
Annali di Matematica Pura ed Applicata (1923 -) (2019) 198:795–802
https://doi.org/10.1007/s10231-018-0798-9

On the well-posedness of the hyperelastic rod equation

Hasan Inci1,2

Received: 26 March 2018 / Accepted: 4 October 2018 / Published online: 10 October 2018
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer
Nature 2018

Abstract
In this paperwe consider the hyperelastic rod equation on theSobolev spaces Hs(R), s > 3/2.
Using a geometric approach we show that for any T > 0 the corresponding solution map,
u(0) �→ u(T ), is nowhere locally uniformly continuous. The method applies also to the
periodic case Hs(T), s > 3/2.
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1 Introduction

We consider the following family of equations referred to as the hyperelastic rod equation

ut − utxx + 3uux = γ (2uxuxx + uuxxx ), t ∈ R, x ∈ R (1)

where γ �= 0. The initial value problem for (1) is locally well-posed in the Sobolev spaces
Hs, s > 3/2—see [6,7]. For the corresponding solution map it was shown in [5] in the
periodic case that it has not the property to be uniformly continuous on bounded sets, whereas
in [3] the same was shown for both cases (periodic and nonperiodic) with an improvement
for the s range. Our aim here is to prove that the solution map for the range s > 3/2 has even
less regularity. But before we state the main theorem we have to introduce some notation.
Note that (1) has the property that for a solution u the scaled quantity

uλ := λu(λt, x), λ > 0 (2)

is also a solution. Let s > 3/2 and T > 0. Denote by UT the initial values u0 ∈ Hs(R)

for which (1), starting from u(0) = u0, has a solution which exists longer than T . By the
local well-posedness of (1) in Hs(R) (see also Theorem 2.1) and scaling (2) we know that
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UT ⊆ Hs(R) is an open star-shaped neighborhood of 0 ∈ Hs(R) in Hs(R). Again by the
local well-posedness we know that the time T solution map

ΦT : UT ⊆ Hs(R) → Hs(R), u0 �→ u(T )

is continuous. With this our main theorem reads as

Theorem 1.1 Let s > 3/2 and T > 0. Denote by ΦT the time T solution map of the initial
value problem for (1) defined on UT ⊆ Hs(R). Then

ΦT : UT → Hs(R), u(0) �→ u(T )

is nowhere locally uniformly continuous.

We will rewrite (1) by doing the transformation v(t, x) = u(t, γ x). This gives

vt − 1

γ 2 vt xx + 3

γ
vvx = 1

γ 2 (2vxvxx + vvxxx )

or rewritten (
1 − 1

γ 2 ∂2x

)
(vt + vvx ) = γ − 3

γ
vvx − 1

γ 2 vxvxx

and equivalently

vt + vvx =
(
1 − 1

γ 2 ∂2x

)−1 (
γ − 3

γ
vvx − 1

γ 2 vxvxx

)
=: B(v, v) (3)

Note that B is a continuous quadratic form on Hs(R) for s > 3/2. We will establish The-
orem 1.1 by showing the corresponding statement for the solution map of v. This is clearly
sufficient. The advantage of (3) is that it is convenient for the geometric framework introduced
in the next section.

2 The geometric framework

We will formulate (3) in a geometric way as was done in [2] for the b-family of equations.
Consider the flow map of v, i.e.,

ϕt (t, x) = v(t, ϕ(t, x)), ϕ(0, x) = x

The functional space for the ϕ variable is for s > 3/2 the diffeomorphism group

Ds(R) = {ϕ : R → R | ϕ − id ∈ Hs(R), ϕx (x) > 0 for all x ∈ R}
where id is the identity map in R. It is a topological group under composition of maps and
consists of C1-diffeomorphisms. For details on this space, see [1]. We can write (3) in the ϕ

variable as
ϕt t = B

(
ϕt ◦ ϕ−1, ϕt ◦ ϕ−1) ◦ ϕ (4)

The computations in [2] show that right side is a real analytic map

Ds(R) → P2(H
s(R); Hs(R)), ϕ �→ [

v �→ B
(
v ◦ ϕ−1, v ◦ ϕ−1) ◦ ϕ

]
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On the well-posedness of the hyperelastic rod equation 797

where we denote by P2(Hs(R); Hs(R)) the space of continuous quadratic forms on Hs(R)

with values in Hs(R). We can write the second-order Eq. (4) as a first-order equation on the
tangent space TDs(R) = Ds(R) × Hs(R)

∂t

(
ϕ

v

)
=

(
v

B
(
v ◦ ϕ−1, v ◦ ϕ−1

) ◦ ϕ

)
(5)

The quadratic nature of the second component makes it to a so-called Spray—see [4]. It has
in particular an exponential map. To define this map consider the ODE (5) with initial values
ϕ(0) = id and v(0) = v0. Denote by V ⊆ Hs(R) those initial values v0 for which we have
existence beyond time 1. With this we define

exp : V ⊆ Hs(R) → Ds(R), v0 �→ ϕ(1; v0)

where ϕ(1; v0) is the time 1 value of the ϕ-component. Because of analytic dependence on
initial values exp is real analytic. Furthermore for any v0 ∈ Hs(R) the curve ϕ(t) = exp(tv0)
is the ϕ-component of the solution to (5) with initial values ϕ(0) = id and v(0) = v0. In
particular the solution exists as long as tv0 ∈ V .

With this we can construct solutions to (3). So consider (3) with initial condition v(0) =
v0 ∈ Hs(R). For ϕ(t) = exp(tv0) we define

v(t) = ϕt (t) ◦ ϕ(t)−1

It turns out that v is a solution to (3)—see [2], where this was established for the b-family
of equations—and with this that V ⊆ Hs(R) is the set of initial values for which (3) has a
solution beyond time T = 1. By the local well-posedness for ODEs we immediately recover
the local well-posedness result of [6,7].

Theorem 2.1 The initial value problem for (1) is locally well-posed in the Sobolev spaces
Hs(R), s > 3/2.

3 Nonuniform dependence

In this section we establish our main result Theorem 1.1. As mentioned already it will be
enough to prove this for the modified Eq. (3). We can further simplify this by considering
the theorem just for the time T = 1 situation, as we have for v a solution to (3) that

ṽ(t, x) := λv(λt, x)

is also a solution to (3).
We proceed as in [2]. In [2] we used a conserved quantity to establish the result. For

equation (3) we have something similar.

Lemma 3.1 Let s > 3/2. For v a solution to (3) with initial value v(0) = v0 ∈ Hs(R) we
have((

1 − 1

γ 2 ∂2x

)
v(t)

)
◦ ϕ(t) · ϕx (t)

2 =
(
1 − 1

γ 2 ∂2x

)
v0 +

∫ t

0

3γ − 3

γ

ϕt (s)ϕt x (s)

ϕx (s)
ds (6)

where ϕ(t) = exp(tv0).

The essential thing here is that the “remainder” term, the integral termwhich is in Hs−1(R),
is more regular than the first term which is in Hs−2(R).
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798 H. Inci

Proof We differentiate the expression on the left in the lemma with respect to t and use the
equation for v. We have by the chain rule

d

dt

(((
1 − 1

γ 2 ∂2x

)
v

)
◦ ϕ

)
=

((
1 − 1

γ 2 ∂2x

)
vt

)
◦ ϕ +

((
1 − 1

γ 2 ∂2x

)
vx

)
◦ ϕ · ϕt

=
((

1 − 1

γ 2 ∂2x

)
vt +

((
1 − 1

γ 2 ∂2x

)
vx

)
· v

)
◦ ϕ

=
((

1 − 1

γ 2 ∂2x

)
vt +

(
1 − 1

γ 2 ∂2x

)
(vx · v) + 3

γ 2 vxvxx

)
◦ ϕ

=
(

γ − 3

γ
vvx + 2

γ 2 vxvxx

)
◦ ϕ

where we used Eq. (3) in the last equality. Therefore we have

d

dt

(((
1 − 1

γ 2 ∂2x

)
v

)
◦ ϕ · ϕ2

x

)
=

(
vvx + 2

γ 2 vxvxx

)
◦ ϕ · ϕ2

x +
(

v − 1

γ 2 vxx

)
2ϕxϕt x

= 3γ − 3

γ
(vvx ) ◦ ϕ = 3γ − 3

γ

ϕtϕt x

ϕx

where we used ϕt xϕ
−1
x = vx ◦ ϕ. As ϕ(0) = id integrating gives the result in the case where

we work with regular solutions. But as long as ‖vx‖L∞ is controlled (similar to the Beale–
Majda–Kato criterium) one has continuation of the solution—see [7]. Thus by approximation
by regular solutions one has (6) for all s > 3/2. 
�

In the following we will use the notation

y(t) :=
(
1 − 1

γ 2 ∂2x

)
v(t) and Ψ (t) =

∫ t

0

3γ − 3

γ

ϕt (s)ϕt x (s)

ϕx (s)
ds

Hence from (6)

y(1) =
(

y(0)

ϕx (1)2

)
◦ ϕ(1)−1 +

(
Ψ (1)

ϕx (1)2

)
◦ ϕ(1)−1

In the following we will use also Ψv0 := Ψ (1) for the corresponding initial value v0. Theo-
rem 1.1 will follow from

Proposition 3.2 Let V ⊆ Hs(R) be the domain of definition of exp (which is also the domain
of definition for the time T = 1 solution map of (3)). We denote by v(t) solutions to (3). Then
the map

Φ : V ⊆ Hs(R) → Hs(R), v(0) �→ v(1)

is nowhere locally uniformly continuous.

To prove Proposition 3.2 we will show that y(0) �→ y(1) is nowhere locally uniformly
continuous. This is clearly enough. Before doing this we state some facts—see [2] for the
proofs.

For ϕ• ∈ Ds(R) there is C > 0 with

1

C

∥∥∥∥
(

y

ϕ̃2
x

)
◦ ϕ−1

∥∥∥∥
s−2

≤ ‖y‖s−2 ≤ C

∥∥∥∥
(

y

ϕ̃2
x

)
◦ ϕ−1

∥∥∥∥
s−2

for all y ∈ Hs−2(R) and for all ϕ̃, ϕ in some neighborhood of ϕ•.
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On the well-posedness of the hyperelastic rod equation 799

For ϕ• ∈ Ds(R) there is C > 0 with∥∥∥ f ◦ ϕ−1
1 − f ◦ ϕ−1

2

∥∥∥
s−2

≤ C‖ f ‖s−1

∥∥∥ϕ−1
1 − ϕ−1

2

∥∥∥
s−2

for all f ∈ Hs−1(R) and for all ϕ1, ϕ2 in a neighborhood of ϕ•.
Further we construct a dense subset S ⊆ V with S ⊆ Hs+1(R) and dv exp �= 0 for

all v ∈ S. Here dv exp is the differential of the exponential map at v. Take an arbitrary
v ∈ V ∩ Hs+1(R) and w ∈ Hs(R), x ∈ R with w(x) �= 0. Consider the analytic map

R → R, t �→ (dtv exp(w)) (x)

which at t = 0 is w(x) (see [4] for the fact that d0 exp is the identity map), in particular
nonzero. Thus there is a sequence tn ↑ 1 with

(
dtnv exp(w)

)
(x) �= 0. So putting tnv to S

gives the construction we need.
With this preparation we can proceed to the proof of Proposition 3.2. It is essentially the

same proof as in [2] established for the b-family of equations.

Proof of Proposition 3.2 We take v0 ∈ S ⊆ Hs+1(R) in the dense subset and show that Φ is
not uniformly continuous on any ball BR(v0) ⊆ V of radius R > 0 with center v0. By the
construction of S we can fix g ∈ Hs(R) and x0 ∈ R with(

dv0 exp(g)
)
(x0) > m‖g‖s

for some m > 0. Denote by ϕ• = exp(v0). We choose R1 > 0 in such a way that we have

1

C1

∥∥∥∥
(

y

ϕ̃2
x

)
◦ ϕ−1

∥∥∥∥
s−2

≤ ‖y‖s−2 ≤ C1

∥∥∥∥
(

y

ϕ̃2
x

)
◦ ϕ−1

∥∥∥∥
s−2

for some C1 > 0 for all y ∈ Hs−2(R) and ϕ̃, ϕ ∈ exp(BR1(v0)) which is possible due to the
continuity properties of the composition—see [1]. Taking 0 < R2 ≤ R1 we can guarantee
again by the continuity properties of the composition that∥∥y ◦ ϕ−1

∥∥
s−2 ≤ C2‖y‖s−2

for some C2 and for all y ∈ Hs−2(R) and ϕ ∈ exp(BR2(v0)). Choosing 0 < R3 ≤ R2 we
can ensure (see [1])∥∥∥ f ◦ ϕ−1

1 − f ◦ ϕ−1
2

∥∥∥
s−2

≤ C̃3‖ f ‖s−1

∥∥∥ϕ−1
1 − ϕ−1

2

∥∥∥
s−2

≤ C3‖ f ‖s−1 ‖ϕ1 − ϕ2‖s
for some C3 > 0 and for all f ∈ Hs−1(R) and ϕ1, ϕ2 ∈ exp(BR3(v0)). Furthermore we
denote by C > 0 the constant in the Sobolev imbedding

‖ f ‖L∞ ≤ C‖ f ‖s
Consider the Taylor expansion for the exponential map exp : V → Hs(R)

exp(w + h) = exp(w) + dw exp(h) +
∫ 1

0
(1 − t)dw+th exp(h, h) dt

We choose 0 < R4 ≤ R3 in such a way that we have∥∥d2w exp(h1, h2)
∥∥
s ≤ K‖h1‖s‖h2‖s

and ∥∥d2w1
exp(h1, h2) − d2w2

exp(h1, h2)
∥∥
s

≤ K‖w1 − w2‖s‖h1‖s‖h2‖s
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800 H. Inci

for some K > 0 and for all w,w1, w2 ∈ exp(BR4(v0)) and for all h1, h2 ∈ Hs(R) which is
possible by the smoothness of the exponential map. By taking 0 < R5 ≤ R4 small enough
we have

max
{
C · K · R5,C · K · R2

5

}
< m/2

By the final choice 0 < R∗ ≤ R5 we can make

|ϕ(x) − ϕ(y)| ≤ L|x − y| and ‖Ψv‖s ≤ M and ‖exp(v) − exp(ṽ)‖s ≤ L‖v − ṽ‖s
to hold for all ϕ ∈ exp(BR∗) and v, ṽ ∈ BR∗(v0) due to the Sobolev imbedding and the
smoothness of the exponential map. The goal is to prove that Φ is not uniformly continuous
on BR(v0) for any 0 < R ≤ R∗. So we fix 0 < R ≤ R∗. We define the sequence of radii

rn = m

8n
‖g‖s, n ≥ 1

and take an arbitrary smooth wn with support in (x0 − rn
L , x0 + rn

L ) and constant mass
‖wn‖s = R/4. Further we define gn = g/n, which tends to zero in Hs(R). With this we
introduce two sequences

zn = v0 + wn and z̃n = zn + gn = v0 + wn + gn

For N large enough we clearly have zn, z̃n ∈ BR(v0) for n ≥ N and ‖zn − z̃n‖s → 0 as
n → ∞. Further we introduce the corresponding diffeomorphisms

ϕn = exp(zn) and ϕ̃n = exp(z̃n)

The result will follow from lim supn→∞ ‖Φ(zn) − Φ(z̃n)‖s > 0. Reexpressing Φ with (6)

and using the notation yn =
(
1 − 1

γ 2 ∂
2
x

)
zn and ỹn =

(
1 − 1

γ 2 ∂
2
x

)
z̃n and Ψzn , Ψz̃n for the

“remainder” terms this is equivalent to

lim sup
n→∞

∥∥∥∥ yn
(ϕn)2x

◦ ϕ−1
n − ỹn

(ϕ̃n)2x
◦ ϕ̃−1 + Ψzn

(ϕn)2x
◦ ϕ−1

n − Ψz̃n

(ϕ̃n)2x
◦ ϕ̃−1

n

∥∥∥∥
s−2

> 0

As the Ψ terms are more regular than Hs−2, namely in Hs−1, we have∥∥∥∥ Ψzn

(ϕn)2x
◦ ϕ−1

n − Ψz̃n

(ϕ̃n)2x
◦ ϕ̃−1

n

∥∥∥∥
s−2

≤
∥∥∥∥ Ψzn

(ϕn)2x
◦ ϕ−1

n − Ψzn

(ϕn)2x
◦ ϕ̃−1

n

∥∥∥∥
s−2

+
∥∥∥∥ Ψzn

(ϕn)2x
◦ ϕ̃−1

n − Ψz̃n

(ϕ̃n)2x
◦ ϕ̃−1

n

∥∥∥∥
s−2

≤ C3

∥∥∥∥ Ψzn

(ϕn)2x

∥∥∥∥
s−1

‖ϕn − ϕ̃n‖s + C2

∥∥∥∥ Ψzn

(ϕn)2x
− Ψz̃n

(ϕ̃n)2x

∥∥∥∥
s−2

→ 0

as n → ∞ since z �→ Ψz/(∂x exp(z))2 is smooth. Thus it remains to establish

lim sup
n→∞

∥∥∥∥ yn
(ϕn)2x

◦ ϕ−1
n − ỹn

(ϕ̃n)2x
◦ ϕ̃−1

n

∥∥∥∥
s−2

> 0

We split

yn =
(
1 − 1

γ 2 ∂2x

)
(v0 + wn) resp. ỹn =

(
1 − 1

γ 2 ∂2x

)
(v0 + wn + gn)
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As v0 ∈ Hs+1 we can treat the v0 terms in the same way as the Ψ terms and get

lim
n→∞

∥∥∥∥∥∥

(
1 − 1

γ 2 ∂
2
x

)
v0

(ϕn)2x
◦ ϕ−1

n −
(
1 − 1

γ 2 ∂
2
x

)
v0

(ϕ̃n)
2
x

◦ ϕ̃−1
n

∥∥∥∥∥∥
s−2

= 0

For the gn term we have trivially∥∥∥∥∥∥

(
1 − 1

γ 2 ∂
2
x

)
gn

(ϕ̃n)
2
x

◦ ϕ̃−1
n

∥∥∥∥∥∥
s−2

≤ C1

∥∥∥∥
(
1 − 1

γ 2 ∂2x

)
gn

∥∥∥∥
s−2

→ 0

The only remaining thing is to consider

lim sup
n→∞

∥∥∥∥∥∥

(
1 − 1

γ 2 ∂
2
x

)
wn

(ϕn)2x
◦ ϕ−1

n −
(
1 − 1

γ 2 ∂
2
x

)
wn

(ϕ̃n)2x
◦ ϕ̃−1

n

∥∥∥∥∥∥
s−2

In order to estimate this from belowwewill establish that the two terms have disjoint support.
This we do by estimating the distance |ϕn(x0) − ϕ̃n(x0)|. By the Taylor expansion we have

ϕn = exp(v0) + dv0 exp(wn) +
∫ 1

0
(1 − t)d2v0+twn

exp(wn, wn) dt

resp.

ϕ̃n = exp(v0) + dv0 exp(wn + gn) +
∫ 1

0
(1 − t)d2v0+t(wn+gn) exp(wn + gn, wn + gn) dt

Taking the difference we can write

ϕ̃n − ϕn = dv0 exp(gn) + R1 + R2 + R3

where

R1 =
∫ 1

0
(1 − t)(d2v0+t(wn+gn)(wn, wn) − d2v0+twn

(wn, wn)) dt

and

R2 =
∫ 1

0
(1 − t)d2v0+t(wn+gn)(gn, gn) dt

and

R2 = 2
∫ 1

0
(1 − t)d2v0+t(wn+gn)(wn, gn) dt

For these we have

‖R1‖∞ ≤ C‖R1‖s ≤ CK‖gn‖s‖wn‖2s ≤ 1

n
CK‖g‖s(R/4)2 ≤ 1

4n
CK R2‖g‖s

and

‖R2‖∞ ≤ C‖R2‖s ≤ 2CK‖gn‖s‖wn‖s ≤ 1

n
CK‖g‖s(R/4) ≤ 2

4n
CK R‖g‖s

and

‖R3‖∞ ≤ C‖R3‖s ≤ CK‖gn‖2s ≤ 1

n
CK‖g‖s(R/4) ≤ 1

4n
CK R‖g‖s
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802 H. Inci

Therefore

|ϕn(x0) − ϕ̃n(x0)| ≥ |dv0 exp(gn)| − ‖R1‖∞ − ‖R2‖∞ − ‖R3‖∞

≥ 1

n
m‖g‖s − 1

n

m

2
‖g‖s = m

2n
‖g‖s

The support of

(
1− 1

γ 2
∂2x

)
wn

(ϕn)2x
◦ ϕ−1

n is contained in (ϕn(x0) − rn, ϕn(x0) + rn) taking into

account the Lipschitz property of ϕn with Lipschitz constant L and the definition of wn .

Analogously the support of

(
1− 1

γ 2
∂2x

)
wn

(ϕ̃n)2x
◦ ϕ̃−1

n is contained in (ϕ̃n(x0)− rn, ϕ̃n(x0)+ rn). As

we have

rn ≤ |ϕn(x0) − ϕ̃n(x0)|/4
we can “separate” the disjointly supported terms (see also [2]). Thus we have

lim sup
n→∞

∥∥∥∥∥∥

(
1 − 1

γ 2 ∂
2
x

)
wn

(ϕn)2x
◦ ϕ−1

n −
(
1 − 1

γ 2 ∂
2
x

)
wn

(ϕ̃n)2x
◦ ϕ̃−1

n

∥∥∥∥∥∥
2

s−2

≥ lim sup
n→∞

C̃

⎛
⎜⎝

∥∥∥∥∥∥

(
1 − 1

γ 2 ∂
2
x

)
wn

(ϕn)2x
◦ ϕ−1

n

∥∥∥∥∥∥
2

s−2

+
∥∥∥∥∥∥

(
1 − 1

γ 2 ∂
2
x

)
wn

(ϕ̃n)2x
◦ ϕ̃−1

n

∥∥∥∥∥∥
2

s−2

⎞
⎟⎠

≥ lim sup
n→∞

C̃
2

C2

∥∥∥∥
(
1 − 1

γ 2 ∂2x

)
wn

∥∥∥∥
2

s−2
≥ lim sup

n→∞
K̃‖wn‖2s = K̃ R2/4

So for any R ≤ R∗ we have constructed (zn)n≥N , (z̃n)n≥N ⊆ BR(u0) with limn→∞ ‖zn −
z̃n‖s = 0 and lim supn→∞ ‖Φ(zn)−Φ(z̃n)‖s ≥ C · R for some constant C > 0 independent
of R showing the claim. 
�
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