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Abstract
We introduce a CR-invariant class of Lorentzian metrics on a circle bundle over a three-
dimensionalCR structure,whichwe call FRTmetrics. Thesemetrics generalise the Fefferman
metric, allowing formore control of theRicci curvature, but aremore special than the shearfree
Lorentzian metrics introduced by Robinson and Trautman.Our main result is a criterion for
embeddability of three-dimensional CR structures in terms of the Ricci curvature of the FRT
metrics in the spirit of the results by Lewandowski et al. (ClassQuantumGravity 7(11):L241–
L246, 1990) and also Hill et al. (Indiana Univ Math J 57(7):3131–3176, 2008. https://doi.
org/10.1512/iumj.2008.57.3473).

Keywords Embeddability of CR manifolds · Shearfree null congruence · Lorentzian
manifolds

Mathematics Subject Classification 32V30 · 53B30 · 83C05

1 Introduction

A three-dimensional strictly pseudoconvex almost CR structure is a three-dimensional man-
ifold M with a contact distribution D and a smooth field of endomorphisms Jx : Dx → Dx

such that J 2x = − id. Such structures naturally occur on strictly pseudoconvex real hypersur-
faces M in C

2 where

Dx = TxM ∩ Jx TxM

and Jx is the canonical complex structure on TxC2. The (local) embeddability (or realisability)
problem asks whether there exists a (local) embedding ι : M → C

2 of the abstract CR
manifoldM such that the CR structures on ιM induced by ι and byC2 coincide. This problem
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is equivalent to finding two functionally independent CR functions, that is, solutions to the
complex linear PDE

∂̄ f = 0, (1)

where ∂̄ = X + iJ X for some non-vanishing section X of D.
While Eq. (1) has sufficiently many solutions for real-analytic CR structures (see e.g. [8])

to make them embeddable, it is well known that for almost all non-analytic CR structures
only constant CR functions exist [9,14,15].

It has been known to physicists since the 1960s (see e.g. [4]) that the existence of a
non-constant CR function on M is equivalent to the existence of a Lorentzian metric g on
M = M × R that satisfies two properties

(a) The fundamental vector field k = ∂r of the line bundle M ×R is null and shearfree with
respect to g, that is, g(k, k) = 0 and

Lkg = ρg + θ ∨ ψ, (2)

where L is the Lie derivative, ρ is a function on M, θ = g(k, ·) and ψ is some 1-form
on M.

(b) The complexified Ricci tensor of g vanishes on α-planes, i.e. g is partially Ricci flat. (See
(10) for the precise definitions.)

It turns out that the existence of non-constant solutions to (1) is not sufficient to guarantee
embeddability of the CR structure [10]. A remarkable theorem by Jacobowitz [7] provides
a criterion for embeddability of CR structures in terms of the canonical bundle (see Defini-
tion 5.2). Below we reformulate Jacobowitz’s more general result for three-dimensional CR
structures.

Theorem 1.1 (Jacobowitz 1989) [7] Let (M, D, J ) be a CR structure. Suppose that near
some point p ∈ M the CR structure has a CR function φ with dφ ∧ dφ̄ �= 0. If the canonical
bundle associated with the CR structure has a non-vanishing closed section, then the CR
structure is embeddable near p.

Notice that the converse statement of Theorem 1.1 is also true: for an embeddable CR
structure, we have two functionally independent, hence non-constant, coordinate CR func-
tions ζ, η. The 2-form dζ ∧dη gives a non-vanishing closed section of the canonical bundle.

Lewandowski et al. [12] and also Hill et al. [3] prove a series of embeddability results
in terms of shearfree congruences of Lorentzian spaces. In particular, they show that a CR
structure is embeddable if and only if it admits a lift to a partially Ricci flat Lorentzian space
(M, g) with a shearfree congruence k as above, and a Maxwell field aligned with k. This
is closely related to Jacobowitz’s Theorem 1.1, since the existence of such Maxwell field is
equivalent to the existence of a non-vanishing closed section of the canonical bundle from
Theorem (1.1) (see [16]).

In this paper, we introduce a family of Lorentzian metrics on a circle bundle over the CR
manifold M . This family is more general than the conformal class of Fefferman metrics but
more special than the family of Lorentzian metrics that admit a shearfree congruence, intro-
duced by Robinson and Trautman [17,18]. We call these metrics FRTmetrics (for Fefferman,
Robinson, Trautman). Our main result is the following embeddability criterion.

Theorem 1.2 A strictly pseudoconvex CR structure (M, D, J ) is locally embeddable if and
only if it admits an FRT metric for which the complexified Ricci curvature vanishes on the
α-planes.

123



A criterion for local embeddability of three-dimensional CR structures 493

Notice that the special choice of the metrics allows us to drop the assumption of the
existence of a non-vanishing closed section of the canonical bundle. In order to give a self-
contained proof, we recapitulate techniques used in [3] and references therein.

2 CR structures and the Feffermanmetric

Let (M, D, J ) be a three-dimensional CR structure. We assume that (M, D, J ) is strictly
pseudoconvex, i.e. for any (local) non-vanishing section X of D, [X , J X ] /∈ D. For any
choice of X , we have an adapted complex frame ∂, ∂̄, ∂0, where

∂ = X − iJ X , ∂0 = i[∂, ∂̄] = − 2[X , J X ].
The complex vector field ∂ = X − iJ X spans the + i-eigendistribution D1,0 of J in D ⊗C.
We denote the dual coframe to (∂, ∂̄, ∂0) by (μ, μ̄, λ). Strict pseudoconvexity of M translates
to

dλ ∧ λ �= 0.

Our choice implies

dλ = iμ ∧ μ̄ + cμ ∧ λ + c̄μ̄ ∧ λ,

dμ = αμ ∧ λ + βμ̄ ∧ λ, (3)

where c, α, β are complex-valued functions on M . Any other distinguished frame (∂ ′, ∂̄ ′, ∂ ′
0)

and coframe (μ′, μ̄′, λ′) express through the original frame and coframe by

∂ ′ = e−τ−iθ ∂, ∂ ′
0 = e−2τ (

∂0 − h∂ − h̄∂̄
)

μ′ = eτ+iθ (μ + hλ), λ′ = e2τ λ (4)

where τ and θ are real-valued functions and

h = − i∂̄(τ + iθ), α′ = e2τ (α − ∂0(τ + iθ) + h∂(τ + iθ) + ∂h + hc) ,

c′ = e−τ−iθ (
c − 2ih̄ + ∂(τ + iθ)

)
. (5)

Recall that the Fefferman metric is a conformal class of Lorentzian metrics defined on
the circle bundleM = D1,0/R+. Using a distinguished coframe (μ, λ) and the trivialisation
M 
 m|p = e−t−iρ ∂|p �→ (p, ρ) where ρ ∈ [0, 2π), a representative of the Fefferman
metric is defined by the simple formula

gF = μμ̄ + λ

(
2

3
dρ − i

3
cμ + i

3
c̄μ̄ −

(
∂ c̄ + ∂̄c

12
− i(α − ᾱ)

4

)
λ

)
(6)

where we kept the notations μ, μ̄, λ for their pullbacks under the circle bundle projection,
and α and c are as above (see [11]). The CR invariance of the Fefferman metric means that a
change in the distinguished coframe (μ, μ̄, λ) causes only a conformal change in gF by the
factor e2τ .

Denote byM̃ the natural lift ofM to a line bundle. Itwill be convenient in the computations
below to rescale the coordinate ρ on M̃ to r = 2ρ

3 . Then, the change in the coframe (λ, μ)

induces the change

r ′ = r − 2

3
θ (7)
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494 G. Schmalz, M. Ganji

in the trivialisation of M̃. Denote the quotient bundle of the (rescaled) line bundle M̃ mod

2π by M 3
2 . Since the Fefferman metric is invariant with respect to the principle R-bundle

action, it projects to any S1-bundle with arbitrary period. In particular, it is well defined on

M 3
2 .
It is known that the Weyl tensor of the Fefferman metric has rank (at most) one [11].

However, in general, the Ricci curvature cannot be controlled and, except for very special
cases (see [2,5]), one cannot find (partially) Ricci flat or Einstein representatives of the
conformal Fefferman metric.

3 FRTmetrics

Wegeneralise the Feffermanmetric by introducing functional parameters x and H in addition
to the conformal factor. This allows us to impose conditions on the Ricci curvature that cannot
be satisfied by the Fefferman metric. We will see later that it is more natural to define the

FRT metrics on the circle bundle M 3
2 rather than the Fefferman bundle M.

Definition 3.1 Let (M, D, J ) be a CR structure and M 3
2 as above. For any choice of a

distinguished coframe (μ, λ) and the induced trivialisation of M 3
2 , we define the family of

FRT metrics on M 3
2 by

g = 2P2 [
μμ̄ + λ

(
dr + Wμ + W μ̄ + Hλ

)]
, (8)

where W = ix e−ir − i
3c. Here, P �= 0, H are real-valued functions on M 3

2 and x is a
complex-valued function on M .

It is an important feature of the family of shearfree metrics (8) and of the conformal family
of Fefferman metrics that they are CR invariant, i.e. they do not depend on the choice of the
pair (μ, λ). We show that this is also true for the family of FRT metrics.

Theorem 3.2 The family of FRT metrics is CR invariant.

Proof Under the frame change (4) and the induced change in the trivialisation (7), the FRT
metric changes as follows:

g′ = 2P ′2
[
μ′μ̄′ + λ′

(
dr ′ +

(
ix ′ e−ir ′ − i

3
c′

)
μ′ +

(
−ix̄ ′ eir ′ + i

3
c̄′

)
μ̄′ + H ′λ′

)]
.

g′ = 2| f |2P ′2
[
μμ̄ + h̄μλ + hμ̄λ + |h|2λ2 + λ

(
dr − 2

3
dθ + f

(
ix ′ ei

2
3 θ e−ir − i

3 f
(c − 2ih̄ + ∂ log f )

)
μ

+ f̄

(
− ix̄ ′ e−i 23 θ eir + i

3 f̄

(
c̄ + 2ih + ∂̄ log f̄

))
μ̄ +

(
f h

(
ix ′ ei

2
3 θ e−ir − i

3
c′

)

+ f̄ h̄

(
− ix̄ ′ e−i 23 θ eir + i

3
c̄′

)
+ | f |2H ′

)
λ

)]
.

= 2P2
[
μμ̄ + λ

(
dr +

(
ix e−ir − i

3
c

)
μ +

(
1

3
h̄ − i

3
∂ log f − 2

3
∂θ

)
μ +

(
−ix̄ eir + i

3
c̄

)
μ̄

+
(
1

3
h + ∂̄ log f̄ − 2

3
∂̄θ

)
μ̄ + Hλ

)]
.

= 2P2
[
μμ̄ + λ

(
dr +

(
ix e−ir − i

3
c

)
μ +

(
− ix̄ eir + i

3
c̄

)
μ̄ + Hλ

)]
,
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where

f = eτ+iθ , P = eτ P ′, x = eτ+i 53 θ x ′,

H = e2τ H ′ + |h|2 + eτ+iθ h

(
ix ′ e−ir ′ − i

3
c′

)
+ eτ−iθ h̄

(
−ix̄ ′ eir ′ + i

3
c̄′

)
− 2

3
∂0θ. (9)

�


4 Lorentzian geometry and˛-planes

Let (M, g) be a four-dimensional Lorentzianmanifold equippedwith a foliation into integral
curves of a non-vanishing null vector field k. We have the following canonical objects

(i) the 1-form θ = g(k, ·),
(ii) the distribution k⊥ = {X ∈ �(TM) : g(X , k) = 0},
(iii) the distribution of screen spaces S := k⊥/k.

Proposition 4.1 On each screen space Sx , there are two canonical complex structures Jx
and −Jx .

Proof The restriction of g to k⊥ is a degenerate metric with kernel k and induces a Euclidean
metric on Sx . Since Sx is two dimensional, the Euclidean metric induces complex structures
of rotation by π

2 in either orientation. �

Choose one of the two complex structures on S. Then, C ⊗ S splits into its eigenspaces

S1,0 ⊕ S0,1. Let

π : C ⊗ k⊥ → C ⊗ S

be the canonical projection map. The subspaces K 1,0, K 0,1 of C ⊗ k⊥ defined by

K 1,0 = π−1S1,0, K 0,1 = π−1S0,1 (10)

are called α-planes and β-planes, respectively. Notice that changing the orientation used in
the definition of J results in interchanging the α-planes and the β-planes.

Clearly,

K 1,0 ∩ K 0,1 = k, K 1,0 + K 0,1 = C ⊗ k⊥.

Definition 4.2 We say that the complexified Ricci tensor of g vanishes on the α-planes K 1,0

if Ric|K 1,0 = 0, i.e.

Ric(X1, X2) = 0 ∀X1, X2 ∈ K 1,0.

Notice that vanishing of the complexified Ricci tensor on α-planes is equivalent to its
vanishing on β-planes. Hence, the definition above does not depend on the choice of J .

Definition 4.3 Let M be a four-dimensional manifold equipped with a Lorentzian metric g
and a non-vanishing null vector field k. A complex frame (e1, e2, �, k) is called adapted to
(g, k) if e1 is a section of α-planes, e2 = ē1 (and, hence, is a section of β-planes), and

g(e1, e2) = 1, g(�, �) = 0, g(�, k) = 1, g(�, e1) = g(�, e2) = 0.

Proposition 4.4 A four-dimensional Lorentzian manifold (M, g) with a non-vanishing null
vector field k possesses (locally) a complex adapted frame.
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496 G. Schmalz, M. Ganji

Proof Let �be a null vector field such that g(�, k) = 1.Choose a unit vector field ε1 ∈ k⊥∩�⊥.
Choose ε2 ∈ k⊥ such that πε2 = Jπ(ε1) and g(ε2, �) = 0. Now, set

e1 = 1√
2
(ε1 − iε2), e2 = 1√

2
(ε1 + iε2).

�

It follows that the α-planes are spanned by (e1, k) and the β-planes are spanned by (e2, k).
Now, vanishing of the Ricci curvature on α-planes is equivalent to

(i) R11 = Ric(e1, e1) = Ric(e2, e2) = 0,
(ii) R14 = Ric(e1, k) = Ric(e2, k) = 0,
(iii) R44 = Ric(k, k) = 0.

For the dual complex coframe (θ1, θ2, θ3, θ4) to an adapted complex frame, θ̄1 = θ2

vanishes on α-planes, θ3 = g(k, ·) and g = 2(θ1θ2 + θ3θ4). The Gram matrix for both g
and its dual g−1 with respect to an adapted frame and coframe is:

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ . (11)

A direct computation shows that the shearfreeness condition (2) is equivalent to

dθ3 ∧ θ1 ∧ θ3 = 0, dθ1 ∧ θ1 ∧ θ3 = 0. (12)

See, e.g. [3] for details.
Below we cite a version of the celebrated Goldberg–Sachs theorem [1,3,6], which is a

useful tool for computing certain components of the Weyl tensor of the Lorentzian metric g:

Ci jkl = Ri jkl + 1

6
R
(
gikgl j − gil gk j

) + 1

2

(
gil Rk j − gik Rl j + g jk Rli − g jl Rki

)
,

where Ri jkl is the Riemann curvature, Rkj is the Ricci curvature and R is the scalar curvature.
The following quantities are called Weyl scalars:

�0 = C(k, e1, k, e1) = C4141, �1 = C(k, l, k, e1) = C4341.

Theorem 4.5 (Goldberg–Sachs theorem [1,3]) Suppose that a four-dimensional manifold
M is equipped with a Lorentzian metric g and a shearfree null vector field k, as above.
Also assume that the complexified Ricci curvature of g vanishes on α-planes, i.e. R11 =
R14 = R44 = 0 with respect to an adapted coframe (θ1, θ2, θ3, θ4). Then, the Weyl scalars
�0 = �1 = 0.

The next lemma plays a crucial role in finding a CR function. It reduces the existence of a
non-vanishing CR function to the existence of a certain complex-valued 1-form. Such 1-form
can be obtained from the Levi–Civita connection form of the associated Lorentzian metric,
if the Ricci curvature vanishes on α-planes. The proof is based on Frobenius’s theorem. For
a detailed proof, see e.g. [3].

Lemma 4.6 [3] Let ϕ be a smooth complex-valued 1-form defined locally in Rn, n ≥ 3, such
that ϕ ∧ ϕ̄ �= 0. Then

dϕ ∧ ϕ = 0

if and only if there exist smooth complex functions ζ and h such that

ϕ = h dζ, dζ ∧ d ζ̄ �= 0.
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A criterion for local embeddability of three-dimensional CR structures 497

5 FRTmetrics and the embedding of three-dimensional CR structures

Before we prove the main theorem of this paper, we collect some more ingredients. First we
compute the Levi–Civita connection 1-forms, �i

j with respect to an adapted frame. Notice
that due to (3) we have

[∂, ∂0] = −α∂ − β̄∂̄ − c∂0, [∂̄, ∂0] = −β∂ − ᾱ∂̄ − c̄∂0.

Now in terms of the coframe (θ1, θ2, θ3, θ4) with

θ1 = Pμ, θ2 = Pμ̄, θ3 = Pλ, θ4 = P
(
dr + Wμ + W μ̄ + Hλ

)
, (13)

the metric (8) becomes

g = 2θ1θ2 + 2θ3θ4. (14)

The dual frame (e1, e2, e3, e4) to (θ1, θ2, θ3, θ4) takes the form

e1 = 1

P
(∂ − W∂r ), e2 = 1

P
(∂̄ − W∂r ), e3 = 1

P
(∂0 − H∂r ), e4 = 1

P
∂r . (15)

The commutators of the frame fields (15) evaluate to

[e1, e2] =
(

∂̄P

P2 − W
Pr
P2

)
e1 +

(
−∂P

P2 + W
Pr
P2

)
e2 − i

P
e3 +

(
− iH

P
+ W2 − W 1

)
e4

[e1, e3] =
(

∂0P

P2 − H
Pr
P2 − α

P

)
e1 − β̄

P
e2 +

(
−∂P

P2 + W
Pr
P2 − c

P

)
e3

+
(

−cH

P
+ W3 − H1 − αW

P
− β̄W

P

)

e4

[e1, e4] = Pr
P2 e1 +

(
−∂P

P2 + W
Pr
P2 + Wr

P

)
e4

[e3, e4] = Pr
P2 e3 +

(
−∂0P

P2 + H
Pr
P2 + Hr

P

)
e4,

where the subscripts 1, 2, 3 in the above expressions denote derivation with respect to the
corresponding frame field (15). For example, H1 means 1

P (∂H − WHr ).
Now by using these commutator relations and Cartan’s structure equations

dθ i + �i
k ∧ θk = 0
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for the metric (14), we find the connection forms listed as follows:

�1
4 =

(
i

2P
+ c114

)
θ1 + 1

2

(
c323 + c424

)
θ3, (16)

�1
1 = − c212θ

1 − c112θ
2 + 1

2

(
c223 − c113 − c412

)
θ3 + i

2P
θ4 (17)

�4
4 = c434θ

3 + c334θ
4 − 1

2
c323θ

2 − 1

2
c313θ

1 + 1

2
c414θ

1 + 1

2
c424θ

2

�3
1 =

(
i

2P
− c224

)
θ2 − 1

2

(
c313 + c414

)
θ3

�4
1 = − c213θ

1 − 1

2

(
c412 + c223 + c113

)
θ2 − c413θ

3 − 1

2

(
c414 + c313

)
θ4

�1
3 = 1

2

(− c412 + c113 + c223
)
θ1 + c123θ

2 + c423θ
3 + 1

2

(
c424 + c323

)
θ4, (18)

where ckmn are the structure constants defined by [em, en] = ckmnek . We also notice that
dgi j = �i j + � j i and hence

�1
2 = �11 = 0 and �3

4 = �33 = 0.

Remark 1 Note that because of the choice of the coframe (13), complex conjugation of the
connection forms interchanges the indices 1 and 2 and keeps the indices 3, 4 unchanged, for
example, �̄1

4 = �2
4 .

In the proposition below, we compute the Ricci components of the FRT metric.

Proposition 5.1 Let g be an FRT metric (8) on M 3
2 associated with a CR manifold M that

admits a non-constant CR function ζ . Let (μ = dζ, λ) be a coframe for M and Rik the
components of the Ricci curvature with respect to an adapted frame. Then,

(i) R44 = 0 is equivalent to

P = a

cos( r+s
2 )

(19)

where a, s are arbitrary r-independent real functions.
(ii) R24 = 0 is equivalent to

∂ log a2 + i∂s − 2x eis = −2c

3
, (20)

(iii) R22 = 0 if and only if the equation

∂t + t(c − t) = 0 (21)

is satisfied where

t = c + ∂ log a2 − x eis . (22)

For an alternate coframe (μ′, λ′), the function t changes to

t ′ = e−τ−iθ (t − ih̄). (23)
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A criterion for local embeddability of three-dimensional CR structures 499

Proof To verify that the condition R44 = 0 is equivalent to the function P having the form
(19), we first notice that R44 = 2R1

414. We now consider the Cartan’s structure equation for
the 1-form �1

4

d �1
4 + �1

k ∧ �k
4 = R1

4k�θ
k ∧ θ�, k < �,

which simplifies to

d �1
4 + �1

1 ∧ �1
4 + �1

4 ∧ �4
4 = R1

4k�θ
k ∧ θ�, (24)

since �1
2 = �3

4 = 0. Substituting the 1-forms �1
4, �

1
1, �

4
4 given by (16), (17), (18) into (24)

and inspecting the coefficient of the 2-form θ1 ∧ θ4 in (24), we get the differential equation

− 4PPrr + 8P2
r + P2 = 0. (25)

The general solution of the differential equation (25) has the form (19).
A similar argument shows that R24 = 0 is equivalent to (20).
To show that R22 = 0 is equivalent to (21), we first notice that, due to dμ = 0, the structure

functions α, β vanish. Then, by similar arguments as above, R22 = 0 becomes equivalent to
the differential equation (21).

To verify (23), we first notice that

P ′ = e−τ P = a e−τ

cos( r+s
2 )

= a′

cos( r
′+s′
2 )

for all r and r ′ = r − 2
3θ . It follows a

′ = e−τ a and s′ = 2
3θ + s. Therefore,

t ′ = c′ + ∂ ′ log a′2 − x ′ eis′ = e−τ−iθ (
c − 2ih̄ + ∂(τ + iθ)

) + e−τ−iθ (∂ log a2 − 2∂τ)

− e−τ− 5i
3 θ x eis+

2i
3 θ

= e−τ−iθ (
c − 2ih̄ + ∂(τ + iθ) + ∂ log a2 − ∂(τ + iθ) + ih̄ − x eis

) = e−τ−iθ (
t − ih̄

)
.

�

Another important ingredient is Jacobowitz’s theorem (1.1), which uses the notion of the

canonical bundle.

Definition 5.2 Let (M, D, J ) be a CR structure and DC = D1,0 ⊕ D0,1 the eigenspace
decomposition of J . The canonical bundleK over M is the complex line bundle of complex-
valued 2-forms with kernel D0,1, i.e.

K = {
φ ∈ �2(M) ⊗ C | φ(X , ·) = 0 ∀X ∈ D0,1} .

If the CR structure (M, D, J ) is given by the coframe (λ, μ), then the canonical bundle is
spanned by λ ∧ μ. Using this representation, the existence of a closed non-vanishing section
can be reformulated as a ∂̄-problem.

Proposition 5.3 A CR structure (M, [(λ, μ)]) admits locally a non-vanishing closed section
of the canonical bundle if and only if the ∂̄-problem

∂̄ logψ = −c̄, (26)

has a solution. Here, c is the structure function from (3).
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500 G. Schmalz, M. Ganji

Proof Taking into account (3),

d(ψ μ ∧ λ) = ∂̄ψ μ̄ ∧ μ ∧ λ − c̄ψμ ∧ μ̄ ∧ λ = (∂̄ψ + c̄ψ) μ̄ ∧ μ ∧ λ

vanishes if and only if (26) is satisfied with non-vanishing ψ . �

While we do not assume the existence of a non-vanishing closed section of the canonical

bundle a priori, we show that this is a consequence of our assumptions.
We are now ready to prove our main theorem.

Theorem 5.4 A three-dimensional CR structure (M, D, J ) is (locally) embeddable if and

only if there exists an associated circle bundleM 3
2 with an FRT metric g whose complexified

Ricci tensor vanishes on the distribution of α-planes.

Proof Let M be a CR structure with coframe (μ, λ) and let g be an FRT metric defined by

(8) on M 3
2 for which R22 = R24 = R44 = 0. We consider the connection 1-form

�24 = �1
4 = σθ1 + ρθ3 (27)

from (16) where

σ = i

2P
+ Pr

P2 , ρ = − ∂̄P

P2 + W Pr
P2 − c̄

2P
+ Wr

P
.

Clearly, σ �= 0 and therefore, the form �24 �= 0. Moreover,

�24 ∧ �̄24 �= 0,

since

�24 ∧ �̄24 = |σ |2 θ1 ∧ θ2 mod θ3.

On the other hand, the conditions of the Goldberg–Sachs Theorem (4.5) with respect to the
shearfree vector field ∂r are satisfied and therefore

�0 = C4141 = R1414 = 0, �1 = C4341 = 1

2
(R4341 + R1421) = 0.

It follows

C4242 = C4141 = 0, C4342 = C4341 = 0

and furthermore, using the symmetries of the Riemann curvature

Ri jk� = Rk�i j , Ri jk� = −R jik� = −Ri j�k,

we get

R2424 = 0, R2434 + R2412 = 0. (28)

Since

R44 = 2R2414, R22 = 2R2423, R24 = R2412 − R2434,

where Ri j = Rk
ik j and Ri jk� = gim Rm

jk�, this shows that the conditions R44 = R22 = R24 = 0
are equivalent to

R2414 = R2423 = R2412 − R2434 = 0. (29)
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Combining (28) and (29) yields

R2412 = R2424 = R2414 = R2423 = R2434 = 0. (30)

Therefore, Cartan’s structure equation (24) for the connection 1-form �24 = �1
4 becomes

d�24 − (�12 + �34) ∧ �24 = R24k�θ
k ∧ θ� = R2413θ

1 ∧ θ3.

Wedging the equation above with�24 and taking into account that�24 is a linear combination
of θ1 and θ3, given by (27), we conclude that

d�24 ∧ �24 = 0.

Nowwe can applyLemma (4.6) for the 1-form�24 and deduce that locally there exist complex
functions h �= 0, ζ such that

�24 = h dζ with dζ ∧ d ζ̄ �= 0.

Wedging the equation

h dζ = �24 = P(σμ + ρλ)

by λ ∧ μ shows that

dζ ∧ λ ∧ μ = 0.

Restricting the function ζ to the CR manifold M , considered as a section {r = 0} of M 3
2 ,

gives a CR function there.
Now we may assume that μ = dζ . Since vanishing of the Ricci tensor on the α-planes

does not depend on the choice of an adapted frame, the conditions R44 = R24 = R22 = 0
are still satisfied.

We consider the two cases t ≡ 0 and t �≡ 0, where t is defined by (22). In the first case, it
follows from equation (20) that

4

3
c = − ∂ log a2 + i∂s

and hence

∂ log
(
a

3
2 e− 3

4 is
)

= − c.

Therefore, Eq. (26) has a solutionψ = a
3
2 e

3
4 is and, by Proposition 5.3, the canonical bundle

has a nowhere vanishing closed section.Now, byTheorem1.1, theCRstructure is embeddable
and, in particular, there exists a second CR function that is functionally independent from ζ .

In the second case, if t is not identically 0, we replace the complex coframe 1-form μ by
another exact form μ′ as follows. Consider

ϕ = μ + it̄λ. (31)

Since R22 = 0 we have

dϕ ∧ ϕ = i
(
∂̄ t̄ + t̄(c̄ − t̄)

)
μ ∧ μ̄ ∧ λ = 0.

Also ϕ ∧ ϕ̄ �= 0 holds because

ϕ ∧ ϕ̄ = μ ∧ μ̄ − itμ ∧ λ − it̄μ̄ ∧ λ.
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Thus, the 1-form ϕ satisfies the conditions of the Lemma (4.6). Consequently, there exist
complex-valued functions b �= 0, η such that

ϕ = μ + it̄λ = b dη. (32)

Clearly,

dη ∧ dη̄ = 1

|b|2 ϕ ∧ ϕ̄ �= 0.

It follows from the definition of η and ϕ that dη is a linear combination ofμ and λ and hence

dη ∧ λ ∧ μ = 0,

that is, η is a CR function. Now we switch to the coframe (μ′ = dη, λ′) for which, because
of (23), t ′ ≡ 0 everywhere. This reduces the second case to the first case and proves embed-
dability of M .

For the proof of the converse statement, we assume that the CR structure M with adapted
coframe (μ = dζ, λ) is embeddable. Then, the canonical bundle contains a nonzero closed
section, i.e. there exists a nonzero complex function ψ such that

∂ log ψ̄ = − c.

We define real functions a, s and a complex function x as follows:

log a2 = 4

3
Re(log ψ̄), s = −4

3
Im(log ψ̄), x = e−is(c + ∂ log a2).

The metric defined by

g = 2P2[μμ̄ + λ(dr + Wμ + W μ̄ + Hλ)
]
,

where

P = a

cos( r+s
2 )

, W = ix e−ir − i

3
c,

and H is any real function defined on M 3
2 , is an FRT metric for (M, μ, λ) and, due to

Proposition (5.1), R44 = R24 = R22 = 0 is satisfied. �
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