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Abstract
It is established existence, multiplicity, and asymptotic behavior of nonnegative solutions
for a quasilinear elliptic problem driven by the �-Laplacian operator. One of these solutions
is obtained as ground-state solution by applying the well-known Nehari method. The non-
linear term is a concave–convex function which presents a critical behavior at infinity. The
concentration-compactness principle is used in order to recover the compactness required in
variational methods.
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1 Introduction

In this work, we deal with existence, multiplicity, and asymptotic behavior of nonnegative
solutions of the problem

− ��u = λa(x)|u|q−2u + b(x)|u|�∗−2u in �, u = 0 on ∂�, (1.1)

where � ⊂ R
N is a bounded smooth domain, λ > 0 is a parameter, �∗ := N�/(N − �)

with 1 < � < N and a, b : � → R are two indefinite functions in sign. The operator �� is
named �-Laplacian which is given by

��u = div(φ(|∇u|)∇u)

where φ : (0,∞) → (0,∞) is a C2-function satisfying

(φ1) lim
s→0

sφ(s) = 0, lim
s→∞ sφ(s) = ∞;

(φ2) s �→ sφ(s) is strictly increasing.

We extend s �→ sφ(s) to R as an odd function. The function � is given by

�(t) =
∫ t

0
sφ(s)ds, t ≥ 0.

As a consequence the function� satisfies�(t) = �(−t) for each t ∈ R. Without any loss of
generalitywe assume�(1) = 1. For further results onOrlicz andOrlicz–Sobolev framework,
we refer the reader to [1,36–39,50]. At the same time, the Orlicz–Sobolev space W 1,�(�)

is a generalization of the classical Sobolev space W 1,p(�). Hence, several properties of the
Sobolev spaces have been extended to Orlicz–Sobolev spaces. The interest regarding Orlicz–
Sobolev spaces is motivated by their applicability in many fields of mathematics, such as
partial differential equations, calculus of variations, nonlinear potential theory, differential
geometry, geometric function theory, the theory of quasiconformal mappings, probability
theory, non-Newtonian fluids, image processing. The class of problems introduced in (1.1) is
related with several fields of physics based on the nature of the nonhomogeneous nonlinearity
�. For instance, we cite the following examples:

(i) Nonlinear elasticity: �(t) = (1 + t2)γ − 1, 1 < γ < N/(N − 2);
(ii) Plasticity: �(t) = tα(log(1 + t))β , α ≥ 1, β > 0;
(iii) Non-Newtonian fluid: �(t) = 1

p |t |p , for p > 1;

(iv) Plasma physics: �(t) = 1
p |t |p + 1

q |t |q , where 1 < p < q < N with q ∈ (p, p∗);
(v) Generalized Newtonian fluids: �(t) = ∫ t0 s1−α[sinh−1(s)]β ds, 0 ≤ α ≤ 1, β > 0.

For more details about nonhomogeneous differential operators with different types of non-
linearity �, we refer the readers to [30,33,36,37,54] and references therein. Recall that when
φ := 2, a = b := 1 we obtain � = 2. Then problem (1.1) reads as

− �u = λ|u|q−2u + |u|2∗−2u in �, u = 0 on ∂�. (1.2)

In the pioneering paper [13], the authors proved results on existence of positive solutions
of (1.2). A new variational technique was developed to overcome difficulties due to the
presence of the critical Sobolev exponent 2∗ = 2N

N−2 .
Problem (1.2) was later considered in [7] where among other results it was shown that

there is some � > 0 such that (1.2) has
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Critical quasilinear elliptic problems using concave–convex… 695

(i) a positive minimal solution uλ ∈ H1
0 for each λ ∈ (0,�), with

1

2

∫
�

|∇uλ|2dx − λ

q + 1

∫
�

uq+1
λ dx − 1

2∗

∫
�

u2
∗

λ dx < 0

when 1 < q < 2, N ≥ 1,

(ii) a positive weak solution uλ ∈ H1
0 for λ = �

when 2 < q < 3, N ≥ 3,

(iii) no positive solution when λ > �.

Moreover, in the first case above, ‖uλ‖∞ → 0 as λ → 0. We also refer the reader [2,3] and
references therein.

It is important to mention that when φ(t) = r tr−2, 1 < r < ∞ and a = b := 1 problem
(1.1) becomes

− �r u = λ|u|q−2u + |u|p−2u in �, u = 0 on ∂�. (1.3)

This problem was also studied in [8] and subsequently by many other researchers.
It is worthwhile to mention that conditions (φ1) − (φ2) implies that the function � is an

N -function. In addition due to the expression of��, it is natural to work in the framework of
Orlicz–Sobolev spaces, and for basic results on Orlicz and Orlicz–Sobolev spaces, we infer
the reader to [1,38,39,50]. It is well known that W 1,�

0 (�) is not equal in general to W 1,q
0 (�)

for any q ∈ [1,+∞). As example we cite �(t) = |t |pln(1 + |t |), p > 1, which satisfies
W 1,�

0 (�) �= W 1,q
0 (�) for any q ∈ [1,+∞). Hence it is not possible to consider the usual

Sobolev spaces W 1,q
0 (�) in order to ensure existence and multiplicity of solutions for the

problem (1.1). In [21,45,46] the authors have been considered the following hypothesis

t → �(
√
t) is a strictly convex function. (1.4)

Under this condition, the Orlicz–Sobolev spaces is uniformly convex. However, for the p-
Laplacian operators, we observe that �(t) = t p/p and (1.4) says that p ≥ 2. This is a
serious restriction on Orlicz–Sobolev framework. In order to preserve the property,W 1,�

0 (�)

is uniform convex, and we shall consider another hypothesis on the function � taking into
account the p-Laplacian operator for any p > 1. Furthermore, using the Orlicz–Sobolev
setting, we shall consider an additional hypothesis on the function φ which allow us to
consider a huge class of quasilinear operators where the assumption (1.4) does not work
anymore. Under this additional condition, we consider a minimization problem using the
Nehari method. More precisely, the following additional condition on φ will be assumed:

(φ3) −1 < � − 2 := inf
t>0

(tφ(t))′′t
(tφ(t))′

≤ sup
t>0

(tφ(t))′′t
(tφ(t))′

=: m − 2 < N − 2.

The usual norm on L�(�) is ( Luxemburg norm),

‖u‖� = inf

{
λ > 0 |

∫
�

�

(
u(x)

λ

)
dx ≤ 1

}

and the Orlicz–Sobolev norm of W 1,�(�) is

‖u‖ = ‖u‖� +
N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
�

.
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696 E. D. da Silva et al.

We say that a N-function  grows essentially more slowly than �∗, and we write  << �∗
whenever

lim
t→∞

(λt)

�∗(t)
= 0, for all λ > 0.

Recall that �∗ is the N -function defined by

�−1∗ (t) =
∫ t

0

�−1(s)

s1+1/N ds, t ≥ 0

where we mention that∫ ∞

1

�−1(s)

s1+1/N ds = +∞ and
∫ 1

0

�−1(s)

s1+1/N ds < ∞.

Recall also that

�̃(t) = max
s≥0

{ts − �(s)}, t ≥ 0.

The imbedding below (cf. [1,31]) will be used in this paper:

W 1,�
0 (�)

cpt
↪→ L(�), if  << �∗,

in particular, as � << �∗ (cf. [39, Lemma 4.14]),

W 1,�
0 (�)

cpt
↪→ L�(�).

Furthermore, we have the following embeddings

W 1,�
0 (�)

cont
↪→ L�∗(�)

and

L�(�)
cont
↪→ L�(�), L�∗(�)

cont
↪→ L�∗

(�).

Under assumptions (φ1) − (φ3), it turns out that � and �̃ are N-functions satisfying the
�2-condition; see [50].

Remark 1.1 Under assumption (φ3), we observe that

� − 2 ≤ φ′(t)t
φ(t)

≤ m − 2, � ≤ φ(t)t2

�(t)
≤ m, t > 0. (1.5)

Moreover, we have that{
t2φ′′(t) ≤ (m − 4)tφ′(t) + (m − 2)φ(t)
t2φ′′(t) ≥ (� − 4)tφ′(t) + (� − 2)φ(t), t ≥ 0.

Under conditions (φ1), (φ2), (φ3) the Orlicz–Sobolev space W 1,�
0 (�) is Banach and

reflexive with respect to the standard norm denoted ‖.‖. Notice also that (φ1), (φ2), (φ3)

imply that W 1,�
0 (�) is uniformly convex. Here we mention that φ(t) = 2 and φ(t) = r tr−2

satisfy (φ1) − (φ2) and (φ3). Furthermore, when φ(t) = 2 then m = � = 2, �� = �

and W 1,�
0 (�) = H1

0 (�). When φ(t) = r tr−2 then m = � = r , �� = �r and

W 1,�
0 (�) = W 1,r

0 (�).
Many other well-known operators are examples of��. For instance, if φ(t) = p1t p1−2+

p2t p2−2 with 1 < p1 < p2 < ∞, then φ satisfies hypotheses (φ1) − (φ3) and the operator
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in problem (1.1) reads as −�p1u−�p2u which is known as the (p1, p2)-Laplacian and was
extensively studied in the last years; see [47,55]. We mention that in this case � = p1 and
m = p2.

Another class of operators is the so-called anisotropic elliptic problem included here as
example for �� is obtained by setting

φ(t) =
N∑
j=1

t p j−2,�(t) =
N∑
j=1

t p j

p j

where 1 < p1 < p2 < · · · < pN < ∞ and

p� = N(∑N
j=1

1
p j

)
− 1

,

N∑
j=1

1

p j
> 1. (1.6)

Here we consider the case pN < p� and p = N∑N
j=1

1
p j

is the mean harmonic for the

numbers p j with j = 1, 2, . . . , N . This number satisfies p� = N p
N−p . It is no hard to verify

that hypotheses (φ1) − (φ3) are satisfied for the anisotropic elliptic problem. This operator
have been considered during the lasts years which has a rich physical motivation; see [11,12].
For further references, we refer the reader to [34,35,45,46,57] and references therein.

It is important to emphasize that a great interest on problem (1.1) for the Laplacian
operator have been made since the seminal paper [6]. Our main purpose in this work is to
guarantee existence and multiplicity of solutions for quasilinear elliptic equations driven
by �-Laplacian using indefinite concave–convex nonlinearities. More specifically, we shall
consider problem (1.1) where the functions a and b are sign changing functions.

The main aim in this work is to consider the critical growth in problem (1.1). Elliptic
problems with critical nonlinearities have been widely considered since the celebrated works
[40–43]. For quasilinear elliptic problems, we infer the reader to [4,9,10,36,44,49,51,58]
and references therein. The main difficulty here is the loss of compactness for the embed-
ding W 1,�

0 (�) into L��
(�). It is usual to consider some kind of compactness proving that

the energy functional satisfies the Palais–Smale condition for any energy level below to a
positive constant, see [58]. For the Laplace operator, the energy functional verifies the Palais–
Smale condition for any energy level c ∈ (0, SN/2/N

)
. Here S denotes the best constant

for the embedding H1
0 (�) ⊂ L2∗

(�). In order to ensure that the energy level belongs to(
0, SN/2/N

)
, many researchers considered some especial functions named as Talenti func-

tions. The same situation occurs for the p-Laplace operator and (p, q)-Laplace operator.
For the �-Laplacian operator, this strategy is not applicable anymore. The main problem is
due the fact that Talenti functions are not suitable for nonhomogeneous operators such as
�-Laplacian operator. In order to overcome these difficulties, we shall prove some kind of
compactness taking into account the Nehari method. More specifically, we shall prove that
any minimizer sequence on the Nehari manifold admits a convergent subsequence. This is
crucial in our arguments showing that quasilinear elliptic problems involving nonhomoge-
neous operators and critical nonlinearities can be treated using aminimization procedure. The
main idea here is to find a minimizer for the energy functional over the Nehari manifold. At
the same time, recalling that there is no compact embedding W 1,�

0 (�) ⊂ L�∗
(�), problem

(1.1) presents a critical behavior and the energy functional does not verify the Palais–Smale
condition. In order to overcome this difficulty, we also apply the concentration-compactness
principle together with variational methods ensuring our main results. In conclusion, the

123



698 E. D. da Silva et al.

main objective in this work is to find existence and multiplicity of solutions for the problem
(1.1) extending and complementing the early results above-mentioned.

In this paper, we shall assume the following set of technical conditions:

(H ) 1 < q <
�(�∗ − m)

�∗ − �
≤ � ≤ m < �∗, a, b ∈ L∞(�), a+, b+ �≡ 0.

The main feature in this work is to use the Nehari method in order to achieve our main
results. The hypothesis (H) is essential for the minimization procedure which shows that the
critical value on the Nehari manifold is negative; see Sect. 3 ahead. Moreover, hypothesis
(H) is trivially satisfied for Laplacian operator, p-Laplacian operator for each p > 1 and
many others quasilinear operators in divergent form.

Recall that under (φ1) − (φ3) the functional Jλ : W 1,�
0 (�) → R given by

Jλ(u) =
∫

�

�(|∇u|)dx − λ

q

∫
�

a(x)|u|qdx − 1

�∗

∫
�

b(x)|u|�∗
dx, u ∈ W 1,�

0 (�),

is well defined. Furthermore, the functional Jλ is in C1 class. The derivative of Jλ is given
by

〈
J ′
λ(u), v

〉 =
∫

�

φ(|∇u|)∇u∇vdx − λ

∫
�

a(x)|u|q−2uvdx −
∫

�

b(x)|u|�∗−2uvdx

for any u, v ∈ W 1,�
0 (�). Hence finding weak solutions for the problem (1.1) is equivalent

to find critical points for the functional Jλ. In general, under hypotheses (φ1) − (φ3), the
functional Jλ is not of class C2, i.e., the second derivative J ′′

λ (u)(h1, h2) does not exist

for some directions (h1, h2) ∈ W 1,�
0 (�)2 where u ∈ W 1,�

0 (�) is some fixed function.
For example, using the p-Laplacian operator where �(t) = t p/p we know that Jλ has the
second derivative if and only if p ≥ 2. This is another difficulty in order to apply the Nehari
method. The fibering maps is linked to the Nehari method in order to find weak solutions for
elliptic equations; see [14,15]. These maps are defined by γu(t) = Jλ(tu), t > 0 for each
u ∈ W 1,�

0 (�). Thanks to hypothesis (φ3), we stress that the fiberingmap is inC2 class which
is sufficient in order to consider the Nehari method given by

Nλ =
{
u ∈ W 1,�

0 (�) \ {0} : 〈J ′
λ(u), u〉 = 0

}
.

More specifically, we have that J ′′
λ (u)(u, u) is well defined for any u ∈ W 1,�

0 (�). Moreover,
we mention that

γ ′′
u (1) = J ′′

λ (u)(u, u) for any u ∈ Nλ. (1.7)

This is the key in order to apply the Nehari method for quasilinear elliptic problems which
does not present any kind of homogeneity.

A weak solution u ∈ W 1,�
0 (�) for Eq. (1.1) is said to be a ground-state solution when

u is a minimal energy solution in the set of all nontrivial solutions. In this work, we shall
prove existence nonnegative ground state solution using the Nehari method. Besides that, we
find another nonnegative solution for the problem (1.1) using a minimization procedure. An
overview on this subject can be found in [52,53].

Quasilinear elliptic problems driven by �-Laplacian operator have been extensively
discussed during the last years. We refer the reader to the important works [5,16,18,19,21–
24,47,54].

In [16] the authors considered existence of positive solutions for quasilinear elliptic
problems where the nonlinear term is superlinear at infinity. In [21,54] the authors stud-
ied existence and multiplicity of solutions where the nonlinear term is also superlinear. In
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Critical quasilinear elliptic problems using concave–convex… 699

[5] was studied the critical case using the well-known concentration-compactness argument.
Regarding concave–convex nonlinearities, we further refer the reader to [20,27–29,59,60].

It is worthwhile mentioning that in our main theorems the functions a, bmay change sign
and no homogeneity conditions either on the operator or on the nonlinear term is required.
More specifically, we emphasize that our nonlinear operator �� is not homogeneous which
is a serious difficulty in elliptic problems. To the best of our knowledge, there is no result on
elliptic problems with concave–convex functions for the �-Laplacian operator in the critical
case.

Our main results are stated below.

Theorem 1.1 Suppose (φ1) − (φ3) and (H). Then there exists �1 > 0 such that for each
λ ∈ (0,�1), problem (1.1) admits at least one nonnegative ground-state solution u = uλ

satisfying Jλ(u) < 0 and lim
λ→0+ ‖uλ‖ = 0.

Now we shall state our second result.

Theorem 1.2 Suppose (φ1) − (φ3) and (H). Then there exists �2 > 0 in such way that
for each λ ∈ (0,�2), problem (1.1) admits at least one nonnegative weak solution v = vλ

satisfying Jλ(v) > 0.

As a consequence of the results just above, we have the following multiplicity result.

Theorem 1.3 Suppose (φ1)−(φ3) and (H). Set� = min{�1,�2}. Then for eachλ ∈ (0,�),
problem (1.1) admits at least two nonnegative weak solutions u = uλ, v = vλ ∈ W 1,�

0 (�)

satisfying Jλ(u) < 0 < Jλ(v). Furthermore, the function u is a ground-state solution for
each λ ∈ (0,�).

Remark 1.2 Our main results remain true for more general nonlinearities. For example, we
can consider the following quasilinear elliptic problem

− ��u = λa(x)|u|q−2u + b(x)φ∗(|u|)u in �, u = 0 in ∂�, (1.8)

where �′∗(t) = φ∗(t)t for any t ≥ 0 and φ∗ is a suitable function. Here we put λ > 0 small
enough and a, b can be two sign changing functions. The function�∗ behaves like the critical
Sobolev function where the continuous Orlicz–Sobolev embedding remains true; see [1,31].

In order to achieve our results, we shall consider the Nehari manifold Nλ introduced in
[48]. Here we also refer to [14,15,32,52,53] where the authors establish a precise description
on the fibering maps.

A main point during this work is that due to the concave–convex nonlinearities present
in (1.1), the Ambrosetti–Rabinowitz condition is not satisfied in general. Furthermore, when
a, b are functions that change sign, the well-known nonquadraticity condition introduced
by Costa–Magalhães [25] does not work anymore. Those conditions are used to prove that
certain Palais–Smale sequences are bounded. In order to overcome this difficulty, we shall
employ the Nehari manifold method.

In this work, we employ that the fibering maps γu(t) = Jλ(tu), t > 0 belongs to C2

class for each u ∈ W 1,�
0 (�). This can be done thanks to hypothesis (φ3). This is the main

reason in order consider the assumption (φ3) which permit us to consider the Nehari method
for quasilinear elliptic problems. In particular, we also split the Nehari manifold into two
parts. More specifically, in order to achieve our results we shall consider the Nehari manifold
Nλ introduced in [48]. Here we also refer [14,15,32,52,53] where the authors establish a
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700 E. D. da Silva et al.

precisely description on the fibering maps. In the present work, the main difficulty is that
a and b are not defined in sign, i.e., the functions a, b can be two sign changing functions.
Furthermore, the nonlinear operator �� is not homogeneous. In order to overcome these
difficulties, we split the Nehari manifold into two parts Nλ = N+

λ ∪ N−
λ . Moreover, taking

into account hypothesis (φ3), is possible to ensure that there exists an unique projection in
each partN−

λ ,N+
λ , see Sect. 2 ahead. In this way, we obtain that problem (1.1) admits at least

two nonnegative solutions. These solutions are finding by standard minimization procedure
in each part N≥±.

It is important to mention that we deal with to the lack of compactness in W 1,�
0 (�) ↪→

L�∗
(�). In order to overcome the difficulty with compactness we apply the concentration-

compactness principle, see [40–43], together with variational methods as in [13]. Further-
more, the Brezis–Lieb Lemma for convex functions plays a crucial role.

It is worthwhile to mention that problem (1.1) admits at least two nonnegative solutions
thanks to the fact that the fibering maps give us an unique projection in each of N≥±, see
Sect. 2 in the sequel. Those solutions are found by standard minimization procedure in each
ofN≥±. The main tool here is to use hypothesis (φ3) showing that the fibering maps admits
an unique critical point. The reader is also referred to [4,6,9,10,36,44,51,58] and references
therein.

The paper is organized as follows: Section 2 is devoted to the main proprieties for Nehari
manifold. In Sect. 3 we give a complete description for the fibering maps. Section 4 is
devoted to find Palais–Smale sequences takingminimizers sequences on theNeharimanifold.
Section 5 we consider the concentration-compactness principle for Orlicz–Sobolev setting.
In Sect. 6 we consider the proof of our main results. In the present work, we use C,C1, . . . to
denote positive constants. The usual norm in L p(�) is denoted by ‖.‖p for any p ∈ [1,∞].
Throughout this work, the integral for a function f : � → R over � is denoted by

∫
�

f dx
for each f ∈ L1(�). Furthermore, we shall use the following notation f + := max{ f , 0} for
the positive part and f − := min{ f , 0} for the negative part of the function f .

2 The Nehari manifold

The main goal in this section is to gather information on the critical points for the fibering
maps associated to the energy functional Jλ. For an overview on the Nehari method, we refer
the reader to [14,15,58].

The Nehari manifold associated with the functional Jλ is given by

Nλ = {u ∈ W 1,�
0 (�) \ {0} : 〈J ′

λ(u), u
〉 = 0}

=
{
u ∈ W 1,�

0 (�) \ {0} :
∫

�

φ(|∇u|)|∇u|2dx =
∫

�

[
λa(x)|u|q + b(x)|u|�∗]

dx

}
.

(2.9)
Later on, we shall prove that u �→ 〈J ′

λ(u), u〉 is in C1 class. So thatNλ is a C1-submanifold

of W 1,�
0 (�). Let u ∈ N≥ be a fixed function. Using (2.9) we infer that

Jλ(u) =
∫

�

[
�(|∇u|) − 1

q
φ(|∇u|)|∇u|2 +

(
1

q
− 1

�∗

)
b(x)|u|�∗

]
dx, (2.10)

or equivalently

Jλ(u) =
∫

�

[
�(|∇u|) − 1

�∗ φ(|∇u|)|∇u|2 − λ

(
1

q
− 1

�∗

)
a(x)|u|q

]
dx . (2.11)
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As a first step, we shall prove that Jλ is coercive and bounded from below on Nλ which
allows us to find a ground state solution for the problem (1.1). Initially, we have the following
result

Proposition 2.1 Suppose (φ1)−(φ3)and (H). Then the functional Jλ is coercive andbounded
from below on Nλ.

Proof In view of (2.11), we get

Jλ(u) ≥
(
1

m
− 1

�∗

)∫
�

φ(|∇u|)|∇u|2dx + λ

(
1

�∗ − 1

q

)∫
�

a(x)|u|qdx .

Now due the fact that

min{||u||�, ||u||m} ≤
∫

�

�(|∇u|)dx ≤ 1

�

∫
�

φ(|∇u|)|∇u|2dx,

we obtain

Jλ(u) ≥ �

(
1

m
− 1

�∗

)
min{||u||�, ||u||m} + λ

(
1

�∗ − 1

q

)
||a+||∞

∫
�

|u|qdx . (2.12)

Thus the functional Jλ is coercive and bounded from below onNλ. Here was used hypothesis
(H) and the fact that |t |q << �∗ proving thatW 1,�

0 (�) is embedding into Lq(�). This ends
the proof. ��

At this moment, we shall define the fibering map γu : [0,+∞) → R by

γu(t) := Jλ(tu) =
∫

�

[
�(t |∇u|) − λtq

q
a(x)|u|q − t�

∗

�∗ b(x)|u|�∗
]
dx .

Fibering maps have been considered together the Nehari manifold in order to ensure the
existence of critical points for Jλ. In particular, for concave–convex nonlinearities is quite
important to establish the geometry for the fibering map γu . Here we refer the reader to
[14,15,59,60].

Nowwe point out that γu is inC1 class thanks to hypotheses (φ1)−(φ2).More specifically,
we obtain

γ ′
u(t) =

∫
�

[
tφ(t |∇u|)|∇u|2 − λtq−1a(x)|u|q − t�

∗−1b(x)|u|�∗]
dx .

It is easy to see that tu ∈ Nλ if and only if γ ′
u(t) = 0. Therefore, u ∈ Nλ if and only if

γ ′
u(1) = 0. In other words, it is sufficient to find stationary points of fibering maps in order

to get critical points for Jλ onNλ. Notice also that, using (φ3), we deduce that γu is of class
C2 with second derivative given by

γ ′′
u (t) =

∫
�

[
tφ′(t |∇u|)|∇u|3 + φ(t |∇u|)|∇u|2

− λ(q − 1)tq−2a(x)|u|q − (�∗ − 1)t�
∗−2b(x)|u|�∗]

dx, ∀ t > 0.

As was pointed in [14,15], it is natural to divide Nλ into three sets

N+
λ := {u ∈ Nλ : γ ′′

u (1) > 0};
N−

λ := {u ∈ Nλ : γ ′′
u (1) < 0};

N 0
λ := {u ∈ Nλ : γ ′′

u (1) = 0}.
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702 E. D. da Silva et al.

Here we mention thatN+
λ , N−

λ , N 0
λ corresponds to critical points for the fibering map γu(t)

of minimum, maximum, and inflection points, respectively. Here we refer the reader also
to [56].

Remark 2.1 It is not hard to verify that

γ ′′
u (1) =

∫
�

[
φ′(|∇u|)|∇u|3 + (2 − q)φ(|∇u|)|∇u|2 − (�∗ − q)b(x)|u|�∗]

dx

=
∫

�

[
φ′(|∇u|)|∇u|3 + (2 − �∗)φ(|∇u|)|∇u|2 − λ(q − �∗)a(x)|u|q] dx

=
∫

�

[
φ′(|∇u|)|∇u|3 + 2φ(|∇u|)|∇u|2 − λqa(x)|u|q − �∗b(x)|u|�∗]

dx

(2.13)

holds true for any u ∈ Nλ. Here was used the fact that u belongs to the Nehari manifold.

Remark 2.2 Here we mention that Jλ is not in C2 class. However, there exist some directions
h ∈ W 1,�

0 (�) such that J
′′
λ (u)(h, h) iswell defined. For example,we observe that J

′′
λ (u)(u, u)

is well defined and

J ′′
λ (u) · (u, u) + 〈J ′

λ(u), u
〉 = γ ′′

u (1), for any u ∈ W 1,�
0 (�), u �= 0.

Nowwe shall prove thatNλ is aC1-manifold. This step is crucial in our argument in order
to get the main result in this work.

Lemma 2.1 Suppose (φ1) − (φ3). Then there exists λ1 > 0 such that

(1) N 0
λ = ∅.

(2) Nλ = N+
λ ∪̇N−

λ is a C1-manifold.

for each λ ∈ (0, λ1).

Proof First of all, we shall consider the proof for item (1). Arguing by contradiction we
assume that N 0

λ �= ∅. Let u ∈ N 0
λ be a fixed function. Clearly, we have γ ′

u(1) = γ ′′
u (1) = 0.

Using (2.13) we obtain∫
�

[
(2 − q)φ(|∇u|)|∇u|2 + φ′(|∇u|)||∇u|3 + (q − �∗)b|u|�∗]

dx = 0.

Now taking into account hypothesis (φ3), we have that

(� − q)

∫
�

φ(|∇u|)|∇u|2dx ≤ (�∗ − q)||b+||∞‖u‖�∗
�∗ ≤ (�∗ − q)S�∗ ||b+||∞||u||�∗

,

where S�∗ is the best constant in the embedding W 1,�
0 (�) ↪→ L�∗

(�). On the other hand,

(� − q)

∫
�

φ(|∇u|)|∇u|2dx ≥ �(� − q)

∫
�

�(|∇u|)dx ≥ �(� − q)min{||u||�, ||u||m}.

Taking into account the estimates just above, we observe that

�(� − q)min{||u||�, ||u||m} ≤ (�∗ − q)S�∗ ||b+||∞||u||�∗
.

Therefore, we obtain

||u||�∗ ≥ �(� − q)

(�∗ − q)S�∗ ||b+||∞ min{||u||�, ||u||m} =
[

�(� − q)

(�∗ − q)S�∗ ||b+||∞
]

||u||α,
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where we put α = � for any ‖u‖ ≥ 1 and α = m for any ‖u‖ ≤ 1. These facts imply that

||u|| ≥
[

�(� − q)

(�∗ − q)S�∗ ||b+||∞
] 1

�∗−α

. (2.14)

Notice that, using (φ3) and Hölder’s inequality for Sobolev spaces, we have

(�∗ − m)

∫
�

φ(|∇u|)|∇u|2dx ≤ λ(�∗ − q)||a+||
( �
q )′ ‖u‖q� ≤ λ(�∗ − q)S�||a+||

( �
q )′ ||u||q ,

where S� is a best constant in the embedding W 1,�
0 (�) ↪→ L�(�). Here was used also the

fact that a ∈ L∞(�) which is continuous embedding in L( �
q )′

(�). Using the same ideas
discussed in the previous case, we infer that

�(�∗ − m)min{||u||�, ||u||m} ≤ λ(�∗ − q)S�||a+||
( �
q )′ ||u||q .

Hence, the last assertion says that

�(�∗ − m)

(�∗ − q)S�||a+||
( �
q )′

||u||α = �(�∗ − m)

(�∗ − q)S�||a+||
( �
q )′

min{||u||�, ||u||m} ≤ λ||u||q .

In this way, we mention that⎡
⎣ �(�∗ − m)

(�∗ − q)S�||a+||
( �
q )′

⎤
⎦ ||u||α−q ≤ λ. (2.15)

Under these conditions, using (2.14) and (2.15), we get a contradiction for any

λ > min
α∈{�,m}

⎛
⎝
[

�(� − q)

(�∗ − q)S�∗ ||b+||∞
] α−q

�∗−α

⎡
⎣ �(�∗ − m)

(�∗ − q)S�||a+||
( �
q )′

⎤
⎦
⎞
⎠ =: λ1. (2.16)

This finishes the proof of item (1).
Now we shall prove the item (2). Without any loss of generality, we take u ∈ N+

λ . Define
ψ(u) := 〈J ′

λ(u), u
〉
. It is no hard to see that

ψ ′(u) = J ′′
λ (u) · (u, u) + 〈J ′

λ(u), u
〉 = γ ′′

u (1) > 0, ∀ u ∈ N+
λ .

Hence, 0 is a regular value for the functional ψ . Consequently, we see that N+
λ is a C1-

manifold. Similarly, we should be show that N−
λ is a C1-manifold. As a consequence the

proof of item (2) follows due the fact that N 0
λ = ∅ for any λ > 0 small enough. This

completes the proof. ��
Now we are in a position to prove that any critical point for Jλ on Nλ is a free critical

point, i.e., any minimizer for Jλ in the Nehari manifold Nλ is a critical point for Jλ in the
whole space W 1,�

0 (�). More precisely, we shall consider the following result

Lemma 2.2 Suppose (φ1) − (φ3). Let u0 be a local minimum (or local maximum) for Jλ on
Nλ. Then u0 is a critical point of Jλ on W 1,�

0 (�) for each λ < λ1.

Proof Let u0 ∈ Nλ be a local maximum or minimum for the functional Jλ on Nλ. Without
any loss of generality, we assume that u0 is a local minimum. Define the function

θ(u) = 〈J ′
λ(u), u

〉 =
∫

�

[
φ(|∇u|)|∇u|2 − λa(x)|u|q − b(x)|u|�∗]

dx .
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It is easy to see that u0 is a solution for the minimization problem
{
min Jλ(u),

θ(u) = 0
(2.17)

From now on the proof for this lemma is standard, and we omit the details. ��

3 Analysis of the fiberingmaps

In this section, we give a complete description on the geometry for the fibering maps asso-
ciated to the problem (1.1). Let u ∈ W 1,�

0 (�)\{0} be a fixed function. To the best our

knowledge, the essential nature of fibering maps is determined by the signs of
∫

�

a(x)|u|qdx

and
∫

�

b(x)|u|�∗
dx . Throughout this section is useful to consider the auxiliary function of

C1 class given by

mu(t) = t2−q
∫

�

φ(t |∇u|)|∇u|2dx − t�
∗−q

∫
�

b(x)|u|�∗
dx, t ≥ 0, u ∈ W 1,�

0 (�)\{0}.

Now we shall consider a result comparing points tu ∈ Nλ with the function mu . More
precisely, we have

Lemma 3.1 Suppose that (φ1) − (φ3) holds. Let t > 0 be fixed. Then tu ∈ Nλ if and only if
t is a solution of

mu(t) = λ

∫
�

a(x)|u|qdx, u ∈ W 1,�
0 (�)\{0}.

Proof The proof is quite standard and we omit the details. ��
The next lemma is a powerful tool in order to get a precise information around the function

mu and the fibering maps. More precisely, we shall consider the following result

Lemma 3.2 Suppose that (φ1) − (φ3) hold.

(1) Suppose that
∫

�

b(x)|u|�∗
dx ≤ 0 holds. Then we obtain mu(0) := lim

t→0
mu(t) =

0,mu(∞) := lim
t→∞mu(t) = ∞ and m′

u(t) > 0 for any t > 0.

(2) Suppose
∫

�

b(x)|u|�∗
dx > 0. Then there exists an only critical point for mu, i.e., there

is an only point t̃ > 0 in such way that m′
u(t̃) = 0. Furthermore, we know that t̃ > 0 is

a global maximum point for mu and mu(∞) = −∞.

Proof First of all, we observe that

m′
u(t) = (2 − q)t1−q

∫
�

φ(t |∇u|)|∇u|2dx + t2−q
∫

�

φ′(|∇(tu)|)|∇u|3dx

− (�∗ − q)t�
∗−q−1

∫
�

b(x)|u|�∗
dx .

In this way the proof follows using the same ideas discussed in Lemma 4.2 and Lemma 4.3
given in [17]. The details are omit here. ��
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Now we shall prove that mu has a behavior at infinity and at the origin given by the sings
of
∫
�
a(x)|u|qdx and

∫
�
b(x)|u|�∗

dx . This is crucial in to prove a complete description on
the geometry for the fibering maps. The hypothesis (H) is the main tool in order to prove
the uniqueness of projection in each part for N±

λ .

Lemma 3.3 Suppose that (φ1)−(φ3) and (H) hold. Let u ∈ W 1,�
0 (�)/{0} be a fixed function.

Then we shall consider the following assertions:

(1) Assume that
∫

�

b(x)|u|�∗
dx ≤ 0. Then γ ′

u(t) �= 0 for any t > 0 and λ > 0 whenever∫
�

a(x)|u|qdx ≤ 0. Furthermore, there exist an unique t1 = t1(u, λ) in such way that

γ ′
u(t1) = 0 and t1u ∈ N+

λ whenever
∫

�

a(x)|u|qdx > 0.

(2) Assume that
∫

�

b(x)|u|�∗
dx > 0 holds. Then there exists an unique t1 = t1(u, λ) > t̃

such that γ ′
u(t1) = 0 and t1u ∈ N−

λ whenever
∫

�

a(x)|u|qdx ≤ 0.

(3) For each λ > 0 small enough, there exists unique 0 < t1 = t1(u, λ) < t̃ < t2 = t2(u, λ)

such that γ ′
u(t1) = γ ′

u(t2) = 0, t1u ∈ N+
λ and t2u ∈ N−

λ whenever
∫

�

a(x)|u|qdx > 0,∫
�

b(x)|u|�∗
dx > 0 holds.

Proof First of all, we shall consider the proof for the case
∫

�

b(x)|u|�∗
dx ≤ 0 and∫

�

a(x)|u|qdx ≤ 0. Using Lemma 3.2 (1) it is easy to verify that

mu(0) = 0,mu(∞) = ∞ and m′
u(t) > 0, t ≥ 0.

Under these conditions we deduce that

mu(t) �= λ

∫
�

a(x)|u|qdx for any t > 0, λ > 0.

According to Lemma 3.1 we obtain that tu /∈ Nλ for any t > 0. In particular, we see also
that γ ′(t) �= 0 for each t > 0.

Nowwe shall consider the proof for the case
∫

�

a(x)|u|qdx > 0 and
∫

�

b(x)|u|�∗
dx ≤ 0.

Using one more time Lemma 3.2 (1) we observe that mu(0) = 0,mu(∞) = ∞ and mu is a
strictly increasing function. In particular, the equation

mu(t) = λ

∫
�

a(x)|u|qdx

admits exactly one solution t1 = t1(u, λ) > 0. Hence, using Lemma 3.1, we know that
t1u ∈ Nλ proving that γ ′

u(t1) = 0. Additionally, using the identity

mu(t) = t1−qγ ′
u(t) + λ

∫
�

a(x)|u|qdx,

we easily see that

0 < m′
u(t1) = t1−q

1 γ ′′
u (t1).
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In particular, we have been proven that t1u ∈ N+
λ .

Nowwe shall consider the proof for the case
∫

�

a(x)|u|qdx ≤ 0 and
∫

�

b(x)|u|�∗
dx > 0.

Here the functionmu admits an unique turning point t̃ > 0, i.e., we have thatm′
u(t) = 0, t > 0

if only if t = t̃ ; see Lemma 3.2 (2). Moreover, t̃ is a global maximum point for mu in such
way that mu(t̃) > 0,mu(∞) = −∞. As a product, there exits an unique t1 > t̃ such that

mu(t1) = λ

∫
�

a(x)|u|qdx .

Here we emphasize that m′
u(t1) < 0 where we have used the fact that mu is a strictly

decreasing function in (t̃,∞). As a consequence we obtain 0 > m′
u(t1) = t1−q

1 γ ′′
u (t1)

proving that t1u ∈ N−
λ .

At this moment, we shall consider the proof for the case
∫

�

a(x)|u|qdx > 0 and∫
�

b(x)|u|�∗
dx > 0. Due the fact that

∫
�

a(x)|u|q > 0 we obtain λ̄1 > 0 such that

mu(t̃) > λ

∫
�

a(x)|u|qdx, for any λ ∈ (0, λ̄1). (3.18)

It is worthwhile to mention that mu is increasing in (0, t̃) and decreasing in (t̃,∞). It is not
hard to verify that there exist exactly two points 0 < t1 = t1(u, λ) < t̃ < t2 = t2(u, λ) such
that

mu(ti ) = λ

∫
�

a(x)|u|qdx, i = 1, 2.

Additionally, we have that m′
u(t1) > 0 and m′

u(t2) < 0. Arguing as in the previous step we
ensure that t1u ∈ N+

λ and t2u ∈ N−
λ . This completes the proof. ��

The next lemma shows that for any λ > 0 small enough the function Jλ(u) assumes
positive values. More specifically, we shall show also that Jλ is away from zero on the Nehari
manifold N−

λ . In particular, any critical point for Jλ on N−
λ provide us a nontrivial critical

point. This is crucial for the proof of our main theorems proving that γu admits one or two
critical points.

Lemma 3.4 Suppose that (φ1)−(φ3) hold. There exist δ1, λ̃1 > 0 in suchway that Jλ(u) ≥ δ1
for any u ∈ N−

λ where 0 < λ < λ̃1.

Proof Since u ∈ N−
λ , we have that γ ′′

u (1) < 0. Arguing as in the proof of Lemma 2.1, we
obtain

||u|| >

[
�(� − q)

(�∗ − q)S�∗‖b+‖∞

] 1
�∗−α

.

Moreover, in view of (2.12) and the Sobolev imbedding, we have that

Jλ(u) ≥ �

(
1

m
− 1

�∗

)
min{||u||�, ||u||m} + λ

(
1

�∗ − 1

q

)∫
�

a(x)|u|qdx

= �

(
1

m
− 1

�∗

)
||u||α + λ

(
1

�∗ − 1

q

)∫
�

a(x)|u|qdx

≥ ||u||q
[
�

(
1

m
− 1

�∗

)
||u||α−q + λ

(
1

�∗ − 1

q

)
‖a+‖(

�
q

)′ S�

]
.
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Using the inequalities just above we get

Jλ(u) >

[
�(� − q)

(�∗ − q)S�∗‖b+‖∞

] q
�∗−α

[A + λB]

where

A = �

(
1

m
− 1

�∗

)(
�(� − q)

(�∗ − q)S�∗‖b+‖∞

) α−q
�∗−α

and

B =
(

1

�∗ − 1

q

)
‖a+‖(

�
q

)′ S�.

Therefore, for each 0 < λ < λ̃1 := q

m
λ1 where we take λ1 > 0 given by (2.16). Here we

put λ̃1 := q

m
λ1 obtaining the desired result. This finishes the proof. ��

Now we shall prove that any minimizer on N+
λ has negative energy. More specifically,

defining αλ := inf
u∈Nλ

Jλ(u), α+
λ = inf

u∈N+
λ

Jλ(u) we can be shown the following result

Lemma 3.5 Suppose that (φ1) − (φ3) and (H) hold. Then there exist u ∈ N+
λ and λ1 > 0

in such way that α+
λ ≤ Jλ(u) < 0 for each 0 < λ < λ1. In particular, we obtain αλ = α+

λ

for each 0 < λ < λ1.

Proof Fix u ∈ N+
λ . Here we observe that γ ′′

u (1) > 0. Using hypothesis (φ3) we infer that

(�∗ − q)

∫
�

b(x)|u|�∗
dx <

∫
�

[
φ′(|∇u|)|∇u|3 + (2 − q)φ(|∇u|)|∇u|2] dx

≤
∫

�

[
(m − 2)φ(|∇u|)|∇u|2 + (2 − q)φ(|∇u|)|∇u|2] dx

= (m − q)

∫
�

φ(|∇u|)|∇u|2dx .

The last inequalities imply that
∫

�

b(x)|u|�∗
dx <

m − q

�∗ − q

∫
�

φ(|∇u|)|∇u|2dx .

On the other hand, using the inequality just above and the fact that u ∈ Nλ we get

Jλ(u) ≤
(
1

�
− 1

q

)∫
�

[
φ(|∇u|)|∇u|2dx +

(
1

q
− 1

�∗

)
b(x)|u|�∗

]
dx

<
1

q

[
q − �

�
dx + m − q

�∗

] ∫
�

φ(|∇u|)|∇u|2dx .

In view of hypothesis (H) it follows that α+
λ ≤ Jλ(u) < 0. Additionally, we stress that

Nλ = N−
λ ∪N+

λ and α−
λ > 0 see Lemma 3.4. Hence we deduce that α+

λ = αλ. This finishes
the proof. ��
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4 The Palais–Smale condition

In this sectionwe shall prove some auxiliary results in order to get the Palais–Smale condition
for the functional Jλ on the Nehari manifold. In general, given any Banach space X endowed
with the norm ‖.‖ and taking I : X → R a functional of C1 class we recall that a sequence
(un) ∈ X is said to be a Palais–Smale sequence at level c ∈ R, in short (PS)c, when
I (un) → c and I ′(un) → 0 as n → ∞. Recall that I satisfies the Palais–Smale condition
at the level c, in short (PS)c condition, when any (PS)c sequence admits a convergent
subsequence.We say simply that I verifies the Palais–Smale conditionwhen (PS)c condition
holds true for any c ∈ R.

Now we follow same ideas discussed in [56]. The main feature here is to find a suitable
sequence (un) ∈ Nλ. Initially, we consider the following result

Lemma 4.1 Suppose (φ1) − (φ3) and (H). Let u ∈ N+
λ be fixed. Then there exist ε > 0 and

a differentiable function

ξ : B(0, ε) ⊂ W 1,�
0 (�) → (0,∞), ξ(0) = 1, ξ(v)(u − v) ∈ N+

λ , v ∈ B(0, ε).

Furthermore, for any λ > 0 small enough we get

〈
ξ ′(0), v

〉 = 1

γ ′′
u (1)

∫
�

[
(φ′(|∇u|)|∇u| + 2φ(|∇u|))∇u∇v

− �∗b(x)|u|�∗−2uv − qλa(x)|u|q−2uv
]
dx . (4.19)

Proof Initially, we define ψ : W 1,�
0 (�)\{0} → R given by ψ(u) = 〈

J ′
λ(u), u

〉
for u ∈

W 1,�
0 (�)\{0}. It is easy to verify that

〈
ψ ′(u), u

〉 =
∫

�

[
φ′(|∇u|)|∇u|3 + 2φ(|∇u|)|∇u|2 − �∗b(x)|u|�∗ − qλa(x)|u|q

]
dx .

Recall that
〈
ψ ′(u), u

〉 = γ ′′
u (1) holds for any u ∈ Nλ where γ ′′

u (1) is given by Remark 2.1.

Now we define Fu : R × W 1,�
0 (�)\{0} → R given by

Fu(ξ, w) = 〈J ′
λ(ξ(u − w)), ξ(u − w)

〉
.

Here we observe that Fu(1, 0) = ψ(u). As a consequence

∂1Fu(ξ, w) =
∫

�

[
2ξφ(ξ |∇(u − w)|)|∇(u − w)|2 + ξ2φ′(ξ |∇(u − w)|)|∇(u − w)|3] dx

−
∫

�

[
�∗ξ�∗−1b(x)|u − w|�∗ + qξq−1λa(x)|u − w|q

]
dx .

In particular, for each u ∈ N+
λ , we mention that

∂1Fu(1, 0) =
∫

�

[
2φ(|∇u|)|∇u|2 + φ′(|∇u|)|∇u|3dx − �∗b(x)|u|�∗

+ qλa(x)|u|q
]
dx = γ ′′

u (1) > 0.

As a product, using the inverse function theorem, there exist ε > 0 and a differentiable
function ξ : B(0, ε) ⊂ W 1,�(�) → (0,∞) satisfying ξ(0) = 1 and Fu(ξ(w),w) =〈
J ′
λ(ξ(u − w), ξ(u − w))

〉 = 0, i.e. ξ(w)(u−w) ∈ N+
λ , ∀w ∈ B(0, ε). The main idea here
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is to apply the inverse function theorem for the function Fu for some u ∈ N+
λ . Furthermore,

we also obtain
〈
ξ ′(w), v

〉 = − 〈∂2Fu(ξ(w),w), v〉
∂1Fu(ξ(w),w)

,
〈
ξ ′(0), v

〉 = − 〈∂2Fu(ξ(0), 0), v)〉
∂1Fu(ξ(0), 0)

.

Here ∂1Fu and ∂2Fu denote the partial derivatives on thefirst and secondvariable, respectively.
On the other hand, after some manipulations, we see that

〈∂2Fu(ξ(w),w), v〉 = − ξ2
∫

�

φ′(ξ |∇(u − w)|)|∇(u − w)|∇(u − w)∇vdx

− 2ξ2
∫

�

φ(ξ |∇(u − w))∇(u − w)∇vdx

+ �∗ξ�∗
∫

�

b(x)|u − w|�∗−2(u − w)vdx

+ λqξq
∫

�

a(x)|u − w|q−2(u − w)vdx .

Hence, putting w = 0 and ξ = ξ(0) = 1, the last identity just above shows that

〈∂2Fu(1, 0), v〉 = −
∫

�

[
φ′(|∇u|)|∇u|∇u∇v

+ 2φ(|∇u|)∇u∇v − �∗b(x)|u|�∗−2uv − λqa(x)|u|q−2uv
]
dx

Here was used the fact that ∂1Fu(1, 0) = γ ′′
u (1) holds for any u ∈ N+

λ . The proof is now
finished. ��

Analogously, using the same ideas discussed in the previous result, we get the following
result

Lemma 4.2 Suppose (φ1) − (φ3) and (H). Let u ∈ N−
λ be fixed. Then there are ε > 0 and

a differentiable function

ξ : B(0, ε) ⊂ W 1,�(�) → (0,∞), ξ(0) = 1, ξ(v)(u − v) ∈ N−
λ , v ∈ B(0, ε).

Furthermore, for any λ > 0 small enough we obtain

〈ξ ′(0), v〉 = 1

γ ′′
u (1)

∫
�

[
(φ′(|∇u|)|∇u| + 2φ(|∇u|))∇u∇v

− �∗b(x)|u|�∗−2uv − qλa(x)|u|q−2uv
]
dx . (4.20)

In the next result, we shall prove that any minimizer sequence for the functional Jλ inN−
λ

orN+
λ is bounded from below and above for some positive constants. This is crucial in order

to get a minimizer on the Nehari manifold.

Proposition 4.1 Suppose (φ1) − (φ3) and (H). Let (un) be a minimizer sequence for the
functional Jλ on the Nehari manifold N+

λ . Then

lim inf
n→∞ ||un || ≥ −α

1
q
λ

[
�∗q

(�∗ − q)λ‖a‖∞Sqq

] 1
q

> 0 (4.21)

and

||un || <

[
λ

q

(
�∗ − q

�∗ − m

)
‖a‖∞Sqq

] 1
α−q

, (4.22)
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where α ∈ {�,m}. The same property can be ensured for the Nehari manifold N−
λ , i.e., we

have that (un) ∈ N−
λ is bounded form above and below by positive constants.

Proof Let (un) ⊂ Nλ be a fixed sequence. Recall that m�(t) ≤ φ(t)t2 holds for any t ∈ R.
Using the inequalities just above, we obtain that

0 > α+
λ + on(1) = Jλ(un) =

∫
�

[
�(|∇un |) − 1

�∗ φ(|∇un |)|∇un |2 − λ

(
1

q
− 1

�∗

)
a(x)|un |q

]
dx

≥
∫

�

[(
1 − m

�∗
)

�(|∇un |) − λ

(
1

q
− 1

�∗

)
a(x)|un |q

]
dx

(4.23)
holds for any n ∈ N large enough. Under these conditions, using the above inequality and
the continuous embedding W 1,�

0 (�) ↪→ Lq(�), we easily see that

0 < −
(

α+
λ + 1

n

)[
�∗q

(�∗ − q)λ

]
<

∫
�

a(x)|u|qdx ≤ ||a||∞Sqq ||un ||q .

Here Sq is the best constant for the embedding W 1,�
0 (�) ↪→ Lq(�). As a product the last

estimate says that

||un || >

[
−
(

α+
λ + 1

n

)
�∗q

(�∗ − q)λ‖a‖∞Sqq

] 1
q

.

As a consequence using the last estimate and Lemma 3.5, we see also that (4.21) holds.
Furthermore, using (4.23) and arguing as in the previous inequalities, we can also shown

that

min{||un ||�, ||un ||m} ≤
∫

�

�(|∇un |)dx < λ

(
�∗

�∗ − m

)(
�∗ − q

�∗q

)
‖a‖∞Sqq ||un ||q

= λ

q

(
�∗ − q

�∗ − m

)
‖a‖∞Sqq ||un ||q . (4.24)

Hence the last assertions give us

min{||un ||�−q , ||un ||m−q} < λ

(
�∗

�∗ − m

)(
�∗ − q

�∗q

)
‖a‖∞Sqq = λ

q

(
�∗ − q

�∗ − m

)
‖a‖∞Sqq .

As a consequence we obtain (4.22). ��
Now we consider two technical results in order to prove that any minimizer sequence for

Jλ on the Nehari manifold is a Palais–Smale sequence.

Proposition 4.2 Suppose (φ1) − (φ3) and (H). Then any minimizer sequence (un) on the
Nehari manifold N−

λ or N+
λ satisfies

〈
J ′
λ(un),

u

||u||
〉

≤ C

n
[||ξ ′

n(0)|| + 1], u ∈ W 1,�(�)/{0}, (4.25)

where ξn := ξ : B 1
n
(0) → (0,∞) was obtained from Lemma 4.1 and Lemma 4.2.

Proof Let (un) be a minimizer sequence on the Nehari manifold N−
λ or N+

λ . Here we shall
consider the proof for the Nehari manifold N+

λ . The proof for the Nehari manifold N−
λ

follows arguing in the same way. According to Lemma 4.1, we obtain

ξn : B(0, εn) → R
+, ξ(0) = 1, ξ(w)(un − w) ∈ N+

λ .
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Now, we put ρ ∈ (0, εn) and u ∈ W 1,�(�)\{0}. Define the auxiliary function

wρ = ρu

||u|| ∈ B(0, εn).

Using one more time Lemma 4.1 and Ekeland’s variational principle, we mention that

μρ = ξ(wρ)(un − wρ) ∈ N+
λ and Jλ(μρ) − Jλ(un) ≥ −1

n
||μρ − un ||. (4.26)

Notice also that

wρ → 0, ξn(wρ) → 1, μρ → un and J ′
λ(μρ) → J ′

λ(un) (4.27)

as ρ → 0 holds true for any n ∈ N.
At this moment, applying mean value theorem, there exists t ∈ (0, 1) in such way that

Jλ(μρ) − Jλ(un) = 〈
J ′
λ((1 − t)μρ + tun), μρ − un

〉
= 〈

J ′
λ(μρ + t(un − μρ)) − J ′

λ(un), μρ − un
〉

+ 〈
J ′
λ(un), μρ − un

〉
.

It is worthwhile to mention that ||un − μρ || → 0 as ρ → 0. Hence, using (4.26) and (4.27),
we easily see that

−1

n
||μρ − un || ≤ 〈J ′

λ(un), μρ − un
〉+ oρ(1)||μρ − un ||

where oρ(1) denotes a quantity that goes to zero as ρ goes to zero. Taking into account that
μρ = ξ(wρ)(un − wρ) ∈ N+

λ it follows that

−1

n
||μρ − un || + oρ(1)||μρ − un || ≤ 〈J ′

λ(un),−wρ

〉+ (ξn(wρ) − 1)
〈
J ′
λ(un), un − wρ

〉
.

Furthermore, using the fact that
〈
J ′
λ(μρ), μρ

〉 = 0, we mention that

−1

n
||μρ − un || ≤ oρ(1)||μρ − un || − ρ

〈
J ′
λ(un),

u

||u||
〉

+ (ξn(wρ) − 1)
〈
J ′
λ(un) − J ′

λ(μρ), un − wρ

〉
.

As a consequence, the last estimates and (4.27) say that
〈
J ′
λ(un),

u

||u||
〉

≤ ||μρ − un ||
nρ

+ oρ(1)
||μρ − un ||

ρ

+ (ξn(wρ) − 1)

ρ

〈
J ′
λ(un) − J ′

λ(μρ), un − wρ

〉
.

It is no hard to see that

||μρ − un || ≤ ρ|ξn(wρ)| + |ξn(wρ) − 1| ||un || and lim
ρ→0

|ξn(wρ) − 1|
ρ

≤ ||ξ ′
n(0)||.

(4.28)

The last inequality is justified due the fact that

lim
ρ→0

|ξn(wρ) − 1|
ρ

=
〈
ξ ′
n(0),

u

||u||
〉

≤ ||ξ ′
n(0)||.
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Therefore, using the fact that (un) is bounded and (4.28), we infer that

lim
ρ→0

||μρ − un ||
ρ

≤ lim
ρ→0

[
||ξn(wρ)|| + |ξn(wρ) − 1|

ρ
||un ||

]

≤ C
[
1 + ||ξ ′

n(0)|| ||un ||
] ≤ C

[
1 + ||ξ ′

n(0)||
]
.

Furthermore, using the fact that
ξn(wρ) − 1

ρ
and ξn(wρ) are bounded forρ > 0 small enough,

we easily see that

‖μρ − un‖ = |ρ|
∣∣∣∣
∣∣∣∣ξn(wρ) − 1

ρ
un − ξn(wρ)

u

||u||
∣∣∣∣
∣∣∣∣

≤ |ρ|
[∣∣∣∣ξn(wρ) − 1

ρ

∣∣∣∣ ||un || + |ξn(wρ)|
]

.

Since (un) is bounded, there exists a constant C > 0 in such way that

||μρ − un ||
ρ

≤ C[||ξ ′
n(0)|| + 1].

Putting all these estimates together we employ that there exists a constant C > 0 which is
independent in ρ > 0. Thus, taking the limit as ρ → 0 we obtain the inequality (4.25). This
ends the proof. ��

Now we shall consider a technical result in order to get Palais–Smale sequences on the
Nehari manifold N+

λ or N−
λ .

Proposition 4.3 Suppose (φ1) − (φ3) and (H). Then given any minimizer sequence (un) on
the Nehari manifold N−

λ or N+
λ we obtain

||ξ ′
n(0)|| ≤ C for each n ∈ N (4.29)

where C > 0 is independent on n. Here we recall that ξn := ξ : B 1
n
(0) → (0,∞) was

obtained by Lemma 4.1.

Proof In view of (4.19) we observe that

〈
ξ ′
n(0), v

〉 = χn(v)

γ ′′
un (1)

, (4.30)

where we define the auxiliary function χn : W 1,�
0 (�) → R by

χn(v) =
∫

�

[
(φ′(|∇un |)|∇un | + 2φ(|∇un |))∇un∇v

− �∗b(x)|un |�∗−2unv − qλa(x)|un |q−2unv
]
dx .

Now we claim that the numerator in (4.30) is bounded as follows: There exists a positive
constant c > 0 in such way that |χn(v)| ≤ c ||v|| holds true for any v ∈ W 1,�

0 (�). Further-
more, we claim also that there exists a positive constant d such that γ ′′

un (1) ≥ d > 0 for any
n ∈ N.

In what follows we shall prove the claims given just above. It is easy to verity that

|χn(v)| ≤
∫

�

[|φ′(|∇un |)||∇un |2 + 2φ(|∇un |)|∇un |
] |∇v|dx

+ ||b+||∞�∗
∫

�

|un |�∗−1|v|dx + λq||a+||∞
∫

�

|un |q−1|v|dx .
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Now using Remark 1.1, we see that
|φ′(t)t |
φ(t)

≤ max{|� − 2|, |m − 2|} := C1. Thus, using

Hölder’s inequality, we also see that

|χn(v)| ≤ C1

∫
�

φ(|∇un |)|∇un ||∇v|dx
+ ||b+||∞�∗

∫
�

|un |�∗−1|v|dx + λq||a+||∞
∫
�

|un |q−1|v|dx
≤ 2C1||φ(|∇un |)|∇un |||�̃||v||

+ ||b+||∞�∗
∫
�

|un |�∗−1|v|dx + λq||a+||∞
∫
�

|un |q−1|v|dx

≤ C2 max

{(∫
�

�̃(φ(|∇un |)|∇un |)dx
) �−1

�

,

(∫
�

�̃(φ(|∇un |)|∇un |)dx
)m−1

m
}

||v||

+ ||b+||∞�∗
∫
�

|un |�∗−1|v|dx + λq||a+||∞
∫
�

|un |q−1|v|dx .

In view of inequality �̃(tφ(t)) ≤ �(2t) ≤ 2m�(t), t ≥ 0 and (4.22), there exists a constant
C3 > 0 such that

|χn(v)| ≤ C3 max

{(∫
�

�(|∇un |)dx
) �−1

�

,

(∫
�

�(|∇un |)dx
)m−1

m
}

||v||

+ ||b+||∞�∗
∫

�

|un |�∗−1|v|dx + λq||a+||∞
∫

�

|un |q−1|v|dx
≤ C3||un ||β ||v|| + ||b+||∞�∗

∫
�

|un |�∗−1|v|dx + λq||a+||∞
∫

�

|un |q−1|v|dx
≤ C4||v|| + ||b+||∞�∗

∫
�

|un |�∗−1|v|dx + λq||a+||∞
∫

�

|un |q−1|v|dx .

where β ∈ {� − 1, �
m (� − 1),m − 1, m

�
(m − 1)}.

At this stage, we shall estimate the terms
∫

�

|un |�∗−1|v|dx and
∫

�

|un |q−1|v|dx . In order
to do that we employ Hölder’s inequality and Sobolev imbedding proving that

∫
�

|un |�∗−1|v|dx ≤
(∫

�

|un |�∗
dx

) �∗−1
�∗
(∫

�

|v|�∗
dx

) 1
�∗ ≤ C5‖un‖�∗−1‖v‖ ≤ C6‖v‖.

In view of the estimates above, there exists a constant c > 0 in such that |χn(v)| ≤ c||v||.
Here we emphasize that estimate (4.22) says that c is independent on n ∈ N.

It remains to show that there exists a constant d > 0, independent in n, in such way that
γ ′′
un (1) ≥ d . The proof follows arguing by contradiction assuming that γ ′′

un (1) = on(1). It
follows from (4.21) that there exists aλ > 0 satisfying

lim inf
n→∞ ||un || ≥ aλ > 0 (4.31)

At this moment, we emphasize that γ ′′
un (1) = on(1). Using (2.13) we deduce that

on(1) = γ ′′
un (1) =

∫
�

[
(2 − q)φ(|∇un|)|∇un |2 + φ′(|∇un |)||∇u|3 + (q − �∗)b|un |�∗]

dx .

Using (1.5) and Sobolev embeddings we also mention that
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(� − q)

∫
�

φ(|∇u|)|∇un|2dx ≤ (�∗ − q)||b+||∞||un ||�∗
�∗ + on(1)

≤ (�∗ − q)S�∗ ||b+||∞||un ||�∗ + on(1).

On the other hand, we observe that

(� − q)

∫
�

φ(|∇un|)|∇un |2dx ≥ �(� − q)

∫
�

�(|∇un |)dx ≥ �(� − q)min{||un ||�, ||un ||m}.
Using the estimates just above, we get

�(� − q)min{||un ||�, ||un ||m} ≤ (�∗ − q)S�∗ ||b+||∞||un ||�∗ + on(1).

Hence, we have that

�(� − q) ≤ (�∗ − q)S�∗ ||b+||∞||un ||�∗−α + on(1)

||un ||α
where α = � whenever ||un|| ≥ 1 and α = m whenever ||un || ≤ 1. Furthermore, using
(4.31), we obtain

||un || ≥
[

�(� − q)

(�∗ − q)S�∗ ||b+||∞
] 1

�∗−α + on(1). (4.32)

Using one more time (1.5), (2.13) and Hölder inequality, we deduce that

(�∗ − m)

∫
�

φ(|∇un |)|∇un |2dx ≤ λ(�∗ − q)||a+||
( �
q )′ ||un ||q� + on(1)

≤ λ(�∗ − q)Sq ||a+||
( �
q )′ ||un ||q + on(1).

Here Sq denotes the best Sobolev constant for the embedding W 1,�
0 (�) into Lq(�). Using

the same ideas discussed here, we also mention that

�(�∗ − m)min{||un ||�, ||un ||m} ≤ λ(�∗ − q)S�||a+||
( �
q )′ ||un ||q + on(1).

As a consequence we get

�(�∗ − m)

(�∗ − q)S�||a+||
( �
q )′

||un ||α = �(�∗ − m)

(�∗ − q)S�||a+||
( �
q )′

min{||un ||�, ||un ||m} ≤ λ||un ||q + on(1).

To sum up, using the estimate (4.31), we can be shown that

||un || ≤
⎡
⎢⎣λ

(�∗ − q)S�‖a+‖(
�
q

)′

�(�∗ − m)

⎤
⎥⎦

1
α−q

+ on(1)

||un ||
q

α−q

=
⎡
⎢⎣λ

(�∗ − q)S�‖a+‖(
�
q

)′

�(�∗ − m)

⎤
⎥⎦

1
α−q

+ on(1).

Arguing as in the proof of Lemma 2.1, using the above inequality and (4.32), we have a
contradiction for each λ < λ1 where λ1 was given by (2.16). This finishes the proof. ��

At this stage we shall prove that any minimizer sequences on the Nehari manifold inN+
λ

orN−
λ provides us a Palais–Smale sequences. More specifically, we can prove the following

result
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Proposition 4.4 Suppose (φ1) − (φ3) and (H). Then we have the following assertions

(1) there exists a sequence (un) ⊂ N+
λ such that Jλ(un) = α+

λ + on(1) and J ′
λ(un) =

on(1) in W−1,�̃(�).

(2) there exists a sequence (un) ⊂ N−
λ such that Jλ(un) = α−

λ + on(1) and J ′
λ(un) =

on(1) in W−1,�̃(�).

Proof Herewe shall prove the item (1). The proof of item (2) follows the same ideas discussed
here using Lemma 4.2 instead of Lemma 4.1. Applying Ekeland’s variational principle, there
exists a sequence (un) ⊂ N+

λ in such way that

(i) Jλ(un) = α+
λ + on(1),

(ii) Jλ(un) < Jλ(w) + 1
n ||w − u||, ∀ w ∈ N+

λ .

According to Proposition 4.3, there exists C > 0 independent on n ∈ N in such way that
‖ξ ′

n(0)‖ ≤ C . This estimate together with Proposition 4.2 give us the following estimate〈
J ′
λ(un),

u

||u||
〉

≤ C

n
, u ∈ W 1,�(�)/{0}.

As a consequence ‖J ′
λ(un)‖ → 0 as n → ∞. This ends the proof. ��

5 The concentration-compactness method

In this section we shall discuss the concentration-compactness theorem for Orlicz–Sobolev
framework. It is important to recover the compactness property in order to apply a minimiza-
tion argument. This property allows us to prove our main results on existence andmultiplicity
of solutions to quasilinear elliptic problems.

In what follows we borrow the ideas discussed in [58]. Given any function v ∈ C∞
0 (�)

we extend the function v in the following form v(x) = 0 for any x ∈ �c. This function is
also denoted by v which belongs to v ∈ C∞

0 (RN ). Moreover, we observe that supp(v) ⊂ �.
It is important to mention also that

‖v‖W 1,�(RN ) = ‖v‖W 1,�(�)

and

‖v‖ = ‖v‖
W1,�(�)

for any v ∈ W 1,�
0 (�).

Furthermore, we observe that

W 1,�
0 (�) = {v ∈ C∞

0 (RN ) | supp(v) ⊂ �}W
1,�(RN )

.

As a consequence, we know that v ∈ W 1,�(RN ) whenever v ∈ W 1,�
0 (�).

Now we shall consider the vectorial space

C0 = {u ∈ C(�) | supp(u)
cpt⊆ RN }

‖·‖∞
,

endowed with the norm ‖u‖∞ = sup
x∈RN

|u(x)|. Denote byM the space of finite measures on

R
N using the norm

‖μ‖M = sup

{∫
RN

udμ | u ∈ C0, ‖u‖∞ = 1

}
.
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Here C∗
0 denotes the dual set for C0. Recall that M satisfies the following properties

(i) M = C∗
0 and 〈μ, u〉 := ∫ udμ,

(ii) The convergence μn⇀μ in M occurs whenever lim
n→∞

∫
RN

udμn−→
∫
RN

udμ, u ∈
C0,

(iii) Let (μn) ⊆ M be an bounded sequence. Then, up to a subsequence, we obtain μn⇀μ

in M.

At thismomentwe consider aminimizer sequence (un) ⊂ Nλ for the functional Jλ. Notice
that (un) is bounded and there exists u ∈ W 1,�

0 (�) in such way that un⇀u in W 1,�
0 (�).

Consider μn, νn : C0 → R given by

〈μn, v〉 =
∫
RN

�(|∇un |)vdx and 〈νn, v〉 =
∫
RN

|un |�∗
vdx, v ∈ C0.

Hence there exists a constant C > 0 in such way that

|〈μn, v〉| ≤ C‖v‖∞ and |〈νn, v〉| ≤ C‖v‖∞.

In other words, we have been shown that (μn), (νn) ⊆ M are bounded measures. It follows
from the last estimate that

�(|∇un |)⇀μ, |un |�∗
⇀ν in M. (5.33)

In what follows we shall consider the compactness-concentration theorem in the Orlicz–
Sobolev framework, see for instance [40]. For a proof on compactness-concentration theorem
in Orlicz–Sobolev spaces, we refer the reader to [36].

Lemma 5.1 There exist an enumerable set L, a family {x j } j∈L ⊆ R
N such that xi �= x j and

nonnegative real numbers {ν j } j∈L and {μ j } j∈L satisfying

ν = |u|�∗ +
∑
j∈L

ν jδx j and μ ≥ �(|∇u|) +
∑
j∈L

μ jδx j ,

where δx j is the Dirac measure with mass at x j . Furthermore, we have

ν j ≤ max

{
S

− �∗
�

�∗ μ
�∗
�

j , S
− �∗

m
�∗ μ

�∗
m
j

}
, j ∈ L,

where S�∗ is the best constant for the embedding W 1,�
0 (�) ↪→ L�∗

(�).

Lemma 5.2 The set L̃ = { j ∈ L | ν j > 0} is finite.
Proof Initially we mention that {x j } j∈L̃ ⊆ �. Indeed, arguing by contradiction we suppose

that x j ∈ �
c
for some j ∈ L . Hence there exists ε > 0 such that Bε(x j ) ⊆ �

c
. Consider

ϕε ∈ C∞
0 (RN ) satisfying the following conditions

supp(ϕε) ⊂ Bε(x j ), ϕε
ε→0−→ χ{x j } a.e. RN .

Now we extend the function un in R
N putting un(x) = 0 for any x ∈ R

N\�. At this stage
the proof follows the same lines discussed in [36]. Here we omit the details. ��

For the next result, we extend the function un toRN defining un = 0 inRN\�. Moreover,
we consider L = {x1, . . . , xr } for some r ∈ Nwhich was obtained from the previous lemma.
Under these conditions, we can consider the following result
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Lemma 5.3 Let un ⊂ Nλ be a minimizer sequence for the functional Jλ. Then there exists
u ∈ W 1,�

0 (�) in such way that un⇀u in W 1,�
0 (�). Furthermore, we have that

un → u in L�∗
(K ) (5.34)

for each compact set K ⊂ R
N\{x1, . . . , xr }.

Proof Initially, we observe that L̃ is finite. Hence there exists δ > 0 such that Bδ(xi ) ∩
Bδ(x j ) = ∅ for any i �= j with i, j ∈ L̃ . Now we consider the set Kδ ⊂ R

N\ ∪ j∈L Bδ(x j )
and χ ∈ C∞

0 in such way that

0 ≤ χ ≤ 1, χ = 1 in Kδ, supp(χ) ∩
(
∪ j∈L̃ B δ

2
(x j )

)
= ∅.

Notice also that

|un − u|�∗
⇀ν and ν =

∑
j∈L̃

ν jδx j in M.

On the other hand, we observe that

0 ≤
∫
Kδ

|un − u|�∗
dx ≤

∫
RN

|un − u|�∗
χdx,

∫
RN

|un − u|�∗
χdx →

∫
RN

χdν,

∫
RN

χdν =
∑
j∈ J̃

χ(x j ) = 0.

As a consequence we mention that∫
Kδ

|un − u|�∗
dx → 0.

Putting the all estimates together and using the fact that δ > 0 is arbitrary we conclude that
(5.34) holds true for each compact set K ⊂ R

N\{x j } j∈L̃ . This ends the proof. ��
Lemma 5.4 Let un ⊂ Nλ be a minimizer sequence for the functional Jλ. Consider u ∈
W 1,�

0 (�) such that un⇀u in W 1,�
0 (�). Then we obtain the following properties:

(i) φ(|∇un |)∇un⇀φ(|∇u|)∇u in
∏

L�̃(�);

(i i) |un |�∗−2un⇀|u|�∗−2u in L
�∗

�∗−1 (�).

Proof Firstly, we shall prove the item (i). Consider {Kν}∞ν=1 a family of compact sets satis-
fying

�\{x j } j∈L̃ =
∞⋃

ν=1

Kν . (5.35)

Choose any integer number ν ≥ 1. Let χ ∈ C∞
0 (RN ) be a function such that 0 ≤ χ ≤

1, χ = 1 in Kν and supp(χ) ∩ {x j } j∈L̃ = ∅. Using the fact that � is convex we obtain

An := (φ(|∇un |)∇un − φ(|∇u|)∇u,∇un − ∇u) ≥ 0, in R
N .

As a consequence we employ that
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0 ≤
∫
Kν

An(x)dx ≤
∫
Rn

(φ(|∇un |)∇un,∇un − ∇u)χdx

−
∫
Rn

(φ(|∇u|)∇u,∇un − ∇u)χdx .

Define vn = χ(un − u). It follows easily that vn is bounded in W 1,�(RN ). Using vn as
testing function, we deduce that∫

RN

[
φ(|∇un |)∇un∇vndx − λa(x)|un |q−2unvn − b(x)|un |�∗−2unvn

]
dx = on(1).

(5.36)
In other words, we know that∫

RN
φ(|∇un |)∇un(∇un − ∇u)χdx +

∫
RN

(un − u)φ(|∇un|)∇un∇χdx

=
∫

�

[
λa(x)|un |q−2un + b(x)|un |�∗−2un

]
vndx + on(1). (5.37)

Note that∫
RN

∣∣φ(|∇un |)∇un∇χ(un − u)
∣∣dx ≤ ‖φ(|∇un |)|∇un |‖�̃|∇χ |∞‖(un − u)‖� = on(1).

Moreover, we mention that L�(�) ↪→ L�(�) ↪→ Lq(�) which shows that∫
RN

a(x)|un |q−1|vn |dx ≤ ‖a‖∞‖un‖q−1
q ‖un − u‖q

≤ C‖a‖∞‖un‖q−1
� ‖un − u‖� = on(1).

Additionally, using that (|un |�∗−1) is bounded in L
�∗

�∗−1 (�) and Lemma 5.3, we conclude
that ∫

RN
|b(x)||un |�∗−1|vn |dx ≤ ‖b‖∞‖un‖�∗−1

�∗ ‖un − u‖L�∗ (Sχ ) = on(1)

where Sχ := supp(χ). In this way, using (5.37) we get∫
RN

φ(|∇un|)∇un(∇un − ∇u)χdx = on(1). (5.38)

Furthermore, using that un⇀u inW 1,�
0 (�) and χφ(|∇u|)|∇u| ∈ L�̃(�), putting un = u =

0 in R
n\� we see that ∫

RN
φ(|∇u|)∇u(∇un − ∇u)χdx = on(1). (5.39)

At this stage using (5.38), (5.39) in (5.36), we ensure that An is in L1(Kν). Now, up to a
subsequence, we get

An(x) → 0, a.e. x ∈ Kν .

Hence (5.35) implies that

An(x) → 0, a.e. x ∈ R
N .

It follows from [26, Lemma 6] that

∇un → ∇u, a.e. in R
N .
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Moreover, using the fact that un = 0 in R
N\�, we also see that

∇un → ∇u, a.e. in �.

Using the fact that t �−→ φ(t)t is a continuous function one has

φ(|∇un |)∇un → φ(|∇u|)∇u, a.e. in �.

In this way, using that �̃(φ(t)t) ≤ �(2t), we obtain φ(|∇un|)|∇un | is bounded in L�̃(�).
Therefore, using [38, Lemma 2], we have been shown that

φ(|∇un |)∇un⇀φ(|∇u|)∇u, in
∏

L�̃(�).

This ends the proof of item (i).

Now we shall prove the item (i i). Note that W 1,�
0 (�)

cpt
↪→ L�(�) showing that un → u

in L�(�). Up to a subsequence we have that un → u a. e. in �. Hence we easily see that

|un |�∗−2un → |u|�∗−2u, a.e. in �.

Now using the fact that (|un |�∗−2un) is bounded in L
�∗

�∗−1 (�) and using one more time [38,
Lemma 2] we conclude that

|un |�∗−2un⇀|u|�∗−2u, in L
�∗

�∗−1 (�).

This completes the proof. ��

6 The Proof of our main theorems

6.1 The Proof of Theorem 1.1

Let λ < �1 = min{λ1, λ̄1} be fixed where λ1 > 0 is given by (2.16) and λ̄1 > 0 is provided
in (3.18). Taking into account Lemma 3.5, we infer that

α+
λ := inf

u∈N+
λ

Jλ(u) < 0.

The main feature here is to find a function u = uλ ∈ N+
λ in such way that

Jλ(u) = min
w∈N+

λ

Jλ(w) =: α+
λ and J ′

λ(u) ≡ 0.

As a first step, using Proposition 4.1, there exists a minimizer sequence denoted by (un) ⊂
W 1,�(�) such that

Jλ(un) = αλ + on(1) and J ′
λ(un) = on(1). (6.40)

Since the functional Jλ is coercive in N+
λ we obtain that (un) is now bounded in N+

λ .

Therefore, there exists a function u = uλ ∈ W 1,�
0 (�) in such way that

un⇀u in W 1,�
0 (�), un → u a.e. in �, un → u in L�(�). (6.41)

At this point we shall prove that u is a weak solution for the problem elliptic problem (1.1).
First of all, using (6.40), we mention that

on(1) = 〈J ′
λ(un), v

〉 =
∫

�

[
φ(|∇un |)∇un∇v − λa(x)|un |q−2unv − b(x)|un |�∗−2unv

]
dx
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holds for any v ∈ W 1,�
0 (�). In view of (6.41), Lemma 5.4 and Lebesgue convergence

theorem we get∫
�

[
φ(|∇u|)∇u∇v − λa(x)|u|q−2uv − b(x)|u|�∗−2v

]
dx = 0

for any v ∈ W 1,�
0 (�) proving that u is a weak solution to the elliptic problem (1.1). Addi-

tionally, the weak solution u is not zero. In fact, using the fact that un ∈ N+
λ , we obtain

λ

∫
�

a(x)|un |qdx = q�∗

�∗ − q

∫
�

[
�(|∇un |) − 1

�∗ φ(|∇un|)|∇un |2
]
dx − Jλ(un)

q�∗

�∗ − q

≥ q�∗

�∗ − q

(
1 − m

�∗
) ∫

�

�(|∇un |)dx − Jλ(un)
q�∗

�∗ − q

≥ −Jλ(un)
q�∗

�∗ − q
.

Taking into account (6.40) and (6.41) we also obtain that

λ

∫
�

a(x)|u|qdx ≥ −α+
λ

q�∗

�∗ − q
> 0. (6.42)

As a consequence, we deduce that u �≡ 0.
At this stage, we shall prove that Jλ(u) = αλ and un → u in W 1,�

0 (�). Since u ∈ Nλ,
we also see that

αλ ≤ Jλ(u) =
∫

�

[
�(|∇u|) − 1

�∗ φ(|∇u|)|∇u|2 − λ

(
1

q
− 1

�∗

)
a(x)|u|q

]
dx .

Now we define  : R → R by (t) = �(t)− 1

�∗ φ(t)t2 which is a convex function. In fact,

using hypothesis (φ3) and m < �∗, we deduce that

((t))′′ = (tφ(t))′
[(

1 − 2

�∗

)
− 1

�∗
t(tφ(t))′′

(tφ(t))′

]

≥ (tφ(t))′
[(

1 − 2

�∗

)
− m − 2

�∗

]
= (tφ(t))′

(
1 − m

�∗
)

> 0

for any t > 0. Hence the last assertion says that

u �−→
∫

�

(|∇u|)dx

is weakly lower semicontinuous. Therefore, we obtain

αλ ≤ Jλ(u) ≤ lim inf
n→∞

∫
�

[
(|∇un|) − λ

(
1

q
− 1

�∗

)
a(x)|un |q

]
dx = lim inf

n→∞ Jλ(un) = αλ.

As a consequence, we have Jλ(u) = αλ. Additionally, using (6.41), we also mention that

Jλ(u) = lim
n→∞

∫
�

[
(|∇un |) − λ

(
1

q
− 1

�∗

)
a(x)|un |q

]
dx

= lim
n→∞

∫
�

(|∇un|)dx − λ

(
1

q
− 1

�∗

)∫
�

a(x)|u|qdx .

It follows from the last identity that

lim
n→∞

∫
�

(|∇un|)dx =
∫

�

(|∇u|)dx .
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In view of Brezis–Lieb Lemma, choosing vn = un − u, we infer that

lim
n→∞

∫
�

[(|∇un |) − (|∇vn |)] dx =
∫

�

(|∇u|)dx .
In this way, the previous assertion implies that

0 = lim
n→∞

∫
�

(|∇vn |)dx ≥ lim
n→∞

(
1 − m

�∗
) ∫

�

�(|∇vn |)dx ≥ 0.

Therefore, we obtain that lim
n→∞

∫
�

�(|∇vn |)dx = 0 and un → u in W 1,�(�). Hence we

conclude that un → u in W 1,�
0 (�).

At this point, we claim that u ∈ N+
λ holds true. According to (6.42) we also obtain∫
�

a(x)|u|qdx > 0. (6.43)

The proof for the claim just above follows arguing by contradiction. Here we suppose that
u /∈ N+

λ holds which implies that u ∈ N−
λ . As a consequence

Jλ(u) ≥ inf
w∈N−

λ

Jλ(w) = α−
λ > 0.

On the other hand, using the fact that un → u, we mention also that

Jλ(u) = lim
n→∞ Jλ(un) = α+

λ < 0.

This is a contradiction proving that u is in N+
λ .

At this stage, due the fact that Jλ(u) = Jλ(|u|) and J ′
λ(u) = J ′

λ(|u|), we show that
|u| ∈ N+

λ for each u ∈ N+
λ . Taking into account Lemma 2.2 we conclude |u| is also a

critical point of Jλ. Without any loss of generality, we can assume that our minimizer u for
the functional Jλ is nonnegative in �.

Finally, we observe that lim
λ→0

||u|| = 0. Indeed, since u ∈ N+
λ and arguing as in Proof of

Lemma 2.1, we get

||u||α−q ≤ λ
�∗ − q

�(�∗ − m)
S�||a+||

( �
q )′

where we put α ∈ {�,m}. This ends the Proof of Theorem 1.1.

6.2 The Proof of Theorem 1.2

Put�2 = min{λ̄1, λ̃1}where λ̄1 is provided in (3.18) and λ̃1 is given by Lemma 3.4. Initially,
due Lemma 3.4, there exists δ1 > 0 such that Jλ(v) ≥ δ1 for any v ∈ N−

λ .As a consequence

α−
λ := inf

w∈N−
λ

Jλ(w) ≥ δ1 > 0.

Now we shall consider a minimizer sequence (vn) ⊂ N−
λ given in Proposition 4.1, i.e.,

(vn) ⊂ N−
λ is a sequence satisfying

lim
n→∞ Jλ(vn) = α−

λ and lim
n→∞ J ′

λ(vn) = 0. (6.44)

Since Jλ is coercive in Nλ and so on N−
λ , using Lemma 2.1, we can show that (vn) is a

bounded sequence in W 1,�
0 (�). Up to a subsequence we assume that vn⇀v in W 1,�

0 (�)
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holds for some v = vλ ∈ W 1,�
0 (�). Additionally, using the fact that q < �∗, we obtain

tq << �∗(t) and W 1,�
0 (�) ↪→ Lq(�) is also a compact embedding. This fact ensures that

vn → v in Lq(�). In this way, we easily seen that

lim
n→∞

∫
�

a(x)|vn |qdx =
∫

�

a(x)|v|qdx . (6.45)

Nowwe claim that v ∈ W 1,�
0 (�) given just above is aweak solution to the elliptic problem

(1.1). In fact, using (6.44), we infer that

〈
J ′
λ(vn), w

〉 =
∫

�

[
φ(|∇vn |)∇vn∇w − λa(x)|vn |q−2vnw − b(x)|vn |�∗−2vnw

]
dx = on(1)

holds for any w ∈ W 1,�
0 (�). Now using Lemma 5.4 we get

∫
�

[
φ(|∇v|)∇v∇w − λa(x)|v|q−2vw − b(x)|v|�∗−2vw

]
dx = 0, w ∈ W 1,�

0 (�).

So that v is a critical point for the functional Jλ. Without any loss of generality, changing the
sequence (vn) by (|vn |), we can assume that v ≥ 0 in �.

Now we claim that v �= 0. The proof for this claim follows arguing by contradiction
assuming that v ≡ 0. Recall that Jλ(tvn) ≤ Jλ(vn) for any t ≥ 0 and n ∈ N. These facts
imply that

(
1 − m

�∗
) ∫

�

�(|∇tvn |)dx ≤ λ
(
tq − 1

) ( 1

q
− 1

�∗

)∫
�

a(x)|vn |qdx

+
(
1 − �

�∗

)∫
�

�(|∇vn |)dx .

Using the last estimate together with the fact that (vn) is bounded and [36, Lemma 2.1], we
obtain

min(t�, tm)
(
1 − m

�∗
) ∫

�

�(|∇vn |)dx ≤ λ
(
tq − 1

) ( 1

q
− 1

�∗

)∫
�

a(x)|vn |qdx + C

holds for some C > 0. These inequalities give us

min(t�, tm)
(
1 − m

�∗
) ∫

�

�(|∇vn |)dx ≤ λ
(
tq − 1

) ( 1

q
− 1

�∗

)
‖a‖∞‖vn‖qq + C .

It is no hard to verify that the fact ‖vn‖ ≥ c > 0 for any n ∈ N. Using one more time [36,
Lemma 2.1], we infer that

min(t�, tm) ≤ on(1)t
q + C

holds for any t ≥ 0 where C = C(�,m, �∗,�, a, b) > 0 where on(1) denotes a quantity
that goes to zero as n → ∞. Here was used the fact vn → 0 in Lq(�). This estimate does
not make sense for any t > 0 big enough using the fact that q < �. Hence v �= 0 as claimed.
As a consequence, v is in Nλ = N+

λ ∪ N−
λ .

At this stage, we shall prove that vn → v in W 1,�
0 (�). The proof follows arguing by

contradiction. Assume that lim inf
n→∞

∫
�

�(|∇vn − ∇v|)dx ≥ δ holds for some δ > 0. Recall

that  : R → R is defined by

(t) = �(t) − 1

�∗ φ(t)t2 (6.46)
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is a convex function for each t ≥ 0. The Brezis–Lieb Lemma for convex functions says that

lim
n→∞

∫
�

[(|∇vn |) − (|∇vn − v|)] dx =
∫

�

(|∇v|)dx

In particular, the last estimate give us
∫

�

(|∇v|)dx < lim inf
n→∞

∫
�

(|∇vn |)dx .

Now we claim that ∫
�

b(x)|v|�∗
dx > 0. (6.47)

The proof follows arguing by contradiction. Here we assume that
∫

�

b(x)|v|�∗
dx ≤ 0. (6.48)

Under these conditions, using Brezis–Lieb Lemma for convex functions, we have
∫

�

(|∇tv|)dx < lim inf
n→∞

∫
�

(|∇tvn |)dx for any t > 0

where  is given by (6.46). Recall also that

Jλ(tvn) =
∫

�

(|∇tvn |)dx + λ

∫
�

(
− 1

q
+ 1

�∗

)
a(x)|tvn |qdx .

Using (6.45) the last identity implies that

Jλ(tv) < lim inf
n→∞ Jλ(tvn) ≤ lim inf

n→∞ Jλ(vn) = α−
λ for any t > 0. (6.49)

On the other hand, using (6.48), we mention that

Jλ(tv) =
∫

�

[
�(|∇tv|)dx − λ

q

∫
�

a(x)|tv|qdx − 1

�∗

∫
�

b(x)|tv|�∗
]
dx

≥
∫

�

[
�(|∇tv|) − λ

q
a(x)|tv|�∗

]
dx . (6.50)

As a consequence, using the last estimate together with Holder’s inequality, we obtain

Jλ(tv) ≥ min
(
‖tv‖�, ‖tv‖m

)
− λ‖a‖∞Sq‖tv‖q

= t�‖v‖� − λtq‖a‖∞Sq‖v‖q (6.51)

holds for any t > 0 big enough. Hence the last estimate implies that

lim
t→∞ Jλ(tv) = +∞.

This is a contradiction with (6.49). So that
∫

�

b(x)|v|�∗
dx ≤ 0 is impossible proving that

∫
�

b(x)|v|�∗
dx > 0 (6.52)
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724 E. D. da Silva et al.

holds true. Recalling that we argue by contradiction we assume that (vn) does not converge
strongly to v. According toLemma3.3, there exists an unique t0 in (0,∞) such that t0v ∈ N−

λ .
It is easy to verify that

∫
�

(|∇t0v|)dx < lim inf
n→∞

∫
�

(|∇t0vn |)dx .

As a consequence we see that

α−
λ ≤ Jλ(t0v) =

∫
�

[
(|∇t0v|) − λ

(
1

q
− 1

�∗

)
a(x)|t0v|q

]
dx

< lim inf
n→∞

∫
�

[
(|∇t0vn |) − λ

(
1

q
− 1

�∗

)
a(x)|t0vn |q

]
dx

= lim inf
n→∞ Jλ(t0vn) ≤ lim inf

n→∞ Jλ(vn) = α−
λ .

This is a contradiction proving also that vn → v in W 1,�
0 (�). As a consequence v is inN−

λ .
This follows from the strong convergence and the fact that t0 = 1 is the unique maximum
point for the fibering map γv for any v ∈ N−

λ . Hence using the same ideas discussed in Proof
of Theorem 1.1, we infer that

α−
λ ≤ Jλ(v) ≤ lim inf

n→∞ Jλ(vn) = α−
λ .

In particular, we see that α−
λ = Jλ(v) and

lim
n→∞

∫
�

[
�(|∇vn |) − 1

�∗ φ(|∇vn |)|∇vn |2
]
dx =

∫
�

[
�(|∇v|) − 1

�∗ φ(|∇v|)|∇v|2
]
dx .

In particular, we know that Jλ(v) ≥ δ1 > 0. So we finish the Proof of Theorem 1.2.

6.3 The Proof of Theorem 1.3

In view of Theorems 1.1 and 1.2, there are u = uλ ∈ N+
λ and v = vλ ∈ N−

λ in such way
that

Jλ(u) = inf
w∈N+

λ

Jλ(w) and Jλ(v) = inf
w∈N−

λ

Jλ(w).

Additionally, using the fact that 0 < λ < � := min{�1,�2} where �1,�2 > 0 are given
by Theorem 1.1 and Theorem 1.2, we mention that N+

λ ∩ N−
λ = ∅. Therefore, u, v are

nonnegative weak solutions to the elliptic problem (1.1). As was mentioned before, using
the fact that

Jλ(w) = Jλ(|w|) and J ′
λ(w) = J ′

λ(|w|)

holds true for any w ∈ W 1,�
0 (�) we can assume u, v ≥ 0 in �. Furthermore, u is a ground

state solution for the problem (1.1). As a consequence problem (1.1) admits at least two
nontrivial solutions whenever 0 < λ < �. This completes the proof.
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