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Abstract
A group G has finite (or Prüfer or special) rank if every finitely generated subgroup of G
can be generated by r elements and r is the least integer with this property. The aim of this
paper is to prove the following result: assume that G = AB is a group which is the mutually
permutable product of the abelian subgroups A and B of Prüfer ranks r and s, respectively.
If G is locally finite, then the Prüfer rank of G is at most r + s+3. If G is an arbitrary group,
then the Prüfer rank of G is at most r + s + 4.

Keywords Abelian group · Soluble group · Polycyclic group · Rank · Factorisations

Mathematics Subject Classification 20D10 · 20D20

1 Introduction

A groupG has finite (or Prüfer or special) rank r = r(G) if every finitely generated subgroup
of G can be generated by r elements and r is the least integer with this property. Denote also
by d(G) the minimum number of elements required to generate the group G. If the locally
soluble group G = AB is the product of two subgroups A and B with finite Prüfer rank, then
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812 A. Ballester-Bolinches et al.

G is hyperabelian with finite Prüfer rank (see [3, Theorem 1.1]) and, in this case, the Prüfer
rank of G is bounded by a function of the Prüfer ranks of A and B (see [1, Theorem 4.3.5]).
Unfortunately, this bound is not explicit. If G is a finite p-group for some prime p and
the Prüfer ranks of A and B are bounded by r , then the Prüfer rank of G is bounded by a
polynomial function of r . Better bounds for factorised finite p-groups were shown in [2].
However, it seems to be difficult to decide if the Prüfer rank of G is bounded by a linear
function of the Prüfer ranks of A and B. On the other hand, the class of metabelian groups
of finite rank which are products of two abelian subgroups has attracted growing interest
recently, particulary in relation to the class of all metabelian groups which are constructible
in the sense of Baumslag and Bieri [5].

Our main goal in this paper is to give a linear explicit bound for the Prüfer rank of a
mutually permutable product G = AB of two abelian subgroups A and B in terms of the
Prüfer ranks of A and B.

Our first theorem gives an upper bound for the Prüfer rank of locally finite mutually
permutable products.

Theorem A Let the locally finite group G = AB be the mutually permutable product of the
abelian subgroups A and B. If A and B have Prüfer ranks r and s, respectively, then the
Prüfer rank of G is at most r + s + 3.

As a consequence, a linear upper bound for the Prüfer rank of an arbitrary mutually
permutable product is obtained.

Theorem B Let the group G = AB be the mutually permutable product of the abelian
subgroups A and B. If A and B have Prüfer ranks r and s, respectively, then the Prüfer rank
of G is at most r + s + 4.

Recall that two subgroups A and B of a group G permute if AB = BA is a subgroup
of G. A and B are called mutually permutable if every subgroup of A permutes with B and
every subgroup of B permutes with A; of course any two normal subgroups are mutually
permutable. If every subgroup of A permutes with every subgroup of B, we say that A and B
are totally permutable.We say that a groupG is themutually (respectively, totally) permutable
product of the subgroups A and B ifG = AB and A and B aremutually (respectively, totally)
subgroups of G. Obviously totally permutable subgroups are mutually permutable but the
converse does not hold in general. The structure of mutually and totally permutable products
has been investigated by several authors in the last 25 years, especially in the finite case,
and received a full discussion in [4]. Mutually permutable products of infinite groups were
considered in [6,7]. They play an important role in the proof of our main theorems.

Throughout the paper, the word rank will mean Prüfer rank.

2 Preliminary results

We collect in this section some results which are needed in the proof of main theorems. The
following known property about ranks can be found in [9, Lemma 1.6.23] and will be used in
the sequel without further comment: Let N �G and H ≤ G. Then r(G) ≤ r(G/N ) + r(N )

and r(H) ≤ r(G).
We need to use power automorphisms of a group, so perhaps a quick review of facts

about these groups would be appropriate. Recall that the power automorphism group of a
group G, PAut(G), is the set of all automorphisms of G which leave every subgroup of G
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invariant. Hence, if α ∈ PAut(G), there exists an integer ng,α such that gα = gng,α , for all
g ∈ G. If ng,α = nα does not depend on the choice of g, then α is called a universal power
automorphism.

The structures of G and PAut(G) are strictly linked. For instance, if G is a finite abelian
p-group or more generally a finite regular p-group [8, Theorem 5.3.1], then every power
automorphism is universal, and via the restriction homomorphism PAut(G) can be embedded
in Aut(〈g〉), for every cyclic group 〈g〉 of G of maximal order. In fact, we have:

Lemma 1 [8, Theorem 3.4.1] Every power endomorphism of an abelian group G is locally
universal.

In particular, if G is finite and abelian of exponent pn, then PAut(G) can be embedded in
Aut(Cpn ).

Another well-known fact we shall need is the description of the automorphism group of
a cyclic group. We state it here for the sake of completeness.

Lemma 2 [10, I, Satz 13.19] Let G be a cyclic group of order pn, p a prime.

(i) If p is odd, then Aut(G) � Cpn−1(p−1).
(ii) If p = 2, then

(a) if n = 1, then Aut(G) = 1;
(b) if n = 2, then Aut(G) = C2;
(c) if n > 2, then Aut(G) = C2 × C2n−2 .

Moreover, consider a cyclic group C = 〈c〉 of order 2n, n > 2. Then Aut(C) = 〈u〉 × 〈α〉,
where cu = c−1 and cα = c5 and the order of α is 2n−2. In particular, the involutions of
Aut(C) are exactly u, γ = α2n−3

and η = uγ . Furthermore, cγ = c2
n−1+1 and cη = c2

n−1−1.

Assume that a group A acts on a group B. Let a ∈ A and b ∈ B. We say that a inverts b
if ba = b−1; a inverts B if a inverts every element of B.

The following lemma shows that, in totally permutable products of finite p-groups, the
structure of a core-free factor is very restricted.

Lemma 3 Let the group G = AB be the totally permutable product of finite abelian p-groups
A and B. Assume that CoreG(A) = 1.

(i) If p is odd, then A is cyclic.
(ii) If p = 2, then either A is cyclic or A = 〈a〉 × 〈c〉 for elements a, c ∈ A, such that

o(a) = 2 and a inverts B.

Proof First of all note that A∩ B is a normal subgroup of G contained in A. Hence, A∩ B ≤
CoreG(A) = 1.

Let a ∈ A be an element of order p and let X be a cyclic subgroup of B. Then X is a
maximal subgroup of X〈a〉 and so a normalises X . Therefore, a acts as a power automorphism
on B. By Lemma 1, a acts as a universal power automorphism on B. Since CoreG(A) = 1,
it follows that a acts nontrivially on B. Hence, �1(A) can be embedded in PAut(B). By
Lemma 1, �1(A) is isomorphic to a subgroup of Aut(Cpn ), where exp(B) = pn .

If p is odd, PAut(B) is cyclic by Lemma 2(i) and so is �1(A). Then, being A the direct
product of cyclic subgroups, A is cyclic. This establishes (i).

Assume that p = 2 and A is not cyclic. Then, by Lemma 2(ii), �1(A) is a subgroup
of the direct product of a cyclic 2-group and a group of order 2, exp(B) ≥ 8, and there
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exists an element a ∈ A that inverts B by conjugation. Suppose that there exists an element
x ∈ A with x2 = a. Applying [6, Lemma 6], we have that [x2, y2] = 1 for all y ∈ B.
Since conjugation by a inverts y, we must have y4 = 1 for all y ∈ B, so that we are forced
to the contradiction exp(B) = 4. Hence, a /∈ �(A) and 〈a〉 has a complement in A. By
Lemma 2(ii), A = 〈a〉 × 〈c〉 for some c ∈ A. This establishes (ii). 	


According to [8], a group is called weak if it is generated by its elements of infinite order.
In particular, a nilpotent group is weak if it contains an element of infinite order.

Lemma 4 Let the group G = AB be the totally permutable product of the abelian subgroups
A and B. Assume thatCoreG(A) = 1 and B is weak. Then B is normal in G and |G : B| ≤ 2.

Proof We may assume that B is a proper subgroup of G. Note that A ∩ B = 1. Let x ∈ B
be an element of infinite order and a ∈ A. If a is of infinite order, then 〈a2〉 is normalised
by x by [7, Lemma 1(2)] and if a has finite order, 〈a2〉 is normalised by x by [7, Lemma 3].
Since B is weak, it is generated by elements of infinite order. Therefore, 〈a2〉 is normal in
G. Since CoreG(A) = 1, it follows that a2 = 1.

Therefore, it has been proved that A is an elementary abelian 2-group. Consider a ∈ A and
x ∈ B. Then |〈a〉〈x〉 : 〈x〉| = 2. Hence, 〈x〉 is normalised by A. Hence, A can be embedded
in PAut(B) since CA(B) ≤ CoreG(A) = 1. Applying [8, Corollary 4.2.3], A has at most
order 2. Thus, B has index at most 2 in G and so it is normal in G, as required. 	


Our next lemma is a result of Lucchini concerning the number of generators of a finite
group. It will be essential in the proof of Theorem A.

Lemma 5 [13, Lemma 1] Let G be a finite group with a normal p-subgroup N. Assume that
the Sylow p-subgroups of G can be generated by r elements.

(a) If G/N can be generated by d elements, where d ≥ r + 1, then G can be generated by
d elements.

(b) If p = 2 and G/N can be generated by d elements, where d ≥ r , then G can be
generated by d elements.

The following result is a particular case of a more general result of Lucchini (see [14,
Theorem 3]). We include a proof for the sake of completeness.

Lemma 6 Let G be a finite soluble group. Suppose that the Sylow 2-subgroups of G can be
generated by d + 1 elements and the other Sylow subgroups of G can be generated by d
elements. Then G can be generated by d + 1 elements.

Proof We argue by induction on |G|. Since G is soluble, there exists a nontrivial normal
p-subgroup N of G for some prime p. The hypotheses of the lemma hold in G/N . Hence,
G/N can be generated by d + 1 elements by induction. Let P be a Sylow p-subgroup of G.
If p = 2, then P can be generated by d + 1 elements. Applying Lemma 5 (b), we have that
G can be generated by d + 1 elements. If p �= 2, then P can be generated by d elements. It
follows from Lemma 5 (a) that G can be generated by d + 1 elements. 	


Recall that d(G) is the minimum number of elements required to generate the group G.
Now define f (G) to be the maximum of {d(G/H)} for every normal subgroup H of finite
index in G. From [12, Theorem], we have the following:

Lemma 7 If G is a polycyclic group, then d(G) ≤ f (G) + 1.
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3 Ranks of finite p-groups

Some results about the rank of a finite p-group, p a prime, which is a mutually permutable
product of two abelian subgroups will be proved in this section. These results will be crucial
to prove our main theorems.

Note that if A is a finite abelian p-group, then d(A) = r(A).

Lemma 8 Let the finite p-group G = AB be the product of two cyclic subgroups A and B.
Then the rank of G is at most 2 if p is odd and at most 3 if p = 2.

Proof If p > 2, then G is metacyclic by [10, III, Satz 11.5]. Thus, G is of rank 2. Assume
that p = 2. If G is a nonmetacyclic 2-group, then G has a unique nonmetacyclic maximal
subgroup by [11, Theorem 5.1]. Let M be a metacyclic maximal subgroup of G. Then M
is normal in G and G/M is cyclic. Hence, r(G) ≤ r(M) + r(G/M) ≤ 2 + 1 = 3, as
required. 	

Lemma 9 Let G = 〈a〉〈b〉 be the product of two cyclic groups 〈a〉 and 〈b〉 such that |〈a〉| =
|〈b〉| = 22 and 〈a〉 ∩ 〈b〉 = 1. Then 〈a2, b2〉 is contained in Z(G). Furthermore, if G is
nonmetacyclic, then [a, b] = a2b2.

Proof By [4, Corollary 3.1.9], G is the totally permutable product of the subgroups 〈a〉 and
〈b〉. Then 〈a2〉〈b〉 is a subgroup of G and 〈b〉 is a normal subgroup of 〈a2〉〈b〉. If a2 does not
centralise 〈b〉, we have that a2 inverts 〈b〉. In this case 〈b〉〈a2〉 is isomorphic to the dihedral
group of order 8. Hence, 〈b〉 is a characteristic subgroup of 〈b〉〈a2〉 which is normal in G.
Hence, 〈b〉 � G and then ba ∈ 〈b〉. It follows that ba = b or ba = b−1. In both cases, we
have ba

2 = b, against supposition. Hence, [a2, b] = 1 and a2 ∈ Z(G). By using the same
argumentswith b2,we get 〈a2, b2〉 ≤ Z(G). AssumenowG is a nonmetacyclic group.By [11,
Proposition 2.12], �(G) = 〈a2, b2〉 and G/〈a2, b2〉 is abelian. Hence, [a, b] ∈ 〈a2〉〈b2〉.
Since [a, b] �= 1, we deduce that [a, b] = a2, b2 or a2b2. If [a, b] = a2 or [a, b] = b2,
then either 〈a〉 or 〈b〉 is a normal subgroup of G and G is metacyclic. By this contradiction
[a, b] = a2b2, as required. 	

Lemma 10 Let G = AB be the mutually permutable product of the abelian 2-groups A and
B with A ∩ B = 1. Assume that s = r(B) ≤ 2. If A is either cyclic or A = 〈a〉 × 〈y〉 such
that o(y) = 2 and y inverts B, then r(G) is at most s + 3.

Proof Since A ∩ B = 1, we have that A and B are totally permutable subgroups of G
by [4, Proposition 4.1.16]. Let D = CoreG(B). By [4, Lemma 4.1.10], G/D is the totally
permutable product of the subgroups AD/D and B/D. Moreover, B/D is core-free in G/D.
By Lemma 3, either B/D is cyclic or B/D = 〈bD〉 × 〈xD〉, where o(bD) = 2m and
o(xD) = 2. Note that if g ∈ D, then gz ∈ 〈g〉〈z〉 ∩ D = 〈g〉(〈z〉 ∩ D) = 〈g〉 for all z ∈ A.
Therefore, 〈g〉 is a normal subgroup of G.

We distinguish two cases:
(i) r(B) = 1. LetC be a cyclic subgroup of A such that |A : C | ≤ 2. ThenCB is a normal

subgroup of G such that r(CB) ≤ 3 by Lemma 8, and G/CB is cyclic. Therefore, r(G) ≤ 4
and the lemma holds in this case.

(ii)Assume that r(B) = 2. If B/D is cyclic, then D is not contained in �(B), the Frattini
subgroup of B. Let u ∈ D \�(B). ThenU = 〈u〉 is a normal subgroup of G. Since B/�(B)

is an elementary abelian group of order 4 and U�(B) is a proper subgroup of B, it follows
that B/U�(B) is cyclic of order 2. In addition U�(B)/U is contained in �(B/U ), so that
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B/U is cyclic. Since G/U is the totally permutable product of the subgroups AU/U and
B/U by [4, Lemma 4.1.10],G/U satisfies the hypotheses of the theorem. Since r(B/U ) = 1,
we have that r(G/U ) ≤ 4 by Case (i). Therefore, r(G) ≤ 5.

Suppose that B/D is not cyclic. Then B/D = 〈bD〉 × 〈xD〉, where o(bD) = 2m and
o(xD) = 2. In this case, x2 ∈ D and so 〈x2〉 is a normal subgroup of G. The lemma will
therefore follow shouldwe succeed in proving that r(G/〈x2〉) ≤ 4.Without loss of generality,
we may assume that x2 = 1. Since xD /∈ �(B/D), we have that x is an element of order 2
in B \ �(B). Let M be a complement of 〈x〉 in B. Now B cannot be cyclic. Hence, M = 〈b〉
is cyclic for some b ∈ B, and B = 〈b〉 × 〈x〉.

Assume that A is cyclic. Then r(A〈b〉) ≤ 3 by Lemma 8, and A〈b〉 is a normal subgroup
of G such that G/A〈b〉 is cyclic. Therefore, r(G) ≤ 4.

Assume that A = 〈a〉 × 〈y〉 such that o(y) = 2 and y inverts B. Write N = 〈a〉〈b〉. Then
N is a normal subgroup of G and G/N � C2 × C2. By Lemma 8, we have that r(N ) ≤ 3
and then that r(G) ≤ 5. What we must prove is that d(H) ≤ 4 for all subgroups H of G.
Assuming this to be false, let us choose a subgroup H of G such that d(H) ≥ 5.

Since d(H) ≤ r(G) ≤ 5, we have that d(H) = 5. If HN/N is cyclic, we have d(H) ≤
r(H) ≤ r(H/H ∩ N ) + r(N ) ≤ 1 + 3 = 4, a contradiction which shows that G = HN .
Denote H1 = H ∩ N . Then we have H/H1 � G/N � C2 × C2 and so d(H1) ≥ 3.
Since d(H1) ≤ r(N ) ≤ 3, we have that d(H1) = 3 and so H1 is not metacyclic. Note
that H1 cannot be equal to N because d(N ) = 2. Therefore, H1 lies inside a nonmetacyclic
maximal subgroup X of N . Applying [11, Theorem 5.1], it follows that X = 〈ab, a2, b2〉,
d(X) = 3, and o(a), o(b) ≥ 4. By [11, Proposition 2.12], we have that�(�(N )) = 〈a4, b4〉
and |N : �(�(N ))| = 24. Clearly 〈a4, b4〉 ≤ �(X). In addition, |N : �(X)| = |N : X ||X :
�(X)| = 2 · 23 = 24; therefore, we can conclude that �(X) = 〈a4, b4〉 = �(�(N )). Note
that 〈a2, b2〉 is a metacyclic maximal subgroup of X and H1 is not contained in 〈a2, b2〉 since
we agreed that d(H1) = 3. Therefore, X = H1〈a2, b2〉.

Wewrite ḡ to denote the image of g in Ḡ = G/�(X). Also if K is any subgroup ofG, then
K̄ is the image of K in G. Applying Lemma 9 to the group N̄ = 〈ā〉〈b̄〉, o(ā) = o(b̄) = 22,
we obtain that 〈ā2, b̄2〉 ≤ Z(N̄ ). Since X̄ is an elementary abelian group of order 8 contained
in N̄ , it follows that N̄ is nonmetacyclic. Hence, [ā, b̄] = ā2b̄2 by Lemma 9. Moreover, since
x̄ centralises ā2 and ȳ centralises b̄2, we have that 〈ā2, b̄2〉 ≤ Z(Ḡ).

Let us now prove that H̄ is nonabelian. Since y ∈ G = HN , there exists n ∈ N such that
ny ∈ H . In addition, there exists t ∈ 〈a2, b2〉 such that abt ∈ H1.

Bearing in mind that n̄ is a product of a power of ā and a power of b̄, we can conclude
that (āb̄)n̄ ∈ {āb̄, b̄ā}. Therefore,

[abt, ny] = [ab, ny] = (āb̄)−1(āb̄)n̄ ȳ = b̄−1ā−1(āb̄)ȳ or b̄−1ā−1(b̄ā)ȳ,

which is equal to b̄−2 or [ā, b̄]b̄−2. Thus, [abt, ny] = ā2 or b̄2. Consequently, [abt, ny] �= 1
and H̄ is nonabelian.

Consequently, H ′ is not contained in �(X). Therefore, H ′ is not contained in �(H1).
In particular, H/�(H1) is nonabelian and so �(H1) < �(H). Since d(H1) = 3 and
| H : H1 |= 22, we obtain that | H : �(H1) |=| H : H1 || H1 : �(H1) |= 25.
Hence, | H : �(H) |≤ 24 and then d(H) ≤ 4, contrary to the choice of H , which is our
final contradiction.

Therefore, d(H) ≤ 4 for all subgroups H of G, and so r(G) ≤ 4. The proof of the lemma
is complete. 	
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Lemma 11 Let a finite p-group G = AB be the mutually permutable product of the abelian
p-subgroups A and B. Assume that CoreG(A) = 1. If B is of rank s, then the rank of G is
at most s + 2 if p is odd and at most s + 3 if p = 2.

Proof Since A ∩ B ≤ CoreG(A) = 1, it follows that A and B are totally permutable by
[4, Proposition 4.1.16]. Let D = CoreG(B). Then G/D = (AD/D)(B/D) is the totally
permutable product of the subgroups AD/D and B/D by [4, Lemma 4.1.10]. Clearly, B/D
is core-free in G/D.

If p is odd, then A and B/D are both cyclic by Lemma 3(i). Applying Lemma 8, we
conclude that r(G/D) ≤ 2. Hence, r(G) ≤ s + 2.

Assume that G is a 2-group. It follows from Lemma 3(ii) that either A is cyclic or A =
〈a〉 × 〈y〉, where o(y) = 2 and y inverts B. If s ≤ 2, the result follows from Lemma 10 and
if B is normal in G, then r(G) ≤ s+2. Therefore, we may assume that s ≥ 3 and B/D �= 1.

Applying Lemma 3(ii), we have that d = d(B/D) ≤ 2. Thus, D � �(B) otherwise
s = d(B/D) ≤ 2. Let |D : D ∩ �(B)| = 2t , t ≥ 1. Then

2t = |D�(B) : �(B)| = |B : �(B)|
|B : D�(B)| ≤ |B : �(B)|

|B/D : �(B/D)| = 2s−d ,

which implies that t + d ≤ s.
Let x1(D ∩ �(B)), . . . , xt (D ∩ �(B)) be generators of D/D ∩ �(B) and denote K =

〈x1, x2, . . . , xt 〉 ≤ D. Let x ∈ K and a ∈ A. Then xa ∈ 〈a〉〈x〉 ∩ D = 〈x〉. Consequently,
K is a normal subgroup of G. Since D = K (D ∩ �(B)), we have that D/K ≤ �(B/K )

and so d(B/K ) = d(B/D) = d .
Note that G/K is the totally permutable product of the subgroups AK/K and B/K .

Furthermore, r(B/K ) = d , and AK/K is either cyclic or AK/K = 〈aK 〉 × 〈yK 〉 such that
yK inverts B/K and o(yK ) = 2. It follows from Lemma 10 that r(G/K ) ≤ r(B/K )+ 3 =
d + 3. Hence, r(G) ≤ r(K ) + d + 3 ≤ t + d + 3 ≤ s + 3. 	


4 Proof of main theorems

Proof of Theorem A. Let H = 〈a1b1, . . . , anbn〉 be a finitely generated subgroup of G, where
ai ∈ A and bi ∈ B, 1 ≤ i ≤ n. Then H is finite as G is locally finite. Moreover, H is
soluble since G is metabelian by [4, Theorem 3.1.7]. Let C = CoreG(A). Since A∩ B ≤ C ,
it follows that G/C is a totally permutable product of the subgroups A/C and BC/C by [4,
Lemma 4.1.10 and Proposition 4.1.16],

Write L = 〈a1, . . . , an〉, F = 〈b1, . . . , bn〉, X = 〈L, F〉 and D = C ∩ X . Note that
all of them are finite and H ≤ X . Note that XC/C is the totally permutable product of the
subgroups LC/C and FC/C . Since X/D is isomorphic to XC/C , it follows that X/D is a
finite group that is the totally permutable product of the subgroups LD/D and FD/D and
LD/D ∩ FD/D = 1. Let p be a prime and let L p and Fp be the Sylow p-subgroups of
L and F , respectively. Then U/D = (L pD/D)(FpD/D) is a Sylow p-subgroup of X/D.
Also, U/D is the totally permutable product of the subgroups L pD/D and FpD/D.

Let S/D = CoreU/D(L pD/D). By [4, Lemma 4.1.10], U/S is the totally permutable
product of the subgroups L pS/S and FpS/S. Moreover, L pS/S is core-free in U/S. By
Lemma11,we get that r(U/S) ≤ r(FpS/S)+2 or r(FpS/S)+3 if p = 2. Since S ≤ L pD ≤
A and FpS/S ≤ BS/S, we have that either r(U ) ≤ r + s + 2 or r(U ) ≤ r + s + 3 if p = 2.
Clearly a Sylow p-subgroup Hp of H is contained in a conjugate of a Sylow p-subgroup of
U . Therefore, either d(Hp) ≤ r + s + 2 or d(Hp) ≤ r + s + 3 if p = 2. By Lemma 6, H
can be generated by r + s + 3 elements. Consequently, the rank of G is at most r + s + 3. 	
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Proof of Theorem B. If A or B is normal in G, r(G) ≤ r + s. Thus, we may assume that
neither A nor B are normal in G. Let C = CoreG(A). Since A ∩ B ≤ C , we have that G/C
is the totally permutable product of the subgroups A/C and BC/C by [4, Lemma 4.1.10].
Note that A/C is core-free in G/C .

Suppose BC/C isweak. Then BC/C is a normal subgroupofG/C with |G/C : BC/C | =
2 by Lemma 4. Therefore, we have the normal series 1 ≤ C ≤ BC ≤ G with the rank of C
at most r = r(A), the rank of BC/C at most s = r(B) and G/BC cyclic. Hence, the rank
of G is at most r + s + 1. If D = CoreG(B), a similar argument applies if AD/D is weak.

Thus, wemay assume that both AD/D and BC/C are periodic groups. On the other hand,
since A∩ B is a normal subgroup of G, we have that A∩ D = A∩ B = C ∩ B. This implies
that A/(A ∩ B) and B/(A ∩ B) are both periodic groups. Denote Z = A ∩ B. Since Z is
abelian of finite rank, we can consider a free abelian subgroup E of Z of maximal rank, k
say. Then Z/E is a periodic group of finite rank, and E/Em is a finite group of order mk

for every positive integer m, where Em is the subgroup generated by {xm : x ∈ E}. Since
E ≤ Z(G) we have that G/Em is the product of A/Em and B/Em both periodic groups of
finite rank. It then follows that G/Em is locally finite (and of finite rank) by a theorem of
Černikov [1, Theorem 3.2.12].

If E = 1, then G is locally finite. It follows from Theorem A that r(G) ≤ r + s + 3.
Assume now that E �= 1. Let H be a finitely generated subgroup of G. Since G/Em is
locally finite for all positive integers m, it follows that HEm/Em � H/(H ∩ Em) is finite
and soluble of rank at most r + s + 3 by Theorem A.

Let X be a subgroup of H . Then X/(X ∩ E) � XE/E is finite. Moreover, E is finitely
generated because it has finite rank. This implies that X ∩ E is finitely generated since
subgroups of finitely generated abelian groups are finitely generated. Consequently, X is
finitely generated and H is polycyclic.

We show next that for every normal subgroup N of H of finite index, there exists a positive
integerm such that H ∩ Em ≤ N . Since H/(N ∩ E) is finite, we may assume without loss of
generality that N ≤ E . Then E/N = U/N × W/N , where U/N is free abelian and W/N
is finite. Assume the exponent of W/N is m. Then (E/N )m = (U/N )m is free abelian.
Now (H ∩ Em)N/N ≤ H/N which is finite. Also (H ∩ Em)N/N ≤ EmN/N ≤ (E/N )m .
This implies that (H ∩ Em)N/N is a finite subgroup of a free abelian group. Consequently,
(H ∩ Em)N/N = 1 and H ∩ Em ≤ N , as claimed.

Recall that H/(H ∩ Em) has rank at most r + s + 3 for all positive integers m. It follows
that H/N has rank at most r + s + 3 for every normal subgroup N of H of finite index. Now
we can apply Lemma 7 to conclude that d(H) ≤ r + s + 4. Consequently, the rank of G is
at most r + s + 4. The proof of the theorem is now complete. 	
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