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Abstract
We present a global bifurcation result for critical values of C1 maps in Banach spaces. The
approach is topological based on homotopy equivalence of pairs of topological spaces. For
C2 maps, we prove a particular global bifurcation result, based on the notion of spectral flow.
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1 Introduction

In this paper we present three global bifurcation results for critical values of C1 maps in
Banach spaces and of C2 maps in Hilbert spaces. We proceed in the general spirit of the
family of works that uses topological methods, whose origin can be found in the textbook of
Krasnoselskij [19] in 1964 and the paper of Rabinowitz [25] in 1971, even though, we must
emphasize, their results concern bifurcation of solutions of particular equations, while ours
are related to bifurcation of critical values, that is, target values of a particular function.
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Krasnoselskij obtains the following local bifurcation theorem, which we recall in a sim-
plified version. Let X be a real Banach space. Consider a map f : R × X → X of the
form

f (λ, x) = x − λC(x),

where C is nonlinear, compact, Fréchet differentiable at x = 0 and such that C(0) = 0.
We use the term “compact” for a continuous map sending bounded subsets of the domain to
relatively compact subsets of the target space. The solutions of the equation

f (λ, x) = 0 (1.1)

of the form (λ, 0) are called trivial, and a real number λ0 is called a bifurcation point of (1.1)
if every neighborhood of (λ0, 0) in R × X contains nontrivial solutions. It is immediate to
notice that a necessary condition for λ0 to be a bifurcation point is that the linear operator
I d − λ0C ′(0) is not invertible, that is, λ0 is a characteristic value of the Fréchet derivative
C ′(0) of C at zero (which is a compact linear operator).

Krasnoselskij proves that λ0 is a bifurcation point of (1.1) if it is a characteristic value of
C ′(0) of odd algebraic multiplicity. Rabinowitz extends this result, proving a so-called global
bifurcation theorem, i.e., showing that there exists a connected set R of nontrivial solutions
whose closure contains (λ0, 0) and such that at least one of the two alternatives is verified:

(i) R is unbounded,
(ii) the closure of R meets a point of the form (λ1, 0) with λ0 �= λ1.

It is obvious why Krasnoselskij’s result is usually called local, while Rabinowitz’s one
global. The approaches of the two authors are based on the application of the Leray–Schauder
degree. It is not possible to explain here such a method in details. We limit ourselves to recall
the following idea: take λ ∈ R. If I d−λC ′(0) is an automorphism of X , we simply denote by
the symbol degLS(I d−λC ′(0)) the Leray–Schauder degree of the triple (I d−λC ′(0),U , 0),
where U is any open bounded subset of X containing the origin. Such a value could be 1
or −1, while the Leray–Schauder degree of any triple (I d − λ̂C ′(0),U , 0) is not defined
when λ̂ is a characteristic value of C ′(0). The degree is also locally constant, when defined,
with respect to λ. It can be proven that, when λ crosses a characteristic value λ̂, the number
degLS(I d − λC ′(0)) changes sign if and only if λ̂ has odd algebraic multiplicity. This sign
jump guarantees the bifurcation at λ̂. If, otherwise, the algebraic multiplicity of λ̂ is even,
this point could be (or not) a bifurcation point, but the degree does not help to give an answer.

Now, two interesting facts happen:

(a) If, in Eq. (1.1), X is a real separable Hilbert space and C ′(0) is a symmetric (i.e.,
self-adjoint) operator, then every characteristic value of C ′(0) is a bifurcation point;

(b) In some cases, the bifurcation points that are characteristic values of C ′(0) of even
algebraic multiplicity do not produce a “global bifurcation branch” in the sense of
Rabinowitz’s theorem.

Some questions have been quite naturally stimulated in the last decades and in recent
years by the above facts: if one tackles a more general problem than (1.1), is it possible to
find a more general degree theory to detect local or global bifurcation? Can we use more
sophisticated topological methods than degree theories? How can we explain that, in some
cases, there is local and not global bifurcation?

More general topological degree theories have been introduced, extending the Leray–
Schauder degree to compact and noncompact perturbations—also multivalued perturbations
—of nonlinear Fredholm maps between Banach spaces (see, e.g., [5–7,11,12,14,15,21,24,
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A global bifurcation theorem for critical values in Banach spaces 775

30]). Consequently, local and global bifurcation results have been obtained for more general
problems than (1.1). Actually there is an enormous literature on the subject.

Consider for example a Banach space X and a C1 map f : R × X → X . Assume
f (λ, 0) = 0 for λ ∈ R. Suppose that, for any (λ, x), the Fréchet derivative ∂2 f (λ, x)
of f with respect to the second variable at (λ, x) is a Fredholm operator of index zero.
With a particular notion of orientation for Fredholm maps in (possibly infinite dimensional)
Banach spaces, it is possible to define a topological degree for any partial map f (λ, ·) (see
[6,13,15]). Given λ ∈ R, denote by Lλ the operator ∂2 f (λ, 0). Suppose λ0 is such that
Lλ is an isomorphism for |λ − λ0| small and nonzero. If the degree of Lλ has a sign jump
when λ crosses λ0, then λ0 turns out to be a bifurcation point of f (λ, x) = 0 with a global
bifurcation behavior. Analogously to the case of compact perturbations of the identity studied
by Krasnoselskij and Rabinowitz, also in this case the lack of sign jump of the degree does
not say anything about bifurcation.

In the self-adjoint case, the Morse index is a useful tool to detect local bifurcation (but not
global, see the above remark b) in some cases for which the degree does not help. Consider
a separable real Hilbert space H . It is known that, given a self-adjoint Fredholm operator
T : H → H , there exists a unique orthogonal splitting of H ,

H = V−(T ) ⊕ V+(T ) ⊕ ker T ,

such that V−(T ) and V+(T ) are T -invariant, the quadratic form x �→ 〈T x, x〉 is negative
definite on V−(T ) and positive definite on V+(T ).

With a slight abuse of notation, we will refer to V−(T ) and V+(T ) as the negative and
the positive eigenspaces of T , respectively. The Morse index of T , denoted by μ(T ), is
defined as the dimension of V−(T ) when it is finite. The following local bifurcation result
can be found in the textbook [22] by Mawhin and Willem (see also [16,26]). They consider
a compact interval [a, b] and an open neighborhood U of [a, b] × {0} in R × H . Given a
C2 map ψ : U → R, denote by Lλ the Hessian of ψλ := ψ(λ, ·) at zero, that is, the second
derivative of ψ with respect to second variable at the point (λ, 0).

Theorem A In the above notation, assume that 0 ∈ H is a critical point of the functional
ψλ for every λ ∈ [a, b]. In addition, assume that Lλ : H → H is a Fredholm operator and
suppose that the negative eigenspace V−(Lλ) is finite dimensional for every λ ∈ [a, b]. If

μ(La) �= μ(Lb),

then the interval [a, b] contains a bifurcation point.

The above important result does not apply in the important case when the operators Lλ are
so-called strongly indefinite, that is, when their positive and negative eigenspaces have infinite
dimension. In order to extend Theorem A to the strongly indefinite case, in a series of papers
by Fitzpatrick et al. [16,17,23] a bifurcation problem for a Hamiltonian system is investigated
by the application of the spectral flow. The spectral flow has been introduced by Athiyah et
al. [3], and it is a topologically invariant integer number associated with a continuous path
of self-adjoint Fredholm operators, Lλ, λ ∈ [a, b], in a separable real Hilbert space H . The
spectral flow can be defined by different equivalent methods. In the next section we will
summarize its construction, following the approach of Fitzpatrick et al. [16]. Here, we limit
ourselves to observe that

sf(L, [a, b]) = μ(La) − μ(Lb)

when both sides of the above equality are meaningful. In [16] it is proven the following
extension of Theorem A.
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776 P. Amster et al.

Theorem B (Fitzpatrick, Pejsachowicz, Recht) Let H be a separable real Hilbert space and
let ψ : R × H → R be a C2 function such that, for each λ ∈ R, x = 0 is a critical point of
the functional ψλ := ψ(λ, ·). Assume that the Hessian Lλ of ψλ at 0 is Fredholm and that
La and Lb are nonsingular for suitable a, b. If sf(L, [a, b]) �= 0, then every neighborhood
of [a, b] × {0} contains points (λ, x) such that x is a nonzero critical point of ψλ.

Formula (1.2) gives an interesting algebraic relation between the spectral flow and the
Leray–Schauder degree and helps to understand why Theorems B (and also Theorem A)
improves Krasnoselskij’s local bifurcation result. If Lλ, λ ∈ [a, b], is a continuous path of
self-adjoint Fredholm operators in a separable real Hilbert space H , and Lλ is of the form

Lλ = I d − Kλ,

where I d is, as previously, the identity and any Kλ is symmetric and compact, then one can
prove (see [16]) that

(−1)sf(L,[a,b]) = degLS(La) · degLS(Lb). (1.2)

The above equality explains why the spectral flow is a finer invariant than the degree to
detect bifurcation, even if it can be applied in a more restricted context. The spectral flow
could be nonzero with a lack of sign jump of the degree. In other words, it detects bifurcation
in some cases when the degree does not.

On the other hand, the spectral flow helps to prove local bifurcation results, as in Theo-
rem B, and it seems unable to provide global bifurcation results. The reason is probably due
to the fact that the spectral flow is defined for linear operators, while the degree works in
nonlinear maps (see Example 3.5). A possible nonlinear version of the spectral flow could
help to obtain global bifurcation results, but to the best of our knowledge it does not exist,
and its construction (if possible) is an interesting and challenging open problem.

Motivated by these difficulties and, at the same time, by the purpose of studying global
bifurcation, in this paper we face a different problem focusing our attention on bifurcation of
target values of a suitable function. One of the results we present in this paper, Theorem 3.3,
shows the existence of a global bifurcation branch of critical values of aC1 map f : R×X →
R, where X is a real Banach space and some topological conditions are verified. It includes,
as a second result, the particular case in which X is a separable Hilbert space, f is C2, the
Hessians of f with respect to the second variable at the points (λ, 0),

Lλ := ∂2 f

∂x2
(λ, 0) : H → H ,

are Fredholm, and a sufficient condition to obtain bifurcation is given in terms of Morse
index (Theorem 3.4). We also obtain a third global bifurcation result, Theorem 6.1, also
for the C2 case, when the Hessians Lλ are strongly indefinite and the Morse index is not
defined. Adding a particular compactness assumption, which at this moment we are not
able to remove, we prove a global bifurcation result if the spectral flow of Lλ in a suitable
interval is nonzero. Theorem 6.1 clearly draws inspiration from the seminal papers [16,17]
by Fitzpatrick, Pejsachowicz and Rabier and uses the spectral flow in a context of a global
bifurcation problem.

In our first theorem,we obtain the bifurcation result assuming that two suitable topological
pairs of inverse images of the map fλ are not homotopy equivalent, for two different values
of the parameter λ. This condition is sufficient to give bifurcation when combined with other
assumptions (see below), such as a special Palais–Smale-type condition.

The paper is organized as follows. In Sect. 2 we recall some basic notions of homotopy
equivalence of topological pairs and we summarize the construction of the spectral flow.
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A global bifurcation theorem for critical values in Banach spaces 777

In Sect. 3 we present the bifurcation problem and we state our main results, Theorems 3.3
and 3.4. In Sect. 4we show some technical results concerning deformation of level sets, which
are used in the proofs of our main results. Such deformation results are original and have in
our opinion some independent interest. Section 5 is devoted to the proof of Theorems 3.3
and 3.4. In Sect. 6 we provide a bifurcation theorem for strongly indefinite functionals where
the corresponding invariant for the Hessian is the spectral flow. Finally, in Sect. 7 we illustrate
the applicability of Theorem 3.4 with a second-order ODE.

2 Preliminaries

First of all, let us summarize the construction of the spectral flow in the approach followed by
Fitzpatrick et al. [16]. Let H be an infinite-dimensional separable real Hilbert space. Consider
an orthogonal decomposition

H = H+ ⊕ H−, (2.1)

with H+ and H− of infinite dimension. We call symmetry the linear operator J : H → H
which can be represented, in splitting (2.1), by the block matrix of operators(

I dH+ 0
0 −I dH−

)
.

Observe that we have infinitely many symmetries of H , depending on splittings like (2.1),
and that J 2 = I d for any symmetry J . Let {e±

n , n ∈ N} be two Hilbert bases of H+ and
H−, respectively, and call Hn the 2n-dimensional subspace of H generated by {e±

k , k ≤ n}.
Denote by Pn : H → Hn the orthogonal projection. Given a self-adjoint compact linear
operator K : H → H , consider L = J + K . Let Ln : Hn → Hn be the operator given by

Lnx = Pn(Lx)

and call signature of Ln the integer number

sign Ln = μ(−Ln) − μ(Ln),

where, as already said, μ(·) is the Morse index of the considered operator. In [16, Lemma
1.1] the following result is proven.

Lemma (Fitzpatrick, Pejsachowicz, Recht) Suppose that L = J + K is an automorphism
of H. Then, there is a positive integer N such that sign Ln is constant if n ≥ N.

The above eventually constant integer is called generalized signature of L with respect to
J and is denoted by signJ (L). It is possible to prove that this integer actually depends on
the symmetry J (as the notation suggests), but not on the chosen Hilbert bases {e±

n } of the
subspaces of H related to J . In other words, even if the definition of any Ln clearly depends
on the chosen bases {e±

n }, one can prove that signJ (L) does not.
Consider now a continuous path Kλ, λ ∈ [a, b], of self-adjoint compact operators of H .

Given a symmetry J of H , take the path Lλ = J + Kλ and suppose that La and Lb are
automorphisms. The spectral flow of the path L is defined as

sf(L, [a, b]) = signJ (Lb) − signJ (La)

2
. (2.2)

One can prove that the above formula does not depend on J even though signJ (La) and
signJ (Lb) do. The definition of spectral flow can be extended to any continuous path of
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self-adjoint Fredholm operators Lλ, λ ∈ [a, b], such that La and Lb are invertible. In the
particular case when Lλ = T + Kλ, where T is Fredholm and self-adjoint, and any Kλ is
compact and self-adjoint, the spectral flow is defined as

sf(L, [a, b]) = dim(V−(La) ∩ V+(Lb)) − dim(V−(Lb) ∩ V+(La)), (2.3)

which is finite. In the case of a general path of self-adjoint Fredholm operators Lλ, it can be
proven the existence of a path Mλ of automorphisms of H (called cogredient parametrix)
such that

M∗
λ LλMλ = T + Kλ,

where M∗
λ is the adjoint of Mλ, T is Fredholm and self-adjoint and any Kλ is compact and

self-adjoint. Hence, the definition sf(L, [a, b]) is given by (2.3) applied to T + Kλ and this
does not depend on the choice of Mλ. The reader can see [16] for an accurate study of the
properties of the spectral flow.

Wenow recall a basic definition of homotopy theory. Consider a pair of topological spaces,
that is, a pair (X , A) such that X is any topological space and A ⊆ X . Given a continuousmap
F : X → Y between topological spaces, to simplify the notation and avoid the introduction
of new symbols, we will denote by F : (X , A) → (Y , B) the corresponding continuous
maps between pairs (if, of course, it is well defined, that is, if F(A) ⊆ B).

Two functions F,G : (X , A) → (Y , B) are homotopic if there exists a continuous map
H : [0, 1] × X → Y such that H(0, x) = F(x), H(1, x) = G(x) and H(t, x) ∈ B for
all x ∈ A and all t ∈ [0, 1]. Two pairs (X , A) and (Y , B) are homotopy equivalent if there
exist two maps F : (X , A) → (Y , B) and G : (Y , B) → (X , A) such that G ◦ F and
F ◦ G are homotopic to the identity (in the sense described above). If this is the case, we
have isomorphisms in the relative homology groups Hi (X , A) ∼= Hi (Y , B) for every i , see
for example [18, pag. 118]. We consider here singular homology groups with coefficients in
R.

Let now X be a real Banach space. Consider aC1 function ϕ : X → R, an isolated critical
point p of φ and any k ∈ N. Denote c = φ(p) and let φ(c) be the set {x ∈ X : φ(x) ≤ c}.
Following Chang [9] (see also [22]), we define the kth-local critical group Ck(ϕ, p) as

Ck(ϕ, p) := Hk

(
φ(c) ∩U , (φ(c) \ {p}) ∩U

)
(2.4)

where, as previously, we consider here singular homology with coefficients in R. The set U
is an open neighborhood of p not containing any other critical point of φ. Let us point out
that, by general properties in singular homology theory, the above definition does not depend
on U .

As we will see, the key ingredient to prove local bifurcation of critical points is the
invariance of the critical groups under small perturbations. The next theorem is proven in
[22, Section 8.9].

Theorem 2.1 Let U be an open neighborhood of a given point v in a Hilbert space H and
consider a map ϕ ∈ C2(U ,R) having v as the only critical point and satisfying the Palais–
Smale condition over a closed ball B(v, r) ⊆ U. Then, there exists η > 0, depending only
upon ϕ, such that, for any ψ satisfying the same assumptions, the condition

sup
u∈U

(|ψ(u) − ϕ(u)|) + (|∇ψ(u) − ∇ϕ(u)|) ≤ η

implies

dimCk(ψ, v) = dimCk(ϕ, v), k ∈ N.
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A global bifurcation theorem for critical values in Banach spaces 779

As a consequence, if a function f as in Theorem A has nonvanishing spectral flow in the
interval [a, b], then we have

dimCk( fa, 0) �= dimCk( fb, 0)

and thus 0 ∈ X cannot be isolated as a critical point for every λ.
We will consider a global version of the local critical groups explained by Theorem 2.2

that can be found in [9, Theorem 5.1.27].

Theorem 2.2 Let X be a real Banach space. Assume that ϕ : X → R is C1 and satisfies the
Palais–Smale condition. Suppose that c is an isolated critical value of ϕ, where the critical
points of ϕ in ϕ−1(c) are z1, . . . , zm. Then for sufficiently small ε > 0 we have

Hk

(
ϕ(c+ε), ϕ(c−ε)

)
=

m⊕
j=1

Ck(ϕ, z j )

for every k = 0, 1, 2, . . .

Theorem 2.2 plays a central role in the proof of our main results.

3 Main results

Let us start by presenting the following conditions which will be considered throughout the
paper.

Definition 3.1 Let X be a real Banach space. We say that a C1 map f : R× X → R satisfies
the basic condition if

f (λ, 0) = 0 and
∂ f

∂x
(λ, 0) = f ′

λ(0) = 0, ∀λ ∈ R. (3.1)

The map x ∈ X �→ f (λ, x), defined for a given real λ, will be also denoted by fλ and its
Fréchet derivative at a point x by f ′

λ(x). The following subset of R2

S f = {(λ, y) ∈ R
2 : fλ(x) = y, f ′

λ(x) = 0 for some x ∈ X}
will be called the set of critical pairs. In other words, S f is the set of pairs (λ, y) such that
y is a critical value of fλ. The line Z = R × {0} ⊆ S f is regarded as the set of the trivial
critical pairs. We say that a trivial critical pair (λ0, 0) ∈ Z is a bifurcation point if every
neighborhood of (λ0, 0) contains nontrivial critical pairs. Then, we see that

E f := S f \ Z (3.2)

is the union of the bifurcation points and the nontrivial critical pairs. We will also consider
a subset of trivial critical pairs:

Z in = [−1, 1] × {0} ⊂ R
2. (3.3)

Definition 3.2 ((PS)-type conditions). Let I ⊂ R be a compact interval and c ∈ R be given.
We say that f satisfies the (PS)I ,c condition if, for every sequence (λn, xn) in I ×X such that
fλn (xn) → c and such that f ′

λn
(xn) → 0 ∈ X∗, there exists a subsequence (xnk ) converging

to a point x0 ∈ X .
Let J be a subset of R. We say that f satisfies the (PS)I ,J condition if it satisfies the

(PS)I ,c condition for every c ∈ J . We say that f satisfies the (PS)R,R condition if it satisfies
the (PS)[−N ,N ],R condition for every N ∈ N.
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780 P. Amster et al.

We are now in a position to state the following two theorems which, associated with
Theorem 6.1, are our main results. Actually, Theorem 3.4 is a consequence of Theorem 3.3,
particularly important in applications. The proof of both results is given in Sect. 5.

Theorem 3.3 Let f : R × X → R be a C1 function verifying basic condition (3.1). Denote
by ∂1 f : R × X → R the map

∂1 f (λ, x) = ∂ f

∂λ
(λ, x).

Assume that the following conditions hold:

(i) f satisfies the (PS)R,R condition.
(ii) ∂1 f is bounded in the sets of the form

f −1
[−N ,N ]([−N , N ]) := {(λ, x) ∈ [−N , N ] × X : f (λ, x) ∈ [−N , N ]}, ∀N ∈ N.

(iii) The trivial critical pairs (−1, 0), (1, 0) are not bifurcation points of f .

(iv) There exists ε∗ > 0 such that for every 0 < ε < ε∗ the pairs of spaces
(
f (ε)
−1 , f (−ε)

−1

)

and
(
f (ε)
1 , f (−ε)

1

)
are not homotopy equivalent.

Then, E f contains a connected subset intersecting Z in which either

1. is unbounded in R
2, or else

2. intersects {−1, 1} × R.

Theorem 3.4 Let H be a separable real Hilbert space and consider a C2 function f :
R × H → R satisfying basic condition (3.1).

Denote by I the interval [−1, 1] and assume that the following assumptions hold:

(i) f satisfies the (PS)R,R condition.
(ii) ∂1 f is bounded in the sets of the form f −1

[−N ,N ]([−N , N ]) for every N ∈ N.
(iii) For i = −1, 1, the point 0 ∈ H is a nondegenerate critical point and the only critical

point of fi with value 0.
(iv) Assume that, for every λ ∈ I , the Hessian of f at zero

Lλ := ∂2 f

∂x2
(λ, 0) : H → H

is Fredholm and suppose

μ(L−1) �= μ(L1).

where μ denotes the Morse index. Here we assume that μ(L−1) and μ(L1) are finite.

Then the conclusion of Theorem 3.3 holds.

One may ask whether the above theorems work with critical points instead of critical
values, as in the bifurcation theorems of Rabinowitz [25]. The answer is negative as proven
by R. Böhme [8] (see also [1,28]). We directly construct, and show below, a counterexample
regarding this lack of global behavior in the conditions of Theorem 3.4.

Example 3.5 Aclassic problem in analysis consists in proving the existence of a cone eversion.
This is a smooth function c : I × C → R, where

I = [−1, 1], C = {x ∈ R
2 : 1 ≤ ‖x‖ ≤ 2},
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A global bifurcation theorem for critical values in Banach spaces 781

such that

c(−1, x) = ‖x‖, c(1, x) = −‖x‖
and such that cλ has no critical points in C for λ ∈ I . The existence of such a function may
seem counterintuitive but actually is guaranteed by the parametric holonomic approximation
theorem, see Example 4.1.1 in [10]. An explicit formula for c was computed in [27]. Taking
R
2 as the Hilbert space H in Theorem 3.4, we construct f : R × R

2 → R
2 as follows.

The formula for c in polar coordinates as given in [27] is

c(λ, (α, r)) = 2t + g(λ, α) + (r − 2)h(λ, α)

for two functions g, h satisfying(
∂g

∂α
(λ, α), h(λ, α)

)
�= (0, 0)

for all (λ, α). Given a, b ∈ R, consider pa,b(r) = (3a − b + 1)r2 + (−2a + b − 2)r3 + r4,
which is the polynomial function satisfying the properties

pa,b(0) = p′
a,b(0) = 0, pa,b(1) = a, p′

a,b(1) = b,

and define

f (λ, (α, r)) = pg(λ,α),3h(λ,α)(r).

Putting, as usual, fλ := f (λ, ·), we easily verify

(i) f (λ, x), ∇ fλ(x) → +∞ uniformly in λ, as ‖x‖ → ∞.
(ii) f (λ, 0) = 0, ∇ fλ(0) = 0 for all λ ∈ I .
(iii) f (−1, (α, r)) = 4r2 − 3r3 + r4, f (1, (α, r)) = −2r2 − r3 + r4.
(iv) ∇ fλ(x) �= 0 for ‖x‖ = 1, λ ∈ I .

Property (iii) implies

μ

(
∂2 f

∂x2
(−1, 0)

)
= 0 and = μ

(
∂2 f

∂x2
(1, 0)

)
= 2.

In addition, the path λ �→ ∇ fλ(0) does not satisfy the necessary hypothesis for the
“classical” global bifurcation theorem (in the sense of Rabinowitz). Also, one may check
that f is in the conditions of Theorem 3.3. Let

K f = {(λ, x) ∈ I × X : ∇ fλ(x) = 0}
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782 P. Amster et al.

and notice that condition (iv) forces K f ∩(I×∂B(0, 1)) = ∅. Then, the connected component
of K f \ (I × {0}) containing bifurcation points (λ, 0) belongs I × B(0, 1) and does not
intersect the subspaces λ = −1, 1. That is, there is local but not global bifurcation.

The function f1 has a set of nontrivial critical points in X of the form ∂B(0, R) with
R ∈ (1, 2). Actually the connected component of K f containing {1}× ∂B(0, R) lies outside
I × B(0, 1), but its image by f crosses the value 0.

This example shows that it is not possible to prove global bifurcation of critical points
relying only on the fact that the Morse index is nonconstant of Morse index (and, in the
infinite-dimensional case, nonvanishing spectral flow).

The proofs of Theorems 3.3 and 3.4 require several lemmas. We start with some results
concerning the level sets and the (PS)I ,c condition.

4 Deformation theorems

We present here some technical lemmas which will play a fundamental role in the proof of
Theorems 3.3 and 3.4. Next lemma is a sort of characterization of the (PS)I ,c property. In
this section, I denotes a real compact interval and the function f is not required to verify
basic condition (3.1).

Lemma 4.1 Let f : R× X → R be a C1 function satisfying the (PS)I ,a condition for a given
a ∈ R which is a regular value for every fλ, with λ ∈ I . Then, there exist ε, δ > 0 such that
‖ f ′

λ(x)‖ ≥ ε for every (λ, x) ∈ f −1
I ((a − δ, a + δ)).

Proof Assume by contradiction that there exists a sequence (λn, xn) ∈ I × X such that
‖ f ′

λn
(xn)‖ → 0 and f (λn, xn) → a. Taking a convergent subsequence (λn j ) and a convergent

subsequence (xn j ) given by the (PS)I ,a condition, we deduce that a is a singular value. ��

Lemma 4.2 Consider a closed set J ⊂ R and let f : R× X → R be a C1 function satisfying
the (PS)I ,J condition. Then the set

K = {(λ, c) ∈ I × J : ∃x ∈ X , fλ(x) = c, f ′
λ(x) = 0}

is closed.

Proof Take a convergent sequence (λn, cn) → (λ, c) ∈ I × J , (λn, cn) ∈ K , and consider
xn ∈ X , for any n, such that f (λn, xn) = cn , f ′

λ(xn) = 0. By the (PS)I ,c condition there
exists a convergent subsequence of (xn). Thus, the continuity of f ′

λ shows that (λ, c) ∈ K . ��

Lemma 4.3 Let f : R × X → R be a C1 function satisfying (PS)I ,{a,b} where a < b are
regular values of fλ for λ ∈ I . Denote Ut = (a − t, a + t) ∪ (b− t, b+ t). Assume that ∂1 f
is bounded in f −1

I (Uδ) for some δ > 0. Then, there exists a function v : R × X → X such
that

(i) v is bounded and locally Lipschitz.
(ii) ∂1 f (λ, x) + f ′

λ(x)[v(λ, x)] < 0 if λ ∈ I and fλ(x) = a or b.

Remark 4.4 The reader can understand the notation f −1
I (Uδ) by the analogous one in the

statement of Theorem 3.3.
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Proof First, by Lemma 4.1 we may assume, taking a smaller δ > 0 if necessary, that, for
some ε > 0, ‖ f ′

λ(x)‖ ≥ ε for all (λ, x) ∈ f −1
I (Uδ). Let ν : R → [0, 1] be a continuous

function equal to 0 in Uδ/2 and equal to 1 in R \ Uδ . We shall construct v(λ, x) satisfying
the inequality

∂1 f (λ, x) + f ′
λ(x)[v(λ, x)] < ν( fλ(x)) (|∂1 f (λ, x)| + 1) . (4.1)

Thus, condition (ii) will follow. To this purpose, fix (λ, x) ∈ I × X and assume fλ(x) ∈ Uδ ,
so that ‖ f ′

λ(x)‖ ≥ ε. There exists wλ,x ∈ X such that

‖wλ,x‖ ≤ 2

ε
(|∂1 f (λ, x)| + 1)

and

f ′
λ(x)[wλ,x ] ≤ −(|∂1 f (λ, x)| + 1).

Hence, we have ∂1 f (λ, x) + f ′
λ(x)[wλ,x ] < 0. On the other hand, if fλ(x) /∈ Uδ , we

define wλ,x = 0. In both cases, we obtain

∂1 f (λ, x) + f ′
λ(x)[wλ,x ] < ν( fλ(x)) (|∂1 f (λ, x)| + 1) .

By continuity, every (λ, x) ∈ I × X has a neighborhood V λ,x in R × X such that

∂1 f (α, y) + f ′
α(y)[wλ,x ] < ν( fα(y)) (|∂1 f (α, y)| + 1) (4.2)

for every (α, y) ∈ V λ,x . Since I × X is paracompact and {V λ,x }λ,x is an open covering of
I × X , we obtain a countable, locally finite refinement Vi ⊆ V λi ,xi covering I × X , and
a locally Lipschitz partition of unity, that is, a collection of (locally Lipschitz) nonnegative
functions ηi : R × X → R with support in Vi and such that∑

i∈N
ηi (λ, x) = 1 ∀(λ, x) ∈ I × X ,

where the above sum is locally finite. Recalling (4.2), we have, for any i and any (α, y) ∈
I × X ,

ηi (α, y)∂1 f (α, y) + f ′
α(y)[ηi (α, y)wλ,x ] ≤ ηi (α, y)ν( fα(y)) (|∂1 f (α, y)| + 1) ,

with the strict inequality if ηi (α, y) > 0. Then, we obtain∑
i∈N

ηi (α, y)
(
∂1 f (α, y) + f ′

α(y)[wλ,x ]
)

<
∑
i∈N

ηi (α, y)ν( fα(y)) (|∂1 f (α, y)| + 1) .

Now, define

v(λ, x) =
∑
i∈N

ηi (λ, x)wλi ,xi .

We have

∂1 f (α, y) + f ′
α(y)[v(λ, x)] < ν( fα(y)) (|∂1 f (α, y)| + 1) .

Since ‖wλ,x‖ ≤ 2
ε

(|∂1 f (λ, x)| + 1) for every (λ, x) ∈ I × X , we have, for any (α, y) ∈
R × X ,

‖v(α, y)‖ ≤
∑
i∈N

ηi (α, y)‖wλi ,xi ‖ ≤ 2

ε

⎛
⎝ sup

(λ,x)∈ f −1
I (Uδ)

|∂1 f (λ, x)| + 1

⎞
⎠
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and v is bounded. Finally, it is immediate to observe that v is locally Lipschitz and this
concludes the proof. ��

The next two theorems are key to the study of deformation of one-parameter families of
functions. Theorems 4.5 and 4.6 generalize analogous results in the textbook [9], where they
appear under much stronger conditions.

Theorem 4.5 (Deformation Theorem). Let f : R× X → R be C1 and a < b regular values
of fλ for λ ∈ I . Assume that f satisfies (PS)I ,{a,b} and that ∂1 f is bounded in f −1

I (Uδ) for

some δ > 0. Then the pairs
(
f (b)
−1 , f (a)

−1

)
and

(
f (b)
1 , f (a)

1

)
are homotopy equivalent.

Proof The vector field v constructed in Lemma 4.3 is locally Lipschitz and bounded, so it
generates a globally defined flow

φ : R × R × X → X ,

which satisfies

∂

∂t
φ(t, λ, x) = v(t + λ, φ(t, λ, x)).

For (λ0, x0) ∈ I × X , the curve x(t) = φ(t, λ0, x0) is the solution of the initial value
problem {

x ′(t) = v(λ0 + t, x(t))
x(λ0) = x0.

(4.3)

For any (λ, x) ∈ R × X define ϕ(t) = ft+λ(φ(t, λ, x)), which verifies

ϕ′(t) = ∂1 f (t + λ, φ(t, λ, x)) + f ′
t+λ(φ(t, λ, x))[v(t + λ, φ(t, λ, x)].

Notice that, by condition (ii) of Lemma 4.3, ϕ(t) = a implies ϕ′(t) < 0. So, if ϕ(0) ≤ a,
then we have ϕ(t) < a for every t > 0. If x ∈ f (a)

λ , then, by the definition of ϕ and the

previous consideration, φ(t, λ, x) ∈ f (a)
t+λ. We can write it as

φ
(
t, λ, f (a)

λ

)
⊆ f (a)

t+λ.

Similarly, for b we obtain

φ
(
t, λ, f (b)

λ

)
⊆ f (b)

t+λ.

Applying the same reasoning to the function f̄ (λ, x) := f (−λ, x), we obtain a (globally
defined) flow φ̄ : R × R × X → X such that

φ̄
(
t, λ, f̄ (a)

λ

)
⊆ f̄ (a)

t+λ, φ̄
(
t, λ, f̄ (b)

λ

)
⊆ f̄ (b)

t+λ

for every t > 0.
The functions F(x) = φ(2,−1, x), G(x) = φ̄(2,−1, x) can be seen, with an abuse of

notation (see Preliminaries), as continuous functions of pairs

F :
(
f (b)
−1 , f (a)

−1

)
→

(
f (b)
1 , f (a)

1

)

G :
(
f (b)
1 , f (a)

1

)
→

(
f (b)
−1 , f (a)

−1

)
.
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Define

Ht (x) = φ̄(t, 1 − t, φ(t,−1, x)), H̄t (x) = φ(t, 1 − t, φ̄(t,−1, x)).

Then, we verify that Ht , H̄t are functions of pairs

Ht :
(
f (b)
−1 , f (a)

−1

)
→

(
f (b)
−1 , f (a)

−1

)
, H̄t :

(
f (b)
1 , f (a)

1

)
→

(
f (b)
1 , f (a)

1

)

for t > 0. In addition, H0(x) = x, H2(x) = G(F(x)), H̄0(x) = x, H̄2(x) = F(G(x)).
Thus, F and G are homotopy equivalences. ��
Theorem 4.6 Let (r , s) be an open bounded interval and let a, b : I → (r , s) be two
continuous functions such that a(λ) < b(λ) for any λ, and f : R × X → R a C1 function
satisfying the (PS)I ,[r ,s]-condition.

Assume that ∂1 f : I × X → R is bounded in the set f −1
I (r , s). Assume also that

a(λ), b(λ) are regular values of fλ for every λ ∈ I . Then the pairs
(
f (b(−1))
−1 , f (a(−1))

−1

)
and(

f (b(1))
1 , f (a(1))

1

)
are homotopy equivalent.

Proof By hypothesis, the graphs of a, b in I × R do not intersect the set

K = {(λ, c) ∈ I × [r , s] : ∃x ∈ X , fλ(x) = c, f ′
λ(x) = 0}.

Since K is closed by Lemma 4.2, the graphs of the functions a, b can be approximated
by C1 functions with the same endpoints a(±1) and b(±1). Thus we may assume a, b are
C1. We consider the function

g(λ, x) = f (λ, x) − a(λ)

b(λ) − a(λ)
.

Thus, g satisfies

f (a(λ))
λ = g(0)

λ , f (b(λ))
λ = g(1)

λ ,

and it is easy to check that g verifies the conditions of Theorem 4.5 with a = 0, b = 1. ��

5 Proofs of Theorems 3.3 and 3.4

First, we prove two technical lemmas.

Lemma 5.1 Let D ⊂ R
2 be a closed rectangle, A0, A1 be two opposite sides of D and B0, B1

be the other two. Let S ⊂ D be a compact set. If S does not contain a connected component
intersecting B0 and B1, then there exists a continuous curve γ : [0, 1] → D with γ (0) ∈ A0

and γ (1) ∈ A1 and not intersecting S, B0 and B1.

Proof Without loss of generality, we can assume that A0, A1 are vertical sides and B0, B1

horizontal. Let Si = S ∩ Bi , i = 0, 1 and assume there is no connected component of S
which intersects S0 and S1 at the same time. We may assume that Si �= ∅ because, otherwise,
a horizontal line close to Bi would be the desired curve. By Whyburn’s lemma there is a
separation S = C0 ∪C1 where Si ⊆ Ci and C0,C1 are two nonempty disjoint compact sets.
The sets Ci ∪ Bi are also nonempty disjoint and compact. By the smooth Urysohn lemma
[29, corollary of Theorem 1.11] there exists a C∞ smooth function g : R2 → R such that
g(x) = i for all x ∈ Ci ∪ Bi , i = 0, 1.
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Take α ∈ (0, 1) a regular value of the three functions g, g|A0 , g|A1 and consider

L = g−1(α) ∩ (D \ (B0 ∪ B1))

which is a one-dimensional differentiable manifold with boundary, with ∂L = L∩(A0∪ A1)

and L ∩ S = ∅. Since g(x) = i for all x ∈ Bi , i = 0, 1, and α is a regular value of
g|Ai , i = 0, 1, then the cardinality of L ∩ Ai is odd, for i = 0, 1. Therefore, there is a curve
of L having one endpoint in each of the Ai ’s. ��
Lemma 5.2 Let a, b : [−1, 1] → [−1, 1] be two continuous functions satisfying

a(−1) = b(−1) = −1, a(1) = b(1) = 1.

Then for every ε > 0 there exist continuous functions ã, b̃, c, d : [−1, 1] → [−1, 1] such
that

1. ã(−1) = b̃(−1) = −1, ã(1) = b̃(1) = 1,
2. c(−1) = d(−1) = −1, c(1) = d(1) = 1,
3. ‖ã − a‖∞ < ε, ‖b̃ − b‖∞ < ε,
4. ã(c(t)) = b̃(d(t)).

Proof We approximate a, b by smooth functions ã, b̃ : [−1, 1] → [−1, 1] satisfying condi-
tions 1, 3 above and

(i) ã′(−1), b̃′(−1), ã′(1), b̃′(1) > 0,
(ii) the critical values of ã and b̃ are disjoint,
(iii) ã(x), b̃(x) ∈ (−1, 1) for all x ∈ (−1, 1).

Let D = [−1, 1]×[−1, 1] and φ : D → R, defined as φ(x, y) = ã(x)− b̃(y). Condition
(ii) guarantees that 0 is a regular value of φ|D0 , where D0 stands for the interior of D. Let
L = φ−1(0). Since condition (iii) implies

φ(1, t) > 0, φ(t,−1) > 0,
φ(−1, t) < 0, φ(t, 1) < 0,

for all t ∈ (−1, 1), we have L ∩ ∂D = {(−1,−1), (1, 1)}. Even if D is not a manifold with
boundary (because of the vertices) by condition (i), L can be parameterized near (−1,−1)
and (1, 1) with curves entering D0. Thus, L is a differentiable manifold of dimension 1 with
boundary {(−1,−1), (1, 1)} which must connect these two points. Parameterize the curve
inside L connecting (−1,−1) and (1, 1) by (c(t), d(t)). Then c, d satisfy

0 = φ(c(t), d(t)) = ã(c(t)) − b̃(d(t)).

��

Proof of Theorem 3.3 Let ε > 0 be small enough so that the two disks B−1 = B((−1, 0), ε)
and B1 = B((1, 0), ε) contain only trivial critical pairs.

LetG f be the connected component of E f ∪ Z in containing Z in [recall formulas (3.2) and
(3.3) for the definitions of E f and Z in]. Assume by contradiction that none of alternatives 1
and 2 in the statement of the theorem, are satisfied for G f . Then, there is R > 0 such that
G f ⊆ [−1, 1] × [−R, R].

The set D+ = [−1, 1]× [0, R] is homeomorphic to a closed rectangle, where the vertical
sides correspond to {−1, 1} × [0, ε] and the horizontal lines to the rest of ∂D+, this is Z in

and the three segments

Sout := ({−1, 1} × [ε, R]) ∪ ([−1, 1] × {R}).
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Fig. 1 The red sides correspond
to the vertical sides of the square
and the blue sides, to the
horizontal ones (colour figure
online)

The reader can see the above Fig. 1. If claim 2 of the theses of the theorem fails, then
there is no connected set inside E f that intersects at the same time both horizontal sides of
the rectangle. Therefore, applying Lemma 5.1 which is invariant by homeomorphisms, as it
is easy to see, we conclude that there exists a continuous curve

u+ : [−1, 1] → D+ \ E f

such that

u+(−1) = (−1, ε/2), u+(1) = (1, ε/2).

Similarly, define D− in the lower semiplane and a map

u− : [−1, 1] → D− \ E f

such that

u−(−1) = (−1,−ε/2), u−(1) = (1,−ε/2),

and having analogous properties to u+. Denote

u+(t) = (λ+(t), y+(t)), u−(t) = (λ−(t), y−(t)).

By Lemma 5.2 with ε < dist(S f , Im(u±)) and a, b replaced by λ−, λ+, we obtain func-
tions λ̃−, λ̃+, c, d : [−1, 1] → [−1, 1] such that
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1. ũ±(t) := (λ̃±(t), y±(t)) ∈ R
2 \ S f for all t ∈ [−1, 1],

2. λ̃−(c(t)) = λ̃+(d(t)).

Now define

λ(t) = λ̃−(c(t)) = λ̃+(d(t)),

a(t) = y−(c(t)),

b(t) = y+(d(t)).

By the properties of the curves ũ± we know that a(t) and b(t) are regular values of
fλ(t) : X → R, for any t ∈ [0, 1]. Applying Theorem 4.6 to the family of maps fλ(t), we get
the homotopy equivalence of pairs(

f (b(−1))
−1 , f (a(−1))

−1

) ∼=
(
f (b(1))
1 , f (a(1))

1

)
.

In view of assumption (iii), we have(
f (δ)
−1 , f (−δ)

−1

) ∼=
(
f (δ)
1 , f (−δ)

1

)

for any δ ∈ (0, ε/2), which contradicts hypothesis (iv). ��
Proof of Theorem 3.4 We want to prove that conditions 3.4(iii) and 3.4(iv) imply condi-
tions 3.4(iii) and 3.4(iv). [Actually conditions 3.4(i) and 3.4(ii) coincide with 3.4(i) and
3.4(ii).] Here, the reader could notice that we have used a simplified notation to refer to the
assumptions of Theorems 3.3 and 3.4.

The facts that f is C2 and that 0 ∈ H is a nondegenerate critical point [condition 3.4(iii)]
imply 3.4(iii).

It remains to show that conditions 3.4(iii) and 3.4(iv) imply condition 3.4(iv). Assume

the pairs of spaces
(
f (δ)
−1 , f (−δ)

−1

)
and

(
f (δ)
1 , f (−δ)

1

)
are homotopy equivalent for δ > 0

arbitrarily small. Then, by Theorem 2.2 and the fact that 0 ∈ H is the only critical point with
value 0 [condition 3.4(iii)], we can compute the critical groups for every k ∈ N as

Ck( fi , 0) ∼= Hk

(
f (ε/2)
i , f (−ε/2)

i

)

for i = −1, 1.
The remainder of the proof is standard.Condition 3.4(iv) permits to reduce the computation

of the critical groups to finite-dimensional spaces, and the condition

μ(L−1) �= μ(L1)

implies that Ck( f−1, 0) is not isomorphic to Ck( f1, 0) for some k, which is a
contradiction. ��

6 Strongly indefinite functions

In this section we will prove a global bifurcation result for a class of nonlinear functionals
verifying analogous conditions of Theorem 3.4, except for the fact that the Hessian operators
of the functionals have here infinite-dimensional negative eigenspaces and thus the Morse
index cannot be defined. Condition (iv) of Theorem 3.4 will be replaced in Theorem 6.1 by
a more general one involving the spectral flow of the Hessian operators. On the other hand,
Theorem 6.1 is not strictly considered as an extension of Theorem 3.4 because it requires a
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A global bifurcation theorem for critical values in Banach spaces 789

special compactness assumption, as we will see below. With a slight abuse of notation, in the
sequel ∇ f (λ, x) will denote the Fréchet derivative of f with respect to the second variable.

Theorem 6.1 Let f : R × H → R be a C2 function such that

f (λ, 0) = 0 and ∇ f (λ, 0) = 0, ∀λ ∈ R.

Suppose that, for every (λ, x) ∈ R × H, one has ∇ f (λ, x) = J (x) − K (λ, x) where J
a symmetry of H and the range of K : R × H → H is contained in a compact set. Denote
by I the interval [−1, 1] and assume that the following assumptions hold:

(i) f satisfies the (PS)R,R condition.
(ii) ∂1 f is bounded in the sets of the form f −1

[−N ,N ]([−N , N ]) for every N ∈ N.
(iii) For i = −1, 1, 0 ∈ H is a nondegenerate critical point and the only critical point of

fi with value 0.
(iv) Assume that, for every λ ∈ I , the Hessian of f with respect to the second variable at

x = 0,

Lλ := ∂2∇ f (λ, 0),

is Fredholm for every λ ∈ [−1, 1] and suppose
sf(L, I ) �= 0.

Then the conclusion of Theorem 3.3 holds.

Recalling Sect. 2, let H = H+ ⊕ H− be the orthogonal splitting produced by J and let
{e±

n , n ∈ N} be two Hilbert bases of H+ and H−, respectively. Call Hn the 2n-dimensional
subspace of H generated by {e±

k , k ≤ n}. As in Sect. 2, denote by Pn : H → Hn the
orthogonal projection and define fn as the restriction of Pn f to R × Hn . Clearly we have

∇ f (λ, x) = J (x) − K (λ, x),

∇ fn(λ, x) = J (x) − Kn(λ, x),

∂2∇ fn(λ, x) = J − ∂2Kn(λ, x),

where Kn(λ, x) = PnK (λ, x). We need three technical lemmas.

Lemma 6.2 Thereare ε > 0andm0 ∈ N such that, form ≥ m0, the balls B((±1, 0), ε) ⊆ R
2

contain only trivial critical pairs of fm.

Proof Assume the contrary. Then, we have a sequence (λn, xn) ∈ R × H such that

xn ∈ Hn \ Hn−1

λn → λ∗ = ±1

f (λn, xn) → 0

∇ f (λn, xn) = 0.

Since J (Hn) = Hn and Pn → I d uniformly in compact sets, and since K has compact
image, we have a subsequence, we still call (xn), such that

xn = J PnK (λn, xn) → x∗.

(In the above equality, we also use the fact that the inverse of J is J .) By the continuity of
f and ∇ f ,

f (λ∗, x∗) = 0, ∇ f (λ∗, x∗) = 0.
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By the assumption (iii), we have x∗ = 0. Now, since f is C2, we have

0 = ∇ fn(λn, xn) = ∂2∇ fn(λ
∗, 0) xn + o(‖xn‖)

0 = ∂2∇ f (λ∗, 0) xn + (I d − Pn) ∂2K (λ∗, 0) xn + o(‖xn‖).
Since the Frechet derivative of a compact function is a compact operator [20, Theorem

17.1], and since Pn → I d uniformly in compact sets, we have (modulo a subsequence)

‖(I d − Pn) ∂2K (λ∗, 0) xn‖ = o(‖xn‖).
Hence, we conclude that ∂2∇ f (λ∗, 0) xn = o(‖xn‖) which contradicts the invertibility of
∂2∇ f (λ∗, 0). The lemma is thus proven. ��

The following lemma can be easily verified.

Lemma 6.3 For any m, the function fm satisfies (PS)R,R.

Proof Assume there is a sequence (λn, xn) ∈ R × Hm such that

fm(λn, xn) → c

∇ fm(λn, xn) = J (xn) − Km(λn, xn) → 0.

Then, by the compactness of Km , there is a subsequence, again called (xn), such that
J Km(λn, xn) converges, and thus

xn = J (∇ fm(λn, xn)) + J Km(λn, xn)

also converges. ��
Also we prove the following result.

Lemma 6.4 If (zn) ⊂ R
2 is a convergent sequence such that zn ∈ S fn , then z = lim zn ∈ S f .

Proof Take (λn, xn) ∈ R × Hn such that (λn, f (tn, xn)) = zn and ∇ fn(λn, xn) = 0. We
have

xn = J Kn(λn, xn).

Thus, taking a subsequence of J Kn(λn, xn), we have

x = lim
n→∞ xn = J K (λ, x)

and (λ, f (λ, x)) = z. ��
For sufficiently largem, the spectral flow of the Hessian operators of f , sf(L, I ), which is

nonzero according to the assumptions of Theorem 6.1, is computed as μ(Lm,−1)−μ(Lm,1),
whereμ(Lm,λ) is theMorse index of the Hessian of fm(λ, ·). Therefore, considering Lemma
6.3, the function fm is in the hypotheses of Theorem 3.4. We obtain for every m ≥ m0 a
family of closed connected sets Cm ⊆ S fm satisfying the conclusion of Theorem 3.3. Now
we can prove the main result of this section.

Proof of Theorem 6.1 As in the proof of Theorem 3.3, assume none of the alternatives 1 and
2 are satisfied. Take G f ⊆ R

2, R > 0, D+, D− and Sout as in the proof of Theorem 3.3, and
ε > 0 as in Lemma 6.2. The set G f is contained in D+, contains Zin and does not intersect
Sout. Again by Whyburn’s lemma, there exists an open set A containing G f and such that
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A ∈ D+,
∂A ∩ (E f ∪ Sout) = ∅.
For every m > m0 we have nonempty intersections zm ∈ Cm ∩ ∂A. By Lemma 6.2, we

have zm /∈ B±1. Taking a convergent subsequence given by the compactness of ∂A, we may
assume zm → z with z ∈ ∂A. Finally, by Lemma 6.4 we obtain z ∈ S f . Since z /∈ Z in ∪ Sout
we deduce z ∈ E f , which is a contradiction. ��

7 Example of application in a second-order ODE

In order to show the applicability of our method, we consider the following parameterized
second-order differential equation with periodic boundary conditions:⎧⎨

⎩
x ′′(t) = −g′(x(t))pλ(t)
x(0) = x(2π)

x ′(0) = x ′(2π).

(7.1)

where we assume that

(i) the map g : R → R is C2 with g(0) = g′(0) = 0;
(ii) the limits lims→−∞ g′(s) < 0 < lims→+∞ g′(s) exist and are finite;
(iii) the real map p(λ, t) = pλ(t) is continuous and bounded on [−1, 1] × R;
(iv) any pλ is 2π-periodic;
(v) p−1 and p1 are constant;
(vi)

∫ 2π
0 pλ(t)dt �= 0 for every λ ∈ [−1, 1].

Call H = H1
per ([0, 2π ],R) the subspace of the Hilbert space H1([0, 2π],R) consisting

of 2π-periodic absolutely continuous functions with derivative in L2. Then define the action
functional

f : [−1, 1] × H → R

fλ(x) = 1

2

∫ 2π

0
x ′(t)2dt −

∫ 2π

0
g(x(t))pλ(t)dt .

Compute the derivatives

f ′
λ(x)[v] =

∫ 2π

0
x ′(t)v′(t)dt −

∫ 2π

0
g′(x(t))pλ(t)v(t)dt

f ′′
λ (0)[v,w] =

∫ 2π

0
v′(t)w′(t)dt − c

∫ 2π

0
pλ(t)v(t)w(t)dt

so that x ∈ H is a (classic) solution of (7.1) if and only if f ′(x) = 0. Let us show that
f satisfies the hypotheses of Theorem 3.4 for some values of a±1 and c, where we denote
p−1(t) = a−1, p1(t) = a1 and g′′(0) = c. For convenience denote κi = √

ai c.
First of all, the fact that f is C2 and satisfies the (PS)R,R condition can be verified thanks

to the smoothness and growth condition of g. The proof is standard but rather technical, and
we only describe the main lines. We follow the proof of [2, Lemma 3.1].

Assume that

| fλn (yn)| → c, ‖ f ′
λn

(yn)‖H∗ := εn → 0, λn → λ (7.2)
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where H∗ denotes the dual space of H . We claim that yn is bounded: indeed, otherwise we
may suppose that ‖yn‖H → ∞. Set vn = yn

‖yn‖H , then taking a subsequence we may assume
that vn → v weakly and vn → v uniformly. Moreover, from the inequality

1

2

∫ 2π

0
y′
n(t)

2dt −
∫ 2π

0
g(yn(t))pλn (t)dt ≤ C

and |g(u)| ≤ C |u| we obtain
∫ 2π

0

y′
n(t)

2

‖yn‖2H
dt → 0.

We also have that

‖yn − yn(0)‖∞ ≤ C‖y′
n‖L2

for some constant C . Thus, if we write

vn = yn − yn(0)

‖yn‖H + yn(0)

‖yn‖H ,

the first term goes to 0. Then, taking a subsequence we may assume that vn → c0 uniformly
for some constant c0 �= 0. Furthermore, vn → 0 in L2 and we conclude that vn → c0 in
H . This means that yn diverges either to +∞ or −∞. Then the limit condition of g′ can be
exploited as in [2, Lemma 3.1] to conclude that f ′

λn
(yn)[vn] cannot converge to 0 and this is

a contradiction.
Now that yn is bounded in H , taking a subsequence we may assume that yn → y weakly

in H1 and uniformly for some y. As ‖yn‖H is bounded,

| f ′
λn

(yn)(yn − y)| ≤ εn‖yn − y‖ → 0.

Moreover, as g′ is bounded, the uniform convergence of yn → y implies that the second
term of f ′

λn
(yn)(yn − y) tends to 0, and hence

∫ 2π

0
y′
n(y

′
n − y′) dt → 0.

Then, as yn → y weakly in H , we conclude that
∫ 2π

0
(y′

n − y′)2 dt → 0,

and thus yn → y in H . This proves that fλ satisfies (PS)R,R.
For i = −1, 1 we compute

f ′′
i (0)[v,w] =

∫ 2π

0
w′(t)v′(t)dt − cai

∫ 2π

0
w(v)v(t)dt .

Writing the elements of H as Fourier series x(t) = ∑
n∈Z xneint we have an isomorphism

H ∼=
{

(xn) ∈ �2(C)

/ ∑
n∈Z

(nxn)
2 < ∞, xn = x−n

}

and in these coordinates

f ′′
i (0)[v,w] =

∑
(n2 − cai )vnwn
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then we have that μ( f ′′
i (0)) is the number of negative coefficients in the sum, this is

μ( f ′′
i (0)) =

{
1 + 2 �κi� if cai ≥ 0
0 otherwise

,

provided κi /∈ N0, which corresponds to the nondegeneracy of f ′′
i (0).

Condition 3.4(iii) of Theorem 3.4 can be verified in different ways in terms of g since
equation (7.1) is conservative for λ = ±1. For example, assume for simplicity that the area
A(E) = |{(x, p) ∈ R

2/ 1
2 p

2 + g(x) ≤ E}| is a convex function. Then one can check that the
minimal period

T (E) = √
2

∫
g(x)≤E

dx√
E − g(x)

of the unique periodic solution xE of energy E is an increasing function of E (see [4, Chapter
2]). We also have that T (E) → 2π

κi
when E → 0, so there are at most �κi�-many periodic

solutions of period 2π , and it suffices to verify that fi (xE ) �= 0 if T (E) divides 2π .
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