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Abstract
We prove embeddings of Sobolev and Hardy–Sobolev spaces into Besov spaces built upon
certain mixed norms. This gives an improvement of the known embeddings into usual Besov
spaces. Applying these results, we obtain Oberlin-type estimates of Fourier transforms for
functions in Sobolev spaces W 1

1 (Rn).
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1 Introduction

This paper is devoted to the study of some inequalities for functions in the Sobolev spaces
W 1

p(R
n) and Hardy–Sobolev spaces HW 1

1 (Rn).
The Sobolev space W 1

p(R
n) (1 ≤ p < ∞) is defined as the class of all functions

f ∈ L p(Rn) for which every first-order weak derivative exists and belongs to L p(Rn).

The classical Sobolev theorem (see [26, Ch. V]) states the following.

Theorem 1.1 Let n ≥ 2, 1 ≤ p < n, and p∗ = np/(n − p). Then for any f ∈ W 1
p(R

n)

|| f ||p∗ ≤ c‖∇ f ‖p. (1.1)

The Lebesgue norm at the left-hand side of (1.1) can be replaced by the stronger Lorentz
norm. Namely, for any f ∈ W 1

p(R
n), n ≥ 2, 1 ≤ p < n,

|| f ||p∗,p ≤ c||∇ f ||p (1.2)

(see [1,21,24,25]).
Let a function f be defined on Rn and let k ∈ {1, . . . , n}. Set

�k(h) f (x) = f (x + hek) − f (x), x ∈ R
n, h ∈ R (1.3)
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(ek is the kth unit coordinate vector).
The following theorem holds.

Theorem 1.2 Let n ∈ N. Assume that 1 < p < ∞ and n ≥ 1, or p = 1 and n ≥ 2. If
p < q < ∞ and s = 1 − n(1/p − 1/q) > 0, then for any f ∈ W 1

p(R
n)

n∑

k=1

(∫ ∞

0
h−sp||�k(h) f ||pq,p

dh

h

)1/p

≤ c
n∑

k=1

||Dk f ||p. (1.4)

For p > 1 inequality (1.4) (with the weaker norm ||�k(h) f ||q at the left-hand side) was
obtained by Herz [10]. For p = 1, n ≥ 2 Theorem 1.2 was proved in [11] (see also [12]). The
case p = 1 is of special interest; we stress that Theorem 1.2 fails for p = n = 1. However,
this theorem holds for any function f from the Hardy space H1(R) such that f ′ ∈ H1(R),
if we replace the L1-norm of f ′ by its H1-norm (see [11,22]).

One of the main results of this paper is the refinement of the inequality (1.4) given in
terms of mixed norms.

Let x = (x1, . . . , xn). Denote by x̂k the (n − 1)-dimensional vector obtained from the
n-tuple x by removal of its kth coordinate. We shall write x = (xk, x̂k).

If X(R) and Y (Rn−1) are Banach function spaces, and k ∈ {1, . . . , n}, we denote by
Y [X ]k the mixed norm space obtained by taking first the norm in X with respect to xk , and
then the norm in Y with respect to x̂k ∈ R

n−1.

We prove the following theorem.

Theorem 1.3 Let 1 < p < ∞ and n ≥ 2, or p = 1 and n ≥ 3. If p < q < ∞ and
α = 1 − (n − 1)(1/p − 1/q) > 0, then for any f ∈ W 1

p(R
n)

n∑

k=1

(∫ ∞

0
h−α p||�k(h) f ||pLq,p[L p]k

dh

h

)1/p

≤ c
n∑

k=1

||Dk f ||p. (1.5)

We show that the left-hand side of (1.4) is majorized by the left-hand side of (1.5). Thus,
for the indicated values of n and p, Theorem 1.3 provides a refinement of Theorem 1.2. We
stress that inequality (1.5) holds for n = 2, p > 1. However, the question of the validity of
this inequality for n = 2, p = 1 remains open.

As we have observed above, Theorem 1.2 fails for p = n = 1, but in this case there holds
a weaker inequality with L1-norm of f ′ replaced by its H1-norm. Similarly, we supplement
Theorem 1.3 by the following result.

As usual, for any 1 ≤ p ≤ ∞ we denote p′ = p/(p − 1).

Theorem 1.4 Let f ∈ W 1
1 (Rn) (n ≥ 2) and assume that all partial derivatives D j f ( j =

1, . . . , n) belong to the Hardy space H1(Rn). Then for any 1 < q < (n − 1)/(n − 2)

n∑

k=1

∫ ∞

0
h(n−1)/q ′−1||�k(h) f ||Lq,1[L1]k

dh

h
≤ c

n∑

k=1

||Dk f ||H1 . (1.6)

That is, inequality (1.5) holds for p = 1, n = 2 if the L1-norms of the derivatives are
replaced by the Hardy H1-norms. Of course, for n ≥ 3 (1.6) follows from (1.5).

We should note that this work was partly inspired by the Oberlin estimate [20] of Fourier
transforms of functions in the Hardy space H1(Rn). We apply inequality (1.5) to obtain an
analogue of this estimate for the derivatives of functions in W 1

1 (Rn). In particular, we prove
the following result.
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Theorem 1.5 Let f ∈ W 1
1 (Rn) (n ≥ 3). Then

∑

k∈Z
2k(2−n) sup

2k≤r≤2k+1

∫

Sr
| f̂ (ξ)|dσ(ξ) ≤ c||∇ f ||1, (1.7)

where Sr is the sphere of the radius r centered at the origin inRn and dσ(ξ) is the canonical
surface measure on Sr .

For n ≥ 3 this theorem gives a refinement of the Hardy-type inequality
∫

Rn
| f̂ (ξ)||ξ |1−n dξ ≤ c||∇ f ||1,

which was proved for f ∈ W 1
1 (Rn) (n ≥ 2) by Bourgain [4] and Pełczyński and Woj-

ciechowski [23].
As in the case p = 1 in Theorem 1.3, it is an open question whether Theorem 1.5 is true

for n = 2.
The paper is organized as follows:We give some definitions and auxiliary results in Sect. 2.

In Sect. 3 we prove inequalities between Besov norms built upon the spaces L p,ν(Rn) and
L p,ν(Rn−1)[Lr (R)], 1 ≤ r , ν ≤ p. In Sect. 4 we prove Theorem 1.3. Section 5 contains the
proof of Theorem 1.4. Section 6 is devoted to estimates of Fourier transforms of functions
in W 1

1 (Rn).

2 Some definitions and auxiliary results

Denote by S0(Rn) the class of all measurable and almost everywhere finite functions f on
R
n such that

λ f (y) = |{x ∈ R
n : | f (x)| > y}| < ∞ for each y > 0.

A nonincreasing rearrangement of a function f ∈ S0(Rn) is a nonnegative and nonincreasing
function f ∗ on R+ = (0,+∞) which is equimeasurable with | f |, that is, λ f ∗ = λ f . The
rearrangement f ∗ can be defined by the equality

f ∗(t) = sup
|E |=t

inf
x∈E | f (x)|, 0 < t < ∞ (2.1)

(see [5, p. 32]).
The following relation holds [2, p. 53]

sup
|E |=t

∫

E
| f (x)|dx =

∫ t

0
f ∗(u)du. (2.2)

In what follows we denote

f ∗∗(t) = 1

t

∫ t

0
f ∗(u)du. (2.3)

For any t > 0 there is a subset E ⊂ R
n with |E | = t such that

1

t

∫

E
| f (x)|dx = f ∗∗(t) (2.4)

(see [2, p. 53]).
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Let 0 < p, r < ∞. A function f ∈ S0(Rn) belongs to the Lorentz space L p,r (Rn) if

‖ f ‖L p,r = ‖ f ‖p,r =
(∫ ∞

0

(
t1/p f ∗(t)

)r dt
t

)1/r

< ∞.

We have that || f ||p,p = || f ||p. For a fixed p, the Lorentz spaces L p,r strictly increase
as the secondary index r increases; that is, the strict embedding L p,r ⊂ L p,s (r < s) holds
(see [2, Ch. 4]).

We will use the following Hardy’s inequality (see [2, p. 124]).

Proposition 2.1 Let ϕ be a nonnegative measurable function on (0,∞) and suppose −∞ <

λ < 1 and 1 ≤ p < ∞. Then
(∫ ∞

0

(
tλ−1

∫ t

0
ϕ(u)du

)p dt

t

)1/p

≤ 1

1 − λ

(∫ ∞

0

(
tλϕ(t)

)p dt

t

)1/p

.

Applying Hardy’s inequality with p > 1, λ = 1/p, we obtain that the operator f �→ f ∗∗
is bounded in L p for p > 1,

|| f ∗∗||p ≤ p

p − 1
|| f ||p, 1 < p ≤ ∞. (2.5)

We say that ameasurable functionψ on (0,∞) is quasi-decreasing if there exists a constant
c > 0 such that ψ(t1) ≤ cψ(t2), whenever 0 < t2 < t1 < ∞.

It is well known that in the case 0 < p < 1 Hardy-type inequalities are true for quasi-
decreasing functions. We will use the following proposition (a short proof can be found, e.g.,
in [17]).

Proposition 2.2 Let ψ be a nonnegative, quasi-decreasing function on (0,∞). Suppose also
that α > 0, β > −1 and 0 < p < 1. Then

∫ ∞

0
u−α−1

( ∫ u

0
ψ(t)tβdt

)p
du ≤ c

∫ ∞

0
u−α−1(ψ(u)uβ+1)pdu.

Let a function ϕ ∈ L p(R). Set

�(h)ϕ(x) = ϕ(x + h) − ϕ(x), h ∈ R, (2.6)

and

ω(ϕ; t)p = sup
|h|≤t

||�(h)ϕ||p, t ≥ 0.

Ul’yanov [28] proved the following estimate: for any ϕ ∈ L p(R), 1 ≤ p < ∞
ϕ∗∗(t) − ϕ(t) ≤ 2t−1/pω(ϕ; t)p.

It easily follows that

ϕ∗(t) ≤ 2
∫ ∞

t
s−1/pω(ϕ; s)p ds

s
(2.7)

(see also [14, p. 149], [27]). Using these estimates, Ul’yanov obtained that if 1 ≤ p < q < ∞
and ϕ ∈ L p(R), then

||ϕ||q ≤ c

(∫ ∞

0
t−q/p||�(t)ϕ||qp dt

)1/q

(2.8)
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and

ω(ϕ; δ)q ≤ c

(∫ δ

0
t−q/p||�(t)ϕ||qp dt

)1/q

(2.9)

(some discussions and generalizations of these results can be found in [14] and [16]).
In the next section we consider functions (x, y) �→ f (x, y), where x ∈ R, y ∈ R

n−1,

and we denote
�1(h) f (x, y) = f (x + h, y) − f (x, y), h ∈ R. (2.10)

Let V = V (Rn) be a Banach function space over Rn (see [2, Ch. 1]). We shall assume that
V is translation invariant, that is, whenever f ∈ V , then τh f ∈ V and ||τh f ||V = || f ||V for
all h ∈ R

n , where τh f (x) = f (x − h). Let f ∈ V . Set

ω1( f ; δ)V = sup
|h|≤δ

||�1(h) f ||V , δ ≥ 0.

In these notations, the subindex 1 indicates that the difference is taken with respect to the
first variable x .

We have the following inequality

ω1( f ; δ)V ≤ 3

δ

∫ δ

0
||�1(h) f ||V dh. (2.11)

Indeed, if t, h ∈ [0, δ], then
||�1(t) f ||V ≤ ||�1(h) f ||V + ||�1(t − h) f ||V .

Integrating with respect to h in [0, δ] (for a fixed t ∈ [0, δ]), and then taking supremum over
t, we obtain (2.11).

3 Different norm inequalities

Throughout this paper we use the notation (1.3).
Let 0 < α < 1, 1 ≤ p < ∞, and 1 ≤ θ < ∞. The Besov space Bα

p,θ (R
n) consists of all

functions f ∈ L p(Rn) such that

‖ f ‖Bα
p,θ

= || f ||p +
n∑

k=1

(∫ ∞

0

(
t−α||�k(t) f ||p

)θ dt

t

)1/θ

< ∞.

The classical different norm embedding theorem states that if 1 ≤ p < q < ∞ and
α > n(1/p − 1/q), then for any 1 ≤ θ < ∞

Bα
p,θ (R

n) ⊂ Bβ
q,θ (R

n), where β = α − n(1/p − 1/q),

and for any f ∈ Bα
p,θ (R

n)

|| f ||
Bβ
q,θ

≤ c|| f ||Bα
p,θ

(3.1)

(see [19, Ch. 6]).
Roughly speaking, passing from L p to Lq , we lose n(1/p − 1/q) in the smoothness

exponent.
We shall be especially interested in the one-dimensional case of this theorem. Note that

for n = 1 (3.1) follows immediately from (2.8), (2.9) and Hardy’s inequality.
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In this section we obtain different norm inequalities for the Besov spaces defined in some
mixed norms. First of all, we are interested in these results in connection with embeddings
of Sobolev spaces (in particular, for the comparison of Theorems 1.3 and 1.2).

We keep notations introduced in Sect. 2. Namely, we use the notation�(h)ϕ for functions
of one variable (see (2.6)). The notation�1(h) f (see (2.10)) is applied to functions (x, y) �→
f (x, y), where x ∈ R, y ∈ R

n−1 (n ≥ 2).
Let 1 ≤ θ < ∞, 0 < α < 1. Let V = V (Rn) (n ≥ 2) be a translation invariant Banach

function space. Denote by Bα
θ;1(V ) the class of all functions f ∈ V such that

|| f ||Bα
θ;1(V ) = || f ||V +

(∫ ∞

0
[h−αω1( f ; h)V ]θ dh

h

)1/θ

< ∞.

As above, the subindex 1 indicates that the difference is taken with respect to the first variable
x . Applying (2.11) and Hardy’s inequality, we obtain that

∫ ∞

0
[h−αω1( f ; h)V ]θ dh

h
≤ c

∫ ∞

0
[h−α||�1(h) f ||V ]θ dh

h
. (3.2)

As in Sect. 1, if X(R) and Y (Rn−1) are Banach function spaces, we denote by Y [X ]1 the
mixed norm space obtained by taking first the norm in X(R) with respect to the variable x ,
and then the norm in Y (Rn−1)with respect to y. In this section the interior normwill be taken
only in variable x . Therefore, in this section we write simply Y [X ] (omitting the subindex 1).

First, we have the following simple proposition.

Proposition 3.1 Let 1 ≤ θ < ∞, 1 ≤ r < p < ∞, and 1/r − 1/p < α < 1. Set β =
α−1/r+1/p.Then Bα

θ;1(L
p[Lr ]) ⊂ Bβ

θ;1(L
p(Rn));more exactly, for any f ∈ Bα

θ;1(L
p[Lr ])

|| f ||p ≤ c|| f ||Bα
θ;1(L p[Lr ]) (3.3)

and ∫ ∞

0
h−θβ ||�1(h) f ||θp

dh

h
≤ c

∫ ∞

0
h−θα||�1(h) f ||θL p[Lr ]

dh

h
. (3.4)

Proof Denote V = L p[Lr ]. Let f ∈ Bα
θ;1(V ). For a fixed y ∈ R

n−1, set fy(x) =
f (x, y), x ∈ R. By (2.8), we have

|| fy ||pp ≤ c
∫ ∞

0
t−p/r ||�(t) fy ||pr dt .

Integrating with respect to y gives

|| f ||pp ≤ c
∫ ∞

0
t−p/r ||�1(t) f ||pV dt .

Applying standard reasonings (see, e.g., [2, Ch. 5.4]), we get

(∫ ∞

0
t−p/r ||�1(t) f ||pV dt

)1/p

≤ c

[
|| f ||V +

(∫ 1

0
[t−θα||�1(t) f ||V ]θ dt

t

)1/θ
]

.

These estimates imply (3.3).
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Further, inequality (2.9) gives that

||�(h) fy ||pp ≤ c
∫ h

0
||�(t) fy ||pr t−p/rdt .

Integrating with respect to y, we get
∫

Rn
|�1(h) f (x, y)|p(x, y)dxdy =

∫

Rn−1
||�(h) fy ||ppdy

≤ c
∫

Rn−1

∫ h

0
||�(t) fy ||pr t−p/rdtdy = c

∫ h

0
||�1(t) f ||pV t−p/rdt .

This implies that
∫ ∞

0
h−θβ ||�1(h) f ||θp

dh

h

≤ c
∫ ∞

0
h−θβ

(∫ h

0
||�1(t) f ||pV t−p/rdt

)θ/p
dh

h
.

If θ ≥ p, then we apply Proposition 2.1 and we obtain (3.4). Let θ < p. Observe that
the function ψ(t) = ω1( f ; t)V /t is quasi-decreasing. Hence, applying Proposition 2.2 and
inequality (3.2), we get

∫ ∞

0
h−θβ ||�1(h) f ||θp

dh

h

≤ c
∫ ∞

0
h−θβ

(∫ h

0
ω1( f ; t)pV t−p/rdt

)θ/p
dh

h

≤ c′
∫ ∞

0
h−θαω1( f ; h)θV

dh

h
≤ c′′

∫ ∞

0
h−θα||�1(h) f ||θV

dh

h
.

This implies (3.4). �
Note that, in contrast to (3.1), the loss in the smoothness exponent given by (3.4) is only

1/r − 1/p. It is natural because the integrability exponent changes in only one variable.
Now, we replace the L p-norm in (3.3) and (3.4) by the L p,ν-Lorentz norm. In this case

simple arguments similar to those given above cannot be applied. Indeed, it was shown by
Cwikel [6] that if p �= ν, then neither of the spaces L p,ν(R2) and L p,ν(R)[L p,ν(R)] is
contained in the other. Therefore, we apply different methods; namely, we shall use iterated
rearrangements.

Let g ∈ S0(Rn), n ≥ 2. For a fixed y ∈ R
n−1, denote by R1g(s, y) the nonincreasing

rearrangement of the function gy(x) = g(x, y), x ∈ R. Further, for a fixed s > 0, let
R1,2g(s, t) be the nonincreasing rearrangement of the function y �→ R1g(s, y), y ∈ R

n−1.

The iterated rearrangement R1,2g is defined on R
2+. It is nonnegative, nonincreasing in

each variable, and equimeasurable with |g| function (see [3,15,16]).
Let 0 < p, ν < ∞, and n ≥ 2. For a function g ∈ S0(Rn), denote

‖g‖Lp,ν =
(∫

R
2+
(st)ν/p−1R1,2g(s, t)

ν dsdt

)1/ν

(see [3]). The following inequalities hold [29]:

‖g‖p,ν ≤ c‖g‖Lp,ν if 0 < ν ≤ p < ∞ (3.5)
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622 V. I. Kolyada

and
‖g‖Lp,ν ≤ c′‖g‖p,ν if 0 < p ≤ ν < ∞. (3.6)

Proposition 3.2 Let 1 ≤ θ < ∞, 1 ≤ ν ≤ p < ∞, 1 ≤ r < p, and 1/r − 1/p < α < 1.
Set β = α − 1/r + 1/p. Then Bα

θ;1(L
p,ν[Lr ]) ⊂ Bβ

θ;1(L
p,ν); more exactly, for any f ∈

Bα
θ;1(L

p,ν[Lr ])
|| f ||L p,ν ≤ c|| f ||Bα

θ;1(L p,ν [Lr ]) (3.7)

and ∫ ∞

0
h−θβ ||�1(h) f ||θL p,ν

dh

h
≤ c

∫ ∞

0
h−θα||�1(h) f ||θL p,ν [Lr ]

dh

h
. (3.8)

Proof Let f ∈ Bα
θ,1(L

p,ν[Lr ]). Set ϕh(x, y) = |�1(h) f (x, y)|. Let s and h be fixed positive
numbers. We consider the function y �→ R1ϕh(s, y), y ∈ R

n−1. As in Sect. 2 above (see
(2.4)),we can state that for any t > 0 there exists a set E = Es,t,h ⊂ R

n−1 withmesn−1 E = t
such that

R1,2ϕh(s, t) ≤ 1

t

∫

E
R1ϕh(s, y) dy. (3.9)

By (2.7), for any s > 0

R1ϕh(s, y) ≤ 2
∫ ∞

s
ω(ϕh(·, y); u)r

du

u1+1/r . (3.10)

Set gu,h(y) = ω(ϕh(·, y); u)r . By (2.2), we have

1

t

∫

E
gu,h(y) dy ≤ g∗∗

u,h(t). (3.11)

Applying inequalities (3.9), (3.10), and (3.11), we obtain

R1,2ϕh(s, t) ≤ 2

t

∫ ∞

s

∫

E
gu,h(y) dy

du

u1+1/r

≤ 2
∫ ∞

s
g∗∗
u,h(t)

du

u1+1/r .

Further, we shall estimate

||�1(h) f ||νLp,ν =
∫ ∞

0

∫ ∞

0
(st)ν/p−1R1,2ϕh(s, t)

νdsdt .

Fix t > 0. Applying Hardy’s inequality, we have
∫ ∞

0
sν/p−1R1,2ϕh(s, t)

νds ≤ 2ν

∫ ∞

0
sν/p−1

(∫ ∞

s
g∗∗
u,h(t)

du

u1+1/r

)ν

ds

≤ c
∫ ∞

0
sν/p−ν/r−1g∗∗

s,h(t)
νds.

Thus,

||�1(h) f ||νLp,ν =
∫

R
2+
(st)ν/p−1R1,2ϕh(s, t)

ν dsdt

≤ c
∫ ∞

0
sν/p−ν/r−1

∫ ∞

0
tν/p−1g∗∗

s,h(t)
νdtds

≤ c′
∫ ∞

0
sν/p−ν/r−1||gs,h ||νL p,νds.
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By (2.11), we have

gs,h(y) = ω(ϕh(·, y); s)r ≤ c

s

∫ s

0
||�(u)ϕh(·, y)||rdu.

Thus, by the Minkowski inequality,

||gs,h ||L p,ν ≤ c

s

∫ s

0
||�1(u)ϕh ||V du, where V = L p,ν[Lr ].

Using this estimate and applying Hardy’s inequality, we obtain

||�1(h) f ||νLp,ν ≤ c
∫ ∞

0
sν/p−ν/r−1

(
1

s

∫ s

0
||�1(u)ϕh ||V du

)ν

ds

≤ c′
∫ ∞

0
sν/p−ν/r−1||�1(s)ϕh ||νV ds.

Obviously,

||�1(s)ϕh ||V ≤ 2||�1(min(s, h)) f ||V .

Thus,
∫ ∞

0
h−θβ ||�1(h) f ||θLp,ν

dh

h

≤ c
∫ ∞

0
h−θβ

(∫ ∞

0
sν/p−ν/r−1||�1(min(s, h)) f ||νV ds

)θ/ν dh

h

≤ c′
[∫ ∞

0
h−θβ

(∫ h

0
sν/p−ν/r−1||�1(s) f ||νV ds

)θ/ν
dh

h

+
∫ ∞

0
h−θβ ||�1(h) f ||θV

(∫ ∞

h
sν/p−ν/r−1ds

)θ/ν dh

h

]
≡ c(I1 + I2).

First,

I2 = c
∫ ∞

0
h−θα||�1(h) f ||θV

dh

h
. (3.12)

Further, if θ > ν, then by Proposition 2.1 we obtain

I1 ≤ c
∫ ∞

0
h−θα||�1(h) f ||θV

dh

h
. (3.13)

If θ ≤ ν, we obtain estimate (3.13) exactly as in Proposition 3.1. Namely, using the fact
that the function ψ(t) = ω1( f ; t)V /t is quasi-decreasing, we apply Proposition 2.2 and
inequality (3.2). Estimates (3.12) and (3.13) give that

∫ ∞

0
h−θβ ||�1(h) f ||θLp,ν

dh

h
≤ c

∫ ∞

0
h−θα||�1(h) f ||θV

dh

h
.

Since ν ≤ p, the latter inequality implies (3.8) (see (3.5)).
Inequality (3.7) follows by similar arguments; we omit the details. �

Remark 3.3 In this workwe apply Proposition 3.2 only for ν = r < p. It would be interesting
to consider other cases and further generalizations in this direction.
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4 Embeddings of Sobolev spacesW1
p (R

n)

In this section we prove a refinement of Theorem 1.2. For 1 ≤ p, q < ∞ and k = 1, . . . , n,
denote by Vq,p,k(R

n) the mixed norm space Lq,p(Rn−1)[L p(R)]k obtained by taking first
the norm in L p(R) with respect to the variable xk , and then the norm in Lq,p(Rn−1) with
respect to x̂k .

We shall use the following simple fact.

Proposition 4.1 Let a function ϕ be defined on R and assume that ϕ is locally absolutely
continuous (that is, ϕ is absolutely continuous in each bounded interval [a, b] ⊂ R). Let
ψ = |ϕ|. Then, ψ also is locally absolutely continuous and

|ψ ′(x)| ≤ |ϕ′(x)| for almost x ∈ R.

Indeed, this statement follows immediately from the inequality

|ψ(x + h) − ψ(x)| ≤ |ϕ(x + h) − ϕ(x)|.
Theorem 4.2 Let 1 < p < ∞ and n ≥ 2, or p = 1 and n ≥ 3. If p < q < ∞ and
α = 1 − (n − 1)(1/p − 1/q) > 0, then for any f ∈ W 1

p(R
n)

n∑

k=1

(∫ ∞

0
h−α p||�k(h) f ||pVq,p,k

dh

h

)1/p

≤ c||∇ f ||p. (4.1)

Proof We estimate the last term of the sum in (4.1). Set

ϕh (̂xn) =
(∫

R

|�n(h) f (x)|pdxn
)1/p

and

ψ j (̂xn) =
(∫

R

|Dj f (x)|pdxn
)1/p

, j = 1, . . . , n.

We consider the integral

J =
∫ ∞

0
h−α pK (h)

dh

h
, (4.2)

where

K (h) = ||�n(h) f ||pVq,p,n
=

∫ ∞

0
t p/q−1ϕ∗

h (t)
pdt .

Set

K1(h) =
∫ ∞

hn−1
t p/q−1ϕ∗

h (t)
pdt, K2(h) =

∫ hn−1

0
t p/q−1ϕ∗

h (t)
pdt . (4.3)

For any h > 0

|�n(h) f (x)| ≤
∫ h

0
|Dn f (x + uen)|du.

Raising to the power p, integrating over xn inR, and applying Hölder’s inequality, we obtain

ϕh (̂xn)
p ≤

∫

R

(∫ h

0
|Dn f (x + uen)|du

)p

dxn ≤ h pψn (̂xn)
p.
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Thus,
ϕ∗
h (t) ≤ hψ∗

n (t). (4.4)

From here (see (4.3))

K1(h) ≤ h p
∫ ∞

hn−1
t p/q−1ψ∗

n (t)pdt

and therefore

J1 =
∫ ∞

0
h−α pK1(h)

dh

h
≤

∫ ∞

0
h(1−α)p

∫ ∞

hn−1
t p/q−1ψ∗

n (t)pdt
dh

h

=
∫ ∞

0
t p/q−1ψ∗

n (t)p
∫ t1/(n−1)

0
h(1−α)p dh

h
dt

= ((1 − α)p)−1
∫ ∞

0
ψ∗
n (t)pdt = c||Dn f ||pp.

This estimate holds for all p ≥ 1 and n ≥ 2.
Estimating K2(h), we first assume that p = 1 and n ≥ 3. Set

g(̂xn) =
∫

R

| f (x)| dxn .

Then ||g||L1(Rn−1) = || f ||L1(Rn). Moreover, g ∈ W 1
1 (Rn−1) and

||Dj g||L1(Rn−1) ≤ ||Dj f ||L1(Rn), j = 1, . . . , n − 1. (4.5)

Indeed, since f ∈ W 1
p(R

n), then for any j = 1, . . . , n and almost all x̂ j ∈ R
n−1 the function

f is locally absolutely continuous with respect to x j (see, e.g., [30, 2.1.4]). Thus, we can
apply Proposition 4.1.

We have

ϕh (̂xn) ≤
∫

R

| f (x)|dxn +
∫

R

| f (x + hen)|dxn = 2g(̂xn).

Thus (see (4.3)),

K2(h) ≤ 2
∫ hn−1

0
t1/q−1g∗(t)dt

and

J2 =
∫ ∞

0
h−αK2(h)

dh

h
≤ 2

∫ ∞

0
h−α

∫ hn−1

0
t1/q−1g∗(t)dt dh

h

= 2
∫ ∞

0
t1/q−1g∗(t)

∫ ∞

t1/(n−1)
h(1−1/q)(n−1)−1 dh

h

= c
∫ ∞

0
t−1/(n−1)g∗(t)dt = c||g||(n−1)′,1.

Taking into account (4.5) and applying inequality (1.2), we get

J2 ≤ c||g||(n−1)′,1 ≤ c′
n−1∑

j=1

||Dj f ||1.

Together with the estimate J1 ≤ c||Dn f ||1 obtained above, this gives (4.1) for p = 1, n ≥ 3.

123



626 V. I. Kolyada

Let now p > 1, n ≥ 2. In what follows we write x = (u, xn), u = x̂n ∈ R
n−1.

For a fixed u ∈ R
n−1 and t > 0, denote by Qu(t) the cube in Rn−1 centered at u with the

side length (4t)1/(n−1). Let

Au,t,h = {v ∈ Qu(t) : ϕh(v) ≤ ϕ∗
h (2t)}.

Then mesn−1 Au,t,h ≥ 2t . Thus, we have

ϕh(u) − ϕ∗
h (2t) ≤ ϕh(u) − 1

mesn−1 Au,t,h

∫

Au,t,h

ϕh(v)dv

≤ 1

2t

∫

Qu(t)
|ϕh(u) − ϕh(v)|dv. (4.6)

Further,

|ϕh(u) − ϕh(v)| =
∣∣∣∣∣

(∫

R

| f (u, xn + h) − f (u, xn)|pdxn
)1/p

−
(∫

R

| f (v, xn + h) − f (v, xn)|pdxn
)1/p

∣∣∣∣∣

≤ 2

(∫

R

| f (u, xn) − f (v, xn)|pdxn
)1/p

.

We have (see [18, p. 143])

| f (u, xn) − f (v, xn)| ≤ |u − v|
n−1∑

j=1

∫ 1

0
|Dj f (u + τ(v − u), xn)|dτ.

If v ∈ Qu(t), then |u−v| ≤ √
n − 1(2t)1/(n−1). Thus, by the Minkowski inequality, for any

v ∈ Qu(t)

|ϕh(u) − ϕh(v)|

≤ ct1/(n−1)
n−1∑

j=1

(∫

R

(∫ 1

0
|Dj f (u + τ(v − u), xn)|dτ

)p

dxn

)1/p

≤ ct1/(n−1)
n−1∑

j=1

∫ 1

0

(∫

R

|Dj f (u + τ(v − u), xn)|pdxn
)1/p

dτ

= ct1/(n−1)
n−1∑

j=1

∫ 1

0
ψ j (u + τ(v − u))dτ.

From here and (4.6),

ϕh(u) − ϕ∗
h (2t) ≤ ct1/(n−1)−1

n−1∑

j=1

∫

Q0(t)

∫ 1

0
ψ j (u + τ z)dτdz. (4.7)

Taking into account that

ϕ∗
h (t) ≤ sup

mesn−1 E=t

1

t

∫

E
ϕh(u)du,
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and applying (4.7), we get

ϕ∗
h (t) − ϕ∗

h (2t) ≤ sup
mesn−1 E=t

1

t

∫

E
[ϕh(u) − ϕ∗

h (2t)]du

≤ ct1/(n−1)−1
n−1∑

j=1

sup
mesn−1 E=t

∫

Q0(t)

∫ 1

0

1

t

∫

E
ψ j (u + τ z)dudτdz.

Let E ⊂ R
n−1, mesn−1 E = t . Then for all τ ∈ [0, 1] and z ∈ Q0(t)

1

t

∫

E
ψ j (u + τ z)du ≤ ψ∗∗

j (t).

Thus, we have that

ϕ∗
h (t) − ϕ∗

h (2t) ≤ ct1/(n−1)
n−1∑

j=1

ψ∗∗
j (t). (4.8)

Now, for any ε > 0, we have

J2(ε)
1/p =

(∫ 1/ε

ε

h−α p
∫ hn−1

εn−1
t p/q−1ϕ∗

h (t)
pdt

dh

h

)1/p

≤
(∫ ∞

0
h−α p

∫ hn−1

0
t p/q−1[ϕ∗

h (t) − ϕ∗
h (2t)]pdt

dh

h

)1/p

+
(∫ 1/ε

ε

h−α p
∫ hn−1

εn−1
t p/q−1ϕ∗

h (2t)
pdt

dh

h

)1/p

≡ I ′ + I ′′(ε).

By (4.8) and (2.5),

I ′ ≤ c
n−1∑

j=1

(∫ ∞

0
h−α p

∫ hn−1

0
t p/q+p/(n−1)−1ψ∗∗

j (t)pdt
dh

h

)1/p

= c
n−1∑

j=1

(∫ ∞

0
t p/q+p/(n−1)−1ψ∗∗

j (t)p
∫ ∞

t1/(n−1)
h−α p dh

h
dt

)1/p

= c′
n−1∑

j=1

(∫ ∞

0
ψ∗∗

j (t)pdt

)1/p

≤ c′′
n−1∑

j=1

||ψ j ||p = c′′
n−1∑

j=1

||Dj f ||p.

Further,

I ′′(ε) =
(
2−p/q

∫ 1/ε

ε

h−α p
∫ 2hn−1

2εn−1
t p/q−1ϕ∗

h (t)
pdt

dh

h

)1/p

≤ 2−1/q

(∫ 1/ε

ε

h−α p
∫ hn−1

εn−1
t p/q−1ϕ∗

h (t)
pdt

dh

h

)1/p

+ 2−1/q
(∫ ∞

0
h−α p

∫ ∞

hn−1
t p/q−1ϕ∗

h (t)
pdt

dh

h

)1/p

= 2−1/q
(
J2(ε)

1/p + J 1/p1

)
.
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As we have proved above, J 1/p1 ≤ c||Dn f ||p . Thus,

J2(ε)
1/p ≤ I ′ + I ′′(ε) ≤ 2−1/q J2(ε)

1/p + c
n∑

j=1

||Dj f ||p

and

J2(ε)
1/p ≤ c′

n∑

j=1

||Dj f ||p.

This implies that

J 1/p2 =
(∫ ∞

0
h−α p

∫ hn−1

0
t p/q−1ϕ∗

h (t)
pdt

dh

h

)1/p

≤ c′
n∑

j=1

||Dj f ||p.

Thus, we have (see notations (4.2) and (4.3))

J 1/p ≤ J 1/p1 + J 1/p2 ≤ c′′
n∑

j=1

||Dj f ||p.

In turn, this yields (4.1) for p > 1, n ≥ 2. �
Remark 4.3 By Proposition 3.2, inequality (4.1) gives a refinement of (1.4).

We stress that (4.1) is true for p > 1, n = 2. As it was already observed, we do not
know whether this inequality is true for p = 1, n = 2. However, we shall show that similar
inequality holds for p = 1, n = 2 if we replace the L1-norms of derivatives by the Hardy
H1-norms.

5 Embeddings of Hardy–Sobolev spaces

For a function f ∈ L1(Rn) the Fourier transform is defined by

f̂ (ξ) =
∫

Rn
f (x)e−i2πx ·ξ dx, ξ ∈ R

n .

Let f ∈ L1(Rn). The Riesz transforms R j f ( j = 1, . . . , n) of f are defined by the
equality

R j f (x) = lim
ε→0+ cn

∫

|y|≥ε

y j
|y|n+1 f (x − y)dy, cn = �((n + 1)/2)

π(n+1)/2
.

The space H1(Rn) is the class of all functions f ∈ L1(Rn) such that R j f ∈ L1(Rn)

( j = 1, . . . , n). The H1-norm is defined by

|| f ||H1 = || f ||1 +
n∑

j=1

||R j f ||1

(see [7, p. 144], [8, Ch. III.4]).
If f ∈ H1(Rn), then we have (see [8, p. 197])

(R j f )
∧(ξ) = − iξ j

|ξ | f̂ (ξ).
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Let Pt be the Poisson kernel in R
n . We consider n + 1 harmonic functions in R

n+1+ =
R
n × (0,+∞)

u0(x, t) = (Pt ∗ f )(x), u j (x, t) = (Pt ∗ R j f )(x) ( j = 1, . . . , n). (5.1)

These functions satisfy the equations of conjugacy

∂u j

∂xk
= ∂uk

∂x j
(0 ≤ j, k ≤ n),

n∑

j=0

∂u j

∂x j
= 0 (x0 = t) (5.2)

(see [8, Ch. III.4]).
For any x ∈ R

n , denote by �(x) the cone

�(x) =
{
(y, t) ∈ R

n+1+ : |x − y| ≤ t
}

.

Let f ∈ L1(Rn). The nontangential maximal function N f is defined by

N f (x) = sup
(y,t)∈�(x)

|(Pt ∗ f )(y)|.

A function f ∈ L1(Rn) belongs to H1(Rn) if and only if N f ∈ L1(Rn). In this case

c|| f ||H1 ≤ ||N f ||1 ≤ c′|| f ||H1 (c > 0) (5.3)

(see [8, Ch. III.4], [9, Th. 6.7.4]).
The nontangential maximal function N f is controlled by the vertical maximal function

Nv f (x) = sup
t>0

|(Pt ∗ f )(x)|.

Namely, N f ∈ L1(Rn) if and only if Nv f ∈ L1(Rn), and in this case

||Nv f ||1 ≤ ||N f ||1 ≤ c||Nv f ||1 (5.4)

(see [7, p.170], [9, Th. 6.4.4]).
Furthermore, if f ∈ H1(Rn), then

n∑

j=0

||Nv f j ||1 ≤ c|| f ||H1 , (5.5)

where f0 = f , f j = R j f ( j = 1, . . . , n) (see [26, Ch. VII.3.2])).
Inequalities (5.3)–(5.5) imply that for any f ∈ H1(Rn) its Riesz transforms R j f ( j =

1, . . . , n) belong to H1(Rn) and

||R j f ||H1 ≤ c|| f ||H1 ( j = 1, . . . , n) (5.6)

(see also [8, pp. 288, 322]).
Denote by HW 1

1 (Rn) the space of all functions f ∈ H1(Rn) for which all weak partial
derivatives Dj f exist and belong to H1(Rn).

Lemma 5.1 Let f ∈ HW 1
1 (Rn) and let u(x, t) = (Pt ∗ f )(x), t > 0. Set

Ñ f (x) = sup
(y,t)∈�(x)

∣∣∣∣
∂u

∂t
(y, t)

∣∣∣∣ . (5.7)
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Then

Ñ f (x) ≤
n∑

j=1

N (R j (Dj f ))(x) (5.8)

and

||Ñ f ||1 ≤ c
n∑

j=1

||Dj f ||H1 . (5.9)

Proof Let u j (x, t) = Pt ∗ (R j f )(x) ( j = 1, . . . , n). By the Fourier inversion,

u j (x, t) = −
∫

Rn
f̂ (ξ)

iξ j
|ξ | e

2π iξ ·xe−2π |ξ |tdξ.

Further,

∂u j

∂x j
(x, t) = −

∫

Rn
2π iξ j f̂ (ξ)

iξ j
|ξ | e

2π iξ ·xe−2π |ξ |tdξ.

Indeed, differentiation under the integral sign is justified by the convergence of the integral
∫

Rn
|ξ || f̂ (ξ)|e−2π |ξ |tdξ, t > 0.

Thus,
∂u j

∂x j
(x, t) = (Pt ∗ (R j (Dj f )))(x) ( j = 1, . . . , n). (5.10)

By (5.2), ∣∣∣∣
∂u

∂t
(x, t)

∣∣∣∣ ≤
n∑

j=1

∣∣∣∣
∂u j

∂x j
(x, t)

∣∣∣∣ . (5.11)

Applying (5.11) and (5.10), we get (5.8). By (5.3) and (5.6), this implies (5.9). �
As it was mentioned above, the following theorem holds.

Theorem 5.2 Assume that f ∈ HW 1
1 (Rn) (n ∈ N) and 1 < q < n′. Then

n∑

k=1

∫ ∞

0
hn/q ′−1||�k(h) f ||q dh

h
≤ c

n∑

k=1

||Dk f ||H1 .

For n ≥ 2 this result follows from Theorem 4.2; for n = 1 it was proved in [22] (see also
[11]).

In this section we obtain a refinement of Theorem 5.2 for n ≥ 2. For 1 < q < ∞ and
k = 1, . . . , n, denote by Vq,k the mixed norm space Lq,1(Rn−1)[L1(R)]k obtained by taking
first the norm in L1(R)with respect to the variable xk , and then the norm in Lq,1(Rn−1)with
respect to x̂k .

Theorem 5.3 Assume that f ∈ HW 1
1 (Rn) (n ≥ 2). Let 1 < q < (n − 1)′ and α =

1 − (n − 1)/q ′. Then
n∑

k=1

∫ ∞

0
h−α||�k(h) f ||Vq,k

dh

h
≤ c

n∑

k=1

||Dk f ||H1 . (5.12)
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Proof For n ≥ 3 (5.12) follows from the stronger inequality (4.1). We assume that n = 2.
Set

ϕh(x) =
∫

R

| f (x, y + h) − f (x, y)|dy, h > 0.

We consider the integral

J =
∫ ∞

0
h−1/q−1

∫ ∞

0
s1/q−1ϕ∗

h (s)dsdh. (5.13)

We have

J =
∫ ∞

0
h−1/q−1

∫ ∞

h
s1/q−1ϕ∗

h (s)dsdh

+
∫ ∞

0
h−1/q−1

∫ h

0
s1/q−1ϕ∗

h (s)dsdh ≡ J1 + J2.

As in Theorem 4.2, we have the estimate

ϕ∗
h (s) ≤ hg∗(s), where g(x) =

∫

R

|D2 f (x, y)|dy. (5.14)

Applying this estimate, we immediately get that

J1 ≤ c||D2 f ||1. (5.15)

Further, for the simplicity, we may assume that J2 < ∞ (otherwise we can apply the same
arguments as ones given at the final part of the proof of Theorem 4.2 for estimation of J2).
We first consider the difference ϕ∗

h (s) − ϕ∗
h (2s). Denote

ψ(x) =
∫

R

N (D1 f )(x, y)dy,

ψ1(x) =
∫

R

N (R1(D1 f ))(x, y)dy, ψ2(x) =
∫

R

N (R2(D2 f ))(x, y)dy,

and � = ψ + ψ1 + ψ2.

Let x ∈ R and s > 0. There exists τ = τ(x, s) ∈ (0, 2s) such that

ϕh(x + 2τ) ≤ ϕ∗
h (2s) and �(x + 2τ) ≤ �∗(s). (5.16)

Indeed, let A be the set of all u ∈ (0, 4s) such that at least one of the inequalities

ϕh(x + u) > ϕ∗
h (2s) or �(x + u) > �∗(s) (5.17)

holds. Thenmes1 A ≤ 3s and therefore there exists u ∈ (0, 4s) forwhich both the inequalities
(5.17) fail.

Further, we have

ϕh(x) − ϕ∗
h (2s) ≤ ϕh(x) − ϕh(x + 2τ)

≤ 2
∫

R

| f (x + 2τ, y) − f (x, y)|dy. (5.18)

For fixed x, y, and s, consider the cones

�1 = �(x, y) and �2 = �(x + 2τ, y).
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The point (x + τ, y, τ ) belongs to both of them. Let u = Pt ∗ f . Then

| f (x + 2τ, y) − f (x, y)|
≤ | f (x, y) − u(x + τ, y, τ )| + | f (x + 2τ, y) − u(x + τ, y, τ )|
≤

∫ τ

0

(∣∣∣∣
∂u

∂x
(x + t, y, t)

∣∣∣∣ +
∣∣∣∣
∂u

∂t
(x + t, y, t)

∣∣∣∣

)
dt

+
∫ τ

0

(∣∣∣∣
∂u

∂x
(x + τ + s, y, τ − s)

∣∣∣∣ +
∣∣∣∣
∂u

∂t
(x + τ + s, y, τ − s)

∣∣∣∣

)
ds

≤ τ sup
(x ′,y′,t)∈�1

(∣∣∣∣
∂u

∂x
(x ′, y′, t)

∣∣∣∣ +
∣∣∣∣
∂u

∂t
(x ′, y′, t)

∣∣∣∣

)

+ τ sup
(x ′,y′,t)∈�2

(∣∣∣∣
∂u

∂x
(x ′, y′, t)

∣∣∣∣ +
∣∣∣∣
∂u

∂t
(x ′, y′, t)

∣∣∣∣

)

≤ τ
[
N (D1 f )(x, y) + N (D1 f )(x + 2τ, y) + Ñ f (x, y) + Ñ f (x + 2τ, y)

]

(we have used the notation (5.7)). Applying (5.8), we have

| f (x + 2τ, y) − f (x, y)| ≤ τ (N (D1 f )(x, y) + N (D1 f )(x + 2τ, y)

+ N (R1(D1 f ))(x, y) + N (R1(D1 f ))(x + 2τ, y)

+ N (R2(D2 f ))(x, y) + N (R2(D2 f ))(x + 2τ, y)) .

By (5.18), this implies that

ϕh(x) − ϕ∗
h (2s) ≤ 2τ(�(x) + �(x + 2τ)),

where � = ψ + ψ1 + ψ2. Taking into account (5.16), we obtain

ϕ∗
h (s) − ϕ∗

h (2s) ≤ 8s�∗(s).

From here

J ′
2 =

∫ ∞

0
h−1/q−1

∫ h

0
s1/q−1[ϕ∗

h (s) − ϕ∗
h (2s)]dsdh

≤ 8
∫ ∞

0
h−1/q−1

∫ h

0
s1/q�∗(s)dsdh = 8q

∫ ∞

0
�∗(s)ds = 8q||�||1.

Applying (5.3) and (5.6), we get

||�||1 = ||N (D1 f )||1 + ||N (R1(D1 f ))||1 + ||N (R2(D2 f ))||1
≤ c(||D1 f ||H1 + ||D2 f ||H1).

Thus,
J ′
2 ≤ c′(||D1 f ||H1 + ||D2 f ||H1). (5.19)

Further, we consider

J ′′
2 =

∫ ∞

0
h−1/q−1

∫ h

0
s1/q−1ϕ∗

h (2s)dsdh.

We have (see (5.13))

J ′′
2 = 2−1/q

∫ ∞

0
h−1/q−1

∫ 2h

0
s1/q−1ϕ∗

h (s)dsdh ≤ 2−1/q J . (5.20)
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Using estimates (5.15), (5.19), and (5.20), we obtain

J ≤ 2−1/q J + c(||D1 f ||H1 + ||D2 f ||H1). (5.21)

We assumed that J2 < ∞ and hence J = J1 + J2 < ∞. Thus, (5.21) implies (5.12) for
n = 2. �

6 Estimates of Fourier transforms

By Hardy’s inequality, for any f ∈ H1(Rn) (n ∈ N)

∫

Rn

| f̂ (ξ)|
|ξ |n dξ ≤ c|| f ||H1 . (6.1)

It was first discovered by Bourgain [4] that for n ≥ 2 the Fourier transforms of the deriva-
tives of functions in the Sobolev space W 1

1 (Rn) satisfy Hardy’s inequality. More exactly,
Bourgain considered the periodic case. His studies were continued by Pełczyński and Woj-
ciechowski [23]. The following theorem holds (Bourgain; Pełczyński and Wojciechowski).

Theorem 6.1 Let f ∈ W 1
1 (Rn) (n ≥ 2). Then

∫

Rn
| f̂ (ξ)||ξ |1−n dξ ≤ c||∇ f ||1. (6.2)

Equivalently,
n∑

k=1

∫

Rn

|(Dk f )∧(ξ)|
|ξ |n dξ ≤ c

n∑

k=1

‖Dk f ‖1. (6.3)

This is Hardy-type inequality. These results were extended in [13,15].
In contrast to (6.1), inequalities (6.2) and (6.3) fail to hold for n = 1.
Oberlin [20] proved the following refinement of Hardy’s inequality (6.1) valid for n ≥ 2.

Theorem 6.2 Let f ∈ H1(Rn) (n ≥ 2). Then

∑

k∈Z
2k(1−n) sup

2k≤r≤2k+1

∫

Sr
| f̂ (ξ)| dσ(ξ) ≤ c|| f ||H1 , (6.4)

where Sr is the sphere of the radius r centered at the origin inRn and dσ(ξ) is the canonical
surface measure on Sr .

Inequality (6.4) was used in [20] to obtain the description of radial Fourier multipliers for
H1(Rn) (n ≥ 2). Observe that these results fail for n = 1.

In this section we prove some estimates of Fourier transforms of functions in W 1
1 (Rn)

(n ≥ 3). In particular, these estimates provide Oberlin-type inequalities for the Fourier
transforms of the derivatives of functions in W 1

1 (Rn).
We shall use the notation (2.3).

Theorem 6.3 Let f ∈ W 1
1 (Rn) (n ≥ 3). Then

n∑

j=1

∫ ∞

0
F∗∗
t, j (t

n−1) dt ≤ c||∇ f ||1, (6.5)
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where
Ft, j (̂ξ j ) = sup

|ξ j |≥t
| f̂ (ξ)| (t > 0). (6.6)

Proof We estimate the first term of the sum in (6.5). Set ϕh(x) = �1(h) f (x). Then

ϕ̂h(ξ) = f̂ (ξ)(e2π ihξ1 − 1).

Let t > 0 and τ = 1/t . Assume that |ξ1| ≥ t . Then

1

τ

∫ τ

0
|e2π ihξ1 − 1|dh ≥ 1

τ

∫ τ

0
(1 − cos(2πξ1h))dh

= 1 − sin(2πξ1τ)

2πξ1τ
≥ 1 − 1

2π |ξ1|τ ≥ 1 − 1

2π
.

It follows that
2

τ

∫ τ

0
|ϕ̂h(ξ)|dh ≥ | f̂ (ξ)| if |ξ1| ≥ t

and
2

τ
sup

|ξ1|≥t

∫ τ

0
|ϕ̂h(ξ)|dh ≥ Ft,1(̂ξ1).

By (2.2), we have

F∗∗
t,1(t

n−1) ≤ 2t1−n

τ
sup

mesn−1 E=tn−1
sup

|ξ1|≥t

∫

E

∫ τ

0
|ϕ̂h(ξ)|dhd̂ξ1

≤ 2t1−n

τ
sup

|ξ1|≥t

∫ τ

0
sup

mesn−1 E=tn−1

∫

E
|ϕ̂h(ξ)|d̂ξ1dh.

Let 1 < q < (n − 1)′; then q < 2. By Hölder’s inequality, for any set E ⊂ R
n−1 with

mesn−1 E = tn−1 and any fixed ξ1 ∈ R

t1−n
∫

E
|ϕ̂h(ξ)|d̂ξ1 ≤ t−(n−1)/q ′

(∫

Rn−1
|ϕ̂h(ξ)|q ′

d̂ξ1

)1/q ′

.

Observe that for fixed h > 0 and ξ1 ∈ R, ϕ̂h(ξ) = (ϕ̂h)ξ1 (̂ξ1) is the Fourier transform of the
function

x̂1 �→
∫

R

�1(h) f (x)e−2π iξ1x1 dx1.

Applying the Hausdorff–Young inequality, we obtain
(∫

Rn−1
|(ϕ̂h)ξ1 (̂ξ1)|q

′
d̂ξ1

)1/q ′

≤
(∫

Rn−1

∣∣∣∣
∫

R

�1(h) f (x)e−2π iξ1x1 dx1

∣∣∣∣
q

dx̂1

)1/q

≤
(∫

Rn−1

(∫

R

|�1(h) f (x)| dx1
)q

dx̂1

)1/q

.

Thus, we have

2t1−n

τ
sup

mesn−1 E=tn−1
sup

|ξ1|≥t

∫

E

∫ τ

0
|ϕ̂h(ξ)|dhd̂ξ1

≤ 2t1−(n−1)/q ′
∫ 1/t

0
||�1(h) f ||Lq [L1]dh.
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It follows that
∫ ∞

0
F∗∗
t,1(t

n−1) dt ≤ 2
∫ ∞

0
t1−(n−1)/q ′

∫ 1/t

0
||�1(h) f ||Lq [L1]dtdt

= c
∫ ∞

0
h(n−1)/q ′−1||�1(h) f ||Lq [L1]

dh

h
.

Applying Theorem 4.2, we obtain that
∫ ∞

0
F∗∗
t,1(t

n−1) dt ≤ c||∇ f ||1.
�

Similarly, we have the following theorem.

Theorem 6.4 Let f ∈ HW 1
1 (R2). Then

∫ ∞

0
[F∗∗

t,1(t) + F∗∗
t,2(t)]dt ≤ c(||D1 f ||H1 + ||D2 f ||H1),

where

Ft,1(ξ) = sup
|η|≥t

| f̂ (ξ, η)|, Ft,2(η) = sup
|ξ |≥t

| f̂ (ξ, η)|.

Applying Theorem 6.3, we obtain the following Oberlin-type estimate.

Theorem 6.5 Let f ∈ W 1
1 (Rn) (n ≥ 3). Then

∑

k∈Z
2k(2−n) sup

2k≤r≤2k+1

∫

Sr
| f̂ (ξ)|dσ(ξ) ≤ c||∇ f ||1, (6.7)

where Sr is the sphere of the radius r centered at the origin inRn and dσ(ξ) is the canonical
surface measure on Sr .

Proof Let B ′
r be the ball in R

n−1 of the radius r/
√
n′ centered at the origin. Set

S+
r , j =

{
ξ ∈ Sr : ξ j ≥ r√

n

}
and S−

r , j =
{
ξ ∈ Sr : ξ j ≤ − r√

n

}
.

Clearly,

S+
r , j ∪ S−

r , j = {ξ ∈ Sr : ξ̂ j ∈ B ′
r } and Sr =

n⋃

j=1

(S+
r , j ∪ S−

r , j ). (6.8)

The surface S+
r , j is given by the equation

ξ j =
√
r2 − |̂ξ j |2, ξ̂ j ∈ B ′

r .

Using notation (6.6), we have
∫

S+
r, j

| f̂ (ξ)|dσ(ξ) =
∫

B′
r

∣∣∣∣ f̂
(√

r2 − |̂ξ j |2, ξ̂ j
)∣∣∣∣

r√
r2 − |̂ξ j |2

d̂ξ j

≤ √
n

∫

B′
r

Fr/
√
n, j (̂ξ j )d̂ξ j .
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Further, mesn−1 B ′
r = cnrn−1. If 2k ≤ r ≤ 2k+1, then mesn−1 B ′

r � 2k(n−1). It easily
follows that

2k(1−n) sup
2k≤r≤2k+1

∫

S+
r, j

| f̂ (ξ)|dσ(ξ)

≤ c2k(1−n)

∫ 2k(n−1)

0
F∗
tk , j (u)du ≤ c′F∗∗

tk , j (t
n−1
k ),

where tk = 2k/
√
n. Similar estimates hold for integrals over S−

r , j . Taking into account (6.8),
we obtain

∑

k∈Z
2k(2−n) sup

2k≤r≤2k+1

∫

Sr
| f̂ (ξ)|dσ(ξ)

≤ c
n∑

j=1

∑

k∈Z
2k F∗∗

tk , j (t
n−1
k ) ≤ c′

n∑

j=1

∫ ∞

0
F∗∗
t, j (t

n−1)dt .

By Theorem 6.3, this implies (6.7). �
We observe that (6.7) is equivalent to the inequality

n∑

j=1

∑

k∈Z
2k(1−n) sup

2k≤r≤2k+1

∫

Sr
|(Dj f )

∧(ξ)|dσ(ξ) ≤ c
n∑

j=1

||Dj f ||1

which is a direct analogue of the Oberlin inequality (6.4).
Clearly, Theorem 6.3 can be used to derive other Oberlin-type estimates. For example,

one can replace spheres by the surfaces of cubes. For k ∈ Z and 1 ≤ j ≤ n, denote

Q( j)
k = {̂ξ j : |ξm | ≤ 2k, 1 ≤ m ≤ n, m �= j}.

Applying Theorem 6.3, we obtain the following

Corollary 6.6 Let f ∈ W 1
1 (Rn) (n ≥ 3). Then

n∑

j=1

∑

k∈Z
2k(2−n) sup

2k≤|ξ j |≤2k+1

∫

Q( j)
k

| f̂ (ξ)|d̂ξ j ≤ c||∇ f ||1. (6.9)

Let Qk = [−2k, 2k]n and Pk = Qk \ Qk−1 (k ∈ Z). We have

n∑

j=1

sup
2k−1≤|ξ j |≤2k

∫

Q( j)
k

| f̂ (ξ)|d̂ξ j ≥ 21−k
∫

Pk
| f̂ (ξ)|dξ.

Thus, (6.9) gives the strengthening of the inequality (6.2) (for n ≥ 3).
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