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Abstract
Given p > 1 and f Lipschitz, under appropriate assumptions on the smoothness of the
bounded domainΩ ⊂ R

N , N ≥ 1, we give a precise description of the asymptotic behaviour
of the gradient of the unique solution of{

−�u + |u|p−1u = f in Ω,

u = +∞ on ∂Ω.

In particular, we show that there exists a corrector function S, finite sum of singular terms,
such that

z := u − S ∈ W 1,∞(Ω).

Moreover, we prove that

∀ x̄ ∈ ∂Ω z(x̄) = 0 and lim
δ→0

z(x̄ − δν(x̄))

δ
= 0,

where ν is the outward unit normal to ∂Ω .
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1 Introduction

This paper is devoted to the study of semilinear elliptic problems with explosive boundary
conditions; more precisely, we are interested in the qualitative behaviour of solutions of{

−�u + g(u) = f in Ω,

u = +∞ on ∂Ω,
(1.1)
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1014 S. Buccheri

where Ω is a bounded smooth domain of RN , with N ≥ 1, g ∈ C1(R) is such that

g(a) > 0 for some a ∈ R and g′(s) > 0 for every s ∈ R, (1.2)

and f is a Lipschitz continuous function. Here, solutions are meant in the classical sense,
i.e. C2(Ω) functions which satisfy the differential equation above pointwise and such that

lim
x→∂Ω

u(x) = +∞.

In the literature, solutions that blow up at the boundary of the domain are known as large
solutions. Looking naively at (1.1), one naturally wonders under which assumptions on g
the existence of a large solution is assured, if the monotonicity assumption on g implies
uniqueness of solution and how such a solution behaves near the boundary.

In the seminal works by Keller and Osserman (see [19,28]), it is proved that the necessary
and sufficient condition for the existence of a large solution for problem (1.1) is the following:

∃ t0 ∈ [−∞,+∞) : ψ(t) :=
∫ ∞

t

ds√
2G(s)

< ∞ for t > t0, where G ′(s) = g(s).

(1.3)
This growth condition at infinity, known as Keller–Osserman condition, arises solving the
one-dimensional problem

− φ′′ + g(φ) = 0, s > 0 and lim
s→0+ φ(s) = +∞. (1.4)

We stress that, in fact, φ(s) = ψ−1(s) solves problem (1.4). We refer the interested reader
to [14] (see also the references cited therein) for existence issues with no monotonicity
assumptions on g.

Uniqueness is not a trivial task in the sense that it is not known if the monotonicity of g is
a sufficient condition for it; we refer to [26], where it is proved that if g is convex then (1.1)
admits a unique large solution, and to [15] (see also [5]), where it is shown that assumptions
of the type

g(t)

tq
increasing for t � 1 and some q > 1

imply uniqueness of large solution. It isworthy tomention that the special case g(s) = |s|p−1s
with p > 1 satisfies the latter condition.

Let us point out now that the function φ defined in (1.4) is strongly related to the boundary
behaviour of solutions of (1.1). In [4,5], it has been proved that the behaviour of u is, in some
sense, one dimensional near the boundary, i.e. it holds that

lim
d(x)→0

ψ(u(x))

d(x)
= 1 where d(x) = dist(x, ∂Ω).

Moreover, if g is such that

lim inf
t→∞

ψ(βt)

ψ(t)
> 1, ∀ β ∈ (0, 1), (1.5)

then ∣∣∣∣u(x) − φ(d(x))

∣∣∣∣ = o(φ(d(x))) as d(x) → 0, (1.6)

namely the first-order term in the asymptotic of u near the boundary only depends on the
corresponding ODE (1.4) and in particular is not affected by the geometry of the domain. In
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[7], the authors improve (1.6); assuming in addition to (1.5) that

G(s)

s2
is strictly increasing for large s and lim sup

β→1,s→0

φ′(βs)
φ′(s)

< ∞,

they prove that

|u(x) − φ(d(x))| ≤ cφ(d(x))d(x) as d(x) → 0,

where the positive constant c depends on the mean curvature of the boundary of Ω . After
this first clue, the influence of the geometry of ∂Ω in the expansion of u has been studied in
[21,29] under different assumptions on g. The most general result in this direction has been
proved in [8]; in order to state it, we need to define

J (s) := N − 1

2

∫ s

0

(φ(t))dt, where 
(t) :=

∫ t
0

√
2G(s)ds

G(t)

and to assume that

lim
δ→0

B(φ(δ(1 + o(1))))

B(φ(δ))
= 1 and lim sup

t→∞
B(t)
(t) < ∞, (1.7)

where

B(s) := d

dt

√
2G(s) = g(s)√

2G(s)
.

Assuming (1.7), together with (1.3) and (1.5), it follows that∣∣∣∣u(x) − φ
[
d(x) − H(x)J (d(x))

]∣∣∣∣ ≤ φ(d(x)o(d(x)) as d(x) → 0, (1.8)

where H is a smooth function whose restriction to ∂Ω coincides with the mean curvature of
the domain; moreover, it is worth stressing that (1.7) implies

J (d(x)) = O(d2(x)).

The relation above, together with (1.8), tells us that the second-order contribution to the
explosion of u is affected by the geometry of the domain through the mean curvature of ∂Ω .
More recently in [12] (see also [10]), bymeans of an interesting application of the contraction
theorem, all the singular terms of the asymptotic of u have been implicitly calculated in the
special case Ω = B.

For power-type nonlinearities, it is also possible to obtain the first asymptotic of the
gradient of the solution by means of scaling arguments. In particular, in [4,6] (see also [30])
it is proved that if

lim
s→∞

g(s)

s p
= 1 for some p > 1,

it holds true that∣∣∣∣∂u(x)

∂ν
− ∂φ(d(x))

∂ν

∣∣∣∣+
∣∣∣∣∂u(x)

∂τ

∣∣∣∣ ≤ o(φ′(d(x))) as d(x) → 0, (1.9)

where ν is the unit normal to ∂Ω (recall that ν(x̄) = −∇d(x̄) for x̄ ∈ ∂Ω) and τ ∈ S
N−1 is

such that τ(x̄) · ν(x̄) = 0 for every x̄ ∈ ∂Ω . However, a general result for the second-order
term in the expansion of ∇u in the same spirit of (1.8) is not available in the literature (see
anyway [3] for a partial result in convex domains).
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1016 S. Buccheri

Our aim is to complete the picture of the asymptotic behaviour of the gradient of solutions
of problem (1.10) in the case g(s) = |s|p−1s, with p > 1 and Ω smooth enough. Thus, the
problem we deal with is {

−�u + |u|p−1u = f in Ω,

u = +∞ on ∂Ω,
(1.10)

where f ∈ W 1,∞(Ω). It is easy to verify that with such a choice of g, assumptions (1.3)–
(1.7) are satisfied. It is also worth to recall that in this case problem (1.10) has a unique large
solution and that the function φ defined in (1.4) has the following explicit form:

φ(s) = σ0

sα
with α = 2

p − 1
and σ0 = [α(α + 1)] 1

p−1 . (1.11)

The result that we present in this paper will describe not only the second-order behaviour
of the gradient of the large solution of (1.10), but also the complete asymptotic expansion
of all the singular terms of u and ∇u, for every arbitrary sufficiently smooth domain and
every p > 1. As a by-product of this expansion, we will be able to provide the expected
second-order asymptotic for the normal and tangential components of ∇u with respect to
∂Ω . Indeed, we will prove

lim
x→x̄

[
dα(x)

∂u(x)

∂ν
− ασ0d(x)

]
= c(α, N )H(x̄)

lim
x→x̄

dα(x)
∂u(x)

∂τ
= 0

uniformly with respect to x̄ ∈ ∂Ω,

(1.12)
where c(α, N ) is a precise constant that depends only on α and N (see Corollary 1.4 for
more details). More in general, we will be able to prove (see Theorem 1.3 for the precise
statement) that there exists a unique explicit function S, sum of [α]+ 1 singular terms where
α is as in (1.11), such that

z := u − S ∈ W 1,∞(Ω).

Let us say that the formula above expresses the leitmotiv of the paper, that is, try to find an
explicit simple corrector function that describes the explosive behaviour of u.

Moreover, using a scaling argument and the previously obtained information on z, in
Theorem 2.9 we prove that the function z satisfies the following boundary conditions:

z(x̄) = 0 and lim
δ→0

z(x̄ − δν(x̄))

δ
= 0 ∀ x̄ ∈ ∂Ω.

The latter condition is a weak form of expressing the fact that the normal derivative of z is
zero at the boundary of Ω .

Finally, we consider a more general class of nonlinearities that will be easily treated with
an extension of our method.

Before stating precisely our main results, we need to give some notation.

1.1 Notation

We shall often work in tubular neighbourhoods of ∂Ω of the type

Ωδ = {y ∈ Ω : dist(u, ∂Ω) < δ}, δ > 0.
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We recall that Ω is always at least of class C2. Hence, the function dist(·, ∂Ω) distance from
the boundary is well defined and twice differentiable near ∂Ω . More precisely, the following
theorem, proved in [20], gives the relation between the regularity of the boundary and the
regularity of the distance function.

Theorem 1.1 (Theorem 3 in [20]) Let Ω be a domain of class Cγ with γ ≥ 2. Then,

∃δ̄ > 0 such that dist(·, ∂Ω) ∈ Cγ (Ωδ̄). (1.13)

Thanks to the previous theorem, we can define the following smooth versions of the
distance function.

Definition 1.2 Let Ω be a domain of class Cγ with γ ≥ 2, and let δ̄ > 0 be given by
(1.13). Then, we define the regularized distance as a function d ∈ Cγ (Ω) such that d(x) =
dist(x, ∂Ω) for every x that belongs to Ωδ̄ . We moreover denote dn(x) := d(x) + 1

n .

It is worthy to stress that dn(·) inherits from dist(·, ∂Ω) the following important properties

|∇dn(x)|2 = 1 x ∈ Ωδ̄, ∇dn(x̄) = −ν(x̄) and �dn(x̄) = −(N − 1)H(x̄) x̄ ∈ ∂Ω,

where ν is the outward normal to ∂Ω and H(x̄) is the mean curvature at x̄ ∈ ∂Ω .
Finally, unless otherwise specified, we indicate with C a constant that depends only on

the data of the problem and that can vary line to line also in the proof on the same theorem.

1.2 Main results

The ansatz that guides our approach is that it is possible to give an explicit description of the
explosive behaviour of the large solution u and of its gradient ∇u by means of a finite sum
of singular terms. Inspired by (1.6), (1.8) and (1.9), we conjecture that

u(x) ∼ σ0d
−α + σ1d

−α+1 + σ2d
−α+2 + · · · ,

where σk with k = 0, 1, . . . are smooth functions, and define the following regularized
function

z := u − (
σ0d

−α + σ1d
−α+1 + σ2d

−α+2 + · · · ) . (1.14)

Hence, the first question we want to answer is:

Can we find σk with k = 0, 1, . . . such that z and |∇z| belong to L∞(Ω)?

Of course, the functions σ1, . . . , σk shall take into account several characteristics of the
problem, among others the geometry of the domain. Notice moreover that the definition
(1.14) suggests that we need [α] + 2 terms for having z ∈ W 1,∞(Ω). Indeed, we have the
following result.

Theorem 1.3 Let us assume p > 1 and fix α := 2
p−1 . Let Ω be a bounded domain of class

C [α]+5 with [α] the integer part of α, let f belong to W 1,∞(Ω), and let u be the unique large
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1018 S. Buccheri

solution of (1.10). Let us define the following functions

σ0 :=[α(α + 1)] 1
p−1

σ1(x) := − 1

2

ασ0

1 + 2α
�d(x) = σ0

α(N − 1)H(x)

2(1 + 2α)

σk(x) := (α + 1 − k)[σk−1(x)�d(x) + 2∇σk−1(x)∇d(x)] + �σk−2(x)

(k − α)(k − α − 1) − (2 + α)(α + 1)

+ σ
p
0

(k − α)(k − α − 1) − (2 + α)(α + 1)
k∑
j=2

⎡
⎣(p

j

)
σ

− j
0

∑
i1+···+i j=k

σi1(x) · · · σi j (x)
⎤
⎦

fork = 2 · · · [α] + 1 and i1, . . . , i j positive integers.

(1.15)

Then, σk ∈ C(Ω)[α]+5−k with k = 0, . . . , [α] + 1, and the function S ∈ C4(Ω), defined as

S(x) =
[α]+1∑
k=0

σk(x) d
k−α(x), (1.16)

is such that

z(x) := u(x) − S(x) ∈ W 1,∞(Ω).

Moreover, it also holds true

∀ x̄ ∈ ∂Ω z(x̄) = 0 and lim
δ→0

z(x̄ − δν(x̄))

δ
= 0 . (1.17)

Remark 1.4 Let us stress that the higher the value of α (i.e. the closer p is to 1), the higher
the number of singular terms is and the higher the regularity of Ω has to be.
Moreover, if we split the above estimate along normal and tangential directions we get a very
precise estimate of all the singular terms in the expansion of the gradient. More specifically,
we have that

lim
d(x)→0

∂u

∂ν
−

[α]+1∑
k=0

(α − k)σk(x) d
k−α−1(x) + ∂σk(x)

∂ν
dk−α(x) = 0 (1.18)

while ∣∣∣∣∂u∂τ
−

[α]+1∑
k=0

∂σk(x)

∂τ
dk−α(x)

∣∣∣∣ ∈ L∞(Ω) (1.19)

∀τ ∈ S
N−1 such that τ · ν = 0.

From (1.18) and (1.19), we easily obtain the second-order asymptotic of the gradient (1.12)
mentioned in Introduction.

The core of Theorem 1.3 is a Bernstein-type estimate for |∇z|. This type of technique,
already used in the framework of large solutions for quasilinear problem in [22] (see also
[23]), has been originally developed in [24,25], and it allows to obtain L∞(Ω)-estimates for
solutions of a vast class of boundary value problems. Of course, we do not know a priori the
boundary condition (if any) satisfied by u − S; thus, it is not possible to obtain Bernstein
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estimates directly for z and |∇z|. We overcome this obstacle arguing by approximation and
considering the following regularized corrector function

Sn(x) =
[α]+1∑
k=0

σk(x)d
k−α
n (x), dn = d(x) + 1

n
, (1.20)

where σ0, . . . , σ[α]+1 are the functions defined in (1.15), and the following approximated
problem {

−�un + |un |p−1un = f , in Ω
∂un
∂ν

= ∂Sn
∂ν

on ∂Ω.
(1.21)

Moreover, we define zn(x) := un(x) − Sn(x) that solves⎧⎨
⎩

−�zn + |zn + Sn |p−1(zn + Sn) − |Sn |p−1Sn = f̃n in Ω
∂zn
∂ν

= 0 on ∂Ω,
(1.22)

where
f̃n = f + �Sn − |Sn |p−1Sn . (1.23)

Let us stress that the choice of the Neumann boundary condition in (1.21) and in turn in
(1.22) is not the only possible, but it is the most convenient for our scope; indeed, Neumann
problems are particularly suited for the implementation of the previouslymentionedBernstein
estimates. Observe at this point that un converges, at least inC2

loc(Ω) (see Proposition 2.6) to
the unique large solution to (1.10), and this in turn implies that zn → z := u − S in C2

loc(Ω)

where S = lim
n→∞ Sn . Hence, once a uniform estimate (with respect to n) in W 1,∞(Ω) is

obtained for the solution zn of (1.22), it can be inherited by z as n diverges.
The proof of Theorem 1.3 is divided into the following main steps:

• we prove that there exists a constant C̄ = C̄(σ0, . . . , σ[α]+1, f ) such that dn | f̃n | +
d2n |∇ f̃n | ≤ C̄d1+[α]−α for every n ∈ N;

• we show that for every n ∈ N problem (1.21) admits a solution un and we describe the
first-order behaviour of un near the boundary;

• through a Bernstein-type estimate, we show that there exists a positive constant B =
B(σ0, . . . , σ[α]+1, f ) such that ‖zn‖W 1,∞(Ω) ≤ B for every n ∈ N. This implies that
‖z‖W 1,∞(Ω) ≤ B.

Hence, Theorem 1.3 tells us that z ∈ C2(Ω) satisfies{
−�z + |z + S|p−1(z + S) − |S|p−1S = f̃ in Ω,

z ∈ W 1,∞(Ω),

where
f̃ (x) = f (x) + �S(x) − |S(x)|p−1S(x) (1.24)

and f̃ = lim
n→∞ f̃n . Note that so far we do not have any information on the boundary behaviour

of z, apart from the fact that is globally Lipschitz continuous. Thus, it is natural to wonder if
z satisfies some boundary condition; and indeed using scaling arguments, in the same spirit
of [4,30], we prove (1.17).
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1020 S. Buccheri

Let us now consider a class of nonlinearities for which Theorem 2.9 can be generalized
with minor modifications. Let us thus focus on the following problem{

−�u + h(x)|u|p−1u = r(x, u) in Ω,

u = +∞ on ∂Ω,
(1.25)

where p > 1, h ∈ C4(Ω̄) is such that for 0 < A < B

A ≤ h(x) ≤ B ∀ x ∈ Ω̄, (1.26)

and r ∈ C1(Ω̄ × R) satisfies

r(x, s)s ≥ 0 and
∂

∂s

(
h(x)|s|p−1s − r(x, s)

) ≥ 0 ∀ (x, s) ∈ Ω × R. (1.27)

In Theorem 2.7 of [5], it is proved that for any bounded domain Ω of class C2, under the
assumptions (1.26) and (1.27), problem (1.25) admits a positive large solution; moreover,
every large solution u of (1.25) has the following asymptotic behaviour near ∂Ω

lim
d(x)→0

u(x)

σ0
(√

h(x)d(x)
)−α

= 1. (1.28)

Now, we make additional growth assumptions on the function r(x, s) in order to be able to
implement the Bernstein technique as in Theorem 1.3. We require that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sup
0<s<1

|r(x, s−α)|s ∈ L∞(Ω),

sup
0<s<1

|rx (x, s−α)|s2 ∈ L∞(Ω),

sup
0<s<1

|rs(x, s−α)|s2 = o(1), as d(x) → 0,

sup
0<s<1

|rs(x, s−α)|s−α+1 ∈ L∞(Ω),

(1.29)

where rx := ∇xr and rs := ∂r
∂s .As afirst consequence of (1.29),wededuce that for 1 < q < p

the function g(x, s) := h(x)|s|p−1s − r(x, s) satisfies

g(x, s)

sq
is increasing for large values of s. (1.30)

Indeed,

d

ds

g(x, s)

sq
= (p − q)s p−1 − rs(x, s) + r(x, s)s−1

sq
> 0 for large value of s, ∀x ∈ Ω.

Thus, using (1.28) and (1.30) we can take advantage of (the proof of) Theorem 2 of [15] to
infer that problem (1.25) admits a unique large solution.

We stress here that we obtain the asymptotic expansion of large solutions and their gradient
via an approximation procedure; thus, in the absence of a uniqueness result, our method gives
a description only of the large solution obtained by the approximating scheme, i.e. theminimal
large solution.

We can state our last result.

Theorem 1.5 Let us assume p > 1, fix α := 2
p−1 , and let Ω be a bounded domain of class

C [α]+5. Assume moreover that (1.26), (1.27) and (1.29) hold true. Then, there exist functions
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σh,k = σh,k(p,Ω, h) (see (2.21) for the precise definition) with σh,k ∈ C(Ω)[α]+5−k k =
0, . . . , [α] + 1, such that, defining Sh as

Sh(x) =
[α]+1∑
k=0

σh,k(x)
(√

h(x)d(x)
)k−α

, (1.31)

it results u − Sh ∈ W 1,∞(Ω) and z(x̄) := u(x̄) − Sh(x̄) = 0 for every x̄ ∈ ∂Ω . If moreover
we assume

sup
0<s<1

|r(x, s−α)| = o(1) as d(x) → 0 (1.32)

we also have that

∀ x̄ ∈ ∂Ω lim
δ→0

z(x̄ − δν(x̄))

δ
= 0 .

Let us stress that the functionsσh,k do not depend on the function r , due to assumptions (1.29).
Indeed, these growth conditions imply that the contribution of the perturbation r(x, s) does
not affect the asymptotic behaviour prescribed by h(x)|s|p−1s.
On the other hand, the presence of the weight h requires some modifications in the defi-
nition of the corrector function Sh . This in turn yields to even more involved formulas for
σh,0, . . . , σh,[α]+1 than (1.15). Notice that

σh,0 = [α(α + 1)]
1

p−1 ≡ σ0,

σh,1(x) = ασ0h
−1(x)

αh− 1
2 (x)∇h(x)∇dn(x) + h

1
2 (x)(N − 1)H(x)

2(1 + 2α)
,

namely the first-order behaviour does not see the influence of the weight that comes into
play from the second one onward. As a last comment to Theorem 1.5, notice that, in order
to recover the Neumann boundary conditions for z, the additional growth assumption (1.32)
is needed (see Remark 2.2).

Unfortunately, we are not able to treat problem (1.1) with g that satisfies just (1.2) and
(1.3). The main obstacles in considering a general g(s) [that satisfies anyway (1.2) and (1.3)]
are, on the one side, that the simple structure of the corrector function S is lost and, on the
other, that it becomes much harder to manipulate terms as g(z + S) − g(S).

2 Gradient bound

2.1 The choice of Sn

In this first section, we determine the regularity of the functions σk , k = 0, . . . , [α] + 1,
defined in (1.15) and we show that f̃n , defined in (1.23), is such that

∃ C̄ = C̄(σ0, . . . , σ[α]+1, f ) : dn | f̃n | + d2n |∇ f̃n | ≤ C̄d1+[α]−α
n .

We prove a slightly more general result that emphasizes the relationship between the number
of elements of Sn and the required regularity of Ω .

Proposition 2.1 Let us take a natural number M ∈ [0, [α] + 1], Ω a bounded open domain
of class CM+4, σk as in (1.15) with k = 0, . . . , M and Sn as in (1.20). Then, we have that
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1022 S. Buccheri

σk ∈ C(Ω̄)M+3−k with k = 0, . . . , M and that there exists n0 = n0(σ0, . . . , σM ) such that
for every n > n0

|(�Sn − |Sn |p−1Sn)dn | + |∇(�Sn − |Sn |p−1Sn)d
2
n | ≤ CdM−α

n in Ω, (2.1)

where C = C(N , α, ∂Ω).

Proof Note at first that the positive root of (k − α)(k − α − 1) − (2 + α)(α + 1) = 0 (seen
as an equation in the variable k) is bigger then [α] + 1: indeed denoting by ki i = 1, 2 the
two roots, we have that

k1 < 0 < k2 = 2α + 1 +√
(2α + 1)2 + 2(α + 1)

2
and k2 > 2α + 1 > [α] + 1 α > 0.

Thus, the denominator in (1.15) is always different from zero. As far as the regularity of the
terms involved in (2.1) is concerned, Theorem 1.1 assures us that dn ∈ CM+4(Ω) (see also
[16,20]); moreover, as it is clear from the formulas in (1.15), the evaluation of σk involves
derivatives of dn of order k + 1. Hence, the regularity of σk is M + 4− (k + 1) = M + 3− k,
i.e. σk ∈ CM+3−k(Ω̄) with k = 1, . . . , M .

Let us show now that such a choice of σk implies that (2.1) holds true. Thanks to the
proved regularity property, we are allowed to compute both the gradient and the Laplacian
of Sn(x). Recalling that by definition ∇dn(x) = ∇d(x) and �dn(x) = �d(x), we have that

�Sn(x) =
M∑
k=0

[
(k − α)(k − α − 1)σkd

k−α−2
n (x)|∇d(x)|2

+ (k − α)σk(x)d
k−α−1
n (x)�d(x)

+ 2(k − α)dk−α−1
n (x)∇σk(x)∇d(x) + �σk(x)d

k−α
n (x)

]
.

Ordering the previous expression according to the power of the distance function andworking
in Ωδ̄ , in order to use that |∇d|2 = 1, we obtain

�Sn(x) = α(α + 1)σ0d
−α−2
n (x) + [

α(α − 1)σ1(x) − ασ0�d(x)
]
d−α−1
n (x)

+
M∑
k=2

{
(k − α)(k − α − 1)σk(x) + (k − α − 1)

[
σk−1(x)�d(x)

+ 2∇σk−1(x)∇d(x)
]+ �σk−2(x)

}
dk−α−2
n (x)

+ r(x)dM−α−1
n (x) in Ωδ̄,

where r = r(σM−1, σM ) ∈ C1(Ω̄).
Now, let us focus on the nonlinear term |Sn |p−1Sn . Since any σk is bounded, there exists

δ0 = δ0(σ0, . . . , σM ), with δ0 < δ̄, n0 = n0(δ0) and a function R = R(σ0, . . . , σM ) ∈
C1(Ω̄) such that
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Gradient behaviour for large solutions to semilinear… 1023

|Sn |p−1Sn = σ
p
0 d

−α−2
n

(
M∑
k=0

σk

σ0
dkn

)p

= σ
p
0 d

−α−2
n + pσ p−1

0 σ1d
−α−1
n

+
M∑
k=2

dk−α−2
n

{
pσ p−1

0 σk

+ σ
p
0

k∑
j=2

⎡
⎣(p

j

)
σ

− j
0

∑
i1+···+i j=k

σi1 · · · σi j
⎤
⎦
⎫⎬
⎭+ R(x)dM−α−1

n

in Ωδ0 and n ≥ n0.

Now, it becomes clear that the choice of σ0, . . . , σM in (1.15) is the unique for which∣∣�Sn(x) − |Sn(x)|p−1Sn(x)
∣∣dn(x) = ∣∣r(x) − R(x)

∣∣dM−α
n (x)

≤ CdM−α
n (x) in Ωδ0 and n ≥ n0,

and moreover∣∣∇(�Sn − |Sn |p−1Sn)d
2
n (x)

∣∣ ≤ (α + 1 − M)
∣∣∇(r(x) − R(x))

∣∣dM−α
n (x) ≤ CdM−α

n (x)

in Ωδ0 and n ≥ n0,

with C = C(σ0, . . . , σM ). The estimate in Ω\Ωδ0 is straightforward thanks to the regularity
of σk . ��
Remark 2.2 For the proof of Theorem 1.3, we take M = [α] + 1, so that (2.1) becomes

|(�Sn − |Sn |p−1Sn)dn | + |∇(�Sn − |Sn |p−1Sn)d
2
n | ≤ Cd1+[α]−α

n in Ω.

Since f ∈ W 1,∞(Ω), recalling the definition (1.23) of f̃n , it follows

∃C̄ = C̄(σ0, . . . , σM , f ) such that dn | f̃n | + d2n |∇ f̃n | ≤ C̄d1+[α]−α
n ≤ C̃ . (2.2)

We anticipate that for the implementation of the Bernstein technique we only need that the
quantity on the left-hand side above is bounded and not infinitesimal near ∂Ω . Despite this
fact, we need anyway to use [α] + 2 terms in the definition of Sn because, unless α ∈ N,
[α] − α < 0. Anyway the extra information that dn | f̃n | + d2n |∇ f̃n | goes to zero has x
approaches the boundary is used in the second part of Theorem 2.9.

Remark 2.3 For the sake of completeness, we explicitly compute the expression for σ2:

σ2(x) = (α + 2)σ p−2
0 σ 2

1 (x)d(x) + (α − 1)[σ1(x) d(x)�d(x) + ∇σ1(x)∇d(x)]
(2 − α)(1 − α) − (2 + α)(α + 1)

.

Of course, σ0 and σ1(x) coincide with the ones already known in the literature.

2.2 Existence and preliminary estimates for un

In this section, we find suitable sub- and super-solutions for problem (1.21) in order to prove
both existence and some preliminary estimates on the solutions un of (1.21).
We first observe that

∂Sn
∂ν

∣∣∣∣
∂Ω

= ασ0n
α+1 + nα

M∑
k=1

[
(α − k)σkn

1−k + ∇σk · νn−k
]

= ασ0n
α+1 + nαψn if α �= 1,
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1024 S. Buccheri

while
∂Sn
∂ν

∣∣∣∣
∂Ω

= σ0n
2 + ∇σ1 · ν + ∇σ2 · ν

1

n
− σ2 = σ0n

2 + ψn if α = 1,

where ψn ∈ C(∂Ω) is uniformly bounded (with respect to n). More precisely,

∃ T = T (N , α, ∂Ω) : ‖ψn‖L∞(∂Ω) ≤ T ∀n ∈ N. (2.3)

Such a bound is crucial in order to prove that problem (1.21) admits a pair of sub- and
super-solutions.

Proposition 2.4 Let p > 1, f ∈ W 1,∞(Ω), Sn as (1.20) and T as in (2.3). Hence, problem
(1.21) admits a pair of (classical) sub- and super-solutions.

Proof Case α > 1, sub-solution. We prove that it is possible to chose M1 and M2 positive
constants such that wn := σ0d−α

n − M1d1−α
n − M2 is a sub-solution for (1.21). Fix at first

M1 ≥ max

{
(p − 1)ασ0||�d||L∞(Ω)

(p + 3)
,

T

α − 1

}

and observe that this choice of M1 implies that

∂wn

∂ν
− ασ0n

α+1 − ψnn
α = [−(α − 1)M1 − ψn]nα < 0 on ∂Ω. (2.4)

Moreover, using the monotonicity of the function s → |s|p−1s, let us fix δ0 = δ0(M1) < δ̄

and n0 = n0(δ0) so that

|wn |p−1wn ≤ |σ0d−α
n − M1d

1−α
n |p−1 (σ0d−α

n − M1d
1−α
n

) = (
σ0d

−α
n − M1d

1−α
n

)p
= σ

p
0 d

−α−2
n

(
1 − M1

σ0
dn

)p

= σ
p
0 d

−α−2
n

[
1 − p

M1

σ0
dn + O(d2n )

]
in Ωδ0 , n > n0.

On the other hand, an easy computation shows that

�wn = α(α + 1)σ0d
−α−2
n − αd−α−1

n

[
σ0�d + (α − 1)M1

]
+(α − 1)M1d

−α
n �d in Ωδ0 , n > n0.

Recalling that

pσ p−1
0 − α(α − 1) = pα2 + pα − α2 + α = 2

p + 3

p − 1
,

we deduce that

−�wn + |wn |p−1wn − f ≤ −�wn + (σ0d
−α
n − M1d

1−α
n )p − f

≤
(

−2
p + 3

p − 1
M1 + ασ0�d

)
d−α−1
n + O(d−α

n )

≤ 0 in Ωδ0 , n > n0,

where the last inequality holds true thanks to the choice of M1. Now, taking

M2 ≥ σ0δ
−α
0 +

(
‖�wn‖L∞(Ω\Ωδ0 ) + ‖ f ‖L∞(Ω)

) 1
p
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Gradient behaviour for large solutions to semilinear… 1025

and using once more the monotonicity of s → |s|p−1s, it follows that

− �wn + |wn |p−1wn − f ≤ −�wn − ‖�wn‖L∞(Ω\Ωδ0 ) − ‖ f ‖L∞(Ω) − f

≤ 0 in Ω\Ωδ0 (2.5)

and we conclude that wn is a sub-solution of problem (1.21).
Case α > 1, super-solution. Let us show now that it is possible to take N1 ≥ M1 such that

vn := σ0d−α
n + N1d1−α

n turns out to be a super-solution for (1.21). As far as the boundary
condition is concerned, we have

∂vn

∂ν

∣∣∣∣
∂Ω

− σ0n
α+1 − ψnn

α = [(α − 1)N1 − ψn]nα > 0 on ∂Ω,

where the last inequality follows from the previous choice of N1.
Since vn is positive, thanks to the convexity of the function (1 + s)p with p > 1, we have
that

|vn |p−1vn = σ
p
0 d

−α−2
n

(
1 + N1

σ0
dn

)p

≥ σ
p
0 d

−α−2
n

(
1 + p

N1

σ0
dn

)
.

As in the previous case, it follows that

−�vn + v
p
n − f ≥

(
2
p + 3

p − 1
N1 + ασ0�dn

)
d−α−1
n + O(d−α

n ) in Ωδ̄, n > n0,

where we have used that |∇d|2 = 1 in Ωδ̄ . Thanks, once again, to the choice of N1, we can
conclude that −�vn + v

p
n ≥ f in Ωδ̄ .

Finally, we have

−�vn + v
p
n − f = −�vn + (σ0d

−α
n + N1d

1−α
n )p − f

≥ −�vn + N p
1 d

p(1−α)
n − f

≥ C1N
p
1 − C2N2 − C3 in Ω\Ωδ̄,

where the last inequality comes from the fact that in Ω\Ωδ̄ dn ≥ δ̄ and that in −�vn
only linear powers of N1 appear. So by increasing, if necessary, the value of N1, we have
−�vn +v

p
n ≥ f inΩ\Ωδ̄ . It is then possible to conclude that vn is a super-solution of (1.21)

in Ω and that vn ≥ wn .
For the range 0 < α ≤ 1, the proof is similar and we just stress the main differences.
Case α = 1. Note that, with this choice of α, we have p = 2, σ0 = √

2. We claim that
wn := √

2d−1
n +M3 log dn−M4 and vn := √

2d−1
n −N3 log dn+N4,withM3, M4, N3, N4 >

0, are a sub- and a super-solution for (1.21). Let us choose M3 ≥ T in order to obtain

∂wn

∂ν

∣∣∣∣
∂Ω

− √
2n2 − ψnn = [−M3 − ψn]n < 0.

Then, we fix δ0 = δ0(M3) < min{δ̄, 1} (so that log(δ0) < 0) and n0 = n0(δ0) such that

w3
n ≤ 2

3
2 d−3

n

(
1 + M3√

2
dn log(dn)

)3

= 2
3
2 d−3

n + 6M3d
−2
n log(dn)

+o(d2n log(dn)) in Ωδ0 , n > n0.

Hence, it follows that

−�wn + |wn |p−1wn − f ≤ +6M3d
−2
n log dn + o(d2n log(dn))

≤ 0 in Ωδ0 , n > n0.
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1026 S. Buccheri

Now, we fix

M4 ≥ √
2δ−1

0 +
(
‖�wn‖L∞(Ω\Ωδ0 ) + ‖ f ‖L∞(Ω)

) 1
p

that implies −�wn + |wn |p−1wn − f ≤ 0 in Ω\Ωδ0 and, in turn, that wn is a sub-solution
of problem (1.21).

For the super-solution vn , we consider N3 ≥ T . Thus, exactly as in the previous case, we
get

∂vn

∂ν

∣∣∣∣
∂Ω

− σ0n
2 − ψnn = [N3 − ψn]n > 0.

Noticing that vn is positive and using the convexity of the function (1 + s)3, we obtain

v3n = 2
3
2 d−3

n

(
1 − N3√

2
dn log(dn) + N4

)3

≥ 2
3
2 d−3

n − 6N3d
−2
n log(dn).

Moreover, we fix δ0 ≤ δ̄ and n0 = n0(δ0) so that

−�vn + v
p
n − f ≥ −6N3d

−2
n log dn + o(d2n log(dn)) ≥ 0 in Ωδ0 , n > n0.

At this point, choosing

N4 ≥ √
2δ−1

0 +
(
‖�vn‖L∞(Ω\Ωδ0 ) + ‖ f ‖L∞(Ω)

) 1
p

it follows that −�vn + v
p
n − f ≥ 0 in Ω\Ωδ0 and we conclude.

Case α < 1. Finally, we consider wn = σ0d−α
n − M5 + M6d−α+1

n and vn = σ0d−α
n +

N5 − N6d−α+1
n with M5, M6, N5, N6 > 0. Let us fix M6 ≥ T

1−α
, in order to have

∂wn

∂ν

∣∣∣∣
∂Ω

− ασ0n
α+1 − ψnn

α < 0.

Moreover, taking M5 > 0 it is possible to select δ0 ≤ δ̄ and n0 = n0(δ0) such that

|wn |p−1wn = σ
p
0 d

−α−2
n − pσ p−1

0 M5d
2
n + o(d2n )

and that

−�wn + |wn |p−1wn − f ≤ −pσ p−1
0 M5d

−2
n + o(d−2

n ) ≤ 0 in Ωδ0 , n > n0.

Finally, increasing the value of M5 so that

M5 ≥ σ0δ0 + M6δ
−α+1
0 +

(
‖�wn‖L∞(Ω\Ωδ0 ) + ‖ f ‖L∞(Ω)

) 1
p
,

it follows

−�wn + |wn |p−1wn − f ≤ 0 in Ω\Ωδ0 .

As far as vn is concerned, let us fix as before N6 ≥ ‖ψn‖∞
1−α

in order to get

∂vn

∂ν

∣∣∣∣
∂Ω

− ασ0n
α+1 − ψnn

α > 0.
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Take now N5 > 0 and fix δ0 < δ̄ and n0 = n0(δ0) such that

|vn |p−1vn = σ
p
0 d

−α−2
n

(
1 + N5

σ0
dα
n − N6

σ0
dn

)p

≥ σ
p
0 d

−α−2
n + pσ p−1

0 N5d
−2
n + o(d−2

n ) in Ωδ0 , n > n0

and that

−�vn + |vn |p−1vn − f ≥ pσ p−1
0 N5d

−2
n + o(d−2

n ) ≥ 0 in Ωδ0 , n > n0.

As in the previous cases, by increasing if necessary the value of N5, we have −�vn +
|vn |p−1vn − f ≥ 0 in Ω\Ωδ0 and that vn is a super-solution of (1.21).

The ordered sub- and super-solutions obtained in the previous proposition allow us to
prove existence of a solution for problem (1.21) and, on the other hand, give us a control on
the behaviour of un (and in turn of zn) near ∂Ω , which is crucial in order to prove the results
of the next section.

Theorem 2.5 Let p > 1, f ∈ W 1,∞(Ω), Sn as in (1.20). Then, problem (1.21) has a unique
classical solution un for every n ∈ N. Moreover,

∃C = C(α, N , ∂Ω, f ) :
∣∣∣∣ zn(x)Sn(x)

∣∣∣∣ =
∣∣∣∣un(x)Sn(x)

− 1

∣∣∣∣ ≤ Cε(dn(x)) (2.6)

where

ε(s) =

⎧⎪⎨
⎪⎩
s if α > 1

s(1 + | log s|) if α = 1

sα if α < 1.

(2.7)

Proof The proof of the existence and uniqueness is standard, and we sketch it here for the
convenience of the reader. In Proposition 2.4, for every α > 0 we have constructed a pair of
ordered sub- and super-solutions for problem (1.21)

wn ≤ vn in Ω.

Let us set v0n = vn , C := max {||vn ||L∞(Ω), ||wn ||L∞(Ω)}, m > pC p−1, and let us define vin
for i = 1, 2, . . . as the solutions of{−�vin + mvin = mvi−1

n − |vi−1
n |p−1vi−1

n + f , in Ω,
∂vin
∂ν

= ∂Sn
∂ν

, on ∂Ω.

The choice of m allows us to say that the function s → ms − |s|p−1s is increasing in
[−C,C] so thatwe can apply the standard procedure of the sub- and super-solutionmethod for
existence of solutions (see for instance [17]). We claim that vi−1

n ≥ vin for every i = 1, 2, . . ..
Indeed, for i = 1 we have that the function w := v1n − v0n satisfies{

−�w + mw ≤ 0, in Ω,
∂w
∂ν

= 0, on ∂Ω.

Hopf’s lemma and the strong maximum principle assure us that w ≤ 0, which implies
v0 ≥ v1, and we can conclude the proof of the claim by induction. Similarly, we can prove
that wn ≤ vin for every i = 1, 2, . . . Then, we have that vin ↘ un a.e in Ω as i → ∞ and
that

wn ≤ un ≤ vn;
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1028 S. Buccheri

moreover, by compactness and regularity arguments (see, respectively, [1,2]) it is possible to
prove that un ∈ C2(Ω) ∩ C1(Ω) solves (1.21). The uniqueness follows by Theorem 3.6 of
[16].
In order to prove (2.7), we first consider the case α > 1. We have that

σ0d
−α
n − M1d

1−α
n − M2 ≤ un ≤ σ0d

−α
n + N1d

1−α
n ,

where M1, M2 and N1 are the constants given by Proposition 2.4. Subtracting Sn , we get

− (M1 − σ1) d
1−α
n + O

(
d2−α
n

) ≤ un − Sn ≤ (N1 − σ1) d
1−α
n + o

(
d1−α
n

)+ O
(
d2−α
n

)
with b and B bounded functions. Thanks to the choice of M1 and N1, it follows that there
exists a positive constant C = C(α, N , ∂Ω, f ) such that∣∣∣∣un(x)Sn(x)

− 1

∣∣∣∣ ≤ Cdn(x) in Ω.

The case α ≤ 1 follows similarly using the respective sub- and super-solutions, and for
brevity we omit the proof.

We close this section proving the following proposition.

Proposition 2.6 The sequence un of solutions of problem (1.21) converges in C2
loc(Ω) to the

solution of problem (1.10).

Proof Let us define ψn := un − un+1, which satisfies{
−�ψn + |un |p−1un − |un+1|p−1un+1 = 0, in Ω,
∂ψn
∂ν

< 0, on ∂Ω.

The Neumann boundary condition assures us that the maximum of ψn cannot be reached on
∂Ω . So let it be x0 ∈ Ω the maximum point for ψn . This implies that −�ψn(x0) ≥ 0, and
then we obtain from the equation the following information:

|un(x0)|p−1un(x0) − |un+1(x0)|p−1un+1(x0) ≤ 0.

But, since s → |s|p−1s is increasing, it has to be ψn(x0) = un(x0) − un+1(x0) ≤ 0. Being
x0 the maximum point, it follows that un ≤ un+1 in Ω . So we know that the sequence un
is increasing and converges pointwise to some function u. Moreover, we know, thanks to
Theorem 2.5, that each un is between the relative sub- and super-solutions wn ≤ un ≤ vn .
Thus, we have that for any ω compactly contained in Ω there exists c = c(ω, α, N ) such
that

un(x) ≤ un+1(x) ≤ · · · ≤ u(x) ≤ v(x) ≤ c ∀ x ∈ ω,

where v is the limit as n diverges of the super-solutions vn . On the other hand, we also have
that

w(x) ≤ u(x) ∀ x ∈ Ω,

where w is the limit of the sub-solutions. Thus, using standard compactness and interior
elliptic regularity arguments, we have that for every ω ⊂⊂ Ω un → u in C2(ω). Thus, we
can pass to the limit with respect to n in (1.21), and moreover we also obtain

lim
x→∂Ω

u(x) = ∞.

��
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2.3 Estimates of zn and |∇zn| in L∞(Ä)

Now, we are ready to prove the uniform estimate in W 1,∞(Ω) for zn := un − Sn , where un
are the solutions of problem (1.21) and Sn has been defined in (1.20). Note that thanks to
Proposition 2.6 we already know that for every ω compactly contained in Ω we have that

∀ω ⊂⊂ Ω ∃cω : ‖zn‖W 1,∞(ω) ≤ ‖un‖W 1,∞(ω) + ‖Sn‖W 1,∞(ω) ≤ cω.

Thus, the main concern here is to obtain a Lipschitz control in Ωδ0 for some δ0 > 0 small
enough.

Let us start with the bound in L∞(Ωδ0).

Theorem 2.7 Let zn be as above. Then, there exists δ0 = δ0(σ0, . . . , σ[α]+1) and a constant
C = C(p, N , ∂Ω, f , δ0) such that

||zn ||L∞(Ωδ0 ) ≤ C . (2.8)

Proof We build barriers in a neighbourhood of ∂Ω through sub- and super-solutions method.
Bound from above. Let us fix δ0 = δ0(σ0, . . . , σ[α]+1) and n0 = n0(δ0) such that Sn ≥ 0

in Ωδ0 and n > n0. By definition of Sn there exists K = K (δ0) such that pS p−1
n d2n ≥ K in

Ωδ0 . Choose now B > δ0C̃
k , where C̃ is the constant given by (2.2). Taking advantage of the

convexity of s → (1 + s)p , we have

−�B + |Sn |p−1Sn

[∣∣∣∣1 + B

Sn

∣∣∣∣
p−1 (

1 + B

Sn

)
− 1

]
− f̃n

= S p
n

[(
1 + B

Sn

)p

− 1

]
− f̃n ≥ pBSp−1

n − | f̃n |

≥ BK

d2n
− | f̃n | ≥ BK − C̃dn

d2n
≥ 0 in Ωδ0 and n > n0,

where we have used (2.2) and the choice of B. Then, if we define w̄ = B +
max{x∈Ω:d(x)=δ0} |zn | it easily follows that zn ≤ w̄ in Ω .

Bound from below. For any positive fixed constant B > 0, thanks to (2.7) there exist
δ0 = δ(σ0, . . . , σ[α]+1, B), n0 = n0(δ0) and a constant C = C(δ0) such that

|Sn |p−1Sn

[∣∣∣∣1 − B

Sn

∣∣∣∣
p−1 (

1 − B

Sn

)
− 1

]
= S p

n (x)

[(
1 − B

Sn(x)

)p

− 1

]

= S p
n (x)

[
− pB

Sn(x)
+ O

(
d2αn B2)]

≤ − K1B

d2n (x)
+ O

(
dα−2
n

)
B2

≤ −K1B + O
(
dα
n

)
B2

d2n (x)
in Ωδ0 and n > n0.
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Thus, it follows that

−�(−B) + |Sn |p−1Sn

[∣∣∣∣1 − B

Sn

∣∣∣∣
p−1 (

1 − B

Sn

)
− 1

]

− f̃n ≤ −K1B + K2B2dα
n + C̃dn

d2n
≤ 0

in Ωδ0 and n > n0.

At this point, reasoning exactly as in the first part, it follows that w = −B −
max{x∈Ω:d(x)=δ0} |zn | controls zn from below in Ω and the proof is concluded. ��

We can now state and prove our main result.

Theorem 2.8 Let zn be the functions defined in (1.22). Then, there exists δ0 = δ0(σ0, . . . ,

σ[α]+1) and C = C(α, N , ∂Ω, f , δ0) such that

‖∇zn‖L∞(Ωδ0 ) ≤ C .

Proof We divide the proof in two steps.

Step 1. Inequality satisfied by |∇zn |2.
Step 2. Application of maximum principle to wn := |∇zn |2eλdn in Ωδ0 .

Step 1. Thanks to (2.6), there exist δ0 < δ̄ and n0 = n0(δ0) such that

0 < C1 ≤
(
1 + zn

Sn

)p−1

≤ C2∣∣∣∣
(
1 + zn(x)

Sn(x)

)p

− 1

∣∣∣∣ ≤ C3
|zn(x)|
Sn(x)

∀n > n0 ∀x ∈ Ωδ0 , (2.9)

where the positive constants C1, C2 and C3 depend only on α, N , ∂Ω . Moreover, from the
definition of Sn and thanks to the boundary condition on zn it follows that

|∇Sn∇zn | ≤ C

[ |∇dn ||∇zn |
dα+1
n

+ |∇zn |
dα
n

]
≤ C

[
ε(dn)

dα+1
n

+ |∇zn |
dα
n

]
, (2.10)

where ε(s) is defined in (2.7). All the computations performed from now on are meant on
Ωδ0 and with n > n0. At first, let us recover the equation satisfied by |∇zn |2 (see [24] and
reference therein). In order to do it, it is useful to recall that

∇(|∇zn |2) = 2D2zn∇zn and that �(|∇zn |2) = 2∇(�zn)∇zn + 2|D2zn |2.
Hence, through Schwarz inequality, we get

�(|∇zn |2) ≥ 2∇ [(zn + Sn)
p − S p

n
]∇zn − 2∇ f̃n∇zn + 2

N
(�zn)

2.

Now, we consider separately each one of the terms on the right-hand side above.
First term. We rewrite it as

∇ [(zn + Sn)
p − S p

n
]∇zn = ∇

[
S p
n

[(
1 + zn

Sn

)p

− 1

]]
∇zn

= pS p−1
n

(
1 + zn

Sn

)p−1

|∇zn |2 + p

[
Sn

[(
1 + zn

Sn

)p

− 1

]

−zn

(
1 + zn

Sn

)p−1
]
S p−2
n ∇Sn∇zn . (2.11)
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Note that in the right-hand side above the first term is the coercive one, while the other has
to be absorbed. Thanks to (2.9), the coercive term of (2.11) becomes

∃γ > 0 : pS p−1
n

(
1 + zn

Sn

)p−1

|∇zn |2 ≥ 3γ
|∇zn |2
d2n

.

Recalling (2.7), Theorem 2.7 and (2.9), the last term of (2.11) can be controlled as follows:

p

∣∣∣∣∣Sn
[(

1 + zn
Sn

)p

− 1

]
− zn

(
1 + zn

Sn

)p−1
∣∣∣∣∣ S p−2

n |∇Sn∇zn |

≤ C |zn |S p−2
n

[
ε(dn)

dα+1
n

+ |∇zn |
dα
n

]

≤ C |zn |
[

ε(dn)

d3n
+ |∇zn |

d2n

]

≤ C
|zn |
d3n

+ γ
|∇zn |2
d2n

+ Cγ

z2n
d2n

,

where we have used both (2.9) and (2.10). Then, we get

∇ [(zn + Sn)
p − S p

n
]∇zn ≥ 3γ

|∇zn |2
d2n

− C
|zn |
d3n

− C
z2n
d2n

.

Second term. We apply Young’s inequality and use (2.2) to obtain

−∇ f̃n∇zn ≥ −γ
|∇zn |2
d2n

− Cγ |∇ f̃n |2d2n ≥ −γ
|∇zn |2
d2n

− Cγ

d2n
.

Third term. Using the easy inequality (a − b)2 ≥ a2
4 − b2, we obtain

2

N
(�zn)

2 = 2

N

[
(zn + Sn)

p − S p
n − f̃n

]2
≥ S2pn

2N

[(
1 + zn

Sn

)p

− 1

]2
− 2

N
f̃ 2n .

Moreover, using the fact that the function (1 + s)p − 1 is convex for p > 1 and has strictly
positive derivative in zero and recalling (2.2) we have

2

N
(�zn)

2 ≥ C

N

z2n
d4n

− CN

d2n
.

Hence, gathering together the inequalities above, we have that

�(|∇zn |2) ≥ γ
|∇zn |2
d2n

+ C3

N

z2n
d4n

− C2
|zn |
d3n

− C
z2n
d2n

− C

d2n
∀n > n0 ∀x ∈ Ωδ0 .

Using Young’s inequality we get, for ε > 0, that

|zn |
d3n

≤ ε
z2n
d4n

+ Cε

d2n
.

So up to a decrease in δ0 and an increase in n0, we finally obtain

�(|∇zn |2) ≥ γ
|∇zn |2
d2n

− C1

d2n
in Ωδ0 , ∀n > n0. (2.12)
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Step 2. As in [22] let us consider now wn := |∇zn |2eλdn with λ > 2‖�d‖L∞(Ω). Its
boundary behaviour is described in Lemma 2.4 of [22] (using in turn an idea of [25]). For the
convenience of the reader, we report here the computations. Notice at first that the boundary
condition ∂zn

∂ν
= ∇zn · ν = 0 implies that there exists a function μ ∈ L∞(∂Ω) such that

∇(∇zn∇dn)|∂Ω = μν.

To get convinced of this fact, just observe that the regular function ∇zn · dn takes the value
0 on Ω (recall that ν = −∇dn). Then, its gradient evaluated on the boundary cannot have
any tangential component, otherwise the condition for ∇vn · dn would be violated. Hence,
we have

μν · ∇zn = ∇(∇zn∇dn)∇zn = D2zn∇zn∇dn + D2dn∇zn∇zn on ∂Ω.

But the left-hand side above is zero, so that

∂|∇zn |2
∂ν

= 2D2dn∇zn · ν ≤ 2||D2d||∞|∇zn |2

and as a consequence

∂wn

∂ν
= ∇(|∇zn |2eλdn ) · ν = λwn∇dn · ν + eλdn∇(|∇zn |2) · ν

≤ [−λ + 2‖�d‖L∞(Ω)

]
wn on ∂Ω.

(2.13)

Hence, we can take λ large enough to have

∂wn

∂ν
≤ 0 on ∂Ω. (2.14)

Taking into account (2.12), it follows that wn satisfies

�wn ≥ (
λ2 + λ�dn

)
wn + 2λ∇wn∇dn − 2λ2wn + γ

wn

d2n
− C1

d2n
,

that is,

−�wn + [
γ − (

λ2 + λ||�dn ||L∞(Ω)

)
d2n
] wn

d2n
+ 2λ∇wn∇dn ≤ C1

d2n
.

Hence, up to a decrease in δ0 and an increase in n0, we get

− �wn + 2λ∇wn∇dn + γ

2

wn

d2n
≤ C2

d2n
in Ω0 and n > n0. (2.15)

Coupling equation (2.15) together with the boundary condition (2.14), we take advantage of
the maximum principle to conclude that

sup
Ωδ0

wn ≤ C + max
∂Ω0\∂Ω

wn ≤ C + C1 max
∂Ω0\∂Ω

|∇zn |2.

Being the last term above uniformly bounded thanks to Proposition 2.6, the theorem is proved.
��
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2.4 Boundary behaviour of z

Thanks to the results of the previous sections, we deduce that z solves{
−�z + |z + S|p−1(z + S) − |S|p−1S = f̃ , in Ω,

z ∈ W 1,∞(Ω),
(2.16)

and that moreover∣∣∣ z
S

∣∣∣ ≤ 0(1) as d(x) → 0 and | f̃ |d + |∇ f̃ |d2 ≤ C̄d1+[α]−α ≤ C̃, (2.17)

where S = limn→∞ Sn and f̃ = limn→∞ f̃n . It is worth to stress that so far we do not know
if z satisfies some sort of boundary conditions: indeed, the only information we have is that
z solves an equation and that it is Lipschitz up to the boundary. Anyway, this is enough to
define the function z on ∂Ω and to try to deduce its boundary value by means of a scaling
argument.

Indeed, we are going to prove that the fact that z solves (2.16) with (2.17) implies that z
satisfies both Dirichlet and Neumann boundary conditions. Here, we follow the approach of
[4] (see also [30]) in order to deduce the following result.

Theorem 2.9 Under the assumptions of Theorem 1.3, it follows that

z(x̄) = 0 and lim
δ→0

z(x̄ − δν(x̄))

δ
= 0 ∀ x̄ ∈ ∂Ω.

Proof Behaviour of z on ∂Ω . Let us consider a point x0 ∈ ∂Ω and let us identify it as the
originOη of a new system of coordinates (η1, . . . , ηN ) = (η1, η

′) such that eη1 = ∇d(x0) =
−ν(x0), where eη1 is the versor of the η1-axis. The equation for z remains unchanged by
such a transformation being the Laplacian invariant under rotation and translation. In order
to perform a blow-up near the origin Oη, let us consider, for δ0, δ > 0 and 0 < σ < 1

2 , the
set

Uδ = B
(
δ0eη1 , δ0

) ∩ B(0, δ1−σ )

that, through the change of variable ξ = η
δ
, becomes

Wδ =
{

(ξ1, ξ
′) :

(
ξ1 − δ0

δ

)2

+ |ξ ′|2 <

(
δ0

δ

)2

, |ξ | ≤ δ−σ

}
.

We take δ0 small enough in order to have Uδ ⊂ Ω; this is always possible due to the
smoothness of Ω . Moreover, notice that Uδ collapses to x0 as δ goes to zero; meanwhile,
thanks to the choice of σ , Wδ converges to the half space RN+ . Now, we can define

vδ(ξ) := z(δξ) in Wδ

that inherits the following properties from z

‖vδ‖L∞(Wδ) = ‖z‖L∞(Uδ) and ‖∇vδ‖L∞(Wδ) = δ‖∇z‖L∞(Uδ).

From this information and from the fact that Wδ ↗ R
N+ , we can infer that there exists a

sequence δn → 0 such that {vδn } → v in C0,ι
loc(R

N+) with ι ∈ (0, 1) as n → ∞. Moreover,
thanks to the second estimate above we have that v ≡ const and hence the theorem is proved
if we show that v ≡ 0.
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1034 S. Buccheri

Choosing δ0 small enough, the equation satisfied by vδn becomes

−�vδn + [
(vδn + S)p − S p] δ2n = f̃ δ2n in Wδn .

It is important to stress that in Wδn the lower-order term above and the datum are singular
only at the origin Oη. In order to pass to the limit in the equation above, note that

d(δnξ) = δnξ1 + O
(
δ2n |ξ |2) uniformly in Wδn as n → ∞.

Hence,[
(vδn + S)p − S p] δ2n = S p

[(vδn

S
+ 1

)p − 1
]
δ2n = S p

[
p
vδn

S
+ O(d2α)

]
δ2n

= [
pS p−1vδn + O(dα−2)

]
δ2n =

[
pσ0

vδn

d2
+ o(d−2)

]
δ2n

uniformly in Wδn as n → ∞,

and for the datum

f̃ δ2n = f̃ d
δ2n

d
≤ C

δn

ξ1 + O(δ|ξ |2) uniformly in Wδn as n → ∞.

Passing to the limit w.r.t n, we deduce that v satisfies

− �v + pσ0
v

ξ21
= 0 in R

N+ (2.18)

that admits v ≡ 0 as the unique constant solution. Being the previous argument independent
of the considered sequence, we deduce that, if δn → 0 as n diverges and for any sequence
{ηn} ⊂ Ω such that ηn ∈ Uδn , it follows that

lim
n→∞ z(ηn) = lim

n→∞ vδn (ξn) = 0.

Behaviour of ∂z
∂ν
. In order to prove that z satisfies also the Neumann boundary condition,

we prove that there exist 1 < β1, β2 < 2 and A1, A2 > 0 such that

− A1d
β1(x) ≤ z(x) ≤ A2d

β2(x) ∀ x ∈ Ω. (2.19)

Indeed, thanks to the previous step, (2.19) implies that

lim
δ→0

z(x̄ − δν(x̄)) − z(x̄)

δ
= lim

δ→0

z(x̄ − δν(x̄))

δ
= 0 ∀ x̄ ∈ ∂Ω.

Using (2.17) and by the definition of S, there exists δ0 ≤ δ̄ such that

|z + S|p−1(z + S) − |S|p−1S = S p
[(

1 + z

S

)p − 1
]

in Ωδ0 .

Moreover, for any small ε > 0 fixed, decreasing the value of δ0 if needed, it holds true that

(1 − ε)pσ p−1
0

z

d2
≤ S p

[(
1 + z

S

)p − 1
]

≤ (1 + ε)pσ p−1
0

z

d2
in Ωδ0 . (2.20)

This implies that, for every δ ≤ δ0, we have a comparison principle for sub- and super-
solutions in C2(Ωδ̃) ∩ C(Ω̄δ̃) for the problem{

−�z + S p
[(
1 + z

S

)p − 1
] = f̃ , in Ωδ̃,

z = g, on ∂Ωδ̃,
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for any g ∈ C(∂Ωδ̃). Let us prove that there exist β1, A1 positive constant such that w :=
−A1dβ1 is a sub-solution of the problem above. Noticing that −1 < [α] − α ≤ 0, it is
possible to choose β1, β2 in such a way that 1 < β1, β2 < 2 + [α] − α ≤ 2 and that

γ1 := −β2
1 + β1 + (1 + ε)pσ p−1

0 > 0 and γ2 := −β2
2 + β2 + (1 − ε)pσ p−1

0 > 0.

Let us take moreover δ̃ ≤ δ0 such that

1 − βi

γi
‖�d‖L∞(Ω)d − C̄d2+α−α−β > 0 for i = 1, 2 in Ωδ̃,

where C̄ is given by (2.17), and finally fix Ai := max{δ̃−βi ‖z‖L∞(Ω), 1} for i = 1, 2. With
this choice, let us consider w = −A1dβ1 . Simple computations show that

−�w + (1 + ε)pσ p−1
0

w

d2
− f̃ ≤ −γ A1d

β1−2 + β1A1|�d|dβ1−1 + A1| f̃ |
≤ −A1d

β1−2(γ1 − β1|�d|d − | f̃ |d2−β1) ≤ 0 in Ωδ̃.

Thanks to the inequality above, the choice of A1 and (2.20)we infer thatw ≤ z inΩδ̃ (actually
in all Ω thanks to the choice of A1). In the very same way we prove that z ≤ v := A2dβ2

and thus (2.19) is proved. ��

Let us now give the proof of Theorem 1.3.

Proof of Theorem 1.3 Thanks to Theorems 2.7 and 2.8, we have a uniform Lipschitz bound
for the sequence zn = un − Sn in Ωδ0 , while Proposition 2.6 assures the interior regularity.
Thus, we can deduce that there exists a constant C = C(α, N , ∂Ω, f ) such that

‖zn‖W 1,∞(Ω) ≤ ‖zn‖W 1,∞(Ωδ0 ) + ‖zn‖W 1,∞(Ω\Ωδ0 ) ≤ C

and passing to the limit with respect to n

‖u − S‖W 1,∞(Ω) = ‖z‖W 1,∞(Ω) ≤ C .

Moreover, (1.17) is deduced from Theorem 2.9. ��

2.5 Generalizations

In this last section, we give for brevity the sketch of the proof of Theorem 1.5, just stressing
the main differences with respect to Theorem 1.3.
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Sketch of the proof of Theorem 1.5 Let us give at first the compete expression of σh,0, . . . ,

σh,[α]+1

σh,0 := [α(α + 1)] 1
p−1 ,

σh,1(x) := ασ0h
−1 αh− 1

2 ∇h∇dn + h
1
2 (N − 1)H(x)

2(1 + 2α)
,

σh,k(x) := Lk(σh,k−1, σh,k−2) + Pk(σh,k−1, σh,k−2) + Qk(σh,k−2)

(k − α)(k − α − 1) − (2 + α)(α + 1)

+ σ
p
h,0

(k − α)(k − α − 1) − (2 + α)(α + 1)
k∑
j=2

⎡
⎣(p

j

)
σ

− j
h,0

∑
i1+···+i j=k

σh,i1(x) · · · σh,i j (x)

⎤
⎦

fork = 2 · · · [α] + 1 and i1, . . . , i j positive integers,

(2.21)

where

Lk(σh,k−1, σh,k−2) := (α + 1 − k)
[
σk−1

(
h− 1

2 ∇h∇dn + h
1
2 �dn + �σk−2

)
+2h

1
2 ∇σk−1∇dn

]
h−1

Pk(σh,k−1, σh,k−2) := (α + 2 − k)
[
(k − α − 1)σk−1∇h∇dn

+σk−2

(
−1

4
h

3
2 |∇h|2 + 1

2
h− 1

2 �h

)]
h− 3

2

Qk(σh,k−2) := (α + 2 − k)

[
∇σk−2∇h + (k − α − 3)

4
σk−2h

− 9
4 |∇h|2

]
.

A tedious computation shows that with such a choice, there exists a positive constant C̃h =
C̃h(α, N , ∂Ω, h, r) such that

|(�Sh,n − |Sh,n |p−1Sh,n)dn | + |∇(�Sh,n − |Sh,n |p−1Sh,n)d
2
n |

≤ C̄hd
1+[α]−α
n ≤ C̃h in Ω,

where Sh,n(x) = ∑[α]+1
k=0 σh,k(x)

(√
h(x)dn(x)

)k−α
. Hence, we can define the approximated

problems {
−�uh,n + h(x)|uh,n |p−1uh,n = r(x, uh,n), in Ω
∂uh,n
∂ν

= ∂Sh,n
∂ν

on ∂Ω.
(2.22)

For the sake of clarity, we give some details of the construction of the sub-solution in the
case α > 1. Let us consider the function

wh,n := σ0h
− α

2 (x)d−α
n (x) − Mh,1h

1−α
2 (x)d1−α

n (x) − Mh,2,

with

Mh,1 ≥ ασ0(p − 1)
αA− 3

2 ‖∇h‖L∞(Ω) + A− 1
2 ‖�dn‖

p + 3
.
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Notice that thanks to (1.29)

|r(x, wh,n)d
α+1
n | = |r(x, d−α

n + o(d−α
n ))|dndα

n

≤ sup
0<s<1

{|r(x, s−α)|s} d−α
n = o(1) as d → 0, n → ∞.

Then, there exist δ0 = δ0(Mh,1, r) and n0 = n0(δ0) such that

−�wh,n + |wh,n |p−1wh,n − r(x, wh,n)

≤
(

−2
p + 3

p − 1
h

−α+1
2 Mh,1 − α2σ0h

− α
2 −1∇h∇dn + ασ0h

− α
2 �dn

−r(x, wh,n)d
α+1
n

)
d−α−1
n

+O(d−α
n ) ≤ 0 ∀n > n0 ∀x ∈ Ωδ0 .

Up to an increase in the value of Mh,1 and taking the value of Mh,2 large enough, we deduce
[following the same arguments that have led to (2.4) and (2.5)] that wh,n is a sub-solution of
(2.22).
Once that sub- and super-solutions are obtained, we proceed as in Proposition 2.4, Theorem
2.5 and Proposition 2.6 in order to deduce that the solution uh,n of (2.22) converges (as
n → ∞) in C2

loc(Ω) to uh , unique solution of (1.25). Moreover, the following estimate is
satisfied

∃C = C(α, N , ∂Ω, h, r) :
∣∣∣∣uh,n(x)

Sh,n(x)
− 1

∣∣∣∣ ≤ Cε(dn(x)), (2.23)

where

ε(s) =

⎧⎪⎨
⎪⎩
s if α > 1

s(1 + | log s|) if α = 1

sα if α < 1.

Let us now define zh,n := uh,n − Sh,n , that solves{
−�zh,n + |zh + Sh |p−1(zh,n + Sh,n) − |Sh,n |p−1Sh,n = r(x, zh,n − Sh,n) + f̃h,n, in Ω,
∂zh,n
∂ν

= 0, on ∂Ω,

where f̃n := �Sh,n −|Sh,n |p−1Sh,n . Concerning the L∞(Ω) estimate for zh,n , we adapt the
proof of Theorem 2.7 as follows. Let us fix a positive constant B > 0, and let δ0 = δ0(Sh,n)

and n0 = n0(δ0) be such that

−�B + S p
h,n

[(
1 + B

Sn

)p

− 1

]
− r(x, σ0d

−α
n + o(d−α

n )) − f̃h,n

≥ BK

d2n
− sup0<s<1{|r(x, s−α)|s}

dn
− f̃h,n ≥ BK − Cdn − C̄hdn

d2n
≥ 0 in Ωδ0 and n > n0,

where we have used the first condition of (1.29). Thus, we can continue as in the proof of
Theorem 2.7 to conclude that

∃C = C(α, N , ∂Ω, h, r) : ‖zh,n‖L∞(Ωδ) ≤ C .

Let us now have a closer glance to the perturbed version of Theorem 2.8, for which the
growth conditions (1.29) are especially designed. Exactly as in the previous section, we
obtain that there exist δ0 and n0 such that
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�(|∇zh,n |2) ≥ 2∇
[
h(zh,n + Sh,n)

p − hS p
h,n

]
∇zh,n + 2

N
(�zh,n)

2

+2∇r(x, zh,n + Sh,n)∇zh,n − 2∇( f̃h,n)∇zh,n in Ωδ0 , ∀ n > n0.

The main concern of course is the third term on the right-hand side above; we have

2∇r(x, zh,n + Sh,n)∇zh,n ≤ 2∇xr∇zh,n + 2
∂r

∂s
|∇zh,n |2 − C

∂r

∂s
d−α−1
n ∇dn∇zh,n

≤ γ
|∇zh,n |2

d2n
+ Cγ |rx |2d2n + 2 |rs | |∇zh,n |2 + C |rs | d−α−1

n .

Let us focus on the last three terms on the right-hand side above. Using assumption (1.29)
and estimate (2.23), we get that for d(x) → 0 and n → ∞

|rx (x, zh,n + Sh,n)| =
∣∣∣∣rx
(
x, Sh,n

(
1 + zh,n

Sh,n

))∣∣∣∣ d2nd2n
= |∇xr(x, σ0d

−α
n + o(d−α

n ))|d
2
n

d2n

≤ sup0<s<1
{|∇xr(x, s−α)|s2}

d2n
≤ C

d2n
,

|rs(x, zh,n + Sh,n)||∇zh,n |2 ≤ sup
0<s<1

{|rs(x, s−α)|s2} |∇zh,n |2
d2n

= o(1)
|∇zh,n |2

d2n
,

|rs(x, zh,n + Sh,n)|d−α−1
n ≤ sup0<s<1{|rs(x, s−α)|s−α+1}

d2n
≤ C

d2n
.

Thus, up to a decrease in the value of δ0 and an increase in n0, we obtain

2∇r(x, zh,n + Sh,n)∇zn ≤ (γ + o(1))
|∇zn |2
d2n

+ C

d2n
in Ωδ0 .

At this point, it is easy to deduce the counter of (2.12), i.e. there exist some δ0 and n0 = n0(δ0)
such that

�(|∇zh,n |2) ≥ γ
|∇zh,n |2

d2n
− C1

d2n
∀n > n0 ∀x ∈ Ω0.

From now on, the proof follows closely Theorem 2.8.
Hence, we infer that there exists zh ∈ C2(Ω), such that zh,n → zh in C2

loc(Ω), that solves{
−�zh + |zh + Sh |p−1(zh + Sh) − |Sh |p−1Sh = r(x, zh − Sh) + f̃h, in Ω,

zh ∈ W 1,∞(Ω),

and that moreover∣∣∣∣ zhSh
∣∣∣∣ ≤ o(1) as d(x) → 0 and | f̃h |d + |∇ f̃h |d2 ≤ C .

As far as the boundary conditions of zh are concerned, fixing x̄ ∈ ∂Ω and following the
same notation of Theorem 2.9, let us set vh,δ(ξ) := zh(δξ) in Wδ that inherits the following
properties from zh

‖vh,δ‖L∞(Wδ) = ‖zh‖L∞(Uδ) and ‖∇vh,δ‖L∞(Wδ) = δ‖∇zh‖L∞(Uδ).
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Thus, the limit function vh has to be a constant. Moreover, using the first assumption in (1.29)
we have that

r(x, zh + Sh)δ
2 = r

(
x, Sh

(
1 + zh

Sh

))
d(x)

d(x)
δ2

≤ C
δ2

δξ + O(δ2ξ2)
uniformly in Wδ as δ → 0,

and thus vh solves

−�vh + pσ0h(x̄)
vh

ξ21
= 0 in R

+,

whose unique constant solution is zero. From this, we infer that z(x̄) := u(x̄) − Sh(x̄) = 0
for every x̄ ∈ ∂Ω .
In order to recover the Neumann boundary condition, using the same notation of the second
part of Theorem 2.9, we can infer that there exist 1 < βh,1 < 2, γh,1 > 0, δ̃ and Ah,1 > 0
such that

−�wh + (1 + ε)‖h‖L∞(Ω) pσ
p−1
0

wh

d2
− r(x, wh + S) − f̃h

= −Ah,1d
βh,1−2(γh,1 − βh,1|�d|d − sup

0<s<1
|r(x, s−α)s|d1−βh,1

− f̃ d2−βh,1) ≤ 0 in Ωδ̃,

where the last inequality is implied by assumption (1.29). The rest of the proof closely follows
Theorem 2.9. ��

References

1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial
differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12, 623–727
(1959)

2. Amann,H.,Moser, J.: On the existence of positive solutions of nonlinear elliptic boundary value problems.
Indiana Univ. Math. J. 21, 125–146 (1971)

3. Bandle, C.: Asymptotic behaviour of large solutions of quasilinear elliptic problems. Z. Angew. Math.
Phys. 54, 731–738 (2003)

4. Bandle, C., Essén, M.: On the solutions of quasilinear elliptic problems with boundary blowup. Symp.
Math. 35, 93–111 (1994)

5. Bandle, C.,Marcus,M.: Large solutions of semilinear elliptic equations: existence, uniqueness and asymp-
totic behaviour. J. Anal. Math. 58, 9–24 (1992)

6. Bandle, C., Marcus, M.: Asymptotic behaviour of solutions and their derivatives, for semi-linear elliptic
problems with blowup on the boundary. Ann. Inst. Henri Poincaré 12, 155–171 (1995)

7. Bandle, C.,Marcus,M.:On second-order effects in the boundary behaviour of large solutions of semilinear
elliptic problems. Differ. Integr. Equ. 11, 23–34 (1998)

8. Bandle, C., Marcus, M.: Dependence of blowup rate of large solutions of semilinear elliptic equations,
on the mean curvature of the boundary. Complex Var. 49, 555–570 (2004)

9. Bandle, C., Giarrusso, E.: Boundary blow up for semilinear elliptic equations with non linear gradients
terms. Adv. Differ. Equ. 1, 133–150 (1996)

10. Berhanu, S., Porru, G.: Qualitative and quantitative estimates for large solutions to semilinear equations.
Commun. Appl. Anal. 4, 121–131 (2000)

11. Bieberbach, L.: �u = eu und die automorphen Funktionen. Math. Ann. 77, 173–212 (1916)
12. Costin, O., Dupaigne, L.: Boundary blowup solutions in the unit ball: asymptotics, uniqueness and sym-

metry. J. Differ. Equ. 249, 931–964 (2010)
13. Díaz, J.I., Lazzo, M., Schmidt, P.G.: Large solutions for system of elliptic equations arising from fluid

dynamics. SIAM J. Math. Anal. 37, 490–514 (2005)

123



1040 S. Buccheri

14. Dumont, S.,Dupaigne,L.,Goubet,O.,Radulescu,V.:Back to theKeller–Osserman condition for boundary
blow-up solutions. Adv. Nonlinear Stud. 7, 271–298 (2007)

15. García-Melián, J.: Uniqueness of positive solutions for a boundary blow-up problem. J. Math. Anal. Appl.
360, 530–536 (2009)

16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin
(1983)

17. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)
18. Keller, J.B.: The equilibrium of a charged gas in a container. J. Ration. Mech. Anal. 5, 715–724 (1956)
19. Keller, J.B.: On solutions of �u = f (u). Commun. Pure Appl. Math. 10, 503–510 (1957)
20. Krantz, S.G., Parks, H.R.: Distance to Ck hypersurfaces. J. Differ. Equ. 40, 116–120 (1981)
21. Lazer, A.C., McKenna, P.J.: Asymptotic behaviour of solutions of boundary blow up problems. Differ.

Integr. Equ. 7, 1001–1019 (1994)
22. Leonori, T., Porretta, A.: The boundary behaviour of blow-up solutions related to a stochastic control

problem with state constraint. SIAM J. Math. Anal. 39, 1295–1327 (2007)
23. Leonori, T., Porretta, A.: Gradient bounds for elliptic problems singular at the boundary. Arch. Rational

Mech. Anal. 202, 301–333 (2011)
24. Lions, P.L.: Résolution de problémes elliptiques quasilinéaires. Arch. RationalMech. 74, 234–254 (1980)
25. Lions, P.L.: Quelques remarques sur les problémes elliptiques quasilinéaires du second ordre. J. Anal.

Math. 45, 335–353 (1985)
26. Marcus, M., Véron, L.: Existence and uniqueness results for large solutions of general nonlinear elliptic

problems. J. Evol. Equ. 3, 637–652 (2003)
27. Marcus, M., Véron, L.: Maximal solutions of semilinear elliptic equations with locally integrable forcing

term. Israel J. Math. 152, 333–348 (2006)
28. Osserman, R.: On the inequality �u ≥ f (u). Pac. J. Math. 7, 1641–1647 (1957)
29. del Pino, M., Letelier, R.: The influence of domain geometry in boundary blow-up elliptic problems.

Nonlinear Anal. TMA 48, 897–904 (2002)
30. Porretta, A., Véron, L.: Symmetry properties of solutions of semilinear elliptic equations in the plane.

Manuscr. Math. 115, 239–258 (2004)
31. Rademacher, H.: Einige besondere Probleme der partiellen Differentialgleichungen. Die Differential- und

Integralgleichungen der Mechanik und Physik I, 2 (1930)
32. Sattinger, D.H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana

Univ. Math. J. 21 979–1000 (1971/1972)
33. Veron, L.: Semilinear elliptic equationswith uniformblow-up on the boundary. J. Anal.Math. 59, 232–250

(1992)

123


	Gradient behaviour for large solutions to semilinear elliptic problems
	Abstract
	1 Introduction
	1.1 Notation
	1.2 Main results

	2 Gradient bound
	2.1 The choice of Sn
	2.2 Existence and preliminary estimates for un
	2.3 Estimates of zn and |zn| in Lmathcal1(Ω)
	2.4 Boundary behaviour of z
	2.5 Generalizations

	References




