totally nondegenerate models of CR dimension one, as is the main goal of
this paper, not only helps us to reconfirm the maximum conjecture in this CR dimension but
it also determines precisely desired invariants of the problem and the structure of associated
algebras of infinitesimal CR automorphisms. Moreover, it provides one with the opportunity
of computing moduli spaces [4,16,29] of the models and constructing Cartan geometries
on totally nondegenerate CR manifolds [22,33]. None of such results and opportunities are
achieved in [27].

Finally in “Appendix A”, we illustrate the results by considering the 8-dimensional length
four CR model M6.

As a homogeneous space, each CR model Mk can be considered as a quotient space [see
the paragraph after Eq. (5)]:

Mk ≡ AutCR(Mk)

Aut0(Mk)
∼= G−

of the CR automorphism group AutCR(Mk), corresponding to autCR(Mk) by its isotropy
subgroup Aut0(Mk) at the origin, corresponding to g0 ⊕g+. As the above proposition states,
such isotropy group is just G0, corresponding to the Abelian algebra g0 and comprises only
linear CR automorphisms h : Mk → Mk , preserving the origin. Even more precisely, in
this case that dim g0 is either 1 or 2, then G0 can be identified with the matrix Lie group
GL(1, R) = (R∗,×) in the former case and GL(1, C) = (C∗,×) in the latter.

2 Beloshapka’s models

In this preliminary section, we explain the method of constructing defining equations of
Beloshapka’s models in CR dimension one. For more detailed explanation, we refer the
reader to [5]. In each fixed CR codimension k, a certain Beloshapka’s model Mk ⊂ C

1+k can
be represented in coordinates (z, w1, . . . , wk) as the graph of some k real-valued polynomial
functions, which roughly speaking, are the homogeneous parts of the defining equations
introduced in Theorem 1.1. Throughout constructing these defining polynomials and to each
complex coordinate x, it will be assigned a weight number [x]. Recall that for a monomial
xα1
1 · · · xαn

n , the associatedweight is defined as
∑n

i=1 αi [xi ].Moreover, a polynomial is called
weighted homogeneous of the weight w whenever all of its monomials are of this weight.
We assign the same weight [x] to the conjugation x and real and imaginary parts of x, as well.
Before starting the construction, we first need the following definition;

Definition 2.1 (cf. [15]) An arbitrary C 2 complex function f : � ⊂ C
n → C in terms

of the coordinates (z1, . . . , zn) is called pluriharmonic on its domain � whenever for each
i, j = 1, . . . , n we have:

∂2 f

∂zi ∂z j
≡ 0.

In the case that f is real-valued, then locally, pluriharmonicity of f is equivalent to state
that it is the real part of a holomorphic function [15, Propoition 2.2.3].

By convention, we assign to the complex variable z the weight [z] = 1. The weights of the
next complex variables w1, w2, . . ., which are absolutely bigger than 1, will be determined
as follows, step by step. At the first onset that only the weight of the single variable z is
known, let N2 be a basis for the space of all non-pluriharmonic real-valued polynomials of
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the homogeneous weight 2, in terms of the complex variables z and z. A careful inspection
shows that N2 comprises merely the single term:

N2 := {zz}.
Since the cardinality of this set is k2 = 1, then we assign immediately the weight 2 to the
next one complex variable w1, i.e., [w1] = 2.

At themoment, two of the complex variables z andw1 have received their weight numbers.
Define the next collection N3 as a basis for the space of all real-valued polynomials of the
weight 3, in terms of the variables z, z and Rew1, which are non-pluriharmonic on the
submanifold represented by the weight two homogeneous polynomial Imw1 = zz in C

2.
Again, a careful inspection shows that:

N3 :=
{

Re z2z = z2z + zz2

2
, Im z2z = z2z − zz2

2i

}

.

This time, since the cardinality of N3 is k3 = 2, then immediately we assign the weight
3—namely the weight of the monomials in N3—to the next two complex variables w2 and
w3.

Inductively, assume that N j0 is the last constructed basis for some integer j0 ∈ N. This
means that all the complex variables z, w1, w2, w3, . . . , wr have received their weight num-
bers where r := ∑ j0

i=2 ki and where ki := CardNi . To construct the next collection N j0+1

and for the sake of clarity, let us show the ki elements of each Ni as Ni := {ti1, ti2, . . . , tiki }.
Also for each � = 2, . . . , j0, let w� = (wl , . . . , wl+k�−1)

t be the k�-tuple of all complex
variables w1, . . . , wr of the same weight � and consider:

A� =
⎛

⎜
⎝

a�
11 . . . a�

1k�

...
...

...

a�
k�1

. . . a�
k�k�

⎞

⎟
⎠

as some real k� × k� matrix of the maximum Rank(A�) = k�. Then, the sought collection
N j0+1 is defined as a basis for the space of all real-valued polynomials of the weight j0 + 1,
in terms of the already weight determined variables z, z,Rew1,Rew2, . . . ,Rewr, which
are non-pluriharmonic on the submanifold represented as the graph of some r weighted
homogeneous polynomial functions:

Imw� = A� ·
⎛

⎜
⎝

t�1
...

t�k�

⎞

⎟
⎠ (�=2,..., j0),

in C
r+1. Here, Imw� is the k�-tuple of imaginary parts of w�. If the cardinality of N j0+1

is k j0+1, then one assigns immediately the weight j0 + 1 to all the next complex variables
wr+1, . . . , wr+k j0+1 .

2.1 Constructing the defining equations

After assigning appropriateweights to the complex variables z, w•, we are ready to explain the
procedure of constructing defining polynomials of a k-codimensional Beloshapka’s model
Mk ⊂ C

k+1. In this case, we need only the assigned weights to the complex coordinates
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(z, w1, . . . , wk) of Mk , hence we have to construct the above sets Ni until we arrive at the
stage i = ρ where ρ is the smallest integer satisfying:

k � k2 + · · · + kρ−1 + kρ. (7)

In this case, the chain of associated weights to the complex variables z, w1, . . . , wk is ascend-
ing and the last variable wk is of the maximum weight ρ, which will be in fact the length of
Mk (cf. Theorem 1.1).

Now, for each � = 2, . . . , ρ − 1, consider the k�-tuple w� and the k� × k� matrix A�

as above. For � = ρ and since in this case the number of the present weight ρ variables
among w1, . . . , wk is m = k − ∑ρ−1

i=2 ki � kρ , then consider the m-tuple wρ as wρ =
(wk−m+1, . . . , wk). Also let:

Aρ =

⎛

⎜
⎜
⎝

aρ
11 . . . aρ

1,kρ

...
...

...

aρ
m1 . . . aρ

mkρ

⎞

⎟
⎟
⎠

be a certain real m × kρ matrix of the maximum Rank(Aρ) = m. Then, the desired defining
equations of Mk can be represented in the following matrix form:

Imw� = A� ·
⎛

⎜
⎝

t�1
...

t�k�

⎞

⎟
⎠ , (�=2,...,ρ). (8)

As we observe, in a fixed codimension k one may find infinite number of CR models Mk

determined by different values of the above matrix entries a�
i j . Nevertheless, possibly many

of them are equivalent, up to some biholomorphic change of coordinates. For example in
codimension k = 3, CRmodels M3 ⊂ C

4 are represented as the graph of some three defining
polynomials:

Imw1 = a zz,

Imw2 = a11
(
z2z + zz2

)+ ia12
(
z2z − zz2

)
, (a, ai j ∈ R),

Imw3 = a21
(
z2z + zz2

)+ ia22
(
z2z − zz2

)
.

However, by some simple biholomorphic changes of coordinates like those presented at the
page 50 of [21] (expanded version), one shows that they are biholomorphically equivalent to
the so-called 5-cubic model:

M5
c :

⎡

⎣
Imw1 = zz,
Imw2 = z2z + zz2,
Imw3 = i

(
z2z − zz2

)
.

Anyway, in this paper we do not stress on such biholomorphic normalizations since it will
not matter whether the under consideration defining equations are normalized or not.

Summing up the above procedure, each arbitrary CR model Mk ⊂ C
1+k of codimension

k and of the length ρ can be represented as the graph of some k certain real-valued defining
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equations:

Mk :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w1 − w1 = 2i �1(z, z),
...

w j − w j = 2i � j (z, z, w,w),
...

wk − wk = 2i �k(z, z, w,w),

(9)

where each� j is of the weight [w j ], in terms of the complex variables z, z and real variables
Rewi with [wi ] � [w j ]. As one observes, the defining equations of Mk are actually those
of a certain (k − 1)-codimensional model Mk−1, added just by the last equation wk − wk =
2i �k(z, z, w,w).

Remark 2.2 Instead of the above Beloshapka’s algebraic method for constructing defining
equations of a totally nondegenerate CR model Mk , Merker [17] has introduced a more
geometric way by considering the affect of the total nondegeneracy on the converging power
series expansions of the desired defining equations.

3 Constructing associated structure equations

Studying equivalences between geometric objects by means of Cartan’s classical approach
entails first some preliminary equipments, the end of them is the construction of associated
structure equations. In the current case of biholomorphic equivalence toCRmodels,we follow
the systematic method developed among the recent years in [21,24,29,32] which includes
three major steps to bring us to the stage of constructing the sought structure equations:

• Finding appropriate initial CR frame for each model and computing its Lie commutators.
• Passage to the dual CR coframe and computing the associated Darboux–Cartan structure.
• Finding the ambiguity matrix of the equivalence problem, in question.

3.1 Associated initial frames for the complexified tangent bundles

In the defining equations (9) of a k-codimensional CR model Mk ⊂ C
k+1 in coordinates

(z, w1, . . . , wk), each real-valued polynomial � j (z, z, w) is O(2) and thus we can apply the
analytic implicit function theorem in order to solve these equations for the k variables w j ,
j = 1, . . . , k. Performing this, we obtain equivalently a collection of k complex defining
equations like:

Mk : {
w j = � j (z, z, w) ( j=1,...,k), (10)

where each complex-valued polynomial function � j is in terms of z, z, w j and some other
conjugated variables w• of absolutely lower weights than [w j ]. By an induction on the
weights associated with the complex coordinates w1, . . . , wk , one verifies that similar to the
real-valued functions�• also each complex-valued polynomial� j isweighted homogeneous
of the weight [w j ].

Having in hand the complex defining polynomials (10) of the CRmodelMk and according
to [20,21], then the associated holomorphic and antiholomorphic tangent bundles T 1,0Mk
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and T 0,1Mk , can be generated, respectively, by the single vector fields:

L := ∂

∂z
+

k∑

j=1

∂� j

∂z
(z, z, w)

∂

∂w j
and L := ∂

∂z
+

k∑

j=1

∂� j

∂z
(z, z, w)

∂

∂w j
. (11)

For x to be one of the complex variables z, w1, . . . , wk , or one of their conjugations, or
one of their real or imaginary parts, we assign the weight −[x] to the standard vector filed
∂
∂x . Notice that for a weighted homogeneous polynomial F(x, x), each differentiation of the
shape Fxi (or Fxi ) decreases its weight by [xi ] numbers, if it does not vanish. Then, by a
glance on the above expressions ofL andL one finds them as two weighted homogeneous
fields of the same weight −1.

3.1.1 Notations

Henceforth and in order to stress their lengths (and weights), let us denote byL1,1 andL1,2

the above vector fieldL and its conjugationL , respectively. By the total nondegeneracy of
our length ρ fixed CR model Mk , one constructs the sought initial frame on C ⊗ T Mk by
applying the iterated Lie brackets—or simple words in the terminology of free Lie algebras—
of these two vector fields, up to the length ρ. Let us denote byL�,i and call it by the i th initial
vector field, the i th appearing independent vector filed obtained as an iterated Lie bracket of
the length �. For example, the next and third appearing vector filed can be computed as the
length two iterated Lie bracket:

L2,3 = [
L1,1,L1,2

]
.

In the case that the reference to the order i of a length � initial vector fieldL�,i is superfluous
and by abuse of notation, we denote it just byL�, which actually is a vector field expressible
(inductively) as:

L� :=
⎡

⎢
⎣L1,i1 ,

[
L1,i2 ,

[
. . . ,

[
L1,i�−1 ,L1,i�

]]]

︸ ︷︷ ︸
L�−1

⎤

⎥
⎦ (i j=1,2, �=1,...,ρ). (12)

Notice that according to the expressions ofL1,1 andL1,2 in (11) and from the length � = 2
to the end, one does not see any coefficient of ∂

∂z or
∂
∂z in the expression of L�.

Lemma 3.1 Each length � initial vector field L� is homogeneous of the weight −� with
polynomial coefficients. Moreover, for two initial vector fieldsLα,i andLβ, j with α+β = �,
if [Lα,i ,Lβ, j ] �≡ 0 then it is a weighted homogeneous vector field of the weight −�, again
with polynomial coefficients.

Proof Since the coefficients of the basis vector fields L1 are of polynomial type, the poly-
nomiality of the coefficients in their iterated brackets is obvious. Concerning the weights,
we continue by a plain induction on the length �. As we saw, the two vector fields L1,1 and
L1,2 of the length � = 1 are of the homogeneous weight −1. For the next lengths and as our
induction hypothesis, assume that all length � vector fields:

L� :=
∑

[wi ]≥�

ϕi (z, z, w,w)
∂

∂wi
+
∑

[wi ]≥�

ψi (z, z, w,w)
∂

∂wi

are weighted homogeneous of the weight −�. Thus, the nonzero polynomial coefficients ϕi
and ψi are homogeneous of the nonnegative weights [wi ] − �. Now, consider an arbitrary
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new appearing initial field L�+1 = [L1,L�] of the length � + 1. Applying the Leibniz rule
on this bracket with the present expressions of the weighted homogeneous fields L1 in (11)
andL�, it manifests itself as a weight −(� + 1) homogeneous vector field, as was expected.
The proof of the second part of the assertion is completely similar. ��

Proposition 3.2 LetLα,i andLβ, j be two initial vector fields associated with a length ρ CR
model Mk with α + β = �. Then, we have:

[
Lα,i ,Lβ, j

] =
∑

t

ct L�,t ,

for some constant integers ct . In particular if � > ρ, then [Lα,i ,Lβ, j ] ≡ 0.

Proof Since our length ρ CRmodel Mk is totally nondegenerate and according to the discus-
sion after Definition 1.1, one verifies that the equality holds in the case that � = 1, . . . , ρ −1.
Hence, let us prove the assertion first by assuming � = ρ. If [Lα,i ,Lβ, j ] vanishes, then it
remains nothing to prove. Otherwise, Lemma 3.1 indicates that this Lie bracket produces a
weighted homogeneous vector field of the weight −ρ with polynomial coefficients. Taking
into account that the maximum weight of the extant complex variables is ρ, then this bracket
can be written just in the form:

[
Lα,i ,Lβ, j

] :=
∑

[wi ]=ρ

ai
∂

∂wi
+

∑

[wi ]=ρ

bi
∂

∂wi
,

for some constant integers ai and bi . On the other hand, the projection map π : C
1+k →

R
2+k defined as (x, y,u, v) �→ (x, y,u) constitutes a natural local chart-map on the real

submanifold Mk—still we denote z = x + iy and w j = u j + i v j . Then, one restates
intrinsically the expression of eachL� in terms of z, z, u j by dropping ∂

∂v j
for j = 1, . . . , k

and also replacing each v j by its expression in (9). Then in particular, each weight −ρ initial
vector field Lρ is expressible as some combinations, with constant coefficients, of standard
fields ∂

∂u j
with [u j ] = [w j ] = ρ. Similar fact holds also for the above bracket [Lα,i ,Lβ, j ].

According to Theorem 1.1, the number of standard fields ∂
∂u j

, with [u j ] = ρ is exactly equal
to the number of (linearly independent) initial vector fields of the length ρ. This implies
that the C-vector space generated by all standard fields ∂

∂u j
with [u j ] = ρ is equal to that

generated by the length ρ initial vector fieldsLρ . Consequently, as an element of this space,
the Lie bracket [Lα,i ,Lβ, j ] can be expressed as a linear combination of the length ρ initial
vector fields Lρ with constant coefficients.
To continue the proof, now let � = α + β > ρ and suppose, to derive a contradiction, that
[Lα,i ,Lβ, j ] �≡ 0. Then, according to Lemma 3.1, it should be a weight −� vector field with
polynomial coefficients:

[
Lα,i ,Lβ, j

] :=
∑

i

ϕi (z, z, w,w)
∂

∂wi
+
∑

i

ψi (z, z, w,w)
∂

∂wi
,

where, consequently, each polynomial ϕi and ψi is of the weight [wi ] − �. Since these
coefficients are of the polynomial type, then their weights are nonnegative and thus [wi ] ≥
� > ρ. This is a contradiction to the fact that among our coordinates there is no any complex
variable of the weight absolutely bigger than ρ. ��
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Remark 3.3 According to the notations introduced before Definition 1.1, the complexified
tangent bundle C ⊗ T Mk of an arbitrary length ρ CR model Mk of codimension k, admits
the filtration:

T 1,0Mk + T 0,1Mk = D1 ⊂ D2 ⊂ · · · ⊂ Dρ = C ⊗ T Mk,

where each D� is a subdistribution constituted by initial vector fields Ll of lengths l � �.
The above proposition indicates that at each point p ∈ Mk near the origin, C ⊗ TpMk can
be identified with the graded complex nilpotent Lie algebra:

m := m−ρ ⊕ m−ρ+1 ⊕ · · · ⊕ m−1

where m−1 := D1 and where m−� := D�/D�−1, � = 2, . . . , ρ is the C-vector space
generated by all initial vector fields of the precise weight −�. In this case, D1 is called
a distribution of constant type m.

3.2 The associated initial coframes and their Darboux–Cartan structures

For � = 1, . . . , ρ and i = 1, . . . , 2 + k, let us denote by σ�,i the dual CR 1-form associated
with the initial vector field L�,i . Since the collection of the weighted homogeneous vector
fields {L1,1, . . . ,Lρ,2+k} forms a frame for the complexified bundle C⊗T Mk , then its dual
set {σ1,1, . . . , σρ,2+k} is a coframe for it.

Lemma 3.4 Given a frame
{
V1, . . . ,Vn

}
on an open subset ofRn enjoying the Lie structure:

[
Vi1 , Vi2

] =
n∑

k=1

cki1,i2 Vk (1�i1<i2�n),

where the cki1,i2 are certain functions on R
n, the dual coframe {ω1, . . . , ωn} satisfying by

definition:

ωk(Vi
) = δki

enjoys a quite similar Darboux–Cartan structure, up to an overall minus sign:

dωk = −
∑

1�i1<i2�n

cki1,i2 ωi1 ∧ ωi2 (k=1...n).

As a direct consequence of the above Lemma and Proposition 3.2, we find the Darboux–
Cartan structure of our initial coframe as follows;

Proposition 3.5 The exterior differentiation of each 1-form σ� dual to the weight −� initial
vector field L� is of the form:

dσ� :=
∑

β+γ=�

cβ,γ σβ ∧ σγ ,

for some constant complex integers cβ,γ . This equivalently means that in the expression of
each corresponding Lie bracket [Lβ,Lγ ], with β + γ = �, the coefficient of L� is −cβ,γ .

Weight assignment Naturally, we assign the weight −� to a certain 1-form σ�,i and its differ-
entiation dσ�,i as is the weight of their corresponding field L�,i . Also, we occasionally say
that σ�,i is of the length �.

Another simple but quite useful result is as follows;
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Lemma 3.6 For each weight −� initial 1-form σ�,i with � �= 1, there is a weight −(� − 1)
initial 1-form σ�−1, j where either σ�−1, j ∧ σ1,1 or σ�−1, j ∧ σ1,2 is visible uniquely in the
Darboux–Cartan structure of dσ�,i .

Proof This is a straightforward consequence of the fact that in the procedure of constructing
our initial frame, each weight −� vector fieldL�,i is constructed as the Lie bracket between
L1,1 or L1,2 and a unique weight −(� − 1) vector filed L�−1, j . Then, Lemma 3.4 implies
the desired results. ��

3.3 Ambiguity matrix

After providing the above appropriate initial frame and coframe on the complexified tangent
bundle C ⊗ T Mk , now this is the time of seeking the ambiguity matrix associated with
the problem, what actually encodes biholomorphic equivalences to Mk . The procedure of
construction is demonstrated in the recent works [21,24,29,32] in the specific cases of k =
1, 2, 3, 4. Let us explain it here in the general case of the CR model Mk . Assume that:

h : Mk −→ Mk

(z, w) �−→ (
z′(z, w), w′(z, w)

)

is a (biholomorphic) equivalence map between our (2 + k)-dimensional CR model Mk and
another arbitrary real analytic totally nondegenerate CR generic submanifold Mk ⊂ C

1+k

of codimension k, in canonical coordinates
(
z′, w′

1, . . . , w
′
k

)
. We assume that Mk is also

equipped with a frame of 2+k lifted vector fields {L1,1, L1,2, L2,3, L3,4, L3,5, . . . ,Lρ,2+k}
where, as before,L1,1 andL1,2 = L1,1 are local generators of T 1,0Mk and T 0,1Mk andwhere
each other vector field L�,i can be computed as an iterated Lie bracket between L1,1 and L1,2

of the length �, exactly as (12) for constructing the initial vector filedL�,i . Tensoring with C,
then the push-forward h∗ : T Mk −→ TMk of h induces a complexified map, still denoted
by the same symbol with the customary abuse of notation [8]:

h∗ : C ⊗ T Mk −→ C ⊗ TMk,

z ⊗ X �−→ z ⊗ h∗(X ).

Our current purpose is to seek the associated matrix to this linear map.
According to principles in CR geometry [1,8,19], h∗ transfers every generator of T 1,0Mk

to a vector field in the same bundle T 1,0Mk . Hence for the single generatorL1,1 of T 1,0Mk ,
there exists some nonzero function a1 := a1(z′, w′) with:

h∗(L1,1) = a1 L1,1. (13)

Moreover, h∗ preserves the conjugation, whence for L1,2 := L1,1, we have h∗(L1,2) =
a1 L1,2.

The third vector field in the basis ofC⊗T Mk is the imaginary fieldL2,1 := [L1,1,L1,2].
Let us compute the image of h∗ on it:

h∗
(
L2,3

) = h∗
([
L1,1,L1,2

]) = [
h∗(L1,1), h∗(L1,2)

] = [
a1 L1,1, a1 L1,2

]

= a1a1
[
L1,1 L1,2

]−a1 L1,2(a1)︸ ︷︷ ︸
=: a2

L1,1 + a1 L1,1
(
a1
)
L1,2

=: a1a1L2,3 + a2 L1,1 − a2 L1,2,

(14)

for a certain function a2 := a2(z′, w′).
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Next, in the length three, two initial fieldsL3,4 = [L1,1,L2,3] andL3,5 = −[L1,2,L2,3]
exist. Without affecting the results, we multiply the second bracket by −1 to have the simple
relation L3,5 = L3,4. In a similar fashion of computations, one finds:

h∗(L3,4) := a21a1 L3,4 + (
a1 L1,1

(
a1a1

)− a1a2
)

︸ ︷︷ ︸
=:a3

L2,3+

+ (− a1a1 L2,3(a1) + a1 L1,1(a2) − a2 L1,1(a1) + a2 L1,2(a1)
)

︸ ︷︷ ︸
=:a4

L1,1 −a1L1,1
(
a2
)

︸ ︷︷ ︸
=:a5

L1,2,
(15)

for some three certain complex functions a j := a j (z′, w′), j = 3, 4, 5. By conjugation, we
also have:

h∗(L3,5) = a1a
2
1 L3,5 − a3 L2,3 + a5 L1,1 + a4 L1,2.

Proceeding along the same lines of computations and by an induction on the weight of the
initial fields, one finds the following general expression for the image of the complexified
push-forward map h∗;

Lemma 3.7 For a fixed length � initial vector field L�,i , the push-forward map h∗ transfers
it to a combination like:

h∗
(
L�,i

) := a pi
1 aqi1 L�,i +

∑

l<�

ar j Ll,r , with pi + qi = � (16)

where ar j s are some (possibly zero) complex functions in terms of the target coordinates
(z′, w′). In other words, h∗(L�,i ) is a combination of the corresponding lifted vector field
L�,i and some other ones Ll,r of absolutely smaller lengths l < �. Moreover, two integers pi
and qi are actually the numbers of appearing L1,1 and L1,2 in the construction of L�,i as
an iterated bracket of them.

Then, our sought invertible matrix associated with h∗ is a (2+k)×(2+k) upper triangular
matrix satisfying—here we drop the push-forward h∗ at the left hand side, for simplicity:

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

Lρ,i
Lρ−1, j

.

.

.

L3,5
L3,4
L2,3
L1,2
L1,1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

a
pi
1 a

qi
1 a• a• a• a• a• a• a•

0 a
p j
1 a

q j
1 a• a• a• a• a• a•

0 0
. . . a• . . . . . . . . . a•

0 . . . 0 a1a
2
1 0 −a3 a4 a5

0 . . . 0 0 a21a1 a3 a5 a4
0 0 . . . . . . 0 a1a1 −a2 a2
0 0 0 . . . . . . 0 a1 0
0 0 0 0 . . . . . . 0 a1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

·

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

Lρ,i
Lρ−1, j

.

.

.

L3,5
L3,4
L2,3
L1,2
L1,1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

. (17)

If on the main diagonal of the matrix and in front ofL�,r we have a pr aqr , then pr + qr = �.
As a result of explicitness in the already procedure of constructing the above desired matrix,
we have also the following key observation;

Lemma 3.8 In the case that both the specific group parameters a2 and a3, appeared in (14)
and (15), vanish then all the next parameters a4, a5, . . . vanish, identically.

Proof First we claim that all the appearing group parameters a j with j > 1 are some
combinations of the iterated {L1,1,L1,2}-differentiations of the first parameter a1 and its
conjugation a1. We prove our claim by an induction on the length of the initial fields. By
(14), the claim holds for a2 and as our induction hypothesis, assume that it holds for all group
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parameters a• appearing among computing the image of h∗ on initial fieldsLl of the lengths
� �. Then for an initial fieldL�+1 = [L1,1,L�,i ] of the next length � + 1 (similar argument
holds if we have L1,2 in place of L1,1) and according to Lemma 3.7 we have:

h∗ (L�+1) = [
h∗
(
L1,1

)
, h∗

(
L�,i

)] =
[

a1L1,1, a
p
1 a

q
1 L�,i +

∑

l<�

ar j Ll,r

]

,

where, by hypothesis induction, the appearing coefficients ar j are some combinations of the
iterated {L1,1,L1,2}-differentiations of a1 and a1. Computing this bracket by means of the
Leibniz rule, one finds the new coefficients, namely new group parameters, again as some
combinations of the iterated {L1,1,L1,2}-differentiations of a1 and a1. This completes the
proof of our claim.
Now, according to (14) and (15) we have:

a2 = −a1 L1,2(a1) and a3 = a1 L1,1
(
a1a1

)− a1a2.

Since a1 �= 0, then vanishing of a2 and a3 implies that—reminding L1,2 = L1,1:

L1,1(a1) ≡ 0, L1,1(a1) ≡ 0, L1,2(a1) ≡ 0, L1,2(a1) ≡ 0.

Thus according to our claim, if a2 and a3 vanish then all the next group parameters a j vanish,
identically. ��
Weight assignment Let a j be a group parameter which is appeared among computing the
value of h∗ on a length � initial vector field L�. Then, we assign the weight � to this group
parameter and its conjugation a j . For example, according to (13), (14) and (15) we have:

[a1] = 1, [a2] = 2, [a3] = [a4] = [a5] = 3.

By this assignment, the nonzero entries at each row of the above matrix (17) have equal
weight.

For each lifted vector field L�,i , let us denote by 	�,i its dual lifted 1-form and as its
corresponding initial 1-form σ�,i , assign the weight −� to it. The sough ambiguity matrix g
of our equivalence problem, in question, is defined as the invertible matrix associated with
the dual pull-back h∗ : C⊗ T ∗Mk → C⊗ T ∗Mk of the push-forward h∗. Then, after a plain
matrix transposition we have:

⎛

⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎝

	ρ,i
.
.
.

	ρ−1, j
.
.
.

	3,5

	3,4

	2,3

	1,2

	1,1

⎞

⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎝

a pi
1 aqi1 0 0 0 0 0 0 0

0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

a• a
p j
1 a

q j
1 0 0 . . . . . . 0 0

a• a•
. . . 0 0 . . . . . . 0

a• a• . . . a1a21 0 0 . . . 0
a• . . . . . . 0 a21a1 0 . . . 0
a• . . . . . . −a3 a3 a1a1 0 0
a• . . . . . . a4 a5 −a2 a1 0
a• a• . . . a5 a4 a2 0 a1

⎞

⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎠

︸ ︷︷ ︸
g

·

⎛

⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎝

σρ,i
.
.
.

σρ−1, j
.
.
.

σ3,5
σ3,4
σ2,3
σ1,2
σ1,1

⎞

⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎠

.
(18)

Remark 3.9 Clarifying the structure of the matrix g, it is important to notice that thanks to
Lemma 3.7 and for each arbitrary i th column of this matrix, the first nonzero entry, which
stands at the diagonal, is of the form ar1a

s
1. Even more, since the only length � lifted vector

field in the image h∗(L�,i ) in (16) is L�,i , we can state that: if the i th row of the left (or right)
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hand side vertical matrix in (18) is of the weight −�, then all the entries at the i th column of
g standing below ar1a

s
1 and in front of a weight −� 1-form 	� are zero. This fact is shown for

example by the zero vector 0 in the first column of g or by the entry 0 below a1a21.

Lemma 3.10 If the 1-form at the i th row of the left (or right) hand side vertical matrix of (18)
is of the weight −� then, all nonzero entries at the i th column of g are of the same weight �.

Proof It is a straightforward consequence of the two paragraphs mentioned before (18). ��
The collection of all invertible matrices of the form g constitutes a finite dimensional

(matrix) Lie group G, called by the structure Lie group of the equivalence problem to the
CR model Mk .

Recall that [see (9) and the paragraph after it] the defining equations of our k-
codimensional CR model Mk ⊂ C

1+k are precisely those of a CR model Mk−1 of
codimension k − 1 added just by the last equation wk − wk = 2i�k(z, z, w,w). Let us
state a result that will be of use later;

Proposition 3.11 The (1+ k)× (1+ k) ambiguity matrix gk−1 associated with the CR model
Mk−1 is a submatrix of the ambiguity matrix g associated with Mk, standing as [cf. (18)]:

g =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a p
1 a

q
1 0 0 · · · 0 0 0 0

0
a•
...

a•
a•
a•
a•

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

gk−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (19)

Proof Let Mk−1 be of the length ρ′ ≤ ρ. If we proceed ab initio as Sect. 3.1 to provide
an initial frame {L old

1,1 ,L old
1,2 , . . . ,L old

ρ′,1+k} for the (1 + k)-dimensional CR model Mk−1,
then according to its total nondegeneracy, one can construct the initial fields by means of
the iterated Lie brackets of the generators L old

1,1 and L old
1,2 of T 1,0Mk−1 and T 0,1Mk−1;

exactly as those for the initial vector fields on Mk [cf. (12)]—here we assign the symbol
“old” to objects corresponding to Mk−1. More precisely, if we have L�, j = [L1,L�−1,i ]
for j = 1, . . . , 1+ k, then correspondingly we haveL old

�, j = [L old
1 ,L old

�−1,i ]. Consequently,
for a general biholomorphism hold : Mk−1 → Mk−1 and proceeding as Sect. 3.3 for the
complexified push-forward hold∗ : C ⊗ T Mk−1 → C ⊗ TMk−1, one finds that if (cf. Lemma
3.7):

h∗
(
L�, j

) := a p
1 a

q
1 L�, j +

∑

l<�

ari Ll,r ( j=1,...,1+k),

then correspondingly we also should have:

hold∗
(
L old

�, j

)
:= a p

1 a
q
1 L

old
�, j +

∑

l<�

ari L
old
l,r ( j=1,...,1+k),

though in the former case the appearing group parameter-functions are in terms of the complex
variables z′, w′

1, . . . , w
′
k−1, w

′
k and in the latter case they do not admit the last one w′

k . The
only distinction here is that the initial frame of Mk has one more initial vector field, namely
Lρ,2+k for which its image under h∗ should be computed, separately. This h∗(Lρ,2+k)

manifests itself as the first column of g. ��
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Remark 3.12 By an inspection of the above proof, one finds that among the construction of
the ambiguity matrix associated with Mk−1, the assigned weights to all the appearing initial
vector fields, 1-forms and group parameters will be exactly as their corresponding items in
the case of Mk .

3.4 Associated structure equations

According to our systematic strategy, introduced at the beginning of this section, now we
are ready to compute the associated structure equations of the biholomorphic equivalence
problem to themodelMk . Assuming	 := (	ρ,2+k, . . . , 	1,1)

t and� := (σρ,2+k, . . . , σ1,1)
t

as our lifted and initial coframes, then by differentiating the both sides of the equality (18),
which can be rewritten as 	 = g · �, gives:

d	 = dg ∧ � + g · d�. (20)

For the first part dg ∧ � at the right hand side of this equation, one can replace it by:

dg · g−1
︸ ︷︷ ︸

ωMC

∧ g · �
︸︷︷︸

	

,

where ωMC is the well-known Maurer–Cartan matrix of the Lie group G. Since g is lower
triangular with the powers of the form ar1a

s
1 on its main diagonal [cf. (18)], then ωMC is again

lower triangular of the shape displaying in the following expanded form of the equation (20):
⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎝

d	ρ,i

d	ρ−1, j
.
.
.

d	3,5

d	3,4

d	2,3

d	1,2

d	1,1

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎝

piα + qiα 0 0 0 0
δ• p jα + q jα 0 0 0
.
.
.

.

.

.
. . . · · · · · ·

δ• δ• δ• α 0
δ• δ• δ• δ• α

⎞

⎟
⎟⎟
⎟
⎟
⎠

︸ ︷︷ ︸
ωMC

∧

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎝

	ρ,i

	ρ−1, j
.
.
.

	3,5

	3,4

	2,3

	1,2

	1,1

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎠

+

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

a pi
1 aqi1 0 0 0 0 0 0 0
a• a

p j
1 a

q j
1 0 0 . . . . . . 0 0

a• a•
. . . 0 0 . . . . . . 0

a• a• a• a1a21 0 0 . . . 0

a•
.
.
. a• 0 a21a1 0 . . . 0

a•
.
.
. a• −a3 a3 a1a1 0 0

a•
.
.
. a• a4 a5 −a2 a1 0

a• a• a• a5 a4 a2 0 a1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

︸ ︷︷ ︸
g

·

⎛

⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

dσρ,i

dσρ−1, j
.
.
.

dσ3,5
dσ3,4
dσ2,3
dσ1,2
dσ1,1

⎞

⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

(21)

withα := d a1
a1

andwith δ•s as some (possibly zero) certain combinations of the standard forms
da• with the coefficient functions in terms of a1, a2, . . .. The equations of (21) are called the
structure equations of the biholomorphic equivalence problem to Mk . The following lemma
is encouraging enough to have some rigorous weight analysis on the structure equations in
the next section. Recall that for each term a jdσ�,i , coming from the last matrix multiplication
of (21), the associated weight is naturally defined as [a j ] + [dσ�,i ].
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Lemma 3.13 All entries of the last vertical matrix g · d� at the right hand side of the above
structure equations (21) are homogeneous of the equal weight zero.

Proof It is a straightforward consequence of Lemma 3.10, reminding that the assignedweight
to each σ� and its differentiation dσ� is −�. ��

3.5 Torsion coefficients

Our next aim is to restate the above structure equations (21) absolutely independent of the
initial 1-forms σ�,i and their differentiations. For this purpose, we shall focus on the second
matrix term g·d�. TheDarboux–Cartan structure computed in Proposition 3.5 enables one to
replace each 2-form dσ• by some combination of the wedge products between initial 1-forms
σ•. Afterward, by means of the equality� = g−1 ·	, it is also possible to replace each initial
1-form σ• by some combination of the lifted 1-forms 	•. Doing so, then all differentiations
at the right hand side vertical matrix g · d� of (21) will be expressible in terms of the wedge
products of the lifted 1-forms 	•. Consequently, our structure equations will be converted
into the form:

d 	�,i := (pi α + qi α) ∧ 	�,i +
∑

r , j, l��

δr ∧ 	l, j

+
∑

l, j,m,n

T i
jn(a•) 	l, j ∧ 	m,n, (�=1,...,ρ, i=1,...,2+k),

(22)

where T i
jns are some certain functions in terms of the group parameters a• which are called

by the torsion coefficients of the problem.

Remark 3.14 Since our ambiguity matrix g is invertible and lower triangular with the powers
a p
1 a

q
1 at its diagonal, then a simple induction on the number of its column and rows shows that

g−1 is again lower triangular where its non-diagonal entries are some fraction polynomial
functions with some powers of the form ar1a

s
1 as their denominators. Also, if the i th diagonal

entry of g is, say, a p
1 a

q
1 then this entry in g−1 is 1

a p
1 a

q
1
. Finally, thanks to Lemma 3.7 and

again since g is lower triangular, then in the expression of each length � lifted 1-from 	�,i

as (18), the only appearing initial 1-form of the lengths � � is σ�,i . Consequently, by a
backward induction on the length � of the initial 1-forms from ρ to 1, we discover a same
fact in expressing each initial 1-form σ�,i in terms of the lifted ones through the equality
� = g−1 · 	: the only appearing lifted 1-form in the expression of σ�,i of the length � � is
	�,i . Therefore, if the j th row of the vertical matrix �, say σ�,i , is of the length � then the
j th row of g−1 is of the form:

(
c•, . . . , c•, 0, . . . , 0︸ ︷︷ ︸

t1times

,
1

ar1a
s
1︸ ︷︷ ︸

i th place

, 0, . . . , 0︸ ︷︷ ︸
t2 times

)

where r + s = � and t1 + t2 + 1 is equal or more than the number of initial 1-forms σ• of the
lengths � �.
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4 Weight analysis on the structure equations

In the previous section, we assigned naturally some weights to the complex variables, initial
and lifted vector fields and 1-forms, their differentiations and also to group parameters. The
main purpose of this section is to show that all the appearing torsion coefficients in the
constructed structure equations (22) are weighted homogeneous of the same weight zero.
For this aim, we inspect more the structure of the inverse matrix g−1 via some auxiliary
lemmas. But at first we need the following definition.

Definition 4.1 Let:

f (a1, a2, . . .) = ar11 as11 a
s2
2 as22 . . . arnn asnn
ar1a

s
1

be an arbitrary monomial fraction in terms of the group parameters. Then, the weight of f is
defined as:

[ f ] = r1[a1] + s1[a1] + r2[a2] + s2[a2] + · · · + rn[an] + sn[an] − r [a1] − s[a1].
A weighted homogeneous polynomial fraction is a sum of monomial fractions of the same
weigh.

As stated in Lemma 3.10, all the nonzero entries in a fixed column of our ambiguity matrix
g are of the same weight. Our next goal is to show that in the inverse matrix g−1, the rows
enjoy a similar fact.

Lemma 4.2 Fix an integer i0 = 1, . . . , 2+ k and let −� be the weight of a certain 1-form σ�

standing at the i0th row of the vertical matrix � = (
σρ,2+k, . . . , σ1,2, σ1,1

)t
in (18). Then,

(i) all the nonzero entries of the i0th row of g−1 are of the same homogeneous weight −�,
too.

(ii) if the j th row of � is of the weight −(� + 1) and if the (i0 j)th entry of g is ei0 j then, this
entry in g−1 is of the form:

− ei0 j
am1 a

n
1
,

for some constant integers m and n.

Proof We prove the both parts by an induction on the codimension k of the models. The base
of this induction is provided by inspecting the matrices introduced in [24, p. 89] for k = 2
and [21, p.104] for k = 3—according to the Conjecture 1.3 we are considering CR models
of the lengths ρ � 3 which start from k = 2. Assume that the assertions hold for all CR
models of codimensions < k − 1. By Proposition 3.11, if gk−1 is the ambiguity matrix of the
equivalence problem to the CR model Mk−1, then:

g−1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1
a p
1 a

q
1

0 0 · · · 0 0

0
b j
...

b1

⎛

⎜⎜
⎝ g−1

k−1

⎞

⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (23)

with p + q = ρ and for some certain functions b•. Thus, according to our induction and
by Remark 3.12, it suffices to prove (i) just for each entry bt at some i0th row of g−1 with
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i0 �= 1. According to Lemma 3.10, all the nonzero group parameters at the first column of
g are of the same maximum weight ρ. By our induction hypothesis and except bt , we know
that all the nonzero entries at the i0th row of g−1 are of the same weight −�. We show that if
bt �= 0, then it is of the same weight, too. Multiplying the i0th row of g−1 by the first column
of g gives:

bt · (a p
1 a

q
1

)+ � = 0

where � is some function of the weight ρ − �. Taking into account that p + q = ρ, then
the polynomial fraction bt = − �

a p
1 a

q
1
is of the homogeneous weight ρ − � − ρ = −�, as was

expected.
For the second part (ii), and according to our induction, it suffices to prove it only for some
of the entries ei01 at the first column of g, namely for j = 1. Since the first row of � is of the
weight −ρ, then we have to look for weight −� = −(ρ − 1) rows i0 of the inverse matrix
g−1. By the first part (i), these rows are in front of the weight −(ρ −1) initial 1-forms σρ−1,i

in the equation � = g−1 ·	 and hence ei01 stands below the zero vector 0 at the first column
of g [cf. (18)]. Hence, i0 �= 1. Assume that br stands at the same entry of g−1 as ei01 in g.
We aim to show br = − ei01

am1 an1
. The i0th row of g−1 is of the form (cf. Remark 3.14):

⎛

⎜⎜⎜⎜
⎝
br , c1, . . . , ct , 0, . . . , 0,

1

ar1a
s
1︸ ︷︷ ︸

i0th place

, 0, . . . , 0

⎞

⎟⎟⎟⎟
⎠

,

where t + 1 is the number of the weight −ρ lifted 1-forms σρ . Then, multiplying again the
above i0th row of g−1 to the first column of g and granted the Remark 3.12 about the zero
vector 0 at this column gives:
⎛

⎜⎜⎜⎜
⎝
br , c1, . . . , ct , 0, . . . , 0,

1

ar1a
s
1︸ ︷︷ ︸

i0th place

, 0, . . . , 0

⎞

⎟⎟⎟⎟
⎠

·
⎛

⎜
⎝a

p
1 a

q
1 , 0︸︷︷︸

t-tuple

, . . . , ei01︸︷︷︸
i0th place

, . . .

⎞

⎟
⎠

t

= 0.

Now, simplifying this equality after multiplication and solving it in terms of br gives br =
− ei01

a p+r
1 aq+s

1
, as desired. ��

Roughly speaking, the first part (i) of this lemma states that for each fixed row of the
three matrices appearing in the equation � = g−1 ·	, all the nonzero entries are of the same
negative weight. Furthermore, taking into account the shape of the lower triangular matrix
g−1 and by the first part of the above lemma, one observes that (see also Remark 3.14);

Lemma 4.3 For eachweight−� initial 1-form σ�,i , its expression in terms of the lifted 1-forms
is as follows:

σ�,i :=
∑

l��

Ai
j (a•) 	l, j + 1

a pi
1 aqi1

	�,i ,

with pi +qi = � and for some weighted homogeneous polynomial fractions Ai
j of the weight−� where their denominators are some powers of only a1 and a1.
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Now, we are ready to prove the main result of this section;

Proposition 4.4 All torsion coefficients T i
jn(a•) appearing among the structure equations

(22) are weighted homogeneous polynomial fractions of the equal weight zero where their
denominators are some powers of only a1 and a1.

Proof According to (21), each structure equation can be expressed as:

d	�,i = (piα + qiα) ∧ 	�,i +
∑

l��

δi j ∧ 	l, j +
∑

l��

ai j dσl, j + a pi
1 aqi1 dσ�,i

with pi + qi = �. Our torsion coefficients come from the last parts:

∑

l��

ai j dσl, j + a pi
1 aqi1 dσ�,i (24)

of this equation after replacing each differentiation dσ• according to the Darboux–Cartan
structure computed in Proposition 3.5 and next substituting each initial 1-form σ• with some
combinations of lifted 1-forms 	• by means of the equality � = g−1 · 	. Thanks to Lemma
3.13, the weight of the coefficient ai j in the term ai j dσl, j of (24) is l . Moreover, according
to Proposition 3.5 we have:

dσl, j :=
∑

β,γ

cβ,γ σβ ∧ σγ with β + γ = l.

After replacing the expressions of σβ and σγ as Lemma 4.3, such Darboux–Cartan structure
takes the form:

ai j dσl, j =
∑

l1+l2�l

(
ai j T

j
m,n(a•)

)
	l1,m ∧ 	l2,n

where the polynomial fractions T j
m,n are multiplications of some weight −β and −γ poly-

nomial fractions with β + γ = l. Thus, all the coefficients T j
m,n are of the same weight

−β − γ = −l and hence, each coefficient ai j T
j
m,n(a•) in the above expression is of the

weight zero. Similar fact holds true also for the last term a pi
1 aqi1 dσ�,i of (24). Now, each

torsion coefficient T i
m,n is made as the sum of coefficients of 	l1,m ∧ 	l2,n in the expressions

of all terms ai j dσl, j and a pi
1 aqi1 dσ�,i , visible in (24). Therefore, it is of the weight zero, as

claimed. The second part of the assertion is a consequence of Remark 3.14. ��

Before concluding this section, let us present another result of the second part (ii) of
Lemma 4.2;

Lemma 4.5 If in the structure equation d	�−1,m of (21) we have the term a jdσ�,n for some
(possibly zero) group parameter a j , then the coefficient of 	�,n in the expression of σ�−1,m,
through the equation � = g−1 · 	, is of the form − a j

ar1a
s
1
for some constant integers r and s.

Proof The term a jdσ�,n in (21) comes only from the second part g · d� and hence the
appearance of this term in the structure equation d	�−1,m means that the coefficient of σ�,n
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in the expression of 	�−1,m—coming from the equality 	 = g · �—is a j :

⎛

⎜
⎜
⎜
⎜
⎜
⎝

...

...

	�−1,m
...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
	

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

...
...

...
...

...
...

...
...

. . . a j . . . . . .
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
g

·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

...

σ�,n
...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

︸ ︷︷ ︸
�

By the above matrix equation and according to the second part (ii) of Lemma 4.2, we will
have some− a j

ar1a
s
1
in g−1 in place of the same entry a j in g. But this entry in the inverse matrix

determines, through the equality � = g−1 · 	, the coefficient of the lifted 1-form 	�,n in the
expression of σ�−1,m . ��

This suggests that if we are seeking the coefficient of 	�,n in the expression of some
σ�−1,m , then it is opposite to the fraction of the coefficient of dσ�,n in the structure equation
d	�−1,m by some powers of a1 and a1. This result will be of much use in the next section.

5 Picking up an appropriate weighted homogeneous subsystem

Now we are ready to apply Cartan’s method on the biholomorphic equivalence problem of
the CR model Mk . The first two essential steps of this method are absorption and normaliza-
tion, based on some fundamental results introduced in [21, Proposition 4.7] (see also [23]).
According to these results, one is permitted to substitute as follows each Maurer–Cartan
1-form α and δ j in the structure equations (22):

α �→ α + t2+k 	ρ,2+k + · · · + t2 	1,2 + t1 	1,1,

δ j �→ δ j + s j2+k 	ρ,2+k + · · · + s j2 	1,2 + s j1 	1,1,
(25)

for arbitrary coefficient functions t• and s•• .We can apply such substitutions and try to convert
new (torsion) coefficients of the wedge products 	�1,i1 ∧ 	�2,i2 to some constant integers—
possibly zero—by appropriate determinations of the arbitrary functions t•, s•• (this is the
absorption step). For this purpose, it may be inadequate only such determination of these
arbitrary functions but it necessitates also to determine—or normalize in this literature—
some of the group parameters, appropriately in terms of the other ones by equating to zero
(or other constants) still remaining non-constant coefficients. These coefficients are called
the essential torsion coefficients.

Thus to proceed along the absorption and normalization steps, one has to solve an arising
polynomial system with t•, s•• and some of the group parameters as its unknowns. The virtual
importance of the solution of this system is not determining the coefficient functions t• and
s•• but it is actually the found values of involving group parameters a•. Unfortunately, solving
such arising polynomial system, specifically in this general manner, causes certainly some
unavoidable and serious algebraic complexity. The main purpose of this section is to bypass
and manipulate such complexity by picking up an appropriate and convenient subsystem
that affords to bring all results we are seeking from the solution of the original system.
Before explaining our practical method of constructing this desired susbsystem—which will
be divided into two major parts—at first, we need the following auxiliary lemma;
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Biholomorphic equivalence to totally nondegenerate model CR… 1147

Lemma 5.1 Assume that σ�−1,i ∧σ1,t , for t = 1 or 2, is the unique appearing wedge product
in the Darboux–Cartan structure of dσ�, j , as stated in Lemma 3.6. Then, among all the
expressions of differentiations dσl,r , with l � �, in terms of the wedge products of the lifted
1-forms, a nonzero coefficient of 	�−1,i ∧ 	1,t appears uniquely in dσ�, j . Such coefficient is
a fraction of the form 1

a p
1 a

q
1
for some constant integers p and q.

Proof By Remark 3.14, in the expression of each σ�′,r through the equality � = g−1 ·	, the
only appearing lifted 1-form 	l,m with l � �′ is some 1

a p
1 a

q
1
	�′,r . In particular, the only initial

1-form having some coefficient of 	1,1 in its expression is σ1,1 and this coefficient is 1
a1
.

Similarly, the only initial 1-form having some coefficient of 	1,2 is σ1,2 with the coefficient
1
a1
. Consequently, in the expression of a fixed differentiation dσl0,r with l0 � �, one finds

some nonzero coefficient of 	�−1,i ∧ 	1,t whenever in its Darboux–Cartan structure, dσl0,r
includes some nonzero coefficient of the wedge product σl ′, j ∧ σ1,t with l ′ � � − 1. We
claim that σl ′, j = σ�−1,i . Since σl ′, j ∧σ1,t appears in the Darboux–Cartan structure of dσl0,r
then Proposition 3.5 implies that l ′ + 1 = l0 � � and whence l ′ � � − 1. Consequently,
l ′ = � − 1 and thus σl ′, j = σ�−1, j . Furthermore, again by Remark 3.14, σ�−1,i is the only
weight −(�− 1) initial form containing some nonzero coefficient of 	�−1,i in its expression.
This results that σ�−1, j = σ�−1,i , as was claimed. But on the other hand, according to
our assumption, σ�−1,i ∧σ1,t appears uniquely in the Darboux–Cartan structure of dσ�, j and
hencewe should have dσl0,r = dσ�, j , as was desired. In addition, the coefficient	�−1,i ∧	1,t

in dσ�, j comes from the wedge product σ�−1,i ∧ σ1,t in its Darboux–Cartan structure and by
what mentioned at the beginning of the proof, it will be nothing but some fraction 1

a p
1 a

q
1
. ��

5.1 Picking up an appropriate subsystem

Our strategy of picking up appropriate torsion coefficients from the structure equations, after
absorption, is divided into two essential parts depending upon the weight.

5.1.1 First part: structure equations of the weights−� = −1, . . . ,−(� − 1)

Consider:

d	�,m = (pmα + qmα) ∧ 	�,m

+
∑

l��

δit ∧ 	l, j +
∑

l≥�+2

a jn dσl,n +
∑

r

a jr dσ�+1,r + a pm
1 aqm1 dσ�,m, (26)

as a weight −� structure equation in (21) for � = 1, . . . , ρ − 1. We focus just on the terms
a jr dσ�+1,r in the penultimate part

∑
r a jr dσ�+1,r of this structure equation. Lemma 3.13

implies that the group parameters a jr , visible in it, are of the weight �+ 1. As a consequence
of Lemma 5.1 and in the expression of each fixed term a jr0

dσ�+1,r0 , in terms of the wedge
products of lifted 1-forms, one finds a certain product:

a jr0

a p•
1 aq•

1

	�,i j ∧ 	1,tr (tr =1 or 2), (27)

coming from some σ�,i j ∧ σ1,tr , uniquely appearing in the Darboux–Cartan structure of
dσ�+1,r0 , such that no any other term in the part

∑
l≥�+2,n a jn dσl,n +∑r �=r0 a jr dσ�+1,r of

(26) brings any nonzero coefficient of it. Then, as is our strategy, we seek for all coefficients
of this wedge product 	�,i j ∧ 	1,tr in (26). Let us do it part by part.
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1148 M. Sabzevari

We continue with the last term a pm
1 aqm1 dσ�,m . Assuming the Darboux–Cartan structure:

dσ�,m =
∑

�1+�2=�

c�1,�2σ�1,t ∧ σ�2,s,

then the desired wedge product 	�,i j ∧ 	1,tr is producible only by the terms of the form4

ct σ�−1,t ∧σ1,tr . In order to find the coefficient of this product, we have to pick the coefficient
of 	�,i j in the expression of σ�−1,t s. By Lemma 4.5 and if the coefficient of dσ�,i j in the
structure equation of d	�−1,t is a weight � group parameter ait , then the desired coefficient
of 	�,i j in σ�−1,t will be of the form − ait

a
r ′•
1 a

s′•
1

for some constant integers r ′• and s′•5. Hence

the last term a pm
1 aqm1 dσ�,m may produce some term like:

−
(
∑

t

ct
ait

ar•1 as•1

)

	�,i j ∧ 	1,tr , (28)

after simplification. For later use, we emphasize from the above procedure that;

Lemma 5.2 For eachweight � group parameter ait appearing in (28), there is a term ait dσ�,i j
in some weight −(� − 1) structure equations d	�−1,t .

Obviously, the second term
∑

l�� δit ∧	l, j of (26)will not produce anynonzero coefficient
of 	�,i j ∧ 	1,tr while after the substitutions (25) in the first part (pmα + qmα) ∧ 	�,m , one
may find some terms like:

− (pmt1 + qmt2) 	�,m ∧ 	1,1 and − (pmt2 + qmt1) 	�,m ∧ 	1,2, (29)

where in the case thatm = i j , one of themwill be the sought product	�,i j ∧	1,tr , in question.
Then, all possible coefficients of the wedge product 	�,i j ∧ 	1,tr in the above weight

−� structure equation (26), after absorption, are those presented in (27)–(29). Equating this
coefficient to zero—as is the method of absorption-normalization—then one finds some
fraction polynomial equation of the form:

a jr0

a p•
1 aq•

1

−
∑

t

ct
ait

ar•1 as•1
= a jr0

t1 + b jr0
t2 + a′

jr0
t1 + b′

jr0
t2,

for some (possibly zero) constants a jr0
,b jr0

, a′
jr0

,b′
jr0
. The left hand side of this equation

is actually the torsion coefficient Tm
i j ,tr

of 	�,i j ∧ 	1,tr in the structure equation (26) which
comes from (27) and (28). Hence according to Proposition 4.4, it is of the weight zero.
Minding that here a jr0

is a weight � + 1 group parameter while ait s are of the weight �,

then multiplying both side of this equation by the denominator a p•
1 aq•

1 gives the following
equivalentweighted homogeneous polynomial equation—herewe assign naturally theweight
zero to the parameters t1, t2 and their conjugations:

a jr0
−
∑

t

ct a
r ′•
1 a

s′•
1 ait = a p•

1 aq•
1

(
a jr0

t1 + b jr0
t2 + a’ jr0 t1 + b’ jr0 t2

)
. (30)

4 Remind that one can find the lifted 1-forms 	1,1 and 	1,2 only in the expressions of σ1,1 and σ1,2, respec-
tively.
5 Notice also that here ait can be zero and it does not effect our next results.
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Proposition 5.3 Let � = 1, . . . , ρ − 1. Then, among the procedure of absorption and asso-
ciated with each weight � + 1 group parameter a jr0

appearing in an arbitrary weight −�

structure equation (26), one finds a weighted homogeneous parametric complex polynomial
equation as (30), expressing a jr0

in terms of a1, a1, some weight � group parameters ait , two
parameters t1, t2 and their conjugations.

Let us denote by S the weighted homogeneous system of equations mentioned in the
above proposition. Notice that S does not involve necessarily all the group parameters a•.
Importantly in this system, if there is an equation like (30) that expresses a weight � + 1
group parameter a jr0

in terms of the weight � parameters ait , then Lemma 5.2 guarantees that
also for each ait , we find another equation expressing it in terms of the lower weight group
parameters when we perform the above method for weight −(� − 1) structure equations.

Proposition 5.4 For each group parameter a j �= a1 visible in S, there exists some weighted
homogeneous equation expressing it in terms of some lower weight group parameters a• and
the parameters t1, t2.

Among the system S, two equations coming from the first two structure equations:

d	2,3 = (α + α) ∧ 	2,3 +
∑

l�2

δi j ∧ 	l, j +
∑

l�3

ai j dσl, j + a3 dσ3,4 + a3 dσ3,5 + a1a1 dσ2,3,

d	1,1 = α ∧ 	1,1 +
∑

l�1

δi j ∧ 	l, j +
∑

l�2

ai j dσl, j + a2 dσ2,3 + a1 dσ1,1

(31)

are of particular importance. According to our suggested method, in the weight −2 structure
equation d	2,3 we should focus on the term a3 dσ3,4 since dσ3,4, together with dσ3,5, are the
only weight−(2+1) = −3 differentiations visible in it. SinceL3,4 = [L1,1,L2,3], then the
uniquely appearing wedge product in the Darboux–Cartan structure of dσ3,4 is σ2,3 ∧ σ1,1
(cf. Lemma 3.6 and its proof). Thus, we shall look for the (torsion) coefficient of 	2,3 ∧ 	1,1

in this structure equation d	2,3. Also in the weight −1 structure equation d	1,1 we should
focus on the single term a2 dσ2,3. The uniquely appearing wedge product in the Darboux–
Cartan structure of dσ2,3 is σ1,2 ∧ σ1,1, then let us find the coefficient of 	1,2 ∧ 	1,1 in this
structure equation. Performing necessary computations, we, respectively, find the following
two weight zero homogeneous equations, after applying the substitutions (25):

a3
a21a1

+ i
a2
a1a1

= t1 + t2, i
a2
a1a1

= t2, (32)

which give, surprisingly, the parameters t1 and t2 as some weight zero expressions:

t1 = a3
a21a1

+ 2i
a2
a1a1

, t2 = i
a2
a1a1

. (33)

Putting these expressions in S and multiplying again the appearing fractional equations by
some sufficient powers of a1 and a1, then one finds S as a weighted homogeneous polynomial
system with no any parameter. Except a2 and a3 that we already spent their associated equa-
tions (32) to find the expressions of the parameters t1 and t2, for each other involving group
parameters a• there exists one equation in S that expresses it in terms of some lower weight
group parameters. Our next goal is to provide two more polynomial equations including a2
and a3 to recover this constraint.
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5.1.2 Second part: structure equations of the weight−�

One might be somehow surprised that so far we did not talk about the weight −ρ structure
equations. In fact, our trick was to retain them for our current aim of providing at least two
more weighted homogeneous equations.6 Notice that the method suggested above, can not
be applied on a weight −ρ structure equation:

d	ρ,i = (piα + qiα) ∧ 	ρ,i + a pi
1 aqi1 dσρ,i (34)

since it essentially does not contain any term a• dσ• with dσ• of the weight −(ρ + 1).
However, here we can think about picking up coefficients of the wedge products 	ρ,i ∧ 	1,t

from d	ρ,i for t = 1, 2. For this purpose, one notices that in the Darboux–Cartan structure of
dσρ,i , visible in the structure equation d	ρ,i , only wedge products of the form σρ−1, j ∧ σ1,t
can make nonzero coefficients of 	ρ,i ∧	1,t . In order to find these coefficients and according
to Lemma 4.5, if the coefficient of dσρ,i in the structure equation d	ρ−1, j is a (possibly zero)
weight ρ group parameter a jr , then the coefficient of 	ρ,i in σρ−1, j is some fraction of the
form − a jr

a•
1a

•
1
—notice that by considering the term a jr dσρ,i in the weight −(ρ − 1) structure

equation d	ρ−1, j , we find a weighted homogeneous equation of S, expressing a jr in terms
of some lower weight group parameters. Then the coefficient of the sought wedge product
	ρ,i ∧ 	1,t in σρ−1, j ∧ σ1,t is the multiplication between the coefficient − a jr

a•
1a

•
1
of 	ρ,i in

σρ−1, j and the coefficient of 	1,t in σ1,t , which is 1
a1

where t = 1 and 1
a1

where t = 2. This
implies that: (i) after absorption (25) and equating to zero the coefficients of 	ρ,i ∧ 	1,1 and
	ρ,i ∧ 	1,2 in the structure equation d	ρ,i , one finds two equations:

∑

jr

a jr

a•
1a

•
1

+ pi t1 + qi t2 = 0 and
∑

j ′r

a j ′r
a•
1a

•
1

+ qi t1 + pi t2 = 0, (35)

where according to (33) they are actually two equations in terms of a2, a3 and some other
weight ρ group parameters a jr . (ii) In the system S, one finds some polynomial equations
which express a jr s and a

′
jr
s in terms of some lower weight group parameters.

Surprisingly, Proposition 5.4 and equations (33) imply that one can regard eventually the
above two equations (35) in terms of only a3, a2, a1 and their conjugations. Now to finalize
constructing the desired subsystem, it remains only to add these already found equations to
S.

Before attempt to solve the system S, let us summarize our practical method of its con-
struction. It is divided into the following two parts which should be performed after the
absorption step (25):
Part I For each structure equation:

d	�,m = (pmα + qmα) ∧ 	�,m +
∑

l��

δit ∧ 	l, j +
∑

l≥�+2

a jn dσl,n

+
∑

r

a jr dσ�+1,r + a pm
1 aqm1 dσ�,m,

with � = 1, . . . , ρ − 1 and for each term a jr0
dσ�+1,r0 in its penultimate sum, equate to zero

the coefficient of the wedge product 	�,i j ∧ 	1,tr , where σ�,i j ∧ σ1,tr uniquely appears in

6 Actually in CR dimension 1, the reason of satisfying Beloshapka’smaximum conjecture in the lengths ρ � 3
may refer to this part of our constructions. In fact, to provide two more weighted homogeneous equations
for a2 and a3, we need some more structure equations than those of d	2,3, d	1,1 and d	1,2 = d	1,1. This
means that we should at least have the next structure equation d	3,4 which appears in the case of CR models
which are of length ρ � 3.

123



Biholomorphic equivalence to totally nondegenerate model CR… 1151

the Darboux–Cartan structure of dσ�+1,r0 according to Lemma 3.6. The achieved equation
belongs to S.
Part II For each weight −ρ structure equation:

d	ρ,i = (piα + qiα) ∧ 	ρ,i + a pi
1 aqi1 dσρ,i ,

equate to zero all coefficients of 	ρ,i ∧	1,t for t = 1, 2 and add the achieved equations to S.

5.2 Solving the picked up subsystem

After constructing the weighted homogeneous polynomial system S, now let us attempt to
find the weighted projective variety V(I ) of the polynomial ideal I = 〈S〉—namely the
solution of the system S—in the weighted projective space P(1, 2, 3, . . .) (see, e.g., [11]
for more details). Since the only weight 1 group parameter a1 is assumed to be nonzero,
then this variety does not contain any point at the infinity surface a1 = 0. Assume that
I aff ⊂ C[a2, a3, . . . , ar ] is the affine ideal obtained as the dehomogenization of I by
setting a1 = 1. If g is a weighted homogeneous polynomial inI , then the following relation
holds between it and its dehomogenization gdeh (cf. [11, Theorem 5.16]):

g(a1, a2, a3, . . . , ar ) = aw-deg1 · gdeh
(

a2

a[a2]
1

,
a3

a[a3]
1

, . . . ,
ar

a[ar ]
1

)

(36)

where w-deg is the weight degree of the affine polynomial gdeh. By Proposition 5.4 we can
still state that associated with each group parameter a j visible inI aff, there exists some (not
necessarily weighted homogeneous, any more) polynomial in this ideal, expressed in terms
of a j and some other group parameters (variables) of absolutely lower weights. Moreover,
these polynomials are all linear [consider the equations of S after setting a1 = 1 in (30), (33),
(35)].

This indicates that after selecting some appropriate order≺ on the extant group parameters
a• enjoying the property that ai ≺ a j whenever [ai ] < [a j ], then the affine ideal I aff is in
fact in Noether normal position and according to the Finiteness Theorem [10, Theorem 6
and Corollary 7, pp. 230-1], the affine variety V(I aff) is zero dimensional containing just
the origin (0, 0, . . . , 0). Then according to the above equality (36), one concludes that the
weighted projective variety V(I ), or equivalently the solution set of the weighted homoge-
neous system S, comprises some points of the concrete form:

V(I ) = {(a1, 0, 0, . . . , 0), a1 �= 0}.
In otherwords, in the solution set of ourweighted homogeneous systemS, all the groupparam-
eters visible in it—but not necessarily all the group parameters appearing in our ambiguity
matrix—take the value zero, identically. In particular, the two fundamental group parameters
a2 and a3 shall be zero. But, thanks to Lemma 3.8, vanishing of these two group parameters
is sufficient to assert that all the group parameters a j , j �= 1, appearing in the ambiguity
matrix g should be normalized to zero;

Proposition 5.5 After sufficient steps of applying absorption and normalization on the struc-
ture equations of the equivalence problem to a totally nondegenerate CR model Mk of CR
dimension 1 and codimension k, all the appearing group parameters a j with j = 2, 3, 4, . . .
vanish, identically.
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This immediately results in the reduction of our ambiguity matrix group G (cf. (18)) to
the simple diagonal matrix Lie group Gred comprising matrices of the form:

gred :=

⎛

⎜
⎜
⎜
⎝

a p
1 a

q
1 0 · · · 0

...
. . . 0 0

0 · · · a1 0
0 · · · 0 a1

⎞

⎟
⎟
⎟
⎠

. (37)

Concerning the Maurer–Cartan matrix ωMC visible in (21), all the Maurer–Cartan forms δ

vanish identically and it reduces to a diagonal matrix with some combinations of the 1-forms
α = da1

a1
and its conjugation at its diagonal. Finally, after vanishing of the group parameters

a2, a3, . . ., then all torsion coefficients T i
j,m vanish identically except those which were

constant from the beginning of construction;

Proposition 5.6 After vanishing the group parameters a2, a3, a4, . . ., our structure equations
convert into the simple constant type:

d 	�,i := (pi α + qi α) ∧ 	�,i +
∑

l+m=�
j,n

cij,n 	l, j ∧ 	m,n (�=1,...,ρ, i=1,...,2+k)
(38)

for some constant complex integers cij,n.

Proof According to (21), our structure equations were originally of the form:

d	�,i = (piα + qiα) ∧ 	�,i +
∑

l��

δi j ∧ 	l, j

◦

+
∑

l��

ai j dσl, j

◦

+ a pi
1 aqi1 dσ�,i . (39)

As mentioned, after vanishing of the group parameters a2, a3, . . . all the Maurer–Cartan
forms δ• vanish identically and this kills the first sum

∑
l�� δi j ∧ 	l, j . For the second

sum
∑

l�� ai j dσl, j and according to Lemma 3.13, since all differentiations dσl, j are of the
weights � −1 (notice that here l � � and � � 1) then all the group parameters ai j are of the
weights � 1 and hence none of them is a1. This yields vanishing of this term, as well. Then,
it suffices to consider the last term a pi

1 aqi1 dσ�,i of the above structure equation. According
to the computed Darboux–Cartan structure in Proposition 3.5 we have:

dσ�,i :=
∑

β+γ=�

cr ,s σβ,r ∧ σγ,s .

On the other hand, our inverse matrix g−1 is now converted to the simple form:

(
gred

)−1 =

⎛

⎜⎜⎜⎜
⎝

1
a p
1 a

q
1

0 · · · 0

...
. . . 0 0

0 · · · 1
a1

0
0 · · · 0 1

a1

⎞

⎟⎟⎟⎟
⎠

which through the equality � = (gred)−1 · 	, it results that:

σβ,r ∧ σγ,s = 1

amr
1 ans1

	β,r ∧ 	γ,s,
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for some constant integers mr and ns . Then, the last term a pi
1 aqi1 dσ�,i can be brought into a

combination as:

a pi
1 aqi1 dσ�,i :=

∑

β+γ=�

cr ,s
a pi
1 aqi1

amr
1 ans1

	β,r ∧ 	γ,s .

On the other hand, these coefficients cr ,s
a
pi
1 a

qi
1

amr
1 ans1

are in fact the only remained torsion coef-

ficients T i
rs of the wedge products 	β,r ∧ 	γ,s , in the structure equation d	�,i and hence

according to Proposition 4.4, are of the weight zero. Since they involve just weight one
group parameters a1 and a1 then, after simplifications if necessary, they will be either some
constants or some fractions of the form:

cr ,s
ai1
ai1

or cr ,s
ai1
ai1

.

Consequently, our structure equation d	�,i is now converted into the form:

d	�,i = (piα + qiα) ∧ 	�,i +
∑

β ′+γ ′=�

cr ′,s′ 	β ′,r ′ ∧ 	γ ′,s′

+
∑

β+γ=�

cr ,s
ai1
ai1

	β,r ∧ 	γ,s +
∑

β+γ=�

cr ,s
a j
1

a j
1

	β,r ∧ 	γ,s .

All the appearing βs and γ s in this equation are absolutely less than �, whence in the case that

one cr ,s is nonzero then the torsion coefficient T i
r ,s = cr ,s

ai1
ai1

or T i
r ,s = cr ,s

ai1
ai1

of 	β,r ∧ 	γ,s

is essential and can be plainly normalized to some constant, say cr ,s , by normalizing a1
a1

= 1,
i.e., by considering the only remained parameter a1 as real. Then all powers of a1

a1
will

be equal to 1 and consequently, we receive finally just some constant coefficients of these
remaining wedge products. ��

5.3 Normalization of a1

What mentioned at the end of the above proof demonstrates slightly normalization of the
only remained group parameter a1. Accordingly, this parameter is never normalizable when
after vanishing the group parameters a2, a3, . . ., all the torsion coefficients of the structure
equations are constant. Otherwise, a1 will be normalized just to a real group parameter.

Let us inspect more this normalization. For this purpose, we define the type of each
initial vector field L�,i as the pair (pi , qi ) where pi and qi are, respectively, the numbers
of appearing L1,1 and L1,2 in the construction of L�,i as an iterated bracket of them (cf.
Lemma 3.7). After vanishing the group parameters a2, a3, . . ., now we have the following
relations between the initial and lifted forms:

	�,i = a pi
1 aqi1 σ�,i (40)

where (pi , qi ) = type(L�,i ) is actually the type of L�,i . We have the following effective
criterion concerning the normalization of a1;

Proposition 5.7 There are only two possibilities for the normalization of the remained group
parameter a1: it is either normalizable to a real group parameter or it is never normalizable.
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If the model Mk is of the length ρ � 4, then the latter possibility occurs if and only if for
each weight −ρ initial 2-form dσρ,i with the Darboux–Cartan structure:

dσρ,i :=
∑

r ,s
β+γ=ρ

cr ,s σβ,r ∧ σγ,s

and for each wedge product σβ,r ∧ σγ,s , visible in it, the equality:

type
(
Lρ,i

) = type
(
Lβ,r

)+ type
(
Lγ,s

)

holds between the types of the corresponding initial fields.

Proof We shall prove only the second part of the assertion. As above, let us denote the type
of each initial fieldL�, j by (p j , q j ). ConsiderL1,1, . . . ,Lρ−1,t as all initial vector fields of
lengths � ρ. Whence Lρ,t+1, . . . ,Lρ,2+k are of the maximum length ρ. Also assume that
wk̃ , with k̃ � k, is the last complex coordinate of the weight ρ − 1 in the defining equations

(9) of Mk . Consequently, k̃ is the maximum possible number where Mk̃ ⊂ C
1+k̃ , represented

as the graph of the first k̃ defining equations of Mk , is of the length ρ −1. By the procedure of
constructing initial frames and coframes introduced in Sect. 3, one observes for i = 1, . . . , t
that the associated Darboux–Cartan structure of dσ�,i is exactly of the same form:

dσ�,i :=
∑

r ,s
β+γ=�

cr ,s σβ,r ∧ σγ,s,

in the both cases ofMk andMk̃ . Furthermore, Proposition 3.11 says that the ambiguity matrix
of Mk̃ actually stands inside that of Mk . Hence in the both cases of Mk̃ and Mk and for each
i = 1, . . . , t , the initial 2-form dσ�,i receives exactly the same linear combination [cf. (40)]:

dσ�,i :=
∑

β+γ=�
r ,s

cr ,s

a pr+ps
1 aqr+qs

1

	β,r ∧ 	γ,s,

after vanishing the group parameters a2, a3, . . . (notice that Mk̃ is of the length ρ − 1 ≥
3 and thus in its structure equations, the group parameters a2, a3, . . . vanish as well as
Mk). Regarding the final structure equations (39), thus the structure equations of Mk̃ are
exactly of the same form as the first t structure equations of Mk . This implies that a1 can
not be normalizable throughout these t first structure equations since otherwise, the zeroth
homogeneous component g0 of autCR(Mk̃) is of dimension < 2 (we will observe the reason
in the next section). That is while according to the discussion presented at the bottom of the
page 483 of [5], g0 is of the maximum dimension two, in this specific case. Thus, the last
group parameter a1 can be normalizable only through the weight −ρ structure equations.
Considering:

d	ρ,i = (piα + qiα) ∧ 	�,i + a pi
1 aqi1 dσρ,i ,

as one of such equations with:

dσρ,i :=
∑

r ,s
β+γ=ρ

cr ,s σβ,r ∧ σγ,s
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then, the last paragraphs of the proof of Proposition 5.6 show that a1 is never normalizable
if and only if in the expression [cf. (40)]:

a pi
1 aqi1 dσρ,i :=

∑

β+γ=ρ
r ,s

cr ,s
a pi
1 aqi1

a pr+ps
1 aqr+qs

1

	β,r ∧ 	γ,s,

all the fractions
a
pi
1 a

qi
1

a pr+ps
1 aqr+qs

1
are reducible to a constant integer; hence if and only if:

pi = pr + ps and qi = qr + qs .

This completes the proof. ��
Remark 5.8 Taking into account the procedure of constructing Darboux–Cartan structures
from the table of commutators of the initial frame of Mk (cf. Lemma 3.4) and as a vector
field version of the above criterion, one may state equivalently that a1 is never normalizable
if and only if when [Lβ,r ,Lγ,s] with α + β = ρ includes a nonzero coefficient of a length
ρ vector field Lρ,i , then we have:

type
(
Lρ,i

) = type
(
Lβ,r

)+ type
(
Lγ,s

)
.

Example 5.9 In codimension k = 5, a length four generic CR model M5 ⊂ C
6 is represented

as the graph of five defining polynomials:

w1 − w1 = 2i zz,

w2 − w2 = 2i
(
z2z + zz2

)
, w3 − w3 = 2

(
z2z − zz2

)
,

w4 − w4 = 2i
(
z3z + zz3

)+ 2i b z2z2, w5 − w5 = 2
(
z3z − zz3

)+ 2i c z2z2,

for some two integers b, c ∈ R. Performing required computations, one finds the expected
initial 1-forms L1,1, L1,2, L2,3, L3,4, L3,5, L4,6, L4,7, with the associated types (1, 0),
(0, 1), (1, 1), (2, 1), (1, 2), (3, 1), (1, 3), respectively, and with the table of commutators:

L1,1 L1,2 L2,3 L3,4 L3,5 L4,6 L4,7

L1,1 0 L2,3 L3,4 L4,6 i rL4,6 + i rL4,7 0 0
L1,2 ∗ 0 L3,5 −i rL4,6 − i rL4,7 L4,7 0 0
L2,3 ∗ ∗ 0 0 0 0 0
L3,4 ∗ ∗ ∗ 0 0 0 0
L3,5 ∗ ∗ ∗ ∗ 0 0 0
L4,6 ∗ ∗ ∗ ∗ ∗ 0 0
L4,7 ∗ ∗ ∗ ∗ ∗ ∗ 0

for:

r := 1
3 (b − ic).

Here, L4,6 and L4,7 are the only initial vector fields of the maximum length four. A glance
on the above table shows that these two elements have some nonzero coefficients only in the
Lie brackets:

[
L1,1,L3,4

] = L4,6,
[
L1,1,L3,5

] = i rL4,6 + i rL4,7,
[
L1,2,L3,5

] = L4,7,
[
L1,2,L3,4

] = −i rL4,6 − i rL4,7.
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If r = 0, then the second and fourth bracketswill be disregarded. It is easy to check concerning
the two remained brackets [L1,1,L3,4] = L4,6 and [L1,2,L3,5] = L4,7 that we have:

type
(
L4,6

) = type
(
L1,1

)+ type
(
L3,4

)
and type

(
L4,7

) = type
(
L1,2

)+ type
(
L3,5

)
.

This, according to Proposition 5.7, yields that the group parameter a1 is never normalizable
in this case. But, if r �= 0, then one finds a nonzero coefficient of L4,6 in the Lie bracket
[L1,1,L3,5]. That is while the type of L4,6, namely (3, 1), is not equal to:

type
(
L1,1

)+ type
(
L3,5

) = (1, 0) + (1, 2) = (2, 2).

This implies that in this case, the group parameter a1 can be normalized to a real parameter.
This result coincides with the case K = 5 (ordinary type) of [35, Theorem 1].

5.4 Prolongation

At this stage that no further application of absorption-normalization is effective then, we have
to decide whether it is possible proceeding into the third step of Cartan’s method, namely the
prolongation, or not. For this purpose, we shall check the so-called Cartan’s arithmetic test
of involutivity for the lifted coframe {	1,1, . . . , 	ρ,2+k} with the structure equations (38).
We refer the reader to Chapter 11 of Olver’s book [23] for necessary definitions and results
concerning this subject (see also pp. 113–115 of the expanded version of [21] for a brief
description).

Lemma 5.10 The Maurer–Cartan form α = d a1
a1

is the only 1-form which can enjoy the
system of structure equations (38).

Proof By Proposition 5.6, the structure equations of d	2,3 and d	1,1 are now of the form
[see also (31)]:

d	2,3 = (α + α) ∧ 	2,3 + c	1,1 ∧ 	1,2,

d	1,1 = α ∧ 	1,1,
(41)

for some constant integer c. If α′ is another 1-form, enjoying the structure equations (38),
then subtracting by pairs the above expressions of d	2,3 and d	1,1 with α and with α′, gives:

0 ≡ (
α + α − α′ − α′) ∧ 	2,3,

0 ≡ (
α − α′) ∧ 	1,1.

Applying the well-known Cartan’s Lemma [23, Exercise 1.33] on these equations implies
that we have:

α − α′ + α − α′ = A	2,3 and α − α′ = B 	1,1 (42)

for some certain functions A and B. If we substitute the second equality of (42) into the first
one, then we plainly receive:

B 	1,1 + B 	1,1 − A	2,3 = 0.

Now, thanks to the equality 	1,1 = 	1,2 (cf. Sect. 3.1.1) and due to the fact that 	2,3, 	1,2

and 	1,1 are linearly independent, then we have A = B = 0. Now, the second equation of
(42) immediately implies that α′ = α and hence the Maurer–Cartan form α is unique, as was
claimed. ��
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This lemma shows that if we execute again the absorption procedure on the structure
equation (38) by replacing α with:

α + r2+k 	ρ,2+k + · · · + r1 	1,1, (43)

then in order to annihilate all the coefficients in the new expressions of d	•,•, the only
solution is r2+k = · · · = r1 = 0. In other words, the number of free variables or equivalently
the degree of indeterminancy is null7 and our final system of structure equations (38) is
determinate. Thus, the lifted coframe {	1,1, . . . , 	ρ,2+k} is certainly non-involutive and we
can start the prolongation step of Cartan’s method.

In this determinate case, the main result behind the prolongation step is [23, Proposition
12.1]. It permits us to reformulate the current equivalence problem to our (2+k)-dimensional
CR model Mk on that of the bigger (3+ k) or (4+ k)-dimensional prolonged space Mpr :=
Mk × Gred. For this, we have to add the remaining Maurer–Cartan forms α and α to the
original lifted coframe 	 and consider (	ρ,2+k, . . . , 	1,1, α, α) as the new lifted coframe
associated with this prolonged space. In the case that a1 is normalizable to a real group
parameter, then of course we have α = α. Constructing the associated structure equations
to this new problem is easy, just adding dα = d

( d a1
a1

) = 0 to the former ones. Then, the
final structure equations of our new equivalence problem to the prolonged space Mpr take
the following {e}-structure constant type:
⎡

⎣
d 	�,i = (pi α + qi α) ∧ 	�,i +∑

�1+�2=� cij,n 	�1, j ∧ 	�2,n (�=1,...,ρ, i=1,...,2+k),

dα = 0,
dα = 0.

(44)

Thus, we have arrived at the stage of stating the main result of this paper;

Theorem 5.1 The biholomorphic equivalence problem to a (2+k)-dimensional real analytic
totally nondegenerate CR model Mk ⊂ C

1+k of codimension k is reducible to some absolute
parallelisms, namely to some certain {e}-structures on prolonged manifolds Mk × Gred of
real dimensions either 3 + k or 4 + k.

Remark 5.11 The above final structure equations (44) together with Proposition 5.7 (or
Remark 5.8) solve decisively the biholomorphic equivalence problem to Beloshapka’s mod-
els of CR dimension one in terms of their associated initial frames (cf. [5, Corollary 7]). This
result may have various applications in which let us state some of them as below:

(i) It supplies a practical tool to consider moduli spaces of model CR manifolds in CR
dimension one (cf. [4,16] and in particular [29, Sect. 3]).

(ii) It also can provide one with the opportunity of constructing Cartan geometries of totally
nondegenerate CR manifolds modeled on Beloshapka’s models as is done in the specific
codimensions k = 1, 3 in [22,33].

(iii) As is done in the short paper [28], the results enable us to provide an affirmative answer
in CR dimension one to Beloshapka’s question about the standardness of his models (
[5, Question 2]).

(iv) It also helps one to realize the structure of Lie algebras of infinitesimalCRautomorphisms
associated with the models. In the next section, we will discuss this idea in more details.

7 There is also another simpler way to show (by direct computations) that the degree of indeterminancy is zero
in this case. It just requires to replace the only remaining Maurer–Cartan forms α and α as (43) and observe
that the result of applying absorption-normalization even only on the two structure equations (41) is nothing
but r2+k = · · · = r1 = 0. However, our reason of introducing Lemma 5.10 is that it may also have its own
interest, independently.
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Weight assignment We assign naturally8 the weight zero to the new lifted 1-forms α and α.

6 Proof of Beloshapka’s maximum conjecture in CR dimension one

As we saw, the equivalence problem to a certain CRmodel Mk converted finally to that of the
prolonged space Mpr with the final constant type structure equations (44). According to [23,
Theorem 8.16], if the final structure equations of an equivalence problem to an r -dimensional
smooth manifold M equipped with some lifted coframe {γ 1, . . . , γ r } is of the constant type:

dγ k =
∑

1�i< j�r

cki j γ
i ∧ γ j

(k=1...r),

then M is (locally) diffeomorphic to an r -dimensional Lie group G corresponding to the Lie
algebra gwith the basis elements {v1, . . . , vr } and enjoying the so-called structure constants:

[
vi , v j

] = −
r∑

k=1

cki j vk (1� i < j � r).

Let us try to find the Lie algebra g corresponding to the constant structure equations
(44). We associate to each lifted 1-form 	�,i of Mpr the basis element v�,i of g. For the
new appearing lifted 1-forms α and α, let us associate v0 and v0. If the real part of a1 is
normalizable (see Proposition 5.7), then we dispense with v0 since in this case we have
α = α. Thus, our desired Lie algebra g is of dimension either 3 + k or 4 + k, depending
on the normalization of a1. Assign naturally the weight −� to each basis element v�,i and
the weight zero to v0 and v0. In particular, because we do not see any wedge product α ∧ α

among the structure equations (44) then, [v0, v0] = 0. This indicates that {v0, v0} generates
an Abelian subalgebra of g.

Each structure equation d	�,i in (44) is some constant combination of the wedge products
between lifted 1-forms for which the sum of their weights is exactly−�. Thus, the Lie bracket
between two weight −�1 and −�2 basis elements v• of g will be some constant combination
of its weight −(�1 + �2) basis elements. Consequently, we have the following interesting
result;

Proposition 6.1 Let g−� be the C-vector space generated by all basis elements v�,i of the
weight −� and let g0 be the Abelian algebra generated by v0 and v0. Then, the Lie algebra
g associated with the final structure equations (44) is graded of the form:

g := g−ρ ⊕ g−(ρ−1) ⊕ · · · ⊕ g−1︸ ︷︷ ︸
g−

⊕ g0

satisfying [g−�1 , g−�2 ] = g−(�1+�2). In this case, g− is (2+ k)-dimensional and g0 is of real
dimension either 1 or 2.

On the other hand, Corollary 14.20 of [23] says that this Lie algebra g is in fact the
symmetry Lie algebra of the prolonged space Mpr = Mk × Gred with respect to its coframe
(	1,1, . . . , 	ρ,2+k, α, α); that is the Lie algebra associated with the Lie group G of self-
equivalences � : Mpr → Mpr, satisfying �∗(θ) = θ for θ = 	1,1, . . . , 	ρ,2+k, α, α. But,

8 Notice that the exterior differentiation dα took the value zero, exactly as constant functions.
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Biholomorphic equivalence to totally nondegenerate model CR… 1159

according to [23, Proposition 12.1] and its proof, G can be identified with the CR symmetry
Lie group AutCR(M) of biholomorphic maps h : Mk → Mk , hence:

autCR(Mk) ∼= g.

Consequently similar to g, the Lie algebra autCR(Mk) will be graded without any positive
component in its gradation, as was conjectured by Beloshapka.

Theorem 6.1 (Beloshapka’s maximum conjecture in CR dimension one). The Lie algebra
autCR(Mk) associated with a Beloshapka’s real analytic totally nondegenerate CR model
Mk of CR dimension 1, codimension k and length ρ ≥ 3—or equivalently of codimension
k ≥ 2—contains no any homogeneous component of absolutely positive homogeneity. In
other words, such CR model has rigidity. Moreover, this Lie algebra is of dimension either
3 + k or 4 + k. ��
Acknowledgements The author expresses his sincere thanks to Joël Merker and Amir Hashemi for their
helpful comments, discussions and encouragements during the preparation of this paper. The research of the
author was supported in part by a grant from IPM, No. 96510425.

Appendix A: An illustrative example in length four

By way of illustration the method introduced in Sect. 5, in this appendix we consider the
biholomorphic equivalence problem to the 8-dimensional, length ρ = 4 CRmodel M6 ⊂ C

7

represented as the graph of six defining polynomials:

w1 − w1 = 2i zz,

w2 − w2 = 2i
(
z2z + zz2

)
, w3 − w3 = 2

(
z2z − zz2

)
,

w4 − w4 = 2i
(
z3z + zz3

)
, w5 − w5 = 2

(
z3z − zz3

)
, w6 − w6 = 2i z2z2.

The assigned weights to the extant complex variables are:

[z] = 1, [w1] = 2, [w2] = [w3] = 3, [w4] = [w5] = [w6] = 4.

Saving the space, we do not present the intermediate calculations. According to our com-
putations, our initial frame contains eight vector fields of various lengths −1, . . . ,−4:

L := L1,1, L := L1,2,

T := L2,3 = i
[
L ,L

]
,

S := L3,4 = [L ,T ] , S := L3,5 = [
L ,T

]
,

U := L4,6 = [L ,S ] , U := L4,7 = [
L ,S

]
, V := L4,8 = [

L ,S
] = [

L ,S
]
.

The other Lie brackets between these eight initial vector fields are all zero. Assume that:

� :=
⎛

⎜
⎝ν0, μ0, μ0︸ ︷︷ ︸

weight-4

, σ0, σ 0︸ ︷︷ ︸
weight-3

, ρ0︸︷︷︸
weight-2

, ζ0, ζ 0︸ ︷︷ ︸
weight-1

⎞

⎟
⎠

t

is the dual coframe of
(
V ,U ,U ,S ,S ,T ,L ,L

)t
.

Then the associated Darboux–Cartan structure to this coframe is:

dν0 = σ 0 ∧ ζ0 + σ0 ∧ ζ 0, dμ0 = σ0 ∧ ζ0, dμ0 = σ 0 ∧ ζ 0

dσ0 = ρ0 ∧ ζ0, dσ 0 = ρ0 ∧ ζ 0,
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dρ0 = iζ0 ∧ ζ 0, dζ0 = 0, dζ 0 = 0.

Assuming 	 := (ν, μ,μ, σ, σ , ρ, ζ, ζ
)t as the associated lifted coframe, then our computa-

tion brings the ambiguity 8× 8 invertible matrix of the biholomorphic equivalence problem
to M6 as:

	 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a21a
2
1 0 0 0 0 0 0 0

0 a31a1 0 0 0 0 0 0
0 0 a1a31 0 0 0 0 0
a13 a6 0 a21a1 0 0 0 0
a13 0 a6 0 a1a21 0 0 0
a11 a7 a7 a3 a3 a1a1 0 0
a12 a8 a9 a4 a5 a2 a1 0
a12 a9 a8 a5 a4 a2 0 a1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
g

·�,
(45)

with the assigned weights:

[a1] = 1, [a2] = 2, [a3] = [a4] = [a5] = 3, [a6] = · · · = [a13] = 4.

By computing the (somehow big) inverse matrix g−1, one can check also the assertion of
some results like Lemmas 4.2 and 4.3. Also, our Maurer–Cartan matrix is of the form:

ωMC :=

⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

2α + 2α 0 0 0 0 0 0 0
0 3α + α 0 0 0 0 0 0
0 0 α + 3α 0 0 0 0 0

δ13 δ6 0 2α + α 0 0 0 0
δ13 0 δ6 0 α + 2α 0 0 0
δ11 δ7 δ7 δ3 δ3 α + α 0 0
δ12 δ8 δ9 δ4 δ5 δ2 α 0
δ12 δ9 δ8 δ5 δ4 δ2 0 α

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

, with α = da1
a1

.

Then, our structure equations will be of the form—we abbreviate the superfluous combina-
tions of the wedge products δ j ∧ • just by some “· · · ” since they will not play any important
role:

dν = (2α + 2α) ∧ ν + a21a
2
1 dν0,

dμ = (3α + α) ∧ μ + a31a1 dμ0,

dσ = · · · + (2α + α) ∧ σ + a13 dν0 + a6 dμ0 + a21a1 dσ0,

dρ = · · · + (α + α) ∧ ρ + a11 dν0 + a7 dμ0 + a7 dμ0 + a3 dσ0 + a3 dσ 0 + a1a1 dρ0,

dζ = · · · + α ∧ ζ + a12 dν0 + a8 dμ0 + a9 dμ0 + a4 dσ0 + a5 dσ 0 + a2 dρ0 + a1 dζ0.

(46)

Now, let us proceed as Sect. 5.2 to pick the appropriate weighted homogeneous system S.
To do it and as is themethod of absorption-normalization step, firstwe apply the substitutions:

α �→ α + t8 ν + t7 μ + · · · + t2 ζ + t1 ζ,

δ j �→ δ j + s j8 ν + s j7 μ + · · · + s j2 ζ + s j1 ζ, ( j=2,...,13)

on the above structure equations. According to our proposed method of constructing S, in the
minimum weight −4 structure equations dν and dμ, we have to compute the coefficients of
ν ∧ {ζ, ζ } and μ ∧ {ζ, ζ }, respectively. Moreover, in the weight −3 structure equation dσ ,
we should pick up the coefficients of σ ∧ {ζ, ζ } since σ0 ∧ ζ0 and σ0 ∧ ζ 0 uniquely appear
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in the Darboux–Cartan structure of the only extant length −4 differentiations dμ0 and dν0
visible in this structure equation. Similarly, in the lengths −2 and −1 structure equations dρ

and dζ , we should pick the coefficients of ρ ∧ {ζ, ζ } and ζ ∧ ζ , respectively. Equating these
coefficients to zero gives the following equations:

Sdν :=
{

− a13
a21a

2
1

= 2t1 + 2t2

}

, Sdμ :=
{

− a6
a31a1

= 3t1 + t2, 0 = t1 + 3t2

}

,

Sdσ :=
{

a6
a31a1

− a3
a21a1

= 2t1 + t2,
a13
a21a

2
1

= t1 + 2t2

}

,

Sdρ :=
{

a3
a21a1

+ i
a2
a1a1

= t1 + t2

}

, Sdζ :=
{
i
a2
a1a1

= t2

}
,

where S is the union of them. Putting the obtained expressions of the parameters t1 and t2
into these equations and multiplying them by sufficient powers of a1 and a1, one finds the
following weighted homogeneous system:

S :=
{
a13 + 2 a1a3 + 2i a1a1a2 = 0, a6 + 3 a1a3 + 5i a21a2 = 0, a3 + i a1a2 = 0,

a6 − 3 a1a3 − 3i a21a2 = 0, a13 − a1 a3 = 0

}
.

Either by hand or by means of some computer softwares, one versifies that the solution of
this system is nothing but a2 = a3 = a6 = a13 ≡ 0, which immediately implies vanishing
of all the group parameters a2, a3, a4, . . . , a13. Our computations shows that here a1 is not
normalizable. Applying these results and after one prolongation, the first structure equations
(46) converts to the simple constant form:

dν = (2α + 2α) ∧ ν + σ ∧ ζ + σ ∧ ζ ,

dμ = (3α + α) ∧ μ + σ ∧ ζ,

dσ = (2α + α) ∧ σ + ρ ∧ ζ,

dρ = (α + α) ∧ ρ + i ζ ∧ ζ ,

dζ = α ∧ ζ

dα = 0.

Proposition A.1 The Lie algebra g associated with the above structure equations is 10-
dimensional with the basis {vν, vμ, vμ, vσ , vσ , vρ, vζ , vζ , vα, vα} and with the Lie brackets,
displayed in the following table:

This Lie algebra, which is isomorphic to autCR(M6), is graded of the form:

g := g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1 ⊕ g0,

with g−4 = 〈vν, vμ, vμ〉, with g−3 = 〈vσ , vσ 〉, with g−2 = 〈vρ〉, with g−1 = 〈vζ , vζ 〉 and
with g0 = 〈vα, vα〉.
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vν vμ vμ vσ vσ vρ vζ vζ vα vα

vν 0 0 0 0 0 0 0 0 2vν 2vν

vμ ∗ 0 0 0 0 0 0 0 3vμ vμ

vμ ∗ ∗ 0 0 0 0 0 0 vμ 3vμ

vσ ∗ ∗ ∗ 0 0 0 −vμ −vν 2vσ vσ

vσ ∗ ∗ ∗ ∗ 0 0 −vν −vμ vσ 2vσ

vρ ∗ ∗ ∗ ∗ ∗ 0 −vσ −vσ vρ vρ

vζ ∗ ∗ ∗ ∗ ∗ ∗ 0 −ivρ vζ 0

vζ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 vζ

vα ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
vα ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
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