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Abstract
This paper explores the implications of blocking duality—pioneered by Fulkerson et al.—in
the context of p-modulus on networks. Fulkerson blocking duality is an analog on networks
to the method of conjugate families of curves in the plane. The technique presented here
leads to a general framework for studying families of objects on networks; each such family
has a corresponding dual family whose p-modulus is essentially the reciprocal of the original
family’s.As an application,wegive amodulus-basedproof for the fact that effective resistance
is a metric on graphs. This proof immediately generalizes to yield a family of graph metrics,
depending on the parameter p, that continuously interpolates among the shortest-path metric,
the effective resistance metric, and the min-cut ultrametric. In a second application, we
establish a connection betweenFulkerson blocking duality and the probabilistic interpretation
ofmodulus. This connection, in turn, provides a straightforward proof of severalmonotonicity
properties of modulus that generalize known monotonicity properties of effective resistance.
Finally, we use this framework to expand on a result of Lovász in the context of randomly
weighted graphs.
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1 Introduction

Modulus on graphs (or networks) is a very flexible and general tool formeasuring the richness
of families of objects definedon anetwork. For example, the underlyinggraphs canbedirected
or undirected, simple or multigraphs, weighted or unweighted. Also the objects that are being
measured can be very different. For instance, here are some flavors of modulus that the first
and last authors have been studying:

– Connecting modulus This quantifies the richness of families of walks connecting two
given sets of vertices. By varying a parameter p, modulus generalizes classical quantities
such as effective resistance (which onlymakes sense on undirected graphs),maxflow/min
cut, and shortest-path, see [2]. Applications include new flexible centrality measures that
have been used for modeling epidemic mitigation, see [23].

– Loop modulus Looking at families of cycles in a graph gives information about clustering
and community detection, see [22].

– Spanning tree modulus The modulus of the family of all spanning trees gives deep
insights into the degree of connectedness of a network as well as exposing an interesting
hierarchical structure, see [3].

The purpose of this paper is to develop the theory of Fulkerson blocking duality for modulus.
In Sect. 2, we recall the theory of modulus on networks. Then, in Sects. 3 and 4 we develop
the theory of Fulkerson duality for modulus. Also, in Sect. 5, we relate Fulkerson duality
to Lagrangian duality and the probabilistic interpretation of modulus developed in [2,5,6].
Finally, we propose several applications of Fulkerson duality to demonstrate its power and
flexibility:

– In Sect. 6, we give a new proof of the well-known fact that effective resistance is a metric
on graphs, see for instance [14, Corollary 10.8] for a proof based on commute times
and [14, Exercise 9.8] for one based on current flows. Assuming Fulkerson duality, our
proof in Theorem 8 is very short and compelling. But it also has the added advantage
of being the only proof we know that easily generalizes to a wider family of graph
metrics based on modulus that continuously interpolate among the shortest-path metric,
the effective resistance metric, and an ultrametric related to min cuts. None of the other
classical proofs that effective resistance is a metric appear to generalize in this fashion.

– Furthermore, our proof in Theorem 8, based on Fulkerson duality, allows us to establish
the “anti-snowflaking” exponent for this family of graph metrics. Namely, we are able to
find the exact largest exponent that each such metric can be raised to, while still being a
metric on arbitrary graphs.

– In Sect. 7, we establish some useful monotonicity properties of modulus on a weighted
graph G = (V , E, σ ) with respect to the edge-conductances σ(e) (Theorem 10). Two
of these properties generalize well-known facts about the behavior of resistor networks
when a resistor’s value is changed. The Fulkerson blocker approach provides a third
monotonicity property related to the expected edge usages of certain random objects on
a graph.

– Finally, in Sect. 8, we use Fulkerson duality and the previously mentioned monotonicity
property to study randomly weighted graphs. We first reinterpret and expand on some
results of Lovász from [16]. We then establish a lower bound for the expected p-modulus
of a family of objects in terms of modulus of the same family on the deterministic graph
with edge weights given by their respective expected values (Theorem 12).
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Blocking duality for p-modulus on networks and applications 975

2 Preliminaries

2.1 Modulus in the continuum

The theory of conformal modulus was originally developed in complex analysis, see Ahlfors’
comment on p. 81 of [1]. The more general theory of p-modulus grew out of the study of
quasiconformal maps, which generalize the notion of conformal maps to higher-dimensional
real Euclidean spaces and, in fact, to abstract metric measure spaces. Intuitively, p-modulus
provides a method for quantifying the richness of a family of curves, in the sense that a
family with many short curves will have a larger modulus than a family with fewer and
longer curves. The parameter p tends to favor the “many curves” aspect when p is close to
1 and the “short curves” aspect as p becomes large. This phenomenon was explored more
precisely in [2] in the context of networks. The concept of discrete modulus on networks is
not new, see for instance [9,12,21]. However, recently the authors have started developing the
theory of p-modulus as a graph-theoretic quantity [2,6], with the goal of finding applications,
for instance to the study of epidemics [11,23].

The concept of blocking duality explored in this paper is an analog of the concept of
conjugate families in the continuum. As motivation for the discrete theory to follow, then,
let us recall the relevant definitions from the continuum theory. For now, it is convenient to
restrict attention to the 2-modulus of curves in the plane, which, as it happens, is a conformal
invariant and thus has been carefully studied in the literature.

Let Ω be a domain in C, and let E, F be two continua in Ω . Define Γ = ΓΩ(E, F) to be
the family of all rectifiable curves connecting E to F in Ω . A density is a Borel measurable
function ρ: Ω → [0,∞). We say that ρ is admissible for Γ and write ρ ∈ Adm(Γ ), if∫

γ

ρ ds ≥ 1 ∀γ ∈ Γ . (1)

Now, we define the modulus of Γ as

Mod2(Γ ) := inf
ρ∈Adm(Γ )

∫
Ω

ρ2dA. (2)

Example 1 (The Rectangle) Consider a rectangle

Ω := {z = x + iy ∈ C: 0 < x < L, 0 < y < H}
of height H and length L . Set E := {z ∈ Ω: Re z = 0} and F := {z ∈ Ω: Re z = L} to be
the leftmost and rightmost vertical sides, respectively. If Γ = ΓΩ(E, F), then

Mod2(Γ ) = H

L
. (3)

To see this, assume ρ ∈ Adm(Γ ). Then, for all 0 < y < H , γy(t) := t + iy is a curve in Γ ,
so ∫

γy

ρds =
∫ L

0
ρ(t, y)dt ≥ 1.

Using the Cauchy–Schwarz inequality, we obtain

1 ≤
[∫ L

0
ρ(t, y)dt

]2
≤ L

∫ L

0
ρ2(t, y)dt .
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976 N. Albin et al.

In particular, L−1 ≤ ∫ L
0 ρ2(t, y)dt . Integrating over y, we get

H

L
≤

∫
Ω

ρ2dA.

So since ρ was an arbitrary admissible density, Mod2(Γ ) ≥ H
L .

In the other direction, define ρ0(z) = 1
L 1Ω(z) and observe that

∫
Ω

ρ2
0dA = HL

L2 = H
L .

Hence, if we show that ρ0 ∈ Adm(Γ ), then Mod(Γ ) ≤ H
L . To see this note that for any

γ ∈ Γ :
∫ L

0

1

L
|γ̇ (t)|dt ≥ 1

L

∫ L

0
|Re γ̇ (t)|dt ≥ 1

L
(Re γ (1) − Re γ (0)) ≥ 1.

This proves the formula (3).

A famous and very useful result in this context is the notion of a conjugate family of a
connecting family. For instance, in the case of the rectangle, the conjugate family Γ ∗ =
Γ ∗

Ω(E, F) for ΓΩ(E, F) consists of all curves that “block” or intercept every curve γ ∈
ΓΩ(E, F). It is clear in this case that Γ ∗ is also a connecting family, namely it includes
every curve connecting the two horizontal sides of Ω . In particular, by (3), we must have
Mod2(Γ ∗) = L/H . So we deduce that

Mod2(ΓΩ(E, F)) · Mod2(Γ
∗
Ω(E, F)) = 1. (4)

One reason this reciprocal relation is useful is that upper-bounds for modulus are fairly easy
to obtain by choosing reasonable admissible densities and computing their energy. However,
lower bounds are typically harder to obtain. However, when an equation like (4) holds, then
upper-bounds for the modulus of the conjugate family translate to lower bounds for the given
family.

In higher dimensions, say in R
3, the conjugate family of a connecting family of curves

consists of a family of surfaces, and therefore one must consider the concept of surface
modulus, see for instance [18] and references therein. It is also possible to generalize the
concept of modulus by replacing the exponent 2 in (2) with p ≥ 1 and by replacing dA with
a different measure.

The principal aim of this paper is to establish a conjugate duality formula similar to (4)
for p-modulus on networks, which we call blocking duality.

2.2 Modulus on networks

A general framework for modulus of objects on networks was developed in [5]. In what
follows, G = (V , E, σ ) is taken to be a finite graph with vertex set V and edge set E . The
graph may be directed or undirected and need not be simple. In general, we shall assume a
weighted graph with each edge assigned a corresponding weight 0 < σ(e) < ∞. When we
refer to an unweighted graph, we shall mean a graph for which all weights are assumed equal
to one.

The theory in [5] applies to any finite family of “objects” Γ for which each γ ∈ Γ can
be assigned an associated function N (γ, ·): E → R≥0 that measures the usage of edge e by
γ . Notationally, it is convenient to considerN (γ, ·) as a row vectorN (γ, ·) ∈ R

E≥0, indexed
by e ∈ E . In order to avoid pathologies, it is useful to assume that Γ is non-empty and that
each γ ∈ Γ has positive usage on at least one edge. When this is the case, we will say that
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Blocking duality for p-modulus on networks and applications 977

Γ is non-trivial. In the following, it will be useful to define the quantity:

Nmin := min
γ∈Γ

min
e:N (γ,e)	=0

N (γ, e). (5)

Note that, for Γ non-trivial, Nmin > 0.
Some examples of objects and their associated usage functions are the following.

– To a walk γ = x0 e1 x1 . . . en xn , we can associate the traversal-counting function
N (γ, e) = number times γ traverses e. In this case, N (γ, ·) ∈ Z

E≥0.
– To each subset of edges T ⊂ E , we can associate the characteristic function N (T , e) =

1T (e) = 1 if e ∈ T and 0 otherwise. Here, N (γ, ·) ∈ {0, 1}E .
– To each flow f , we can associate the volume function N ( f , e) = | f (e)|. Therefore,

N (γ, ·) ∈ R
E≥0.

As a function of two variables, the function N can be thought of as a matrix in R
Γ ×E ,

indexed by pairs (γ, e) with γ an object in Γ and e an edge in E . This matrixN is called the
usage matrix for the family Γ . Each row of N corresponds to an object γ ∈ Γ and records
the usage of edge e by γ . At times we will write N (Γ ) instead of N , to avoid ambiguity.
Note, that the families Γ under consideration may very well be infinite (e.g., families of
walks), so N may have infinitely many rows. For this paper, we shall assume Γ is finite.

This assumption is not quite as restrictive as it might seem. In [6], it was shown that any
family Γ with an integer-valued N can be replaced, without changing the modulus, by a
finite subfamily. For example, if Γ is the set of all walks between two distinct vertices, the
modulus can be computed by considering only simple paths. This result implies a similar
finiteness result for any family Γ whose usage matrix N is rational with positive entries
bounded away from zero.

By analogy to the continuous setting, we define a density onG to be a nonnegative function
on the edge set: ρ: E → [0,∞). The value ρ(e) can be thought of as the cost of using edge
e. It is notationally useful to think of such functions as column vectors in R

E≥0. In order to
mimic (1), we define for an object γ ∈ Γ

�ρ(γ ) :=
∑
e∈E

N (γ, e)ρ(e) = (Nρ)(γ ),

representing the total usage cost for γ with the given edge costs ρ. In linear algebra notation,
�ρ(·) is the column vector resulting from the matrix-vector productNρ. As in the continuum
case, then, a density ρ ∈ R

E≥0 is called admissible for Γ , if

�ρ(γ ) ≥ 1 ∀γ ∈ Γ ; or equivalently, if �ρ(Γ ) := inf
γ∈Γ

�ρ(γ ) ≥ 1.

In matrix notation, ρ is admissible if

Nρ ≥ 1,

where 1 is the column vector of ones and the inequality is understood to hold elementwise.
By analogy, we define the set

Adm(Γ ) =
{
ρ ∈ R

E≥0:Nρ ≥ 1
}

(6)

to be the set of admissible densities.
Now, given an exponent p ≥ 1 we define the p-energy on densities, corresponding to the

area integral from the continuum case, as

Ep,σ (ρ) :=
∑
e∈E

σ(e)ρ(e)p,
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with the weights σ playing the role of the area element d A. In the unweighted case (σ ≡ 1),
we shall use the notation Ep,1 for the energy. For p = ∞, we also define the unweighted and
weighted ∞-energy, respectively, as

E∞,1(ρ) := lim
p→∞

(Ep,σ (ρ)
) 1

p = max
e∈E ρ(e)

and
E∞,σ (ρ) := lim

p→∞
(Ep,σ p (ρ)

) 1
p = max

e∈E σ(e)ρ(e)

This leads to the following definition.

Definition 1 Given a graph G = (V , E, σ ), a family of objects Γ with usage matrix N ∈
R

Γ ×E , and an exponent 1 ≤ p ≤ ∞, the p-modulus of Γ is

Modp,σ (Γ ) := inf
ρ∈Adm(Γ )

Ep,σ (ρ)

Equivalently, p-modulus corresponds to the following optimization problem

minimize Ep,σ (ρ)

subject to ρ ≥ 0, Nρ ≥ 1
(7)

where each object γ ∈ Γ determines one inequality constraint.

Remark 1 (a) When ρ0 ≡ 1, we drop the subscript and write �(γ ) := �ρ0(γ ). If γ is a walk,
then �(γ ) simply counts the number of hops that the walk γ makes.

(b) For 1 < p < ∞, a unique extremal density ρ∗ always exists and satisfies 0 ≤ ρ∗ ≤ N−1
min,

whereNmin is defined in (5). Existence and uniqueness follows by compactness and strict
convexity of Ep,σ , see also Lemma 2.2 of [2]. The upper bound on ρ∗ follows from the
fact that each row of N contains at least one nonzero entry, which must be at least as
large as Nmin. In the special case, when N is integer-valued, the upper bound can be
taken to be 1.

The next result shows that modulus is a “capacity,” in the mathematical sense, on families
of objects. This is a known fact, see [6, Prop. 3.4] for the case of families of walks. We
reproduce a proof here for completeness.

Proposition 1 (Basic properties) Let G = (V , E, σ ) be a simple finite graph with edge
weights σ ∈ R

E
>0. For simplicity, all families of objects on G are assumed to be non-trivial.

Then, for p ∈ [1,∞], the following hold:

(a) Monotonicity SupposeΓ andΓ ′ are families of objects on G such thatΓ ⊂ Γ ′, meaning
that the matrix N (Γ ) is the restriction of the matrix N (Γ ′) to the rows from Γ . Then,

Modp,σ (Γ ) ≤ Modp,σ (Γ ′). (8)

(b) Countable Subadditivity Suppose 1 ≤ p < ∞, and let {Γ j }∞j=1 be a sequence of
families of objects on G. Then,

Modp,σ

⎛
⎝ ∞⋃

j=1

Γ j

⎞
⎠ ≤

∞∑
j=1

Modp,σ (Γ j ). (9)
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Blocking duality for p-modulus on networks and applications 979

Proof For monotonicity, note that Adm(Γ ′) ⊂ Adm(Γ ).
For subadditivity, we first fix p ∈ [1,∞). Let Γ := ⋃∞

j=1 Γ j . For each j , choose
ρ j ∈ Adm(Γ j ) such that

Ep,σ (ρ j ) = Modp,σ
(
Γ j

)
.

Assuming that the right-hand side of (9) is finite, then, since σ > 0 and ρ j ≥ 0,

∑
e∈E

σ(e)
∞∑
j=1

ρ j (e)
p =

∞∑
j=1

∑
e∈E

σ(e)ρ j (e)
p =

∞∑
j=1

Modp,σ (Γ j ) < ∞.

So, ρ :=
(∑∞

j=1 ρ
p
j

) 1
p
is also finite. For any γ ∈ Γ , there exists k ∈ N so that γ ∈ Γk . In

particular, since ρ ≥ ρk , we have �ρ(γ ) ≥ 1. This shows that ρ ∈ Adm(Γ ). Moreover,

Modp,σ Γ ≤ Ep,σ (ρ) =
∑
e∈E

σ(e)ρ(e)p =
∑
e∈E

σ(e)
∞∑
j=1

ρ j (e)
p =

∞∑
j=1

∑
e∈E

σ(e)ρ j (e)
p

=
∞∑
j=1

Ep,σ (ρ j ) =
∞∑
j=1

Modp,σ (Γ j ).

We leave the case p = ∞ to the reader (one can even replace the sum with max). �
Remark 2 The following is another useful basic property to add tomonotonicity and countable
subadditivity:

(c) SubordinationWith the hypothesis of Proposition 1, suppose that Γ and Γ ′ are families
of objects on G, and suppose that for every object γ ∈ Γ there is an object γ ′ ∈ Γ ′ such
that N (γ ′, e) ≤ N (γ, e), for all e ∈ E (we say Γ is subordinated to Γ ′). Then,

Modp,σ (Γ ) ≤ Modp,σ (Γ ′). (10)

Proof Assume ρ ∈ Adm(Γ ′), then for every γ ∈ Γ , there is γ ′ ∈ Γ such that∑
e∈E

N (γ, e)ρ(e) ≥
∑
e∈E

N (γ ′, e)ρ(e) ≥ 1.

Namely, ρ is admissible for Γ as well. Hence, Adm(Γ ′) ⊂ Adm(Γ ). �

2.3 Connection to classical quantities

The concept of p-modulus generalizes known classical ways of measuring the richness of
a family of walks. Let G = (V , E) and two vertices a and b in V be given. We define the
connecting family Γ (a, b) to be the family of all simple paths in G that start at a and end at
b. To this family, we assign the usage functionN (γ, e) to be 1 when e ∈ γ and 0 otherwise.
Classically, there are three main ways to measure the richness of Γ (a, b).

– Min cutAsubset S ⊂ V is called a ab-cut if a ∈ S and b /∈ S. To every ab-cut S, we assign
the edge usage N (S, e) = 1 for every e = {x, y} ∈ E such that x ∈ S and y /∈ S; and
N (S, e) = 0 otherwise. The support ofN (S, ·) is also known as the edge-boundary ∂S.
Given edge weights σ , the size of an ab-cut is measured by |∂S| := ∑

e∈E σ(e)N (S, e).
We define the min cut between a and b to:

MC(a, b) := min {|∂S|: S is an ab-cut} .
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– Effective Resistance When G is undirected, it can be thought of as an electrical net-
work with edge-conductances given by the weights σ , see [8]. Then, effective resistance
Reff(a, b) is the voltage drop necessary to pass 1Amp of current between a and b through
G [8]. In this case, given two vertices a and b in V , we write Ceff(a, b) := Reff(a, b)−1

for the effective conductance between a and b.
– Shortest-path Finally, the (unweighted) shortest-path distance between a and b refers

to the length of the shortest path from a to b, where the length of a path γ is �(γ ) :=∑
e∈E N (γ, e), and we write

�(Γ ) := inf
γ∈Γ

�(γ )

for the shortest length of a family Γ .

The following result is a slightmodification of the results in [2, Section 5], taking into account
the definition of Nmin in (5).

Theorem 1 [2] Let G = (V , E, σ ) be a graph with edge weights σ . Let Γ be a non-trivial
family of objects on G with usage matrixN and let σ(E) := ∑

e∈E σ(e). Then, the function
p �→ Modp,σ (Γ ) is continuous for 1 ≤ p < ∞, and the following two monotonicity
properties hold for 1 ≤ p ≤ p′ < ∞.

N p
min Modp,σ (Γ ) ≥ N p′

min Modp′,σ (Γ ), (11)
(
σ(E)−1 Modp,σ (Γ )

)1/p ≤ (
σ(E)−1 Modp′,σ (Γ )

)1/p′
. (12)

Moreover, let a 	= b in V be given and set Γ equal to the connecting family Γ (a, b). Then,

• For p = 1, Mod1,σ (Γ ) = min{|∂S|: S an ab − cut} = MC(a, b) Min cut.
• For p = 2, Mod2,σ (Γ ) = Ceff(a, b) = Reff(a, b)−1 Effective conductance.

• For p = ∞, Mod∞,1(Γ ) = lim
p→∞Modp,σ (Γ )

1
p = �(Γ )−1 Reciprocal of shortest-path.

Remark 3 An early version of the case p = 2 is due to Duffin [9]. The proof in [2] was
guided by a very general result in metric spaces [13, Theorem 7.31].

The theorem stated in [2, Section 5] does not hold in this context verbatim, but can be
easily adapted. The only issue to take care of is the value of Nmin. Since the previous paper
dealt only with families of walks, N was integer-valued and, thus, Nmin could be assumed
no smaller than 1. This gave rise to an inequality of the form 0 ≤ ρ∗ ≤ 1 that was used
to establish a monotonicity property. When N is not restricted to integer values, the bound
on ρ∗ should be replaced by 0 ≤ ρ∗ ≤ N−1

min [see Remark 1 (c)]. Repeating the proof of
[2, Thm. 5.2] with the corrected upper bound and rephrasing in the current context yields
theorem 1.

Example 2 (Basic example) Let G be a graph consisting of k simple paths in parallel, each
path taking � hops to connect a given vertex s to a given vertex t . Assume also that G is
unweighted, that is σ ≡ 1. Let Γ be the family consisting of the k simple paths from s to t .
Then, �(Γ ) = � and the size of the minimum cut is k. A straightforward computation shows
that

Modp(Γ ) = k

�p−1 for 1 ≤ p < ∞, Mod∞,1(Γ ) = 1

�
.

In particular, Modp(Γ ) is continuous in p, and lim p→∞ Modp(Γ )1/p = Mod∞,1(Γ ). Intu-
itively, when p ≈ 1, Modp(Γ ) is more sensitive to the number of parallel paths, while for
p � 1, Modp(Γ ) is more sensitive to short walks.
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Blocking duality for p-modulus on networks and applications 981

2.4 Lagrangian duality and the probabilistic interpretation

The optimization problem (7) is an ordinary convex program, in the sense of [19, Sec. 28].
Existence of aminimizer follows from compactness, and uniqueness holds when 1 < p < ∞
by strict convexity of the objective function. Furthermore, it can be shown that strong duality
holds in the sense that a maximizer of the Lagrangian dual problem exists and has dual
energy equal to the modulus. The Lagrangian dual problem was derived in detail in [2]. The
Lagrangian dual was later reinterpreted in a probabilistic setting in [5].

In order to formulate the probabilistic dual, we let P(Γ ) represent the set of probability
mass functions (pmfs) on the setΓ . In other words,P(Γ ) contains the set of vectorsμ ∈ R

Γ≥0

with the property thatμT 1 = 1. Given such aμ, we can define a Γ -valued random variable γ

with distribution given by μ: Pμ

(
γ = γ

)
= μ(γ ). Given an edge e ∈ E , the valueN (γ , e)

is again a random variable, and we represent its expectation (depending on the pmf μ) as

Eμ

[
N (γ , e)

]
. The probabilistic interpretation of the Lagrangian dual can now be stated as

follows.

Theorem 2 Let G = (V , E) be a finite graph with edge weights σ , and let Γ be a non-
trivial finite family of objects on G with usage matrix N . Then, for any 1 < p < ∞, letting
q := p/(p − 1) be the conjugate exponent to p, we have

Modp,σ (Γ )
− 1

p =
(

min
μ∈P(Γ )

∑
e∈E

σ(e)−
q
p Eμ

[
N (γ , e)

]q) 1
q

. (13)

Moreover, μ ∈ P(Γ ) is optimal for the right-hand side of (13) if and only if

Eμ

[
N (γ , e)

]
= σ(e)ρ∗(e)

p
q

Modp,σ (Γ )
∀e ∈ E, (14)

where ρ∗ is the unique extremal density forModp,σ (Γ ).

Theorem 2 is a consequence of the theory developed in [5]. However, since it was only
remarked on in [5], we provide a detailed proof here.

Proof The optimization problem (7) is a standard convex optimization problem. Its
Lagrangian dual problem, derived in [2], is

maximize
∑
γ∈Γ

λ(γ ) − (p − 1)
∑
e∈E

σ(e)

⎛
⎝ 1

pσ(e)

∑
γ∈Γ

N (γ, e)λ(γ )

⎞
⎠

p
p−1

subject to λ(γ ) ≥ 0 ∀γ ∈ Γ .

(15)

It can be readily verified that strong duality holds [i.e., that the minimum in (7) equals the
maximum in (15)] and that both extrema are attained.Moreover, if ρ∗ is the uniqueminimizer
of the modulus problem and λ∗ is any maximizer of the Lagrangian dual, then the optimality
conditions imply that

ρ∗(e) =
⎛
⎝ 1

pσ(e)

∑
γ∈Γ

N (γ, e)λ∗(γ )

⎞
⎠

1
p−1

. (16)
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By decomposing λ ∈ R
Γ≥0 as λ = νμ with ν ≥ 0 and μ ∈ P(Γ ), we can rewrite (15) as

max
ν≥0

⎧⎨
⎩ν − (p − 1)

(
ν

p

)q

min
μ∈P(Γ )

∑
e∈E

σ(e)−
q
p

⎛
⎝∑

γ∈Γ

N (γ, e)μ(γ )

⎞
⎠

q⎫⎬
⎭ .

Theminimum overμ can be recognized as the minimum in (13). Let α be its minimum value.

Then, the maximum over ν ≥ 0 is attained at ν∗ := pα− p
q , and strong duality implies that

Modp,σ (Γ ) = ν∗ − (p − 1)

(
ν∗

p

)q

α = α
− p

q .

Thus,

min
μ∈P(Γ )

∑
e∈E

σ(e)−
q
p Eμ

[
N (γ , e)

]q = α = Modp,σ (Γ )
− q

p ,

proving (13). The remainder of the theorem follows from (16):

ρ∗(e) =
⎛
⎝ ν∗

pσ(e)

∑
γ∈Γ

N (γ, e)μ∗(γ )

⎞
⎠

1
p−1

= α−1σ(e)−
q
p Eμ∗

[
N (γ , e)

] q
p

and the fact that, if μ ∈ P(Γ ) satisfies (14), then λ := ν∗μ is admissible for (15) and has
the same objective value as any optimal λ∗. �

Remark 4 The probabilistic interpretation is particularly informative when p = 2, σ ≡ 1,
andΓ is a collection of subsets of E , so thatN is a (0, 1)-matrix defined asN (γ, e) = 1γ (e).
In this case, this duality relation can be expressed as

Mod2(Γ )−1 = min
μ∈P(Γ )

Eμ

∣∣∣γ ∩ γ ′
∣∣∣ ,

where γ and γ ′ are two independent random variables chosen according to the pmf μ, and∣∣∣γ ∩ γ ′
∣∣∣ is their overlap (also a random variable). In other words, computing the 2-modulus

in this setting is equivalent to finding a pmf that minimizes the expected overlap of two iid
Γ -valued random variables.

In the present work, we are interested in a different but closely related duality called blocking
duality.

3 Blocking duality and p-modulus

In this section, we introduce blocking duality for modulus. If Γ is a finite non-trivial family
of objects on a graph G, the admissible set Adm(Γ ), defined in (6), is determined by finitely
many inequalities: ∑

e∈E
N (γ, e)ρ(e) ≥ 1 ∀γ ∈ Γ .

Thus, it is possible to identify Γ with the rows of its edge usage matrix N or, equivalently,
with the corresponding points in R

E≥0.
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3.1 Fulkerson theorem

First, we recall some general definitions. LetK be the set of all closed convex sets K ⊂ R
E≥0

that are recessive, in the sense that K + R
E≥0 = K . To avoid trivial cases, we shall assume

that ∅ � K � R
E≥0, for K ∈ K.

Definition 2 For each K ∈ K, there is an associated blocking polyhedron, or blocker,

BL(K ) :=
{
η ∈ R

E≥0: ηT ρ ≥ 1, ∀ρ ∈ K
}

.

Definition 3 Given K ∈ K and a point x ∈ K , we say that x is an extreme point of K if
x = t x1 + (1 − t)x2 for some x1, x2 ∈ K and some t ∈ (0, 1), implies that x1 = x2 = x .
Moreover, we let ext(K ) be the set of all extreme points of K .

Definition 4 The dominant of a set P ⊂ R
E≥0 is the recessive closed convex set

Dom(P) = co(P) + R
E≥0,

where co(P) is the convex hull of P .

When Γ is finite, Adm(Γ ) has finitely many faces. However, Adm(Γ ) is also determined
by its finitely many extreme points, or “vertices” in R

E≥0. In fact, since Adm(Γ ) is a reces-
sive closed convex set, it equals the dominant of its extreme points ext(Adm(Γ )), see [19,
Theorem 18.5]. In the present notations,

Adm(Γ ) = Dom(ext(Adm(Γ ))). (17)

Definition 5 Suppose G = (V , E) is a finite graph and Γ is a finite non-trivial family of
objects on G. We say that the family

Γ̂ := ext(Adm(Γ )) = {γ̂1, . . . , γ̂s} ⊂ R
E≥0,

consisting of the extreme points of Adm(Γ ), is the Fulkerson blocker of Γ . We define the

matrix N̂ ∈ R
Γ̂ ×E
≥0 to be the matrix whose rows are the vectors γ̂ T , for γ̂ ∈ Γ̂ .

Theorem 3 (Fulkerson [10]) Let G = (V , E) be a graph and let Γ be a non-trivial finite
family of objects on G. Let Γ̂ be the Fulkerson blocker of Γ . Then,

(1) Adm(Γ ) = Dom(Γ̂ ) = BL(Adm(Γ̂ ));
(2) Adm(Γ̂ ) = Dom(Γ ) = BL(Adm(Γ ));
(3) ˆ̂

Γ ⊂ Γ .

In words, (3) says that the extreme points of Adm(Γ̂ ) are a subset of Γ . Combining (1) and
(2), we get the following relationships in terms of Γ alone.

Corollary 1 Let G = (V , E) be a graph and let Γ be a non-trivial finite family of objects on
G. Then,

BL(BL(Adm(Γ ))) = Adm(Γ ) and BL(BL(Dom(Γ ))) = Dom(Γ ).

as well as

Adm(Γ ) = BL (Dom(Γ )) and BL(Adm(Γ )) = Dom(Γ ).
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We include a proof of Theorem 3 for the reader’s convenience.

Proof We first prove (2). Suppose η ∈ BL(Adm(Γ )). Then, ηT ρ ≥ 1, for every ρ ∈
Adm(Γ ). In particular, since every row of N̂ is an extreme point of Adm(Γ ), we have

N̂η ≥ 1. (18)

In other words, η ∈ Adm(Γ̂ ). Conversely, suppose η ∈ Adm(Γ̂ ), that is (18) holds. Since

Adm(Γ ) = co(Γ̂ ) + R
E≥0,

for every ρ ∈ Adm(Γ ), there is a probability measure ν ∈ P(Γ̂ ) and a vector z ≥ 0 such
that

ρ = N̂ T ν + z

And by (18),

ηT ρ = ηT N̂ T ν + ηT z ≥ νT 1 + ηT z ≥ 1.

So η ∈ BL(Adm(Γ )).
Note that η ∈ BL(Adm(Γ )) if and only if the value of the following linear program is

greater or equal to 1.
minimize ηT ρ

subject to Nρ ≥ 1, ρ ≥ 0,
(19)

where N is the usage matrix for Γ . The Lagrangian for this problem is

L(ρ, λ, t) := ηT ρ + λT (1 − Nρ) − t T ρ = λT 1 + ρT (η − N T λ − t),

with ρ ∈ R
E , λ ∈ R

Γ≥0 and t ∈ R
E≥0. In particular, the dual problem is

maximize λT 1

subject to N T λ ≤ η, λ ≥ 0.
(20)

Splitting λ = sν, with s ≥ 0 and ν ∈ P(Γ ), we can rewrite this problem as

maximize s

subject to sN T ν ≤ η, ν ∈ P(Γ ).
(21)

By strong duality, η ∈ BL(Adm(Γ )) if and only if there is s ≥ 1 and ν ∈ P(Γ ) so that

η ≥ sN T ν.

Namely, η ∈ BL(Adm(Γ )) implies that η ≥ N T ν, so η ∈ Dom(Γ ).
Conversely, if η ∈ Dom(Γ ), then there is a ν ∈ P(Γ ) such that η ≥ N T ν. So we have

proved (2). In particular, since ˆ̂
Γ is the set of extreme points of Adm(Γ̂ ) by Definition 5, it

follows from (2) that
ˆ̂

Γ = ext(Adm(Γ̂ )) = ext(Dom(Γ )).

Since any extreme point of Dom(Γ ) must be present in Γ , we conclude that ˆ̂
Γ ⊂ Γ , and

hence (3) is proved as well.
To prove (1), we apply (2) to Γ̂ and find that

BL(Adm(Γ̂ )) = Adm(
ˆ̂

Γ ) ⊃ Adm(Γ ),
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where the last inclusion follows from (3), since ˆ̂
Γ ⊂ Γ . Also, by (3) applied to Γ̂ , the extreme

points of Adm(
ˆ̂

Γ ) are a subset of Γ̂ and therefore they are a subset of ext(Adm(Γ )). This

implies that Adm(
ˆ̂

Γ ) ⊂ Adm(Γ ). So we have BL(Adm(Γ̂ )) = Adm(Γ ).
Moreover, by (2) applied to Γ̂ , we get that

BL(Adm(Γ̂ )) = Dom(Γ̂ ).

So (1) is proved as well. �

3.2 Blocking duality for p-modulus

Theorem 4 Let G = (V , E) be a graph and let Γ be a non-trivial finite family of objects on
G with Fulkerson blocker Γ̂ . Let the exponent 1 < p < ∞ be given, with q := p/(p−1) its
Hölder conjugate exponent. For any set of weights σ ∈ R

E
>0, define the dual set of weights

σ̂ as σ̂ (e) := σ(e)−
q
p , for all e ∈ E.

Then,

Modp,σ (Γ )
1
p Modq,σ̂ (Γ̂ )

1
q = 1. (22)

Moreover, the optimal ρ∗ ∈ Adm(Γ ) and η∗ ∈ Adm(Γ̂ ) are unique and are related as
follows:

η∗(e) = σ(e)ρ∗(e)p−1

Modp,σ (Γ )
∀e ∈ E . (23)

Remark 5 The case for p = 2, namely

Mod2,σ (Γ )Mod2,σ−1(Γ̂ ) = 1,

is essentially contained in [16, Lemma 2], although stated with different terminology and
with a different proof. In this case, (23) can be rewritten as

σ(e)ρ∗(e) = Mod2,σ (Γ )η∗(e) ∀e ∈ E .

Proof For all ρ ∈ Adm(Γ ) and η ∈ Adm(Γ̂ ), Hölder’s inequality implies that

1 ≤
∑
e∈E

ρ(e)η(e) =
∑
e∈E

(
σ(e)1/pρ(e)

) (
σ(e)−1/pη(e)

)

≤
(∑
e∈E

σ(e)ρ(e)p
)1/p (∑

e∈E
σ̂ (e)η(e)q

)1/q

,

(24)

so
Modp,σ (Γ )1/p Modq,σ̂ (Γ̂ )1/q ≥ 1. (25)

Now, let α := Modq,σ̂ (Γ̂ )−1 and let η∗ ∈ Adm(Γ̂ ) be the minimizer for Modq,σ̂ (Γ̂ ).
Then, (25) implies that

Modp,σ (Γ ) ≥ α
p
q = α

1
q−1 . (26)

Define

ρ∗(e) := α

(
σ̂ (e)

σ (e)
η∗(e)q

)1/p

= ασ̂ (e)η∗(e)q/p. (27)
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Note that

Ep,σ (ρ∗) =
∑
e∈E

σ(e)ρ∗(e)p = α p
∑
e∈E

σ̂ (e)η∗(e)q = α p−1 = α
1

q−1 .

Thus, if we can show that ρ∗ ∈ Adm(Γ ), then (26) is attained and ρ∗ must be extremal for
Modp,σ (Γ ). In particular, (22) would follow. Moreover, (23) is another way of writing (27).

To see that ρ∗ ∈ Adm(Γ ), we will verify that
∑

e∈E ρ∗(e)η(e) ≥ 1 for all η ∈ Adm(Γ̂ ).
First, consider η = η∗. In this case,

∑
e∈E

ρ∗(e)η∗(e) = α
∑
e∈E

σ̂ (e)η∗(e)q = 1.

Now let η ∈ Adm(Γ̂ ) be arbitrary. Since Adm(Γ̂ ) is convex, we have that (1− θ)η∗ + θη ∈
Adm(Γ̂ ) for all θ ∈ [0, 1]. So, using Taylor’s theorem, we have

α−1 = Eq,σ̂ (η∗) ≤ Eq,σ̂ ((1 − θ)η∗ + θη) =
∑
e∈E

σ̂ (e)
[
(1 − θ)η∗(e) + θη(e)

]q

= α−1 + qθ
∑
e∈E

σ̂ (e)η∗(e)q−1 (
η(e) − η∗(e)

) + O(θ2)

= α−1 + α−1qθ
∑
e∈E

ρ∗(e)
(
η(e) − η∗(e)

) + O(θ2).

Since this inequality must hold for arbitrarily small θ > 0, it follows that
∑
e∈E

ρ∗(e)η(e) ≥
∑
e∈E

ρ∗(e)η∗(e) = 1,

and the proof is complete. �

3.3 The cases p = 1 and p = ∞

Now, we turn our attention to establishing the duality relationship in the cases p = 1 and
p = ∞. Recall that by Theorem 1,

lim
p→∞Modp,σ (Γ )

1
p = Mod∞,1(Γ ) = 1

�(Γ )
,

where �(Γ ) is defined to be the smallest element of the vector N1.
In order to pass to the limit in (22), we need to establish the limits for the second term in

the left-hand side product.

Lemma 1 Under the assumptions of Theorem 4,

lim
q→1

Modq,σ̂ (Γ̂ )
1
q = Mod1,1(Γ̂ ) and

lim
q→∞Modq,σ̂ (Γ̂ )

1
q = Mod∞,σ−1(Γ̂ ),

(28)

where σ−1(e) = σ(e)−1.

Proof LetN , N̂ ∈ R
Γ ×E
≥0 be the usage matrices for Γ and Γ̂ , respectively. Let σ ∈ R

E×E be

the diagonal matrix with entries σ (e, e) = σ(e), and define Ñ = N̂σ , with Γ̃ its associated

123



Blocking duality for p-modulus on networks and applications 987

family in R
E≥0. Note that η ∈ Adm(Γ̂ ) if and only if σ−1η ∈ Adm(Γ̃ ). Moreover, for every

η ∈ Adm(Γ̂ ),

Eq,σ̂ (η) =
∑
e∈E

σ̂ (e)η(e)q =
∑
e∈E

σ(e)

(
η(e)

σ (e)

)q

= Eq,σ (σ−1η),

which implies that
Modq,σ̂ (Γ̂ ) = Modq,σ (Γ̃ ).

Taking the limit as q → 1 and using the continuity of p-modulus with respect to p, see
Theorem 1, we get that

lim
q→1

Modq,σ̂ (Γ̂ )
1
q = lim

q→1
Modq,σ (Γ̃ )

1
q = Mod1,σ (Γ̃ ) = min

η∈Adm(Γ̂ )

∑
e∈E

σ(e)

(
η(e)

σ (e)

)
= Mod1,1(Γ̂ ).

Taking the limit as q → ∞ and using Theorem 1 show that

lim
q→∞Modq,σ̂ (Γ̂ )

1
q = lim

q→∞Modq,σ (Γ̃ )
1
q = Mod∞,1(Γ̃ ) = min

η∈Adm(Γ̂ )

max
e∈E

(
η(e)

σ (e)

)
= Mod∞,σ−1 (Γ̂ ).

Taking the limit as p → 1 in Theorem 4 then gives the following theorem.

Theorem 5 Under the assumptions of Theorem 4,

Mod1,σ (Γ )Mod∞,σ−1(Γ̂ ) = 1. (29)

Note that taking the limit as p → ∞ simply yields the same result for the unweighted case.

4 Blocking duality for families of objects

4.1 Duality for 1-modulus

Suppose that G = (V , E, σ ) is a weighted graph, with weights σ ∈ R
E
>0, and Γ is a non-

trivial, finite family of subsets of E , where N be the corresponding usage matrix. In this
case we can equate each γ ∈ Γ with the vector 1γ ∈ R

E≥0, so we think of Γ as living in

{0, 1}E ⊂ R
E≥0. Recall that Mod1,σ (Γ ) is the value of the linear program:

minimize σ T ρ

subject to ρ ≥ 0, Nρ ≥ 1
(30)

Since this is a feasible linear program, strong duality holds, and the dual problem is

maximize λT 1

subject to λ ≥ 0, N T λ ≤ σ.
(31)

We think of (31) as a (generalized) max-flow problem, given the weights σ . That is because
the condition N T λ ≤ σ says that for every e ∈ E∑

γ∈Γ

λ(γ )N (γ, e) =
∑
γ∈Γ
e∈γ

λ(γ ) ≤ σ(e).

However, to think of (30) as a (generalized) min-cut problem, we would need to be able to
restrict the densities ρ to some given subsets of E . That is exactly what the Fulkerson blocker
does.
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Proposition 2 Suppose G = (V , E) is a finite graph and Γ is a family of subsets of E with
Fulkerson blocker family Γ̂ . Then, for any set of weights σ ∈ R

E
>0,

Mod1,σ (Γ ) = min
γ̂∈Γ̂

∑
e∈E

N̂ (γ̂ , e)σ (e). (32)

Moreover, for every γ̂ ∈ Γ̂ there is a choice of σ ∈ R
E≥0 such that γ̂ is the unique solution

of (32) and the corresponding density ργ̂ (e) := N̂ (γ̂ , e) is the unique minimizer of (30).

Proof By Theorem 3(1)
Adm(Γ ) = Dom(Γ̂ )

So if σ ∈ R
E
>0 is a given set of weights, then, by (30), Mod1,σ (Γ ) is the value of the linear

program
minimize σ T ρ

subject to ρ ∈ Dom(Γ̂ ).
(33)

In particular, the optimal value is attained at a vertex ofDom(Γ̂ ), namely for an object γ̂ ∈ Γ̂ .
Therefore, the optimization can be restricted to Γ̂ .

The “moreover” part of the proposition follows from [19, Thm. 18.6] since Adm(Γ ) is a
recessive polyhedron with finitely many extreme points. �
Remark 6 When Γ is a family of subsets of E , it is customary to say that Γ has the max-
flow-min-cut property, if its Fulkerson blocker Γ̂ is also a family of subsets of E . For more
details, we refer to the discussion in [15, Chapter 3].

4.2 Connecting families

LetG be an undirected graph and letΓ = Γ (a, b) be the family of all simple paths connecting
twodistinct nodesa andb, i.e., theab-paths inG. Consider the familyΓcut(a, b)of allminimal
ab-cuts. Recall that an ab-cut S is called minimal if its boundary ∂S does not contain the
boundary of any other ab-cut as a strict subset.

Note that (31) in this case is exactly the max-flow problem. It is not surprising, then,
that (30) is closely related to the min-cut problem. In fact, the Fulkerson blocker of Γ (a, b)
is Γ̂ (a, b) = Γcut(a, b). One way to see this is as follows. Every ab-cut, S ⊂ V yields a
density ρS := 1∂S . In this way, we may recognize Γcut(a, b) as the set of extreme points

Γcut(a, b) = ext (Dom ({ρS : S is an ab-cut})) .

Moreover, every such ρS is admissible for (30), since every path γ ∈ Γ (a, b) must have at
least one edge in common with ∂S. Thus,

Dom(Γcut(a, b)) ⊆ Dom(Γ̂ (a, b)),

and it suffices to show that Γ̂ (a, b) ⊆ Γcut(a, b).
Let γ̂ ∈ Γ̂ (a, b) and let σ be chosen as in the “moreover” part of Proposition 2. Then, ργ̂ is

the uniqueminimizer of (30) and, by strong duality, σ T ργ̂ must equal the value of (31), which
is themaximumflow. By themax-flowmin-cut theorem, there exists a cut S ∈ Γcut(a, b) such
that σ T ρS equals this value. Uniqueness implies that ργ̂ = ρS , showing that N̂ (γ̂ , ·) = 1∂S .
In other words, γ̂ is a minimum ab-cut.

The duality

Modp,σ (Γ )
1
p Modq,σ̂ (Γ̂ )

1
q = 1
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can be viewed as a generalization of the max-flow min-cut theorem. To see this, consider the
limiting case (29). As discussed above, Mod1,σ (Γ ) takes the value of the minimum ab-cut
with edge weights σ .

With a little work, the second modulus in (29) can be recognized as the reciprocal of
the corresponding max-flow problem. Using the standard trick for ∞-norms, the modulus
problem Mod∞,σ−1(Γ̂ ) can be transformed into a linear program taking the form

minimize t

subject to σ(e)−1η(e) ≤ t ∀e ∈ E

η ≥ 0, N̂η ≥ 1

The minimum must occur somewhere on the boundary of Adm(Γ̂ ) and, therefore, by Theo-
rem 3(2), must take the form

η(e) =
∑
γ∈Γ

λ(γ )1γ (e) λ(γ ) ≥ 0,
∑
γ∈Γ

λ(γ ) = 1.

In other words, the minimum occurs at a unit st-flow η, and the problem can be restated as

minimize t

subject to
1

t
η(e) ≤ σ(e) ∀e ∈ E

η a unit st-flow

The minimum is attained when 1
t η is a maximum st-flow respecting edge capacities σ(e);

the value of such a flow is 1/t , thus establishing the connection between the ∞-modulus and
the max-flow problem.

4.3 Spanning treemodulus

When Γ is the set of spanning trees on an unweighted, undirected graph G with N (γ, ·) =
1γ (·), the Fulkerson blocker Γ̂ can be interpreted as the set of (weighted) feasible partitions
[7].

Definition 6 A feasible partition P of a graph G = (V , E) is a partition of the vertex set
V into two or more subsets, {V1, . . . , VkP }, such that each of the induced subgraphs G(Vi )
is connected. The corresponding edge set, EP , is defined to be the set of edges in G that
connect vertices belonging to different Vi ’s.

The results of [7] imply the following theorem.

Theorem 6 Let G = (V , E) be a simple, connected, unweighted, undirected graph and let
Γ be the family of spanning trees on G. Then, the Fulkerson blocker of Γ is the set of all
vectors

1

kP − 1
1EP

ranging over all feasible partitions P.

This fact plays an important role in [3].
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5 Blocking duality and the probabilistic interpretation

At the end of Sect. 2.4, it was claimed that blocking duality was closely related to Lagrangian
duality. In this section, we make this connection explicit.

Theorem 7 Let G = (V , E, σ ) be a graph and Γ a finite family of objects on G with
Fulkerson blocker Γ̂ . For a given 1 < p < ∞, letμ∗ be an optimal pmf for the minimization
problem in (13) and let η∗ be optimal forModq,σ̂ (Γ̂ ). Then, in the notation of Sect. 2.4,

η∗(e) = Eμ∗
[
N (γ , e)

]
. (34)

Proof Every η ∈ Adm(Γ̂ ) can be written as the sum of a convex combination of the vertices
of Adm(Γ̂ ) and a nonnegative vector. In other words, η ∈ Adm(Γ̂ ) if and only if there exists
μ ∈ P(Γ ) and η0 ∈ R

E≥0 such that η = N Tμ + η0. Or, in probabilistic notation,

η(e) =
∑
γ∈Γ

N (γ, e)μ(γ ) + η0(e) = Eμ

[
N (γ , e)

]
+ η0(e).

For such an η,

Eq,σ̂ (η) =
∑
e∈E

σ(e)−
q
p η(e)q ≥

∑
e∈E

σ(e)−
q
p Eμ

[
N (γ , e)

]q

with equality holding if and only if η0 = 0. This implies that the optimal η∗ must be of the

form η∗ = N Tμ′ = Eμ′
[
N (γ , ·)

]
for some μ′ ∈ P(Γ ).

Now, let μ∗ be any optimal pmf for (13) and let η′ = N Tμ∗. Since η′ = N Tμ∗ ∈
Dom(Γ ), Theorem 3(2) implies that η′ ∈ Adm(Γ̂ ). Moreover, by optimality of μ∗,

Eq,σ̂ (η′) =
∑
e∈E

σ(e)−
q
p Eμ∗

[
N (γ , e)

]q ≤
∑
e∈E

σ(e)−
q
p Eμ′

[
N (γ , e)

]q = Eq,σ̂ (η∗).

But, since 1 < q < ∞, the minimizer for Modq,σ̂ (Γ̂ ) is unique and, therefore, η′ = η∗. So
η∗ = N Tμ∗ = Eμ∗

[
N (γ , ·)

]
as claimed. �

6 The ıp metrics and a new proof that effective resistance is a metric

We saw in Theorem 1 that in the case of connecting families Modp,σ (Γ (a, b)) satisfies:

– Mod∞,1(Γ (a, b))−1 = �(Γ (a, b)) is the (unweighted) shortest-path length;
– Mod2,σ (Γ (a, b))−1 = Reff(a, b) is the effective resistance metric;
– Mod1,σ (Γ (a, b))−1 = MC(a, b)−1 is the reciprocal of min cut.

In all three cases, if G is a connected graph, these are distances (or metrics). The fact that
shortest-path dSP(a, b) := �(Γ (a, b)) is a metric on V is well known and follows easily from
the definition.

The fact that dMC(a, b) := MC(a, b)−1 is an ultrametric (i.e., that the sum can be replaced
by the maximum in the triangle inequality) is left as an exercise, or see [4] where a proof is
given.

The fact that effective resistance dER(a, b) := Reff(a, b) is a metric has several known
proofs. See [14, Exercise 9.8], for a proof using current flows, and see [14, Corollary 10.8],
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for one using commute times. As a consequence of Theorem 8, we will provide yet another
proof that effective resistance is a metric on graphs.

Definition 7 Let G = (V , E, σ ) be a weighted, connected, simple graph. Given a, b ∈ V ,
let Γ (a, b) be the connecting family of all paths between a and b. Fix 1 < p < ∞ and let
q := p/(p − 1) be the Hölder conjugate exponent. Then, we define

δp(a, b) :=
{
0 if a = b,

Modp,σ (Γ (a, b))−q/p if a 	= b.

Theorem 8 Suppose G = (V , E, σ ) is a weighted, connected, simple graph. Then, δp is a
metric on V . Moreover,

(a) lim p↑∞ δp = dSP;
(b) δ2 = dER;
(c) For 1 < p < 2,Modp,σ (Γ (a, b))−1 is a metric and it tends to dMC(a, b) as p → 1.

Finally, for every ε > 0 and every p ∈ (1,∞) there is a connected graph for which δ1+ε
p is

not a metric.

Remark 7 Note that, in light of Theorem 1, when p = 2, the proof of Theorem 8 gives an
alternative modulus-based proof that effective resistance is a metric.

Remark 8 It is straightforward to show that an arbitrary positive power of an ultrametric is
also an ultrametric, so (dMC)t is a metric for any t > 0. Using (11) and (12), it can be shown
that as p ↓ 1, δp converges to the limit

lim
t→∞(dMC(a, b))t =

⎧⎪⎨
⎪⎩
0 if dMC(a, b) < 1,

1 if dMC(a, b) = 1,

∞ if dMC(a, b) > 1.

For unweighted graphs, this limit essentially decomposes the graph into its 2-edge-connected
components. All nodes in the same component are distance zero from one another, while
nodes in different components are at distance one.

Proof Assuming the claim that δp is a metric, the “moreover” parts (a) and (b) follow
from Theorem 1. For (c), recall that a metric d can always be raised to an exponent
0 < ε < 1 and still remain a metric. Since for 1 < p < 2, we have p/q < 1, it fol-
lows that Modp,σ (Γ (a, b))−1 = δ

p/q
p is a metric, and the claim follows from continuity

in p. Finally, the fact that the exponent 1 is sharp for the metrics δp is shown in [4]. For
completeness, we repeat the argument here. Consider the (unweighted) path graph P3 with
edges {a, c}, {c, b} and fix p ∈ (1,∞). First, Modp(Γ (a, c)) = 1, because any admissi-
ble density ρ must satisfy ρ(a, c) = 1, furthermore, to minimize the energy, we also set
ρ(c, b) = 0. Likewise, Modp(Γ (c, b)) = 1. For Modp(Γ (a, b)), the energy is minimized
when ρ(a, c) = ρ(c, b) = 1/2. Thus,

Modp(Γ (a, b)) = (1/2)p + (1/2)p = 21−p

Hence, δp(a, b) = 2q(p−1)/p = 2 = 1 + 1 = δp(a, c) + δp(c, b). In particular, the triangle
inequality will fail for δtp as soon as t > 1.

The proof of the main claim hinges on the dual formulation in terms of Fulkerson blocker
duality. Fix p ∈ (1,∞). Recall from Sect. 4.2 that the Fulkerson blocker family for Γ (a, b)
is the family of all minimal ab-cuts Γ̂ (a, b). By Theorem 4,

Modp,σ (Γ (a, b))−q/p = Modq,σ̂ (Γ̂ (a, b)),
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where q := p/(p − 1) is the Hölder conjugate exponent of p and σ̂ = σ−q/p .
An important observation at this point is that the family Γcut(a, b) of all the ab-cuts is

subordinated to Γ̂ (a, b), since every ab-cut contains a minimal ab-cut, see Remark 2.
Now suppose a, b, c ∈ V are distinct. Then, for every ab-cut S ∈ Γ̂ (a, b), we have the

following mutually exclusive cases: either c ∈ S or c /∈ S. Therefore,

Γ̂ (a, b) ⊂ Γcut(a, c) ∪ Γcut(c, b). (35)

The triangle inequality then follows frommonotonicity (8) and subadditivity (9) of modulus:

δp(a, b) = Modp,σ (Γ (a, b))−q/p (Definition)

= Modq,σ̂ (Γ̂ (a, b)) (Fulkerson duality)

≤ Modq,σ̂ (Γcut(a, c) ∪ Γcut(c, b)) (by (35) and Monotonicity)

≤ Modq,σ̂ (Γcut(a, c)) + Modq,σ̂ (Γcut(c, b)) (Subadditivity)

≤ Modq,σ̂ (Γ̂ (a, c)) + Modq,σ̂ (Γ̂ (c, b)) (Subordination)

= δp(a, c) + δp(c, b). (Fulkerson duality)

Verifying the remaining metric axioms is left to the reader. �

7 Edge-conductancemonotonicity

When studying the p-modulus of a family of objects Γ on a weighted graph G = (V , E, σ ),
we often refer to the weights σ(e) as edge-conductances. This terminology originates in
the special case of connecting families Γ (a, b) on undirected graphs with p = 2. In that
case, Mod2,σ (Γ (a, b)) coincides with effective conductance and we can give an electrical
network interpretation to the various quantities of interest. In particular, the optimal density
ρ∗(e) represents the absolute voltage potential drop across e, σ(e) is the conductance of e,
and therefore σ(e)ρ∗(e) is the current flow across e (by Ohm’s law). Moreover, recall the
optimal density for the Fulkerson blocker η∗(e), which probabilistically is the expected usage
of e by random paths under an optimal pmf (see Theorem 7). We know that η∗(e) is related
to ρ∗(e) via (23), which can be written in this case as

η∗(e) = σ(e)ρ∗(e)
Mod2,σ (Γ (a, b))

.

Therefore, η∗(e) is proportional to the current flow across e. And

ρ∗(e)η∗(e) = σ(e)ρ∗(e)2∑
e′∈E σ(e′)ρ∗(e′)2

is the fraction of the total dissipated power due to the resistor on edge e.
In the theory of electrical networks, the following edge-conductance monotonicity prop-

erty is well known, see for instance Spielman’s notes [24, Problem 4].

Proposition 3 Let G = (V , E) be an undirected, connected graph and let r be the edge
resistances. Let e be an edge of E and let r̃ be another set of resistances such that r̃(e′) = r(e′),
for all e′ 	= e, and r̃(e) ≥ r(e). Fix an edge {s, t} of G. If one unit of current flows from s to
t, the amount of current that flows through edge e under resistances r̃ is no larger than the
amount that flows under resistances r .
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Our goal is to generalize Proposition 3 to p-modulus of arbitrary families of objects. In the
language of modulus, Proposition 3 says that if {s, t} is an edge in E and we are trying
to computing Mod2,σ (Γ (s, t)), then lowering σ(e) on some edge e ∈ E results in a new
modulus problem Mod2,σ̃ (Γ (s, t)) whose extremal density satisfies ρ∗

σ̃
(e) ≤ ρ∗

σ (e).
Theorem 9 is a reformulation, in the context of general families of objects, of results from

[2, Section 6.2] that were formulated in terms of families of walks. In order, to keep the flow
of the paper intact, we have relegated the proof of Theorem 9 to “Appendix.”

Theorem 9 [2] Let G = (V , E, σ ) be a graph and Γ a non-empty and non-trivial finite
family of objects on G. Fix 1 < p < ∞ and let ρ∗

σ be the extremal density for Modp,σ (Γ ).
Then,

1. the map φ: RE
>0 → R given by φ(σ) := Modp,σ (Γ ) is Lipschitz continuous;

2. the extremal density ρ∗
σ is also continuous in σ ;

3. the map φ is concave;
4. the map φ is differentiable, and the partial derivatives of φ satisfy

∂φ

∂σ(e)
= ρ∗

σ (e)p ∀e ∈ E .

Theorem 10 Under the hypothesis of Theorem 9, with η∗
σ given by (23), we have that in each

variable σ(e),

(a) Modp,σ (Γ ) is weakly increasing.
(b) ρ∗

σ (e) is weakly decreasing.
(c) η∗

σ (e) is weakly increasing.

Remark 9 Note that Theorem 10(c) can be reformulated using the probabilistic interpretation
(34) as saying that if σ(e) increases (and the other weights are left alone), then the expected
usage of edge e increases.

Proof of Theorem 10 For part (a), by Theorem 9 (1), Modp,σ (Γ ) is absolutely continuous in
σ(e). In particular, the fundamental theorem of calculus holds and the result follows from
Theorem 9 (4).

For part (b), write f (h) := Modp,σh (Γ ), where σh := σ + h1e. Set h > 0. Then, by
concavity and differentiability (Theorem 9 (3) and (4)),

f ′(0) ≥ f (h) − f (0)

h
≥ f ′(h).

The result follows from Theorem 9 (4) since

f ′(h) = ∂

∂σh(e)
φ(σh) = ρ∗

σh
(e)p.

Note that (23) is not sufficient to prove part (c), since it is not immediately clear how
the right-hand side varies with σ(e). Instead, we use the fact that, by Theorem 4, η∗

σ is the
optimal density for Modq,σ̂ (Γ̂ ) where σ̂ = σ−q/p (a smooth decreasing function of σ ), and
use part (b). �

8 Randomly weighted graphs

In this section, we explore the main arguments in [16] and recast them in the language of
modulus. The goal is to study graphsG = (V , E, σ )where the weights σ ∈ R

E
>0 are random
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variables and compare modulus computed on G to the corresponding modulus computed on
the deterministic graph EG := (V , E, Eσ). Theorem 11 is a reformulation of Theorem 7
in [16], which generalized Theorem 2.1 in [17]. In Theorem 12, we combine Theorem 11
with the monotonicity properties in Theorem 1 to obtain a new lower bound for the expected
p-modulus in terms of p-modulus on EG.

First, we recall a lemma from Lovász’s paper.

Lemma 2 [16, Lemma 9] Let W ∈ R
E
>0 be a random variable with survival function

S(t) := P (W ≥ t) , for t ∈ R
E≥0.

If S(t) is log-concave, then the survival function ofmine∈E W (e) is also log-concave and W
satisfies

E

(
min
e∈E W (e)

)
≥

(∑
e∈E

1

E(W (e))

)−1

. (36)

Property (36) is satisfied if for instance the random variables {W (e)}e∈E are indepen-
dent and distributed as exponential variables Exp(λ(e)), i.e., so that P(W (e) > t) =
min{exp(−λ(e)t), 1}.

It is useful to collect some properties of random variables with log-concave survival
functions.

Proposition 4 Let W ∈ R
E
>0 be a random variable with log-concave survival function. Then,

the following random variables also have log-concave survival function:

(a) CW, where C is an E × E diagonal matrix with positive diagonal elements.
(b) W ∗, where E∗ ⊂ E, and W ∗ ∈ R

E∗
>0 is the projection of W onto R

E∗
>0.

Proof We define S(t) := P(W ≥ t) for t ∈ R
E≥0. For (a), note that

logP (CW ≥ t) = log S(C−1t),

which is the composition of a concave function with an affine function. Likewise (b) follows
by composing a concave function with a projection. �
Theorem 11 Let G = (V , E, σ ) be a simple finite graph. Assume the σ is a random variable
inR

E
>0 with the property that its survival function is log-concave. Let Γ be a finite non-trivial

family of objects on G, with Nmin defined as in (5). Then,

EMod1,σ (Γ ) ≥ Nmin Mod2,Eσ (Γ ).

Proof Let Γ̂ be the Fulkerson blocker of Γ . Let ρ∗ be extremal for Mod2,Eσ (Γ ) and η∗ be
extremal for Mod2,(Eσ)−1(Γ̂ ). Also letμ∗ ∈ P(Γ ) be an optimal measure, and then we know
that

η∗(e) = Eσ(e)ρ∗(e)
Mod2,E(σ )(Γ )

=
∑
γ∈Γ

μ∗(γ )N (γ, e) = Eμ∗
(
N (γ , e)

)
, ∀e ∈ E . (37)

To avoid dividing by zero let E∗ := {e ∈ E : η∗(e) > 0} and let Γ ∗ := {γ ∈ Γ : μ∗(γ ) > 0}.
Note that, if e /∈ E∗, then

0 = η∗(e) =
∑

γ∈Γ ∗
μ∗(γ )N (γ, e),
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hence N (γ, e) = 0 for all γ ∈ Γ ∗. Therefore, for any ρ ∈ Adm(Γ ) and γ ∈ Γ ∗,
∑
e∈E∗

N (γ, e)ρ(e) =
∑
e∈E

N (γ, e)ρ(e) = �ρ(γ ) ≥ 1. (38)

Now, fix an arbitrary ρ ∈ Adm(Γ ). Then, by (37),

E1,σ (ρ) ≥
∑
e∈E∗

σ(e)ρ(e) = Mod2,Eσ (Γ )
∑
e∈E∗

σ(e)ρ(e)
1

Eσ(e)ρ∗(e)
Eμ∗

(
N (γ , e)

)
,

(39)
where the denominator is positive since σ > 0 and since ρ∗ > 0 on E∗ by (37). Note that

∑
e∈E∗

σ(e)ρ(e)
1

Eσ(e)ρ∗(e)
Eμ∗

(
N (γ , e)

)
=

∑
γ∈Γ ∗

μ∗(γ )
∑
e∈E∗

σ(e)

Eσ(e)ρ∗(e)
N (γ, e)ρ(e)

≥
∑

γ∈Γ ∗
μ∗(γ ) min

e∈E∗
N (γ,e) 	=0

σ(e)

Eσ(e)ρ∗(e)
∑
e∈E∗

N (γ, e)ρ(e)

≥
∑

γ∈Γ ∗
μ∗(γ ) min

e∈E∗
N (γ,e) 	=0

σ(e)

Eσ(e)ρ∗(e)
,

where the last inequality follows by (38).
Minimizing in (39) over ρ ∈ Adm(Γ ), we find

Mod1,σ (Γ ) ≥ Mod2,Eσ (Γ )
∑
γ∈Γ

μ∗(γ ) min
e∈E∗

N (γ,e)	=0

σ(e)

Eσ(e)ρ∗(e)
(40)

Note that for each γ ∈ Γ ∗, by Proposition (4) (a) and (b) and Lemma 2, the scaled random
variables

X(e) := σ(e)

Eσ(e)ρ∗(e)
for e ∈ E∗ with N (γ, e) 	= 0,

have the property that

E

⎛
⎝ min

e∈E∗
N (γ,e)	=0

X(e)

⎞
⎠ ≥

⎛
⎜⎜⎝

∑
e∈E∗

N (γ,e)	=0

1

E(X(e))

⎞
⎟⎟⎠

−1

=

⎛
⎜⎜⎝

∑
e∈E∗

N (γ,e)	=0

ρ∗(e)

⎞
⎟⎟⎠

−1

.

Moreover, by (5),

⎛
⎜⎜⎝

∑
e∈E∗

N (γ,e)	=0

ρ∗(e)

⎞
⎟⎟⎠

−1

≥ Nmin

⎛
⎜⎜⎝

∑
e∈E∗

N (γ,e)	=0

N (γ, e)ρ∗(e)

⎞
⎟⎟⎠

−1

.

Finally, by complementary slackness, since γ ∈ Γ ∗, we have μ∗(γ ) > 0, hence
∑
e∈E∗

N (γ,e)	=0

N (γ, e)ρ∗(e) =
∑
e∈E

N (γ, e)ρ∗(e) = 1.

Taking the expectation on both sides of (40) gives the claim. �
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Theorem 11 has some interesting consequences for p-modulus on randomly weighted
graphs. First, recall from Theorem 9 (3) that the map

σ �→ Modp,σ (Γ )

is concave for 1 ≤ p < ∞. In particular, if σ ∈ R
E
>0 is a random variable, then by Jensen’s

inequality:
EModp,σ (Γ ) ≤ Modp,Eσ (Γ ). (41)

The following theorem gives a lower bound.

Theorem 12 Let G = (V , E, σ ) be a simple finite graph. Assume σ is a random variable in
R

E
>0 with log-concave survival function. Let Γ be a finite non-trivial family of objects on G

with Nmin defined as in (5). Then, for 1 ≤ p ≤ 2,

EModp,σ (Γ ) ≥ N p
min

Eσ(E)
Modp,Eσ (Γ )2. (42)

Proof When 1 < p ≤ 2, we have, by (12),

Mod2,Eσ (Γ ) ≥ Eσ(E)1−2/p Modp,Eσ (Γ )2/p.

So by Theorem 11, we get

EMod1,σ (Γ ) ≥ NminEσ(E)1−2/p Modp,Eσ (Γ )2/p. (43)

Letting p → 1 and by continuity in p (Theorem 1), we get

EMod1,σ (Γ ) ≥ Nmin

Eσ(E)
Mod1,Eσ (Γ )2

Moreover, estimating the 1-modulus in terms of p-modulus, using (12) a second time, and
then applying Hölder’s inequality give

EMod1,σ (Γ ) ≤ E
(
σ(E)1/q Modp,σ (Γ )1/p

) ≤ Eσ(E)1/qE
(
Modp,σ (Γ )

)1/p
. (44)

Combining (43) and (44) gives (42). �

Remark 10 By combining (41) with (42), we find that, for 1 ≤ p ≤ 2,

Modp,Eσ (Γ ) ≤ Eσ(E)

N p
min

.

This is not a contradiction because this inequality is always satisfied, since the constant
density ρ ≡ N−1

min is always admissible.

Theorem12 leads one towonderwhat lower bounds canbe established forEMod2,σ (Γ )when
σ is allowed to vanish and its survival function is not necessarily log-concave. For instance, it
would be interesting to study what happens when the weights σ(e) are independent Bernoulli
variables, namely when G is an Erdős–Rényi graph. The situation there is complicated by
the fact that the family Γ will change with every new sample of the weights σ . For instance,
the family of all spanning trees will be different for different choices of σ .
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Appendix

Here, we give a proof of Theorem 9, which is a generalization of results in [2, Section 6.2].
First, recall the following weaker version of Clarkson’s inequalities.

Proposition 5 Let 1 < p < ∞. Set M := max{p, q}, where p + q = pq. Then, for any
f , g ∈ L p, ∥∥∥∥ f + g

2

∥∥∥∥
M

p
+

∥∥∥∥ f − g

2

∥∥∥∥
M

p
≤ ‖ f ‖Mp + ‖g‖Mp

2
. (45)

Next, we translate Proposition 5 in the language of p-modulus.

Lemma 3 Let G = (V , E, σ ) be a graph and Γ a finite, non-empty and non-trivial family of
objects on G. Let 1 < p < ∞ and set M := max{p, q}, where pq = p + q. Let ρ∗ denote
the (unique) extremal density for Modp,σ (Γ ). Then, for every ρ ∈ Adm(Γ ):

‖ρ − ρ∗‖Mp ≤ 2M−1σ
−M/p
min

(
Ep,σ (ρ)M/p − Modp,σ (Γ )M/p

)

where σmin = mine∈E σ(e).

In particular, if ρ is almost a minimizer, then ρ must be close to ρ∗.

Proof Let f (e) := σ(e)1/pρ(e) and f ∗(e) = σ(e)1/pρ∗(e). Then,

‖ f ‖p
p = Ep,σ (ρ) and ‖ f ∗‖p

p = Modp,σ (Γ ).

Also

‖ f − f ∗‖p
p =

∑
e∈E

σ(e)|ρ(e) − ρ∗(e)|p ≥ σmin‖ρ − ρ∗‖p
p,

and, since Adm(Γ ) is convex,∥∥∥∥ f + f ∗

2

∥∥∥∥
p

p
=

∑
e∈E

σ(e)

∣∣∣∣ρ(e) + ρ∗(e)
2

∣∣∣∣
p

= Ep,σ

(
ρ + ρ∗

2

)
≥ Modp,σ (Γ ).

Applying (45) to f and f ∗ and substituting, we obtain

Modp,σ (Γ )M/p + σ
M/p
min 2−M‖ρ − ρ∗‖Mp ≤ 1

2

(
Ep,σ (ρ)M/p + Modp,σ (Γ )M/p

)

�
We are now ready to prove Theorem 9.

Proof of Theorem 9 To show (1), fix σ1, σ2 ∈ R
E
>0. Assume first that Modp,σ2(Γ ) ≤

Modp,σ1(Γ ). Also recall that ρ∗
σ2

≤ N−1
min, by Remark 1(b). We have

|Modp,σ1(Γ ) − Modp,σ2(Γ )| ≤ Ep,σ1(ρ
∗
σ2

) − Modp,σ2(Γ )

= Ep,σ1(ρ
∗
σ2

) − Ep,σ2(ρ
∗
σ2

)

=
∑
e∈E

(σ1(e) − σ2(e))ρ
∗
σ2

(e)p

≤ N−p
min‖σ1 − σ2‖1
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A similar argument holds when Modp,σ1(Γ ) ≤ Modp,σ2(Γ ). This establishes the Lipschitz
continuity of the map φ.

To show (2), by Lemma 3 and M ≥ 2,

‖ρ∗
σ2

− ρ∗
σ1

‖Mp ≤ 2M−1σ
−M/p
1,min

(
Ep,σ1(ρ

∗
σ2

)M/p − Modp,σ1(Γ )M/p
)

.

So it is enough to show that

Ep,σ1(ρ
∗
σ2

) −→ Modp,σ1(Γ ) as σ2 → σ1

But

Modp,σ1(Γ ) ≤ Ep,σ1(ρ
∗
σ2

) =
∑
e∈E

σ1(e)ρ
∗
σ2

(e)p

=
∑
e∈E

σ2(e)ρ
∗
σ2

(e)p +
∑
e∈E

(σ1(e) − σ2(e))ρ
∗
σ2

(e)p

≤ Modp,σ2(Γ ) + N−p
min‖σ1 − σ2‖1.

And, as σ2 → σ1, the last line converges to Modp,σ1(Γ ) by continuity of the map φ in part
(1).

To show (3), fix σ0, σ1 ∈ R
E
>0 and t ∈ [0, 1]. Let ρ∗

t be extremal for σt := tσ1+(1− t)σ0.
Then, since ρ∗

t ∈ Adm(Γ ),

t Modp,σ1(Γ ) + (1 − t)Modp,σ0(Γ ) ≤ tEp,σ1(ρ
∗
t ) + (1 − t)Ep,σ0(ρ

∗
t )

=
∑
e∈E

σt (e)ρ
∗
t (e)

p = Modp,σt (Γ ).

This proves concavity.
To show (4), fix τ ∈ R

E and let ε > 0. Set σε := σ + ετ . Note that for ε small enough
σε ∈ R

E
>0. Let ρ

∗
ε be the extremal density corresponding to σε . For any ρ ∈ R

E≥0:

Ep,σε (ρ) =
∑
e∈E

(σ (e) + ετ(e))ρ(e)p = Ep,σ (ρ) + εEp,τ (ρ).

So

Modp,σε (Γ ) = Ep,σε (ρ
∗
ε ) = Ep,σ (ρ∗

ε ) + εEp,τ (ρ
∗
ε ) ≥ Modp,σ (Γ ) + εEp,τ (ρ

∗
ε ),

and

Modp,σε (Γ ) ≤ Ep,σε (ρ
∗
0 ) = Modp,σ (Γ ) + εEp,τ (ρ

∗
0 ),

Thus

Ep,τ (ρ
∗
ε ) ≤ φ(σ + ετ) − φ(σ)

ε
≤ Ep,τ (ρ

∗
0 ).

But by part (2), ρ∗
ε → ρ∗

0 , as ε → 0. So the directional derivative of φ in the direction of τ

is :

Dτ (φ) =
∑
e∈E

τ(e)ρ∗
σ (e)p.

Since part (2) then implies that all directional derivatives are continuous, it follows that φ is
differentiable [20, Theorem 9.21]. �
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