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Abstract
In this paper, we study the limiting flow of conical Kähler–Ricci flows when the cone angles
tend to 0. We prove the existence and uniqueness of this limiting flow with cusp singularity
on compact Kähler manifold M which carries a smooth hypersurface D such that the twisted
canonical bundle KM + D is ample. Furthermore, we prove that this limiting flow converge
to a unique cusp Kähler–Einstein metric.

Keywords Cusp Kähler–Ricci flow · Conical Kähler–Ricci flow · Cusp Kähler–Einstein
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1 Introduction

In this paper, we study the limiting flowof (twisted) conicalKähler–Ricci flowswhen the cone
angles tend to 0. Our motivation for considering this limiting flow is to study the existence
of singular Kähler–Einstein metric when the cone angle is 0. In [39], Tian anticipated that
the complete Tian–Yau Kähler–Einstein metric on the complement of a divisor should be the
limit of conical Kähler–Einstein metrics when the cone angles tend to 0.

Let M be a compact Kähler manifold with complex dimension n and D ⊂ M be a smooth
hypersurface. Here, by supposing that the twisted canonical bundle KM + D is ample, we
prove the long-time existence, uniqueness and convergence of the limiting flow of twisted
conical Kähler–Ricci flows when the cone angles tend to 0. Since this limiting flow admits
cusp singularity along D, we call it cusp Kähler–Ricci flow. As an application, we show the
existence of cusp Kähler–Einstein metric [22,40] by using cusp Kähler–Ricci flow.
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The conical Kähler–Ricci flow was introduced to attack the existence problem of conical
Kähler–Einstein metric. This equation was first proposed in Jeffres–Mazzeo–Rubinstein’s
paper (Section 2.5 in [19]). Song–Wang made some conjectures on the relation between
the convergence of conical Kähler–Ricci flow and the greatest Ricci lower bound of M
(conjecture 5.2 in [37]). The long-time existence, regularity and limit behavior of conical
Kähler–Ricci flow have been widely studied, see the works of Liu–Zhang [27,28], Chen-
Wang [7,8], Wang [45], Shen [34,35], Edwards [11], Nomura [33], Liu–Zhang [26] and
Zhang [47].

By saying a closed positive (1, 1)-current ω is conical Kähler metric with cone angle 2πβ

(0 < β ≤ 1 ) along D, we mean that D is locally given by {zn = 0} and ω is asymptotically
equivalent to model conical metric

√−1
n−1∑

j=1

dz j ∧ dz j +
√−1dzn ∧ dzn

|zn |2(1−β)
. (1.1)

And by saying a closed positive (1, 1)-current ω is cusp Kähler metric along D, we mean
that D is locally given by {zn = 0} and ω is asymptotically equivalent to model cusp metric

√−1
n−1∑

j=1

dz j ∧ dz j +
√−1dzn ∧ dzn

|zn |2 log2 |zn |2 . (1.2)

For more about cusp Kähler metrics, please see Auvray’s works [1,2].
Let ω0 be a smooth Kähler metric on M and satisfy c1(KM ) + c1(D) = [ω0]. We denote

D = {s = 0}, where s is a holomorphic section of the line bundle L D associated to D. In
[28], we proved the long-time existence, uniqueness, regularity and convergence of conical
Kähler–Ricci flow with weak initial data ωϕ0 ∈ Ep(M, ω0) when p > 1, where

Ep(M, ω0) =
{

ϕ ∈ E(M, ω0) | (ω0 + √−1∂∂̄ϕ)n

ωn
0

∈ L p(M, ωn
0)

}
,

E(M, ω0) =
{
ϕ ∈ P SH(M, ω0) |

∫

M
(ω0 + √−1∂∂̄ϕ)n =

∫

M
ωn
0

}
.

Thanks to Kołodziej’s theorem (Theorem 2.4.2 in [24]), potentials in the class Ep(M, ω0)

with p > 1 are continuous. Furthermore, by Kołodziej’s L p-estimate (Theorem 2.1 in [23])
and Dinew’s uniqueness theorem (Theorem 1.2 in [10], see also Theorem B in [14]), we
know that the potentials in Ep(M, ω0) with p > 1 are Hölder continuous with respect to ω0

on M .
Let ρ be a smooth closed (1, 1)-form and ω̂β = ω0 +√−1τ∂∂̄|s|2βh , where h is a smooth

hermitianmetric on L D and τ is a small constant.When c1(M) = μ[ω0]+(1−β)c1(D)+[ρ]
(μ ∈ R), by our arguments in [28], there exists a unique long-time solution of twisted conical
Kähler–Ricci flow

∂ωβ(t)

∂t
= −Ric(ωβ(t)) + μωβ(t) + (1 − β)[D] + ρ.

ωβ(t)|t=0 = ωϕ0 (1.3)

Definition 1.1 We call ωβ(t) a long-time solution to twisted conical Kähler–Ricci flow (1.3)
if it satisfies the following conditions.

(1) For any [δ, T ] (δ, T > 0), there exists constant C such that

C−1ω̂β ≤ ωβ(t) ≤ Cω̂β on [δ, T ] × (M\D);
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Cusp Kähler–Ricci flow on compact Kähler manifolds 291

(2) on (0,∞) × (M\D), ωβ(t) satisfies smooth twisted Kähler–Ricci flow;
(3) on (0,∞) × M , ωβ(t) satisfies Eq. (1.3) in the sense of currents;
(4) there exists metric potential ϕβ(t) ∈ C0 ([0,∞) × M) ∩ C∞ ((0,∞) × (M\D)) such

that ωβ(t) = ω0 + √−1∂∂̄ϕβ(t) and lim
t→0+ ‖ϕβ(t) − ϕ0‖L∞(M) = 0;

(5) on [δ, T ], there exist constant α ∈ (0, 1) and C∗ such that the above metric potential

ϕβ(t) is Cα on M with respect to ω0 and ‖ ∂ϕβ(t)
∂t ‖L∞(M\D) � C∗.

From Guenancia’s result (Lemma 3.1 in [16]),

ωβ = ω0 − √−1∂∂̄ log

(
1 − |s|2βh

β

)2

:= ω0 + √−1∂∂̄ψβ (1.4)

is a conical Kähler metric with cone angle 2πβ along D. Hence, ωβ ∈ Ep(M, ω0) for
p ∈ (1, 1

1−β
). By direct calculations, it is obvious that ωβ ≥ 1

2ω0 for choosing suitable

hermitian metric h. Since ψβ converge to ψ0 in C∞
loc-sense outside D and globally in L1-

sense on M as β → 0, ωβ converge to cusp Kähler metric

ωcusp = ω0 − √−1∂∂̄ log log2 |s|2h := ω0 + √−1∂∂̄ψ0 (1.5)

in C∞
loc-sense outside D and globally in the sense of currents. Here we remark that

ωn
ψ0

ωn
0

∈
L1(M) but

ωn
ψ0

ωn
0

/∈ L p(M) for p > 1. We pick θ ∈ c1(D) a smooth real closed (1, 1)-form

such that [D] = θ + √−1∂∂̄ log |s|2h , then we consider twisted conical Kähler–Ricci flow

∂ωβ(t)

∂t
= −Ric(ωβ(t)) − ωβ(t) + (1 − β)[D] + βθ.

ωβ(t)|t=0 = ωβ (1.6)

Since c1(KM )+c1(D) = [ω0], flow (1.6) preserves the Kähler class, that is, [ωβ(t)] = [ω0].
We write (1.6) as parabolic complex Monge–Ampère equation on potentials,

∂ϕβ(t)

∂t
= log

(ω0 + √−1∂∂̄ϕβ(t))n

ωn
0

− ϕβ(t) + h0 + (1 − β) log |s|2h
ϕβ(0) = ψβ (1.7)

on (0,∞) × (M\D), where h0 ∈ C∞(M) satisfies −Ric(ω0) + θ − ω0 = √−1∂∂h0. By
proving uniform estimates (independent of β) for twisted conical Kähler–Ricci flows (1.6),
we obtain the limiting flow which is called cusp Kähler–Ricci flow

∂ω(t)

∂t
= −Ric(ω(t)) − ω(t) + [D].

ω(t)|t=0 = ωcusp (1.8)

Definition 1.2 We callω(t) a long-time solution to cusp Kähler–Ricci flow (1.8) if it satisfies
the following conditions.

(1) For any [δ, T ] (δ, T > 0), there exists constant C such that

C−1ωcusp ≤ ω(t) ≤ Cωcusp on [δ, T ] × (M\D);
(2) on (0,∞) × (M\D), ω(t) satisfies smooth Kähler–Ricci flow;
(3) on (0,∞) × M , ω(t) satisfies Eq. (1.8) in the sense of currents;
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(4) there exists ϕ(t) ∈ C0 ([0,∞) × (M\D)) ∩ C∞ ((0,∞) × (M\D)) such that

ω(t) = ω0 + √−1∂∂̄ϕ(t) and lim
t→0+ ‖ϕ(t) − ψ0‖L1(M) = 0;

(5) on (0, T ], ‖ϕ(t) − ψ0‖L∞(M\D) � C ;

(6) on [δ, T ], there exist constant C such that ‖ ∂ϕ(t)
∂t ‖L∞(M\D) � C .

There are some important results onKähler–Ricci flows (aswell as its twisted versionswith
smooth twisting forms) from weak initial data, such as Chen–Ding [5], Chen–Tian–Zhang
[6], Guedj–Zeriahi [15], Di Nezza–Lu [9], Song-Tian [36], Székelyhidi–Tosatti [38] and
Zhang [48] etc. In [29,30], Lott–Zhang proved some significant results on various Kähler–
Ricci flows with singularities. In particular in [29], in M\D, they thoroughly studied the
existence and convergence of Kähler–Ricci flow whose initial metric is finite volume Kähler
metric with “superstandard spatial asymptotics” (Definition 8.10 in [29]) and gave some
interesting examples. Their flow keeps “superstandard spatial asymptotics” and this type of
metrics contain cusp Kähler metrics. Here we study the limiting behavior of conical Kähler–
Ricci flows when the cone angles tend to 0 on M . The limiting flow admits non-smooth
twisting form globally, cusp singularity along D and weak initial data, it is a solution of cusp
Kähler–Ricci flow (1.8) and can be seen as Lott–Zhang’s case when we restrict it in M\D.
In this limiting process, we need prove uniform estimates (independent of β) for a sequence
of conical flows and consider the asymptotic behavior of the weak solution to the limiting
flow when t tend to 0+. There are some other interesting results on singular Ricci flows, see
Ji–Mazzeo–Sesum [20], Kleiner–Lott [21], Mazzeo–Rubinstein–Sesum [32], Topping [43]
and Topping–Yin [44].

In [28], we studied conical Kähler–Ricci flows which are twisted by non-smooth twisting
forms and start from weak initial data with L p-density for p > 1. Here, by limiting conical
flows (1.6), we prove that the limiting flowwith weak initial dataωcusp is a long-time solution
to cusp Kähler–Ricci flow (1.8). This initial metric only admits L1-density. For obtaining
this limiting flow, in addition to getting uniform estimates ( independent of β) of flows (1.6),
it is important to prove that ϕ(t) converge to ψ0 globally in L1-sense and locally in L∞-
sense outside D as t → 0+. In this process, we need to construct auxiliary function, and we
also need a key observation (Proposition 2.8 and 2.9) that both ψβ and ϕβ(t) are monotone
decreasing as β ↘ 0. Then we obtain a uniqueness result of cusp Kähler–Ricci flow. In fact,
we obtain the following theorem.

Theorem 1.3 Let M be a compact Kähler manifold and ω0 be a smooth Kähler metric.
Assume that D ⊂ M is a smooth hypersurface which satisfies c1(KM ) + c1(D) = [ω0].
Then the twisted conical Kähler–Ricci flows (1.6) converge to a unique long-time solution
ω(t) = ω0 +√−1∂∂̄ϕ(t) of cusp Kähler–Ricci flow (1.8) in C∞

loc-sense in (0,∞)× (M\D)

and globally in the sense of currents.

Remark 1.4 The uniqueness in Theorem 1.3 need to be understood in this sense: if φ(t) ∈
C0 ([0,∞) × (M\D)) ∩ C∞ ((0,∞) × (M\D)) is a solution to equation

∂φ(t)

∂t
= log

(ω0 + √−1∂∂̄φ(t))n

ωn
0

− φ(t) + h0 + log |s|2h
φ(0) = ψ0 (1.9)

on (0,∞) × (M\D) and satisfies (1), (4), (5) and (6) in Definition 1.2, then φ(t) lies below
ϕ(t) which is obtained by limiting twisted conical Kähler–Ricci flows (1.6) in Theorem 1.3.
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Cusp Kähler–Ricci flow on compact Kähler manifolds 293

When n = 1, this uniqueness property is called “maximally stretched” in Topping’s (Remark
1.9 in [42]) and Giesen-Topping’s (Theorem 1.2 in [13]) works.

Remark 1.5 Since KM + D is ample, KM + (1 − β)D is also ample for sufficiently small
β. Guenancia [16] proved that cusp Kähler–Einstein metric is the limit of conical Kähler–
Einstein metrics with background metrics ω0 − βθ as β → 0. The cohomology classes are
changing in this process. But in the flow case, we cannot obtain above uniqueness of the
limiting flow if we choose the approximating flows that are conical Kähler–Ricci flows with
background metrics ω0 − βθ . In fact, if we choose the approximating flows that are conical
Kähler–Ricci flows

∂ω̃β(t)

∂t
= −Ric(ω̃β(t)) − ω̃β(t) + (1 − β)[D]

ω̃β(t)|t=0 = ω0 − βθ + √−1∂∂̄ψβ (1.10)

with background metrics ω0 −βθ , that is, ω̃β(t) = ω0 −βθ +√−1∂∂̄ϕ̃β(t), we can also get
a long-time solution ω̃(t) = ω0+√−1∂∂̄ϕ̃(t) to Eq. (1.8). But we do not knowwhether ϕ̃(t)
is unique or maximal. We can only prove ϕ̃β(t) + β log |s|2h ↗ ϕ̃(t) outside D as β ↘ 0.
However, by the uniqueness result in Theorem 1.3, ϕ̃(t) must lie below ϕ(t). Therefore, we
set the background metric to ω0 in this paper.

At last, we prove the convergence of cusp Kähler–Ricci flow (1.8).

Theorem 1.6 Cusp Kähler–Ricci flow (1.8) converges to a Kähler–Einstein metric with cusp
singularity along D in C∞

loc-topology outside hypersurface D and globally in the sense of
currents.

Kobayashi [22] and Tian–Yau [40] asserted that if the twisted canonical bundle KM + D is
ample, then there is a unique (up to constant multiple) complete cusp Kähler–Einstein metric
with negative Ricci curvature in M\D. The above convergence result recovers the existence
of this cusp Kähler–Einstein metric.

The paper is organized as follows. In Sect. 2, we prove the long-time existence and
uniqueness of cusp Kähler–Ricci flow (1.8) by limiting twisted conical Kähler–Ricci flows
(1.6) and constructing auxiliary function. In Sect. 3, we prove the convergence theorem.

2 The long-time existence of cusp Kähler–Ricci flow

In this section, we prove the long-time existence of cusp Kähler–Ricci flow by limiting
twisted conical Kähler–Ricci flows (1.6), and we also prove the uniqueness theorem. For
further consideration in the following arguments, we shall pay attention to the estimates
which are independent of β.

From our arguments (Sections 2 and 3 in [28]), we know that there exists a unique long-
time solution ϕβ(t) ∈ C0 ([0,∞) × M)

⋂
C∞ ((0,∞) × (M\D)) to Eq. (1.7). Let φβ(t) =

ϕβ(t) − ψβ , we write the Eq. (1.7) as

∂φβ(t)

∂t
= log

(ωβ + √−1∂∂̄φβ(t))n

ωn
β

− φβ(t) + hβ

φβ(0) = 0 (2.1)

in (0,∞)×(M\D), where hβ = −ψβ +h0+log
|s|2(1−β)

h ωn
β

ωn
0

is uniformly bounded by constant

C independent of β.
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Lemma 2.1 There exists constant C independent of β and t such that

‖φβ(t)‖L∞(M) � C . (2.2)

Proof Fix T > 0. For any ε > 0, we let χβ,ε(t) = φβ(t)+ε log |s|2h . Since χβ,ε(t) is smooth
in M\D, bounded from above and goes to −∞ near D, it achieves its maximum in M\D.
Let (t0, x0) be the maximum point of χβ,ε(t) on [0, T ] × M with x0 ∈ M\D. If t0 = 0, then
we have

φβ(t) � −ε log |s|2h . (2.3)

If t0 �= 0. At (t0, x0), we have

0 � ∂χβ,ε(t)

∂t
= log

(ωβ + √−1∂∂̄φβ(t))n

ωn
β

− φβ(t) + hβ

= log
(ωβ + √−1∂∂̄χβ,ε(t) + εθ)n

ωn
β

− φβ(t) + hβ

≤ n log 2 − φβ(t) + C .

Hence, φβ(t0, x0) � C and
φβ(t) � C − ε log |s|2h, (2.4)

where constant C independent of β, t and ε. Let ε → 0, we have φβ(t) � C in M\D. Since
φβ(t) is continuous, φβ(t) � C on M .

For the lower bound, we can reproduce the same arguments with χ̃β,ε(t) = φβ(t) −
ε log |s|2h , and get φβ(t) ≥ C on M . ��

We now prove the uniform equivalence of volume forms along complex Monge–Ampère
Eq. (2.1). We first recall the following lemma.

Lemma 2.2 If ω1 and ω2 are positive (1, 1)-forms, then

n

(
ωn
1

ωn
2

) 1
n

� trω2ω1 � n

(
ωn
1

ωn
2

)
(trω1ω2)

n−1. (2.5)

The proof of Lemma 2.2 follows from eigenvalue considerations (section 2 [46]).

Lemma 2.3 For any T > 0, there exists constant C independent of β such that for any
t ∈ (0, T ],

tn

C
≤ (ωβ + √−1∂∂̄φβ(t))n

ωn
β

≤ e
C
t in M\D. (2.6)

Proof For any t > 0, we assume that t ∈ [δ, T ] with δ > 0. Let �β,t be the Laplacian
operator associated to ωβ(t) = ωβ + √−1∂∂̄φβ(t). Straightforward calculations show that

(
∂

∂t
− �β,t

)
φ̇β(t) = −φ̇β(t). (2.7)

Let H+
β,ε(t) = (t −δ)φ̇β(t)−φβ(t)+ε log |s|2h . Since H+

β,ε(t) is smooth in M\D, bounded
from above and goes to −∞ near D, it achieves its maximum in M\D. Let (t0, x0) be the
maximum point of H+

β,ε(t) on [δ, T ] × M with x0 ∈ M\D. If t0 = δ, then

(t − δ)φ̇β(t) ≤ C − ε log |s|2h, (2.8)
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where constant C independent of β, δ, t and ε. If t0 �= δ, then at (t0, x0), we have
(

∂

∂t
− �β,t

)
H+

β,ε(t) = −(t − δ)φ̇β(t) + n + trωβ(t)(−ωβ + εθ)

� −(t − δ)φ̇β(t) + n (2.9)

for sufficiently small ε. By the maximum principle, we have

(t − δ)φ̇β(t) ≤ C − ε log |s|2h, (2.10)

where constant C independent of β, δ, t and ε. Let ε → 0 and then δ → 0, we have

φ̇β(t) ≤ C

t
on (0, T ] × (M\D), (2.11)

where constant C independent of β and t .
Let H−

β,ε(t) = φ̇β(t)+2φβ(t)−n log(t − δ)−ε log |s|2h . Then H−
β,ε(t) tend to+∞ either

t → δ+ or x → D. By computing, we also have
(

∂

∂t
− �β,t

)
H−

β,ε(t) ≥ φ̇β(t) − 2n − n

t − δ
+ trωβ(t)ωβ. (2.12)

Assume that (t0, x0) is the minimum point of H−
β,ε(t) on [δ, T ] × M with t0 > δ and

x0 ∈ M\D. Thanks to Lemmas 2.1 and 2.2, there exists constant C1 and C2 such that

0 �
(

∂

∂t
− �β,t

)
H−

β,ε(t)|(t0,x0) ≥
⎛

⎝C1

(
ωn

β

ωn
β(t)

) 1
n

+ log
ωn

β(t)

ωn
β

− C2

t − δ

⎞

⎠ |(t0,x0)

≥
(C1

2

( ωn
β

ωn
β(t)

) 1
n − C2

t − δ

)
|(t0,x0), (2.13)

where constant C1 depends only on n, C2 depends only on n, ω0 and T . In inequality (2.13),

we assume
ωn

β

ωn
β (t) > 1 and C1

2 (
ωn

β

ωn
β (t) )

1
n + log

ωn
β (t)

ωn
β

≥ 0 at (t0, x0). Other cases are easy to get

the lower bound (2.16) for φ̇β . By the maximum principle, we have

ωn
β(t0, x0) ≥ C4(t0 − δ)nωn

β(x0), (2.14)

where C4 independent of β, ε and δ. Then it easily follows that

φ̇β(t) ≥ −C + n log(t − δ) + ε log |s|2h, (2.15)

where constant C independent of β, ε and δ. Let ε → 0 and then δ → 0, we have

φ̇β(t) ≥ −C + n log t on (0, T ] × (M\D), (2.16)

where constant C independent of β. By (2.11) and (2.16), we obtain (2.6). ��
We first recall Guenancia’s results about the curvature of ωβ ( Theorem 3.2 [16]).

Lemma 2.4 There exists a constant C depending only on M such that for all β ∈ (0, 1
2 ], the

holomorphic bisectional curvature of ωβ is bounded by C.

Next, we prove the uniform equivalence of metrics along twisted conical Kähler–Ricci
flows (1.6) by Chern–Lu inequality.
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Lemma 2.5 For any T > 0, there exists constant C independent of β such that for any
t ∈ (0, T ] and β ∈ (0, 1

2 ],
e− C

t ωβ ≤ ωβ(t) ≤ e
C
t ωβ in M\D. (2.17)

Proof By Chern–Lu inequality [4,31] (see also Proposition 7.1 in [19]), in M\D, we have

�β,t log trωβ(t)ωβ �

(
Ric(ωβ(t)), ωβ

)
ωβ(t)

trωβ(t)ωβ

− Ctrωβ(t)ωβ, (2.18)

where ( , )ωβ(t) is the inner product with respect to ωβ(t) and constant C depends on the
upper bound for the holomorphic bisectional curvature of ωβ . In M\D, we also have

∂

∂t
log trωβ(t)ωβ =

(
Ric(ωβ(t)) + ωβ(t) − βθ, ωβ

)
ωβ(t)

trωβ(t)ωβ

. (2.19)

By using (2.18) and (2.19), we have
(

∂

∂t
− �β,t

)
log trωβ(t)ωβ ≤ Ctrωβ(t)ωβ + 1, (2.20)

where constant C independent of β.
Let Hβ,ε(t) = (t −δ) log trωβ(t)ωβ − Aφβ(t)+ε log |s|2h , A be a sufficiently large constant

and (t0, x0) be the maximum point of Hβ,ε(t) on [δ, T ]× (M\D). We know that x0 ∈ M\D
and we need only consider t0 > δ. By direct calculations,

(
∂

∂t
− �β,t

)
Hβ,ε(t) ≤ log trωβ(t)ωβ + Ctrωβ(t)ωβ − Aφ̇β (t) − Atrωβ(t)ωβ + εtrωβ(t)θ + C

≤ − A

2
trωβ(t)ωβ + log trωβ(t)ωβ − A log

ωn
β(t)

ωn
β

+ C,

where constant C independent of β and δ.
Without loss of generality, we assume that − A

4 trωβ(t)ωβ + log trωβ(t)ωβ ≤ 0 at (t0, x0).
Then at (t0, x0), by Lemma 2.3, we have

(
∂

∂t
− �β,t

)
Hβ,ε(t) ≤ − A

4
trωβ(t)ωβ − An log(t − δ) + C . (2.21)

By the maximum principle, at (t0, x0),

trωβ(t)ωβ ≤ C log
1

t − δ
+ C, (2.22)

which implies that

(t − δ) log trωβ(t)ωβ ≤ (t0 − δ) log

(
C log

1

t0 − δ
+ C

)
+ C − ε log |s|2h . (2.23)

Let ε → 0 and then δ → 0, on (0, T ] × (M\D),

trωβ(t)ωβ ≤ e
C
t . (2.24)

By using Lemmas 2.2 and 2.3, we have

trωβ ωβ(t) ≤ e
C
t , (2.25)

where C independent of β. From (2.24) and (2.25), we prove the lemma. ��
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By the argument as that in Lemma 3.1 of [28], we get the following local Calabi’s C3-
estimates and curvature estimates.

Lemma 2.6 For any T > 0 and Br (p) ⊂⊂ M\D, there exist constants C, C ′ and C ′′ depend
only on n, T , ω0 and distω0(Br (p), D) such that

Sωβ(t) ≤ C ′

r2
e

C
t ,

|Rmωβ(t)|2ωβ(t) ≤ C ′′

r4
e

C
t

on (0, T ] × B r
2
(p).

Since φβ(t) = ϕβ(t) − ψβ and ψβ ∈ C0(M) ∩ C∞(M\D), establishing local uniform
estimates for φβ(t) in M\D is equivalent to establish the estimates for ϕβ(t). By using the
standard parabolic Schauder regularity theory (Theorem 4.9 in [25]), we obtain the following
proposition.

Proposition 2.7 For any 0 < δ < T < ∞, k ∈ N
+ and Br (p) ⊂⊂ M\D, there exists

constant Cδ,T ,k,p,r depends only on n, δ, k, T , ω0 and distω0(Br (p), D) such that for
β ∈ (0, 1

2 ], ‖ϕβ(t)‖Ck ([δ,T ]×Br (p)) ≤ Cδ,T ,k,p,r . (2.26)

Through a further observation to ψβ and Eq. (1.7), we prove the monotonicity of ψβ and
ϕβ(t) with respect to β.

Proposition 2.8 For any x ∈ M, ψβ(x) is monotone decreasing as β ↘ 0.

Proof By direct computations, for any x ∈ M\D, we have

dψβ

dβ
= 2

β|s|2βh log |s|2h + 1 − |s|2βh

β(1 − |s|2βh )
. (2.27)

Denote fβ(a) = βaβ log a + 1 − aβ for β > 0 and a ∈ [0, 1]. By computing, we get

f ′
β(a) = β2aβ−1 log a ≤ 0. (2.28)

Hence fβ(a) ≥ fβ(1) = 0 and we have dψβ

dβ ≥ 0. ��
Proposition 2.9 For any (t, x) ∈ (0,∞) × M, ϕβ(t, x) is monotone decreasing as β ↘ 0.

Proof By the arguments in section 3 of [28], we obtain Eq. (1.7) by approximating equations

∂ϕβ,ε(t)

∂t
= log

(ω0 + √−1∂∂̄ϕβ,ε(t))n

ωn
0

− ϕβ,ε(t) + h0 + log(ε2 + |s|2h)1−β

ϕβ,ε(0) = ψβ (2.29)

For β1 < β2, let ψ1,2(t) = ϕβ1,ε(t) − ϕβ2,ε(t). On [η, T ] × M with η > 0 and T < ∞,

∂

∂t
(et−ηψ1,2(t))

≤ et−η log

(
et−ηω0 + √−1∂∂̄et−ηϕβ2,ε(t) + √−1∂∂̄et−ηψ1,2(t)

)n

(et−ηω0 + √−1∂∂̄et−ηϕβ2,ε(t))
n

. (2.30)
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Let ψ̃1,2(t) = et−ηψ1,2(t) − δ(t − η) with δ > 0 and (t0, x0) be the maximum point of
ψ̃1,2(t) on [η, T ] × M . If t0 > η, by the maximum principle, at this point,

0 ≤ ∂

∂t
ψ̃1,2(t) = ∂

∂t

(
et−ηψ1,2(t)

) − δ ≤ −δ (2.31)

which is impossible, hence t0 = η. So for any (t, x) ∈ [η, T ] × M ,

ψ1,2(t, x) ≤ e−t+η sup
M

ψ1,2(η, x) + T δ. (2.32)

Since lim
t→0+ ‖ ϕβ,ε(t) − ψβ ‖L∞(M)= 0, let η → 0, we get

ψ1,2(t, x) ≤ e−t sup
M

(ψβ1 − ψβ2) + T δ ≤ T δ. (2.33)

Here we use Proposition 2.8 in the last inequality. Let δ → 0 and then ε → 0, we conclude
that ϕβ1(t, x) ≤ ϕβ2(t, x). ��

For any [δ, T ] × K ⊂⊂ (0,∞) × M\D and k ≥ 0, ‖ϕβ(t)‖Ck ([δ,T ]×K ) is uniformly
bounded by Proposition 2.7. Let δ approximate to 0, T approximate to∞ and K approximate
to M\D, by diagonal rule, we get a sequence {βi }, such that ϕβi (t) converge inC∞

loc-topology
in (0,∞)× (M\D) to a function ϕ(t) that is smooth on C∞ ((0,∞) × (M\D)) and satisfies
equation

∂ϕ(t)

∂t
= log

(ω0 + √−1∂∂̄ϕ(t))n

ωn
0

− ϕ(t) + h0 + log |s|2h (2.34)

in (0,∞) × (M\D). Since ϕβ(t) is monotone decreasing as β → 0, ϕβ(t) converge in
C∞

loc-topology in (0,∞) × (M\D) to ϕ(t). For any T > 0,

e− C
t ωcusp ≤ ω(t) ≤ e

C
t ωcusp on (0, T ] × (M\D), (2.35)

where ω(t) = ω0 + √−1∂∂ϕ(t), constants C depend only on n, ω0 and T .
Next, by using the monotonicity of ϕβ(t) with respect to β and constructing auxiliary

function, we prove the L1-convergence of ϕ(t) as t → 0+ as well as ϕ(t) converge to ψ0 in
L∞-norm as t → 0+ on any compact subset K ⊂⊂ M\D.

Lemma 2.10 There exists a unique vβ ∈ P SH(M, ω0)
⋂

L∞(M) to equation

(ω0 + √−1∂∂̄vβ)n = evβ−h0
ωn
0

|s|2(1−β)
h

. (2.36)

Furthermore, vβ ∈ C2,α,β(M) and ‖ vβ −ψβ ‖L∞(M) can be uniformly bounded by constant
C independent of β.

Proof By Kołodziej’s theorem (Theorem 2.4.2 in [23], see also Theorem 4.1 in [12]), there
exists a unique continuous solution vβ to Eq. (2.36). Then by Guenancia–Păun’s regularity
estimates ( Theorem B in [17], see also Theorem 1.4 in [26]), vβ ∈ C2,α,β(M) (readers
can refer to page 5731 in [3] for more details about the space C2,α,β(M)). Next, we prove
‖ vβ − ψβ ‖L∞(M) can be uniformly bounded. Let uβ = vβ − ψβ , we write Eq. (2.36) as

(ωβ + √−1∂∂̄uβ)n = euβ+hβ ωn
β, (2.37)

where hβ = ψβ − h0 + log
ωn
0

|s|2(1−β)
h ωn

β

is uniformly bounded independent of β. Define

χβ,ε = uβ + ε log |s|2h . Then
√−1∂∂̄χβ,ε = √−1∂∂̄uβ − εθ in M\D. Since χβ,ε is smooth
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in M\D, bounded from above and goes to −∞ near D, it achieves its maximum in M\D.
Let x0 be the maximum point of χβ,ε on M with x0 ∈ M\D. By the maximum principle,

euβ+hβ ωn
β(x0) = (ωβ + √−1∂∂̄uβ)n(x0) = (ωβ + √−1∂∂̄χβ,ε + εθ)n(x0) ≤ 2nωn

β(x0).

Hence, uβ ≤ C − ε log |s|2h , where constant C independent of β and ε. Let ε → 0, we get
the uniform upper bound of uβ . By the similar arguments, we can obtain the uniform lower
bound of uβ . ��
Proposition 2.11 ϕ(t) ∈ C0 ([0,∞) × (M\D)) and

lim
t→0+ ‖ϕ(t) − ψ0‖L1(M) = 0. (2.38)

Proof By the monotonicity of ϕβ(t) with respect to β, for any (t, z) ∈ (0, T ] × (M\D), we
have

ϕ(t, z) − ψ0(z) ≤ ϕβ(t, z) − ψ0(z)

≤ |ϕβ(t, z) − ψβ(z)| + |ψβ(z) − ψ0(z)|. (2.39)

Sinceψβ converge toψ0 in C∞
loc-sense outside D as β → 0, we can insure that for any ε > 0

and K ⊂⊂ M\D, there exists N such that for β1 < 1
N ,

‖ψβ1(z) − ψ0(z)‖L∞(K ) <
ε

2
. (2.40)

Fix such β1. Since by the definition of the flow (1.6)

lim
t→0+ ‖ϕβ(t, z) − ψβ‖L∞(M) = 0, (2.41)

there exists 0 < δ1 < T such that

sup
[0,δ1]×M

|ϕβ1(t, z) − ψβ1 | <
ε

2
. (2.42)

Combining the above inequalities together, for any t ∈ (0, δ1] and z ∈ K

sup
[0,δ1]×K

(ϕ(t, z) − ψ0(z)) < ε. (2.43)

We define function

Hβ(t) = (1 − te−t )ψβ + te−tvβ + h(t)e−t , (2.44)

where vβ and uβ = vβ − ψβ are obtained in Lemma 2.10, and

h(t) = (1 − et − t)‖uβ‖L∞(M) + n(t log t − t)et − n
∫ t

0
ess log sds.

Straightforward calculations show that

∂

∂t
Hβ(t) + Hβ(t) = ψβ + e−t uβ − e−t‖uβ‖L∞(M) − ‖uβ‖L∞(M) + n log t − nt

≤ ψβ + uβ + n log t − nt

= vβ + n log t − nt .

Therefore, we have
e

∂
∂t Hβ (t)+Hβ (t)ωn

0 ≤ tne−nt evβ ωn
0 .
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Note that te−t < 1, we have

ω0 + √−1∂∂ Hβ(t) = (1 − te−t )(ω0 + √−1∂∂ψβ) + te−t (ω0 + √−1∂∂vβ)

≥ te−t (ω0 + √−1∂∂vβ).

Combining the above inequalities,

(ω0 + √−1∂∂ Hβ(t))n ≥ tne−nt (ω0 + √−1∂∂ϕβ)n

≥ e−h0+ ∂
∂t Hβ (t)+Hβ (t) ωn

0

|s|2(1−β)
h

,

which is equivalent to

∂

∂t
Hβ(t) ≤ log

(ω0 + √−1∂∂ Hβ(t))n

ωn
0

− Hβ(t) + h0 + log |s|2(1−β)
h .

Hβ(0) = ψβ (2.45)

Next, we prove Hβ(t) ≤ ϕβ(t) by using Jeffres’ trick [18]. For any 0 < t1 < T < ∞ and
a > 0.

Denote �(t) = Hβ(t) + a|s|2q
h − ϕβ(t) and �̂ = ∫ 1

0 gi j̄
s Hβ (t)+(1−s)ϕβ (t)

∂2

∂zi ∂ z̄ j ds, where
0 < q < 1 is determined later. �(t) evolves along the following equation

∂�(t)

∂t
� �̂�(t) − a�̂|s|2q

h − �(t) + a|s|2q
h .

Since

ω0 + √−1∂∂ Hβ(t) ≥ (1 − te−t )(ω0 + √−1∂∂ψβ) ≥ 1

4
ω0,

ω0 + √−1∂∂ϕβ(t) ≥ e
− C(T )

t1 ωβ ≥ 1

2
e
− C(T )

t1 ω0,

√−1∂∂|s|2q
h = q2|s|2q

h

√−1∂ log |s|2h ∧ ∂ log |s|2h + q|s|2q
h

√−1∂∂ log |s|2h,

we obtain the following inequalities

1

2
min

(
1

2
, e

− C(T )
t1

)
ω0 ≤ 1

2
sωβ + (1 − s)e

− C(T )
t1 ωβ ≤ sωHβ (t) + (1 − s)ωϕβ(t).

Hence, we have

�̂|s|2q
h ≥ q|s|2q

h

∫ 1

0
gs Hβ (t)+(1−s)ϕβ (t)

(
∂2

∂zi∂ z̄ j
log |s|2h

)
ds

= −q|s|2q
h

∫ 1

0
gi j̄

s Hβ (t)+(1−s)ϕβ (t)θi j̄ds

≥ −1

2
C(t1, T )q|s|2q

h gi j̄
β g0,i j̄ ≥ −C(t1, T )

in M\D, where constant C(t1, T ) = 2K max(2, e
C(T )

t1 ) independent of a and θ � Kω0.
Then we have

∂�(t)

∂t
≤ �̂�(t) − �(t) + aC(t1, T ).
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Let �̃ = e(t−t1)� −aC(t1, T )e(t−t1) −ε(t − t1). By choosing suitable 0 < q < 1, we can
assume that the space maximum of �̃ on [t1, T ] × M is attained away from D. Let (t0, x0)
be the maximum point. If t0 > t1, by the maximum principle, at (t0, x0), we have

0 ≤
(

∂

∂t
− �̂

)
�̃(t) ≤ −ε,

which is impossible, hence t0 = t1. Then for (t, x) ∈ [t1, T ] × M , we obtain

Hβ(t) − ϕβ(t) ≤ ‖Hβ(t1, x) − ϕβ(t1, x)‖L∞(M) + aC(t1, T ) + εT

Since lim
t→0+ ‖Hβ(t, z) − ψβ‖L∞(M) = 0 and (2.41), let a → 0 and then t1 → 0+,

Hβ(t) − ϕβ(t) ≤ εT .

It shows that Hβ(t) ≤ ϕβ(t) after we let ε → 0. For any (t, z) ∈ (0, T ] × (M\D)

ϕβ(t, z) − ψ0(z) ≥ te−t uβ + h(t)e−t + ψβ − ψ0

≥ −Ct − C(1 − e−t ) + h1(t)e
−t , (2.46)

where h1(t) = n(t log t − t)et − n
∫ t
0 ess log s ds, constant C is independent of β thanks to

Lemma 2.10. Letting β → 0, we have

ϕ(t, z) − ψ0(z) ≥ −Ct − C(1 − e−t ) + h1(t)e
−t . (2.47)

There exists δ2 such that for any t ∈ [0, δ2] and z ∈ M\D,

ϕ(t, z) − ψ0(z) > − ε

2
. (2.48)

Let δ = min(δ1, δ2), then for any t ∈ (0, δ] and z ∈ K ,

− ε < ϕ(t, z) − ψ0(z) < ε. (2.49)

This, together with Proposition 2.7, insures that ϕ(t) ∈ C0 ([0,∞) × (M\D)). Since ψβ

converge to ψ0 in L1-sense on M , for sufficiently small β2, we have
∫

M
|ψβ2(z) − ψ0(z)| ωn

0 <
ε

2
. (2.50)

By (2.39), (2.41) and (2.48), there exists δ such that for any t ∈ (0, δ),
∫

M
|ϕ(t) − ψ0(z)| ωn

0 < ε, (2.51)

which implies (2.38). ��
Theorem 2.12 ω(t) = ω0 + √−1∂∂̄ϕ(t) is a long-time solution to cusp Kähler–Ricci flow
(1.8).

Proof Weshouldonlyprove thatω(t) satisfiesEq. (1.8) in the sense of currents on (0,∞)×M .
Let η = η(t, x) be a smooth (n − 1, n − 1)-form with compact support in (0,∞) × M .

Without loss of generality, we assume that its compact support is included in (δ, T ) × M

(0 < δ < T < ∞). On [δ, T ]×(M\D), log
ωn

β (t)|s|2(1−β)
h

ωn
0

−ψβ , log
ωn(t)|s|2h

ωn
0

−ψ0, ϕβ(t)−ψβ

and ϕ(t) − ψ0 are uniformly bounded. On [δ, T ], we have
∫

M

∂ωβ(t)

∂t
∧ η =

∫

M

√−1∂∂̄
∂ϕβ(t)

∂t
∧ η
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=
∫

M

⎛

⎝log
ωn

β(t)|s|2(1−β)
h

ωn
0

− ψβ − (ϕβ(t) − ψβ) + h0

⎞

⎠ √−1∂∂̄η

β→0−−−→
∫

M

(
log

ωn(t)|s|2h
ωn
0

− ψ0 − (ϕ(t) − ψ0) + h0

) √−1∂∂̄η

=
∫

M
(−Ric(ω(t)) − ω(t) + [D]) ∧ η.

In the above limit process, we make use of the uniform convergence theorem. At the same
time, there also holds

∫

M
ωβ(t) ∧ ∂η

∂t
=

∫

M
ω0 ∧ ∂η

∂t
+

∫

M
ϕβ(t)

√−1∂∂̄
∂η

∂t
β→0−−−→

∫

M
ω0 ∧ ∂η

∂t
+

∫

M
ϕ(t)

√−1∂∂̄
∂η

∂t

=
∫

M
ω(t) ∧ ∂η

∂t
. (2.52)

On the other hand,

∂

∂t

∫

M
ωβ(t) ∧ η =

∫

M
ϕβ(t)

√−1∂∂̄
∂η

∂t
+

∫

M
ω0 ∧ ∂η

∂t
+

∫

M

∂ϕβ(t)

∂t

√−1∂∂̄η

β→0−−−→
∫

M
ϕ(t)

√−1∂∂̄
∂η

∂t
+

∫

M
ω0 ∧ ∂η

∂t
+

∫

M

∂ϕ

∂t

√−1∂∂̄η

= ∂

∂t

∫

M
ω(t) ∧ η. (2.53)

Combining equality

∂

∂t

∫

M
ωβ(t) ∧ η =

∫

M

∂ωβ(t)

∂t
∧ η +

∫

M
ωβ(t) ∧ ∂η

∂t

with equalities (2.52)–(2.53), on [δ, T ], we have
∂

∂t

∫

M
ω(t) ∧ η =

∫

M
(−Ric(ω(t)) − ω(t) + [D]) ∧ η

+
∫

M
ω(t) ∧ ∂η

∂t
. (2.54)

Since Supp η ⊂ (δ, T ) × M , we have
∫ +∞

0

d

dt

∫

M
ω(t) ∧ η dt = 0. (2.55)

Integrating form 0 to ∞ on both sides of Eq. (2.54),
∫

(0,∞)×M

∂ω(t)

∂t
∧ η dt = −

∫

(0,∞)×M
ω(t) ∧ ∂η

∂t
dt = −

∫ ∞

0

∫

M
ω(t) ∧ ∂η

∂t
dt

=
∫ ∞

0

∫

M
(−Ric(ω(t)) − ω(t) + [D]) ∧ η dt

=
∫

(0,∞)×M
(−Ric(ω(t)) − ω(t) + [D]) ∧ η dt .
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By the arbitrariness of η, we prove that ω(t) satisfies cusp Kähler–Ricci flow (1.8) in the
sense of currents on (0,∞) × M . ��

Now we prove the uniqueness theorem.

Theorem 2.13 Let ϕ̃(t) ∈ C0 ([0,∞) × (M\D))
⋂

C∞(
(0,∞) × (M\D)

)
be a long-time

solutions to parabolic Monge–Ampère equation

∂ϕ(t)

∂t
= log

(ω0 + √−1∂∂̄ϕ(t))n

ωn
0

− ϕ(t) + h0 + log |s|2h (2.56)

in (0,∞) × (M\D). If ϕ̃ satisfies

• For any 0 < δ < T < ∞, there exists uniform constant C such that

C−1ωcusp ≤ ω0 + √−1∂∂̄ϕ̃(t) ≤ Cωcusp on [δ, T ] × (M\D);
• on (0, T ], ‖ϕ̃(t) − ψ0‖L∞(M\D) � C;

• on [δ, T ], there exist constant C∗ such that ‖ ∂ϕ̃(t)
∂t ‖L∞(M\D) � C∗;

• lim
t→0+ ‖ϕ̃(t) − ψ0‖L1(M) = 0.

Then ϕ̃(t) ≤ ϕ(t).

Proof For any 0 < t1 < T < ∞ and a > 0. Denote �(t) = ϕ̃(t) + a log |s|2h − ϕβ(t) and

�̂ = ∫ 1
0 gi j̄

sϕ̃(t)+(1−s)ϕβ (t)
∂2

∂zi ∂ z̄ j ds. We note that ϕ̃(t) is bounded from above because it is a
ω0-psh function. �(t) evolves along the following equation

∂�(t)

∂t
= �̂�(t) − a�̂ log |s|2h − �(t) + (a + β) log |s|2h .

Since −√−1∂∂̄ log |s|2h = θ , we obtain

−�̂ log |s|2h =
∫ 1

0
gi j̄

sϕ̃(t)+(1−s)ϕβ (t)θi j̄ds ≤ C(t1, T )

in M\D. Then we obtain

∂�(t)

∂t
≤ �̂�(t) − �(t) + aC(t1, T ).

Then by the arguments as that in Proposition 2.11, on [t1, T ] × (M\D),

ϕ̃(t) − ϕβ(t) ≤ e−(t−t1) sup
M

(
ϕ̃(t1) − ϕβ(t1)

)
.

Since ϕ̃(t1) converge to ψ0 in L1-sense and ϕβ(t) converge to ψβ in L∞-sense as t1 → 0+,
by Hartogs Lemma, we have

ϕ̃(t) − ϕβ(t) ≤ e−t sup
M

(ψ0 − ψβ) ≤ 0,

after we let t1 → 0. Hence ϕ̃(t) ≤ ϕ(t) in (0,∞) × (M\D). ��
Remark 2.14 If M is a compact Kähler manifold with smooth hypersurface D. We can also
consider unnormalized cusp Kähler–Ricci flow

∂ω̂(t)

∂t
= −Ric(ω̂(t)) + [D].
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ω̂(t)|t=0 = ωcusp (2.57)

If we define ω(t) = e−t ω̂(et − 1), then flow (2.57) is actually the same as normalized cusp
Kähler–Ricci flow (1.8) only modulo a scaling. Let

T0 = sup{ t | [ω0] − t(c1(M) − c1(D)) > 0}. (2.58)

Combining the arguments of Tian–Zhang [41] and Liu–Zhang [28] with the arguments in
this paper, there exists a unique solution to flow (2.57) on [0, T0) in some weak sense which
is similar as Definition 1.2.

3 The convergence of cusp Kähler–Ricci flow

In this section, we prove the convergence theorem of cusp Kähler–Ricci flow (1.8).

Proof of Theorem 1.6: Differentiating Eq. (2.56) in time t , we have
(

d

dt
− �t

)
∂ϕ

∂t
= −∂ϕ

∂t
(3.1)

on [δ, T ] × (M\D) with δ > 0. For any ε > 0,
(

d

dt
− �t

)(
∂ϕ

∂t
+ ε log |s|2h

)
= −∂ϕ

∂t
+ εtrω(t)θ

≤ −
(

∂ϕ

∂t
+ ε log |s|2h

)
+ εC(δ, T ), (3.2)

where constant C(δ, T ) independent of ε. For any η > 0, let H = et−δ(
∂ϕ
∂t + ε log |s|2h) −

εet−δC(δ, T )−η(t −δ). Since ∂ϕ
∂t is bounded on [δ, T ]×(M\D), themaximumpoint (t0, x0)

of H satisfies x0 ∈ M\D. If t0 > δ, by themaximumprinciple, we get a contradiction. Hence,
t0 = δ. Then we have

∂ϕ

∂t
≤ C(δ)e−t − ε log |s|2h + εC(δ, T ) + ηT . (3.3)

Let ε → 0, η → 0 and then T → ∞, we obtain

∂ϕ

∂t
≤ C(δ)e−t in [δ,∞) × (M\D). (3.4)

By the same arguments, we can get the lower bound of ∂ϕ
∂t . In fact, we obtain

|∂ϕ

∂t
| ≤ C(δ)e−t in [δ,∞) × (M\D). (3.5)

For δ < t < s,

|ϕ(t) − ϕ(s)| ≤ C(δ)(e−t − e−s) in [δ,∞) × (M\D). (3.6)

Therefore, ϕ(t) converge exponentially fast in L∞-sense to ϕ∞ in M\D. Then making use
of the arguments in the proofs of Lemma 2.5, Lemma 2.6 and Proposition 2.7 for flow (1.8),
we can prove that ϕ(t) are locally Ck-bounded (independent of t) for any k ∈ N

+ outside D.
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Since ϕ(t) converge in L∞-sense to ϕ∞, ϕ(t) must converge to ϕ∞ in C∞
loc-sense in M\D.

At the same time, For any smooth (n − 1, n − 1)-form η,
∫

M

∂ω(t)

∂t
∧ η =

∫

M

∂ϕ(t)

∂t

√−1∂∂̄η
t→∞−−−→ 0 (3.7)

while
∫

M

∂ω(t)

∂t
∧ η =

∫

M

√−1∂∂̄(log
|s|2h(ω0 + √−1∂∂̄ϕ(t))n

ωn
0

− ϕ(t) + h0) ∧ η

=
∫

M

(
log

|s|2h(ω0 + √−1∂∂̄ϕ(t))n

ωn
0

− ψ0 − (ϕ(t) − ψ0) + h0

) √−1∂∂̄η

t→∞−−−→
∫

M

(
log

|s|2h(ω0 + √−1∂∂̄ϕ∞)n

ωn
0

− ψ0 − (ϕ∞ − ψ0) + h0

) √−1∂∂̄η

=
∫

M
(−Ric(ω∞) − ω∞ + [D]) ∧ η.

which implies the convergence in the sense of currents. ��
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