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Abstract
Let Ω ⊂ R

N , N ≥ 2, be a bounded domain which is divided into two sub-domains Ω1

andΩ2. Consider inΩ an eigenvalue–transmission problem associated with the p-Laplacian
acting in Ω1 and the q-Laplacian acting in Ω2, 1 < p < q , with Dirichlet–Neumann
conditions on the interface separating the two sub-domains Ω1 and Ω2 [see (1.1)]. The main
result Theorem 2.1 states the existence of a sequence of eigenvalues for this eigenvalue
problem. The proof is based on the Lusternik–Schnirelmann principle. Using the method of
Lagrange multipliers for constrained minimization problems, we show (see Theorem 2.2)
that if 2 ≤ p < q then there exists an eigenfunction in any set of the form

{
u ∈ W 1,p(Ω); u|Ω2 ∈ W 1,q(Ω2),

1

p

∫
Ω1

|u|p + 1

q

∫
Ω2

|u|q = α

}
, α > 0.

The case of Robin conditions on ∂Ω and the Riemannian setting are also addressed.
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1 Introduction

Consider a bounded domainΩ ⊂ R
N , N ≥ 2,with Lipschitz boundary ∂Ω , which is divided

into two Lipschitz sub-domainsΩ1 andΩ2 by a Lipschitz closed hypersurface H . We further
assume that H ∩ ∂Ω is an (N − 2)-dimensional manifold. In the differentiable category this
is the case whenever H and ∂Ω intersect transversally. In other words, Ω = Ω1 ∪ Ω2 ∪ Γ ,
where Γ = H ∩ Ω. The standard example we have in mind is the disc DN divided by some
coordinate hyperplane in two open components, i.e. the two open semidiscs. Deformations
of this divided disc are a good enough source of further examples. The boundary of Ω is
assumed smooth enough and is divided into two pieces ∂Ω1 and ∂Ω2 in such a way that ∂Ω1

is the union Γ1 ∪ Γ and ∂Ω2 is the union Γ2 ∪ Γ . To this picture we consider the eigenvalue
problem ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−Δpu1 = λ | u1 |p−2 u1 in Ω1, (1)
−Δqu2 = λ | u2 |q−2 u2 in Ω2, (2)
∂u1
∂νp

= 0 on Γ1,
∂u2
∂νq

= 0 on Γ2, (3)

u1 = u2,
∂u1
∂νp

= ∂u2
∂νq

on Γ , (4)

(1.1)

where Δr stands for the r -Laplace operator, namely Δrw := div
( | ∇w |r−2 ∇w

)
and

∂

∂νr
denotes the boundary operator defined by

∂w

∂νr
:=| ∇w |r−2 ∂w

∂ν
for r = p, q, 1 < p < q.

The solution u = (u1, u2) of the problem (1.1) is understood in a weak sense, i.e. u is an
element of the space

W := {
u ∈ W 1,p(Ω) : u|Ω2 ∈ W 1,q(Ω2)

}
, (1.2)

where ui = u|Ωi satisfies the nonlinear problem (1.1)i on Ωi in the sense of distributions,
i = 1, 2, and u1, u2 satisfy the boundary and transmission conditions (1.1)3,4 in the sense of
traces. Recall that, for any domain Ω̂ ⊂ R

N with Lipschitz boundary ∂Ω̂ , the trace operator

Tr Ω̂ : W 1,p(Ω̂) → W 1−1/p,p(∂Ω̂)

is a linear and bounded operator, for 1 ≤ p < ∞ (see Gagliardo [8]). For linear transmission
problems, involving the Laplace operator or some perturbed Stokes operators, treated by
using the layer potential technique, we refer the reader to [5,9], respectively.

Definition 1.1 A scalar λ ∈ R is said to be an eigenvalue of the problem (1.1) whenever
(1.1) admits a nontrivial solution u = (u1, u2) ∈ W . In that case u = (u1, u2) is called an
eigenfunction/eigencouple of the problem (1.1) (which corresponds to the eigenvalue λ) and
the pair (u, λ) an eigenpair of the problem (1.1). Note that W 1,q(Ω) is a subspace of W , as
W 1,q(Ω) is a subspace of W 1,p(Ω).

We endow W with the norm

‖ u ‖W :=‖ u|Ω1 ‖W 1,p(Ω1)
+ ‖ u|Ω2 ‖W 1,q (Ω2)

, ∀ u ∈ W ,

where ‖ · ‖W 1,p(Ω1)
and ‖ · ‖W 1,q (Ω2)

are the usual norms of the Sobolev spaces W 1,p(Ω1)

and W 1,q(Ω2), respectively.
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A nonlinear elliptic eigenvalue–transmission problem with… 823

Remark 1.1 The space W defined before can be identified with the space

W̃ := {
(u1, u2) ∈ W 1,p(Ω1) × W 1,q(Ω2); TrΩ1u1 = TrΩ2u2 on Γ

}
, (1.3)

which shows that W is a reflexive Banach space, as W̃ is a closed subspace of the reflexive
product W 1,p(Ω1) × W 1,q(Ω2) with reflexive factors.

While the inclusion W ⊆ W̃ is obvious, for the opposite one we consider (u1, u2) ∈ W̃
and define

u(x) =
{
u1(x), x ∈ Ω1,

u2(x), x ∈ Ω2.

Let us show that u ∈ W . Obviously, u belongs to L p(Ω), and its (distributional) derivatives
verify the equalities:

〈 ∂u

∂xi
, ϕ

〉
= −

〈
u,

∂ϕ

∂xi

〉
= −

∫
Ω1∪Ω2

u
∂ϕ

∂xi
dx

=
∫

Ω1

∂u

∂xi
ϕ dx −

∫
∂Ω1

uν1iϕ dσ +
∫

Ω2

∂u

∂xi
ϕ dx −

∫
∂Ω2

uν2iϕ dσ,

for all ϕ ∈ C∞
0 (Ω), where ν1 = (ν11, . . . , ν1n) and ν2 = (ν21, . . . , ν2n) are the outward

pointing unit normal fields to boundaries ∂Ω1 and ∂Ω2, respectively. Clearly, the integral
terms on the two boundaries cancel each other as u1 = u2 and ν1i + ν2i = 0, ∀ i = 1, n, on
Γ . Thus, 〈 ∂u

∂xi
, ϕ

〉
=

∫
Ω1

∂u

∂xi
ϕ dx +

∫
Ω2

∂u

∂xi
ϕ dx, ∀ ϕ ∈ C∞

0 (Ω),

which shows that

∂u

∂xi

∣∣∣
Ω1

= ∂u1
∂xi

and
∂u

∂xi

∣∣∣
Ω2

= ∂u2
∂xi

,

for all i = 1, n, and the desired claim follows now easily.

Proposition 1.1 The scalar λ ∈ R is an eigenvalue of the problem (1.1) if and only if there
exists u = uλ ∈ W\{0} such that∫

Ω1

| ∇u |p−2 ∇u · ∇w dx +
∫

Ω2

| ∇u |q−2 ∇u · ∇w dx

= λ
( ∫

Ω1

| u |p−2 uw dx +
∫

Ω2

| u |q−2 uw dx
)
, ∀ w ∈ W . (1.4)

Proof Indeed, if u ∈ W is a solution of the problem (1.1), then we have for all w ∈ W∫
Ω1

div
(|∇u|p−2∇u

)
w dx +

∫
Ω2

div
(|∇u|q−2∇u

)
w dx

= −λ

∫
Ω1

|u|p−2uw dx − λ

∫
Ω2

|u|q−2uw dx

or, equivalently,

−
∫

Ω1

|∇u|p−2∇u · ∇w dx +
∫

Γ

w|∇u|p−2 ∂u

∂ν
dσ −

∫
Ω2

|∇u|q−2∇u · ∇w dx

−
∫

Γ

w|∇u|q−2 ∂u

∂ν
dσ = −λ

∫
Ω1

|u|p−2uw dx − λ

∫
Ω2

|u|q−2uw dx,
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824 L. Barbu et al.

which is equivalent to (1.4).
Conversely, assume that u ∈ W satisfies (1.4) and consider w ∈ W such that w|Ω1 = ϕ

for some arbitrary ϕ ∈ C∞
0 (Ω1) and w|Ω2 = 0. We obtain∫

Ω1

| ∇u |p−2 ∇u · ∇ϕ dx = λ

∫
Ω1

| u |p−2 uϕ dx, ∀ ϕ ∈ C∞
0 (Ω1).

By using the formula of integration by parts, we obtain

−
∫

Ω1

div
( | ∇u |p−2 ∇u

)
ϕ dx = λ

∫
Ω1

| u |p−2 uϕ dx, ∀ ϕ ∈ C∞
0 (Ω1),

which shows that −Δpu = λ | u |p−2 u in Ω1. Similarly, −Δqu = λ | u |q−2 u in Ω2.

We next assume that w ∈ C1(Ω) and w|Ω2 = 0. With such a choice of w, using the
integration by parts formula, the fact that w|Γ = 0 and the equation −Δpu = λ | u |p−2 u
in Ω1 obtained above, the relation (1.4) implies

0 =
∫

∂Ω1

w | ∇u |p−2 ∂u

∂ν
dσ =

∫
Γ1

w | ∇u |p−2 ∂u

∂ν
dσ

for allw ∈ C1(Ω1), w|Γ = 0, therefore
∂u

∂νp
=| ∇u |p−2 ∂u

∂ν
= 0 on Γ1.One can similarly

show that
∂u

∂νq
=| ∇u |q−2 ∂u

∂ν
= 0 on Γ2.

It remains to obtain the transmission conditions on Γ . First of all, it is obvious that
TrΩ1(u|Ω1) = TrΩ2(u|Ω2) on Γ . Finally, we take in (1.4) w = ϕ, where ϕ is an arbitrary
function inC∞

0 (Ω). Using again the integration by parts formula (in particular, onΓ we have
ν1+ν2 = 0, the normal vector νk being chosen to point towards the exterior ofΩk, k = 1, 2)
and the equations and equalities proved before, we derive∫

Γ

ϕ
∂u

∂νp
dσ +

∫
Γ

ϕ
∂u

∂νq
dσ = 0, ∀ ϕ ∈ C∞

0 (Ω).

Thus, the transmission relation

∂u

∂νp
= ∂u

∂νq
on Γ

is satisfied. This completes the proof. ��
If we choose w = u in (1.4), we see that there exist no negative eigenvalues of problem
(1.1). It is also obvious that λ0 = 0 is an eigenvalue of this problem and the corresponding
eigenfunctions are the nonzero constant functions. So any other eigenvalue belongs to (0,∞).

Obviously, u corresponding to any eigenvalue λ > 0 cannot be a constant function (see
(1.4) with w = u).

If we assume that λ > 0 is an eigenvalue of problem (1.1) and choose w ≡ 1 in (1.4), we
deduce that every eigenfunction u corresponding to λ satisfies the equation∫

Ω1

| u |p−2 u dx +
∫

Ω2

| u |q−2 u dx = 0.

So all eigenfunctions corresponding to positive eigenvalues necessarily belong to the set

C :=
{
u ∈ W ;

∫
Ω1

| u |p−2 u dx +
∫

Ω2

| u |q−2 u dx = 0
}
. (1.5)

123



A nonlinear elliptic eigenvalue–transmission problem with… 825

Using the Sobolev’s embedding theorem and [11, Lemma A1]), we can see that C is a
weakly closed subset ofW . This set has nonzero elements. To show this, we choose x1, x2 ∈
Ω1, x1 �= x2, r > 0, such that Br (x1) ∩ Br (x2) = ∅, Br (xk) ⊂ Ω1, and consider the test
functions uk : Ω → R, k = 1, 2,

uk(x) =
⎧⎨
⎩ e

− 1

r2− | x − xk |2 , if x ∈ Br (xk),
0, otherwise.

Clearly, uk ∈ W , k = 1, 2. Denote

θk =
∫

Ω

u p−1
k dx .

Obviously, θk > 0, k = 1, 2. Define σk = θ
−1
p−1
k , k = 1, 2. It is then easily seen that the

function w = σ1u1 − σ2u2 belongs to C \{0}.
Our next goal is to prove, via the Lusternik–Schnirelmann principle, that there exists a

sequence of positive eigenvalues of problem (1.1). Note, however, that this sequence might
not cover the whole eigenvalue set.

2 Results

In what follows we make use of a version of Lusternik–Schnirelmann principle (see [2], [19,
Section 44.5, Remark 44.23] and [11]) in order to establish the existence of a sequence of
eigenvalues for problem (1.1).

Define the functionals F,G : W −→ R by

F(u) := 1

p

∫
Ω1

| u |p dx + 1

q

∫
Ω2

| u |q dx, (2.1)

G(u) := 1

p

∫
Ω1

( | ∇u |p + | u |p )
dx + 1

q

∫
Ω2

( | ∇u |q + | u |q )
dx

= F(u) + 1

p

∫
Ω1

| ∇u |p dx + 1

q

∫
Ω2

| ∇u |q dx . (2.2)

It is easily seen that functionals F andG are of classC1 onW (see Remark 2.1) and obviously
F,G are even with F(0) = G(0) = 0. We also have

〈F ′(u), w〉 =
∫

Ω1

| u |p−2 uw dx +
∫

Ω2

| u |q−2 uw dx, (2.3)

〈G ′(u), w〉 =〈F ′(u), w〉 +
∫

Ω1

| ∇u |p−2 ∇u · ∇w dx +
∫

Ω2

| ∇u |q−2 ∇u · ∇w dx,

(2.4)

for all w ∈ W . We denote by SG(1) the level set of G, SG(1) := {u ∈ W ; G(u) = 1}.
We have the following auxiliary result:

Lemma 2.1 The functionals F and G satisfy the following properties:

(h1) F ′ is strongly continuous, i.e. un⇀u (meaning un → u weakly) in W ⇒ F ′(un) →
F ′(u) and

〈F ′(u), u〉 = 0 ⇒ u = 0;
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826 L. Barbu et al.

(h2) G ′ is bounded and satisfies condition (S0), i. e.,

un⇀u, G ′(un)⇀w, 〈G ′(un), un〉 → 〈w, u〉 ⇒ un → u;
(h3) SG(1) is bounded and if u �= 0 then

〈G ′(u), u〉 > 0, lim
t→∞G(tu) = ∞, inf

u∈SG (1)
〈G ′(u), u〉 > 0.

Proof (h1) Assume that un⇀u in W . Hölder’s inequality yields

| 〈F ′(un) − F ′(u), w〉 | ≤ ‖| un |p−2 un− | u |p−2 u ‖
L

p
p−1 (Ω1)

‖ w ‖L p(Ω1)

+ ‖| un |q−2 un− | u |q−2 u ‖
L

q
q−1 (Ω2)

‖ w ‖Lq (Ω2)

≤
(

‖| un |p−2 un− | u |p−2 u ‖
L

p
p−1 (Ω1)

+ ‖| un |q−2 un− | u |q−2 u ‖
L

q
q−1 (Ω2)

)
‖ w ‖W , (2.5)

for all w ∈ W . This shows that the linear functionals F ′(un) − F ′(u) are all bounded and

‖F ′(un) − F ′(u)‖ ≤‖| un |p−2 un− | u |p−2 u ‖
L

p
p−1 (Ω1)

+ ‖| un |q−2 un− | u |q−2 u ‖
L

q
q−1 (Ω2)

, (2.6)

for all n ≥ 1. Since un⇀u in W , it follows that {un} as well as the sequences of restrictions
{un

∣∣
Ω1

} and {un
∣∣
Ω2

} are bounded (see [1, Proposition 3.5, p. 58]). Consequently, un → u
in L p(Ω), un |Ω1 → u|Ω1 in L p(Ω1) and un |Ω2 → u|Ω2 in Lq(Ω2), as the canonical
injections W 1,p(Ω) ↪→ L p(Ω), W 1,p(Ω1) ↪→ L p(Ω1) and W 1,q(Ω2) ↪→ Lq(Ω2) are all
compact (see [20, Proposition 21.29, p. 262]). The convergence ‖un‖L p(Ω1) −→ ‖u‖L p(Ω1)

is equivalent with ∫
Ω1

| | un |p−2 un |
p

p−1 dx →
∫

Ω1

| | u |p−2 u| p
p−1 dx . (2.7)

As the set of weak cluster points of the sequence {| un |p−2 un} in L p/(p−1)(Ω1) is the single-
ton {| u |p−2 u}, it follows that in fact this sequence is strongly convergent in L p/(p−1)(Ω1)

to | u |p−2 u (see, for example, [1, Prop. 3.32, p. 78]).
One can similarly show that | un |q−2 un →| u |q−2 u in Lq/(q−1)(Ω2). Thus, the

convergence F ′(un) → F ′(u) in W ∗ follows by using (2.6).
If 〈F ′(u), u〉 = 0 then obviously u = 0.
Note that the strong continuity of G can be similarly derived.

(h2) Let us first prove that for all u, w ∈ W the following relations hold:

〈G ′(u) − G ′(w), u − w〉
≥ ( ‖ u1 ‖p−1

W 1,p(Ω1)
− ‖ w1 ‖p−1

W 1,p(Ω1)

)( ‖ u1 ‖W 1,p(Ω1)
− ‖ w1 ‖W 1,p(Ω1)

)
+ ( ‖ u2 ‖q−1

W 1,q (Ω2)
− ‖ w2 ‖q−1

W 1,q (Ω2)

)( ‖ u2 ‖W 1,q (Ω2)
− ‖ w2 ‖W 1,q (Ω2)

) ≥ 0,

(2.8)

where u1, w1, u2, w2 stand for u
∣∣
Ω1

, w
∣∣
Ω1

, u
∣∣
Ω2

, w
∣∣
Ω2

, respectively. Moreover,

〈G ′(u) − G ′(w), u − w〉 = 0 ⇔ u = w a. e. in Ω. (2.9)
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A nonlinear elliptic eigenvalue–transmission problem with… 827

It is obvious that

〈G ′(u) − G ′(w), u − w〉 = ‖ u1 ‖p
W 1,p(Ω1)

+ ‖ w1 ‖p
W 1,p(Ω1)

+ ‖ u2 ‖q
W 1,q (Ω2)

+ ‖ w2 ‖q
W 1,q (Ω2)

− (T1 + T2) − (T3 + T4), (2.10)

where we have denoted

T1 :=
∫

Ω1

( | ∇u |p−2 ∇u · ∇w+ | u |p−2 uw
)
dx,

T2 :=
∫

Ω1

( | ∇w |p−2 ∇w · ∇u+ | w |p−2 wu
)
dx,

and T3, T4 are similarly defined, by replacing p and Ω1 with q and Ω2. Using the Hölder
inequality, we obtain that

T1 ≤
( ∫

Ω1

| ∇u |p dx
) p−1

p
( ∫

Ω1

| ∇w |p dx
) 1

p +
( ∫

Ω1

| u |p dx
) p−1

p
( ∫

Ω1

| w |p dx
) 1

p

≤
( ∫

Ω1

(| ∇u |p + | u |p)dx
) p−1

p
( ∫

Ω1

(| ∇w |p + | w |p)dx
) 1

p

= ‖ u1 ‖p−1
W 1,p(Ω1)

‖ w1 ‖W 1,p(Ω1)
, (2.11)

where we have also used the inequality

αsγ 1−s + βsδ1−s ≤ (α + β)s(γ + δ)1−s, ∀ α, β, γ, δ > 0, s ∈ (0, 1).

Similar inequalities can be obtained for the other terms, T2, T3, T4, and using (2.10) we
derive (2.8).

Now by (2.8) we see that 〈G ′(u) − G ′(w), u − w〉 = 0 implies

‖ u1 ‖W 1,p(Ω1)
=‖ w1 ‖W 1,p(Ω1)

, ‖ u2 ‖W 1,q (Ω2)
=‖ w2 ‖W 1,q (Ω2)

, (2.12)

and also we have equalities in Hölder inequalities; therefore, there exist positive constants,
k1, k2 such that | ui |= ki | wi |, i = 1, 2. On the other hand, we have equality in (2.11);
thus,

T1 = k p−1
1 ‖ w1 ‖p

W 1,p(Ω1)
⇒ u1 = k1w1 a. e. in Ω1.

Similarly, we can derive that u2 = k2w2 a. e. in Ω2 and taking into account (2.12) we derive
(2.9).

In order to prove that G ′ is bounded, we can use again the Hölder inequality and straight-
forward computations lead us to

| 〈G ′(u), w〉 |≤ ( ‖ u1 ‖p−1
W 1,p(Ω1)

+ ‖ u2 ‖q−1
W 1,q (Ω2)

) ‖ w ‖W , ∀ u, w ∈ W .

Moreover, a similar argument to the one we used to prove (h1) would imply the continuity
of G ′.

Finally, let us prove that G ′ verifies condition (S0), i.e.,

un⇀u, G ′(un)⇀w, 〈G ′(un), un〉 → 〈w, u〉 implies un → u,

for some u ∈ W , w ∈ W ∗. Indeed, as un⇀u in W , we have un |Ω1 → u|Ω1 in L p(Ω1) and
un |Ω2 → u|Ω2 in Lq(Ω2). Since W is a reflexive Banach space, using the Lindenstrauss–
Asplund–Troyanski theorem (see [18]), it is enough to prove that ‖ un ‖W→‖ u ‖W in order

123



828 L. Barbu et al.

to obtain the strong convergence un → u. This convergence is a simple consequence of the
equality

lim
n→∞〈G ′(un) − G ′(u), un − u〉 = lim

n→∞
(〈G ′(un), un〉 − 〈G ′(un), u〉 − 〈G ′(u), un − u〉) = 0

and the inequality (2.8).
The properties (h3) follow immediately from the definition of the functional G. Thus, the

proof is complete. ��
Remark 2.1 For the convenience of the reader, we recall that:

1. the C1-smooth regularity of the functionals F and G follows by computing the Gâteaux
derivatives

〈F ′(u), w〉 = d

dt

∣∣∣
t=0

F(u + tw) and 〈G ′(u), w〉 = d

dt

∣∣∣
t=0

G(u + tw)

of F and G at u ∈ W in the direction w ∈ W and showing that they have the forms (2.3)
and (2.4), respectively. The existence of the Gâteaux derivatives of F and G at every
point of W and all directions of W combined with the strong continuity of F ′ and G ′
shows the Fréchet differentiability of F and G and therefore the C1-smooth regularity
of F and G.

2. The weak closedness of the set C defined by (1.5) follows also from the strong continuity
of F ′ and the representation of C as {u ∈ W | 〈F ′(u), 1〉 = 0}.
Due to the properties (h1) − (h3), verified by the functionals F and G, combined with

their properties to be even and to vanish at zero, it follows, according to the Lusternik–
Schnirelmann principle, that the eigenvalue problem

F ′(u) = μG ′(u), u ∈ SG(1) (2.13)

admits a sequence of eigenpairs {(un, μn)} such that un⇀0 and μn −→ 0 as n −→ ∞
and μn �= 0, for all n. In fact, {μn} is a decreasing sequence of non-negative reals (which
converges to zero) and

μn = sup
H∈An

inf
u∈H F(u), ∀ n ∈ N, (2.14)

where An is the class of all compact, symmetric subsets K of SG(1) such that F(u) > 0 on
K and γ (K ) ≥ n, where γ (K ) denotes the genus of K , i.e.,

γ (K ) := inf{k ∈ N; ∃ h : K → R
k\{0} such that h is continuous and odd}.

The problem (2.13) consists in finding u ∈ SG(1) such that∫
Ω1

| u |p−2 uw dx +
∫

Ω2

| u |q−2 uw dx

= μ
(
〈F ′(u), w〉 +

∫
Ω1

| ∇u |p−2 ∇u · ∇w dx +
∫

Ω2

| ∇u |q−2 ∇u · ∇w dx
)
,

for all w ∈ W , or equivalently, in finding u ∈ SG(1), such that∫
Ω1

| ∇u |p−2 ∇u · ∇w dx +
∫

Ω2

| ∇u |q−2 ∇u · ∇w dx

= (1/μ − 1)
( ∫

Ω1

| u |p−2 uw dx +
∫

Ω2

| u |q−2 uw dx
)
, ∀ w ∈ W . (2.15)
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Observe that (2.15) is the variational formulation of problem (1.1). We therefore get the
following consequence of the Lusternik–Schnirelmann principle associated with the trans-
mission problem (1.1):

Theorem 2.1 The sequence {μn} of eigenvalues of the problem (2.13) produces a nonde-

creasing sequence λn = 1

μn
− 1 of eigenvalues of the problem (1.1) and obviously λn → ∞

as n → ∞.

In what follows we shall use the Lagrangemultipliers rule to show that every positive level
set of the functional F defined by (2.1) contains an eigenfunction of the problem (1.1) and
we shall find its corresponding eigenvalue in terms of the pointed out eigenfunction. Such
an eigenfunction will appear as a solution of the minimum problem

min
u∈C ∩SF (α)

H(u), (2.16)

where H is defined by

H : W → [0,∞), H(u) := 1

p

∫
Ω1

| ∇u |p dx + 1

q

∫
Ω2

| ∇u |q dx, ∀ u ∈ W , (2.17)

C is defined by (1.5) and SF (α) is the set at the level α > 0 of F , i.e.

SF (α) := {u ∈ W ; F(u) = α}, ∀ α > 0.

In this respect we first recall the Lagrange multipliers principle (see, for example, [14,
Thm. 2.2.18, p. 78]):

Lemma 2.2 Let X , Y be real Banach spaces and let f : D → R be Fréchet differentiable,
g ∈ C1(D, Y ), where D ⊆ X is a nonempty open set. If v0 is a local minimizer of the
constraint problem

min f (w), g(w) = 0,

and R(g′(v0)) (the range of g′(v0)) is closed, then there exist λ∗ ∈ R and y∗ ∈ Y ∗, at least
one of which is non zero, such that

λ∗ f ′(v0) + y∗ ◦ g′(v0) = 0,

where Y ∗ stands for the dual of Y .

Note that λ∗ �= 0whenever g′(v0) is onto and can be therefore chosen to be 1 in this particular
case.

The eigenvalue problem corresponding to the minimum problem (2.16), via the Lagrange
multipliers, is:

H ′(uα) = λαF
′(uα), λα > 0, uα �= 0. (2.18)

Its variational version is (1.4).

Theorem 2.2 Let F and H be the functionals defined by (2.1) and (2.17). For every 2 ≤ p <

q, α > 0, the minimization problem (2.16) has a solution uα which is an eigenfunction of
the eigenvalue problem (2.18) and therefore a solution of the variational version (1.4) of the
initial eigenvalue problem (1.1).
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Proof Let us first show that the set C ∩ SF (α) is nonempty for every α > 0. Indeed, if we
choose w ∈ C ∩ C∞

0 (Ω1), nonzero, then αw/F(w) ∈ C ∩ SF (α).

Now, the functional H is coercive on the weakly closed subset C ∩ SF (α) of the reflexive
Banach space W , i.e.,

lim
‖u‖W →∞

u∈C ∩SF (α)

H(u) = ∞.

This fact is a simple consequence of the equality

lim
‖u‖W →∞
u∈SF (α)

(‖ ∇u ‖L p(Ω1) + ‖ ∇u ‖Lq (Ω2)) = ∞.

On the other hand, the weakly lower semicontinuity of the norms in L p(Ω1) and Lq(Ω2)

implies the weakly lower semicontinuity of the functional H on C ∩ SF (α). Then, we can
apply [16, Theorem 1.2] in order to obtain the existence of a global minimum point of H over
C ∩ SF (α), say uα , i.e., H(uα) = minu∈C ∩SF (α) H(u). Obviously, uα ∈ C ∩ SF (α) implies
that uα is a nonconstant function. In fact, uα is a solution of the minimization problem

min
w∈W H(w),

under the restrictions

g(w) := 1

p

∫
Ω1

| w |p dx + 1

q

∫
Ω2

| w |q dx − α = 0,

h(w) :=
∫

Ω1

| w |p−2 w dx +
∫

Ω2

| w |q−2 w dx = 0, ∀ w ∈ W .

We can apply Lemma 2.2 with X = W , D = W\{0}, Y = R, f = H , g, h : W → R being
the functions just defined above, and v0 = uα, on the condition that R(g′(uα)),R(h′(uα))

be closed sets. In fact, we can show that g′(uα), h′(uα) are surjective, i.e. ∀ c1, c2 ∈ R there
exist w1, w2 ∈ W such that

〈g′(uα), w1〉 = c1, 〈h′(uα), w2〉 = c2.

We seek w1, w2 of the form w1 = βuα, w2 = γ , with β, γ ∈ R. Thus, we obtain from the
above equations

β
( ∫

Ω1

| uα |p dx +
∫

Ω2

| uα |q dx
)

= c1,

γ
(
(p − 1)

∫
Ω1

| uα |p−2 dx + (q − 1)
∫

Ω2

| uα |q−2 dx
)

= c2

which have unique solutions β, γ since uα ∈ SF (α) implies that

r1

∫
Ω1

| uα |p1 dx + r2

∫
Ω2

| uα |q1 dx > 0, ∀ p1, q1, ri > 0, i = 1, 2.
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Thus, by Lemma 2.2, there exist λ and μ ∈ R such that, λ2 + μ2 > 0 and for all w ∈ W ,∫
Ω1

| ∇uα |p−2 ∇uα · ∇w dx +
∫

Ω2

| ∇uα |q−2 ∇uα · ∇w dx

− λ
( ∫

Ω1

| uα |p−2 uαw dx +
∫

Ω2

| uα |q−2 uαw dx
)

−μ
(
(p − 1)

∫
Ω1

| uα |p−2 w dx + (q − 1)
∫

Ω2

| uα |q−2 w dx
)

= 0. (2.19)

Testing with w = 1 in (2.19) and observing that uα belongs to C , we deduce that μ = 0 and
therefore λ �= 0. By choosing w = uα in (2.19), we find K1α − λK2α = 0, where K1α and
K2α denote the constants∫

Ω1

| ∇uα |p dx +
∫

Ω2

| ∇uα |q dx and
∫

Ω1

| uα |p dx +
∫

Ω2

| uα |q dx,

respectively, which are positive as uα ∈ C ∩ SF (α). In other words (2.19) becomes∫
Ω1

| ∇uα |p−2 ∇uα · ∇w dx +
∫

Ω2

| ∇uα |q−2 ∇uα · ∇w dx

= λα

( ∫
Ω1

| uα |p−2 uαw dx +
∫

Ω2

| uα |q−2 uαw dx
)
, (2.20)

where

λα = K1α

K2α
=

∫
Ω1

| ∇uα |p dx + ∫
Ω2

| ∇uα |q dx∫
Ω1

| uα |p dx + ∫
Ω2

| uα |q dx
.

Thus, (λα, uα) is an eigenpair of problem (1.4). ��
Remark 2.2 The results we have proved so far are also valid for the eigenvalue problem
obtained out of (1.1) by replacing Eq. (1.1)2 with the equation

− Δqu2 = λ | u2 |p−2 u2 in Ω2, (2.21)

for 1 < p < q. In this case we shall consider the same space W but endowed with the norm

|‖ u |‖:=‖ u ‖W 1,p(Ω1)
+ ‖ ∇u ‖Lq (Ω2) + ‖ u ‖L p(Ω2), ∀ u ∈ W . (2.22)

If p ≤ q , then |‖ · |‖ is a norm in W equivalent with the usual norm ‖ · ‖W of this space.
This fact follows from [4, Proposition 3.9.55].

In this case, the variational version of the new eigenvalue problem is:
Find λ ∈ R for which there exists u ∈ W\{0} such that∫

Ω1

| ∇u |p−2 ∇u · ∇w dx +
∫

Ω2

| ∇u |q−2 ∇u · ∇w dx

= λ

∫
Ω

| u |p−2 uw dx, ∀ w ∈ W . (2.23)

In order to obtain the counterpart of Theorem 2.1 for this new eigenvalue transmission
problem, we need to verify the conditions (h1)− (h3) of Lemma 2.1. We shall define for this
new context the corresponding functionals Fp,Gp : W → [0,∞)

Fp(u) := 1

p

∫
Ω

| u |p dx, Gp(u) := Fp(u) + 1

p

∫
Ω1

| ∇u |p dx + 1

q

∫
Ω2

| ∇u |q dx .

(2.24)
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All calculations are similar to thosewe did to prove (h1)−(h3) in the case of the eigenvalue
transmission problem (1.1), except the one which verifies the property (S0) on G ′

p of (h2).
In order to prove (S0), we define the functional J : W → W ∗

〈J (u), w〉 :=
∫

Ω2

| u |p−2 uw dx −
∫

Ω2

| u |q−2 uw dx, ∀ u, w ∈ W .

One can show, by using the same type of arguments as we did to prove (h1) and Lemma 2.1,
that J (u) is strongly continuous. Let us consider

un⇀u, G ′
p(un)⇀wp, 〈G ′

p(un), un〉 → 〈wp, u〉 as n → ∞
for some u ∈ W , wp ∈ W ∗ and we shall show that un → u. In this respect (see also the
argumentwithin theproof of the statement (h2)) it is sufficient to show that‖ un ‖W→‖ u ‖W ,
as ‖ · ‖W and |‖ · |‖ are equivalent norms on W . In this regard we observe that

G ′(un) = G ′
p(un) − J (un)⇀wp − J (u), 〈G ′(un), un〉 → 〈wp − J (u), u〉,

which combined with the (S0) property of G ′ implies the desired statement.
The counterpart of Theorem 2.2 can be obtained with no difficulty, by using arguments

similar to those we have used in the case of the eigenvalue transmission problem (1.1).

3 Extensions

In this section we discuss some extensions of the previous results.

An eigenvalue–transmission problemwith Robin boundary conditions

Following the same type of arguments, one can actually prove the counterparts of Theorem2.1
and Theorem 2.2 for the followingmore general eigenvalue–transmission problem, involving
Robin conditions on Γ1 and Γ2, namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δpu1 = λ | u1 |p−2 u1 in Ω1,

−Δqu2 = λ | u2 |q−2 u2 in Ω2,
∂u1
∂νp

+ β1|u1|p−2 = 0 on Γ1,

∂u2
∂νq

+ β2|u2|q−2 = 0 on Γ2,

u1 = u2,
∂u1
∂νp

= ∂u2
∂νq

on Γ ,

(3.1)

where β1, β2 ≥ 0. The variational version of problem (3.1) is:

Proposition 3.1 The scalar λ ∈ R is an eigenvalue of the problem (3.1) if and only if there
exists u ∈ W\{0} such that∫

Ω1

| ∇u |p−2 ∇u · ∇w dx +
∫

Ω2

| ∇u |q−2 ∇u · ∇w dx

+β1

∫
∂Ω1

| u |p−2 uw dσ + β2

∫
∂Ω2

| u |q−2 uw dσ

= λ
( ∫

Ω1

| u |p−2 uw dx +
∫

Ω2

| u |q−2 uw dx
)
, ∀w ∈ W . (3.2)
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While the functional playing the role of F in this setting remains unchanged, the functional
playing the role of G : W −→ R is given by

G(u) := 1

p

∫
Ω1

( | ∇u |p + | u |p )
dx + 1

q

∫
Ω2

( | ∇u |q + | u |q )
dx

+ 1

p

∫
∂Ω1

β1 | u |p dσ + 1

q

∫
∂Ω2

β2 | u |q dσ. (3.3)

The counterpart of problem (1.1) in the Riemannian setting

Let (M, g) be a compact boundaryless Riemannian manifold and Ω ⊆ M be a connected
open set such that Ω− := M\Ω is also connected. We denote Ω by Ω+ and the common
boundary of Ω+ and Ω− by ∂Ω , which is assumed to be a hypersurface of M . We consider
the following coupled problem⎧⎪⎪⎨

⎪⎪⎩

−Δpu+ = λ | u+ |p−2 u+ in Ω+,

−Δqu− = λ | u− |q−2 u− in Ω−,

u+ = u−,
∂u+
∂νp

= ∂u−
∂νq

on ∂Ω,

(3.4)

where Δrw stands for the r -Laplace operator div
( | ∇w |r−2 ∇w

)
.

Proposition 3.2 The scalar λ ∈ R is an eigenvalue of the problem (3.4) if and only if there
exists u ∈ WΩ\{0} such that∫

Ω+
| ∇u |p−2 ∇u · ∇w dx +

∫
Ω−

| ∇u |q−2 ∇u · ∇w dx

= λ
( ∫

Ω+
| u |p−2 uw dx +

∫
Ω−

| u |q−2 uw dx
)
, ∀ w ∈ WΩ, (3.5)

where
WΩ := {

u ∈ W 1,p(M) : u|Ω− ∈ W 1,q(Ω−)
}
. (3.6)

The proof of Proposition 3.2 works along the same lines with the proof of Proposition 1.1
and partly relies on the integration by parts formula [12, p. 383]∫

X
( f divX)dVg = −

∫
X
g(X , grad f )dVg +

∫
∂X

g(X , ν)dVg̃

where (X , g) is a compact oriented Riemannianmanifold, ν is the outward unit normal vector
field on ∂X , and g̃ is the Riemannian metric on ∂X induced by g.

We endow WΩ with the norm

‖ u ‖WΩ :=‖ u|Ω+ ‖W 1,p(Ω+) + ‖ u|Ω− ‖W 1,q (Ω−), ∀ u ∈ WΩ

where ‖ · ‖W 1,p(Ω+) and ‖ · ‖W 1,q (Ω−) are the usual norms of the Sobolev spaces W 1,p(Ω+)

and W 1,q(Ω−), respectively.

Remark 3.1 The space WΩ defined before can be identified with the space

W̃Ω := {(u+, u−) ∈ W 1,p(Ω+) × W 1,q(Ω−); TrΩ+ u+ = TrΩ− u− on ∂Ω}.
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Note that WΩ is a reflexive Banach space, as it is a closed subspace of the reflexive product
W 1,p(Ω+) ×W 1,q(Ω−) with reflexive factors (see [1, p. 70], [6, p. 11] or [7, p. 20]). Define
the functionals F and G on WΩ :

F(u) := 1

p

∫
Ω+

| u |p dx + 1

q

∫
Ω−

| u |q dx, (3.7)

G(u) := 1

p

∫
Ω+

( | ∇u |p + | u |p )
dx + 1

q

∫
Ω−

( | ∇u |q + | u |q )
dx, (3.8)

for all u ∈ WΩ. It is easily seen that functionals F andG are of classC1 onWΩ and obviously
F,G are even with F(0) = G(0) = 0. We also have

〈F ′(u), w〉 =
∫

Ω+
| u |p−2 uw dx +

∫
Ω−

| u |q−2 uw dx,

〈G ′(u), w〉 = 〈F ′(u), w〉 +
∫

Ω+
| ∇u |p−2 ∇u · ∇w dx +

∫
Ω−

| ∇u |q−2 ∇u · ∇w dx,

for all w ∈ WΩ. We denote by SG(1) the level set {u ∈ WΩ ; G(u) = 1} of G.
The following auxiliary result can be proved in a similar way with Lemma 2.1.

Lemma 3.1 The functionals F and G satisfy the following properties:

(h1) F ′ is strongly continuous, i.e. un⇀u in WΩ ⇒ F ′(un) → F ′(u) and

〈F ′(u), u〉 = 0 ⇒ u = 0;
(h2) G ′ is bounded and satisfies condition (S0), i.e.,

un⇀u, G ′(un)⇀w, 〈G ′(un), un〉 → 〈w, u〉 ⇒ un → u;
(h3) SG(1) is bounded and if u �= 0 then

〈G ′(u), u〉 > 0, lim
t→∞G(tu) = ∞, inf

u∈SG (1)
〈G ′(u), u〉 > 0.

According to the properties (h1)− (h3), verified by the functionals F and G, combined with
their properties to be even and to vanish at zero, it follows, via the Lusternik–Schnirelmann
principle, that the eigenvalue problem

F ′(u) = μG ′(u), u ∈ SG(1) (3.9)

admits a sequence of eigenpairs {(un, μn)} such that un⇀0, μn −→ 0 as n −→ ∞ and
μn �= 0, for all n.

Theorem 3.1 The sequence {μn} of eigenvalues of the problem (3.9) produces a nondecreas-

ing sequence λn = 1

μn
− 1 of eigenvalues of the problem (3.4) and obviously λn → ∞ as

n → ∞.

Consider the minimization problem

min
u∈CΩ∩SF (α)

H(u), (3.10)
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where

H : WΩ → [0,∞), H(u) := 1

p

∫
Ω+

| ∇u |p dx + 1

q

∫
Ω−

| ∇u |q dx, ∀ u ∈ WΩ,

(3.11)

CΩ :=
{
u ∈ WΩ ;

∫
Ω+

| u |p−2 u dx +
∫

Ω−
| u |q−2 u dx = 0

}
.

(3.12)

and SF (α) is the set at the level α > 0 of F (i.e. SF (α) := {u ∈ W ; F(u) = α}).
The eigenvalue problem corresponding to the minimization problem (3.10), via the

Lagrange multipliers, is:

H ′(uα) = λαF
′(uα), λα > 0, uα �= 0, (3.13)

Its variational version is (3.5).

Theorem 3.2 Let F and H be the functionals defined by (3.7) and (3.11). For every 2 ≤ p <

q, α > 0, the problem (3.10) has a solution uα which is an eigenfunction of the eigenvalue
problem (3.13) and therefore a solution of the variational version (3.5) of the eigenvalue
problem (3.4).

Remark 3.2 Note that in (3.4) there is no boundary condition, because the ambient manifold
M is boundary-free. One can think of the eigenvalue–transmission counterpart of the problem
(1.1) in a more general Riemannian setting, where the ambient manifold M has nonempty
boundary and the interface hypersurface is suitably chosen. Indeed, for a compactRiemannian
manifold (M, g) with nonempty boundary, we consider a connected open set Ω1 ⊆ M such
that Ω2 := M\Ω1 is also connected and Ω1, Ω2 are manifolds with boundaries ∂Ω1, ∂Ω2.
We further assume that their common boundary part Γ := ∂Ω1∩∂Ω2 is a hypersurface of M
(which is closed), such that Γ1 := ∂Ω1\Γ and Γ2 := ∂Ω2\Γ are also connected. With such
choices the eigenvalue–transmission counterpart of the problem (1.1) in this more general
Riemannian setting looks like (1.1).
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