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Abstract

In this paper, we study the limiting flow of conical Kihler—Ricci flows when the cone angles
tend to 0. We prove the existence and uniqueness of this limiting flow with cusp singularity
on compact Kihler manifold M which carries a smooth hypersurface D such that the twisted
canonical bundle K s + D is ample. Furthermore, we prove that this limiting flow converge
to a unique cusp Kiahler—Einstein metric.

Keywords Cusp Kihler—Ricci flow - Conical Kdhler—Ricci flow - Cusp Kéhler—Einstein
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1 Introduction

In this paper, we study the limiting flow of (twisted) conical Kdhler—Ricci flows when the cone
angles tend to 0. Our motivation for considering this limiting flow is to study the existence
of singular Kihler—Einstein metric when the cone angle is 0. In [39], Tian anticipated that
the complete Tian—Yau Kéhler—Einstein metric on the complement of a divisor should be the
limit of conical Kédhler-Einstein metrics when the cone angles tend to 0.

Let M be a compact Kéhler manifold with complex dimension n and D C M be a smooth
hypersurface. Here, by supposing that the twisted canonical bundle K, + D is ample, we
prove the long-time existence, uniqueness and convergence of the limiting flow of twisted
conical Kihler—Ricci flows when the cone angles tend to 0. Since this limiting flow admits
cusp singularity along D, we call it cusp Kéhler—Ricci flow. As an application, we show the
existence of cusp Kéhler—Einstein metric [22,40] by using cusp Kihler—Ricci flow.
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The conical Kihler—Ricci flow was introduced to attack the existence problem of conical
Kéhler—Einstein metric. This equation was first proposed in Jeffres—Mazzeo—Rubinstein’s
paper (Section 2.5 in [19]). Song—Wang made some conjectures on the relation between
the convergence of conical Kihler—Ricci flow and the greatest Ricci lower bound of M
(conjecture 5.2 in [37]). The long-time existence, regularity and limit behavior of conical
Kihler—Ricci flow have been widely studied, see the works of Liu—Zhang [27,28], Chen-
Wang [7,8], Wang [45], Shen [34,35], Edwards [11], Nomura [33], Liu—Zhang [26] and
Zhang [47].

By saying a closed positive (1, 1)-current w is conical Kahler metric with cone angle 278
(0 < B < 1)along D, we mean that D is locally given by {z" = 0} and w is asymptotically
equivalent to model conical metric

n—1 -
; o A/—=1dZ" AdZ”
— i Adz/
v lz;dz Adzl + T (1.1)
Jj=
And by saying a closed positive (1, 1)-current w is cusp Kihler metric along D, we mean
that D is locally given by {z" = 0} and w is asymptotically equivalent to model cusp metric

n—1 _

. . /=1d7" AdT?

V=1 dz/ Ad7/ + ———~ 55—
Z |z”|210g2 |Zn|2

Jj=1

(1.2)

For more about cusp Kéhler metrics, please see Auvray’s works [1,2].

Let wg be a smooth Kihler metric on M and satisfy ¢1 (K ) 4+ c1(D) = [wp]. We denote
D = {s = 0}, where s is a holomorphic section of the line bundle L p associated to D. In
[28], we proved the long-time existence, uniqueness, regularity and convergence of conical
Kihler-Ricci flow with weak initial data wy, € £,(M, wp) when p > 1, where

(o + +/—133¢)"
n

Ep(M, wo) = {90 € &M, wo) |
0

€ L”(M,w'é)],

EM, wp) = {goe PSH(M, wp) | / (wo + v/ —133¢)" :/ wo}
M M

Thanks to Kotodziej’s theorem (Theorem 2.4.2 in [24]), potentials in the class &, (M, wp)
with p > 1 are continuous. Furthermore, by Kotodziej’s L?-estimate (Theorem 2.1 in [23])
and Dinew’s uniqueness theorem (Theorem 1.2 in [10], see also Theorem B in [14]), we
know that the potentials in £, (M, wp) with p > 1 are Holder continuous with respect to wq
on M.

N 5128 .

Let p be a smooth closed (1, 1)-form and wg = wy + WASTYY, Is];,” > where h is a smooth
hermitian metric on L p and t is a small constant. When ¢1 (M) = u[wo]+(1—8)c1(D)+[p]
(n € R), by our arguments in [28], there exists a unique long-time solution of twisted conical
Kéhler—Ricci flow

00— Rictws(@) + mop(@) + (1 = DI+ p.

wg(H)|1=0 = Wy, (1.3)

Definition 1.1 We call wg(¢) a long-time solution to twisted conical Kahler—Ricci flow (1.3)
if it satisfies the following conditions.

(1) Forany [8, T] (8, T > 0), there exists constant C such that
C'dp < wp(t) <Cédg on [8,T]x (M\D);

@ Springer



Cusp Kahler—Ricci flow on compact Kéhler manifolds 291

(2) on (0, 00) x (M\D), wg(t) satisfies smooth twisted Kéhler—Ricci flow;

(3) on (0, 00) x M, wg(t) satisfies Eq. (1.3) in the sense of currents;

(4) there exists metric potential @g(t) € CY ([0, 00) x M) N C™® ((0, o0) x (M\D)) such
that wg (1) = wy + +/—100¢p (1) and tim s (0) = ol = 0;

(5) on [8, T, there exist constant « € (0, 1) and C* such that the above metric potential
g (1)
ot

@p(t) is C* on M with respect to wp and || Loy < C*.

From Guenancia’s result (Lemma 3.1 in [16]),

28\ 2
_ 1— _
wﬂ:w0_¢imaMg<gﬂh>:=wm+¢—m&m (1.4)

is a conical Kéhler metric with cone angle 278 along D. Hence, wg € &,(M, wp) for
p € (1, ﬁ). By direct calculations, it is obvious that wg > %wo for choosing suitable

hermitian metric /. Since g converge to ¥ in Cj, -sense outside D and globally in L'-
sense on M as B — 0, wg converge to cusp Kihler metric

Weusp = o — N/ —138 loglog? |s|? := wp + v/~ 1330 (1.5)
in Cf; -sense outside D and globally in the sense of currents. Here we remark that a;)wno €
0

LY (M) but % ¢ LP(M) for p > 1. We pick 6 € c(D) a smooth real closed (1, 1)-form
O -
such that [D] = 6 4+ 4/—100 log |s|,21, then we consider twisted conical Kédhler—Ricci flow

aw;t(t) = —Ric(wp(1)) — wp(t) + (1 — B)[D] + B6.
wp()]i=0 = wg (1.6)

Since ¢1 (K y) +c1(D) = [wo], flow (1.6) preserves the Kihler class, that is, [wg (t)] = [wo].
We write (1.6) as parabolic complex Monge—Ampere equation on potentials,

199 n
agag(l‘) ~ log (wo + J:aawﬁ(t)) — (1) +ho+ (1 — B)log |S|%z
t )
05(0) = Vi "

on (0, 00) x (M\D), where hg € C*®(M) satisfies —Ric(wp) + 0 — wg = ~/—13dhg. By
proving uniform estimates (independent of ) for twisted conical Kihler—Ricci flows (1.6),
we obtain the limiting flow which is called cusp Kéhler—Ricci flow

8§f)=—waa»—way+un
@ (D=0 = WDcusp (1.8)

Definition 1.2 We call w(¢) a long-time solution to cusp Kéhler—Ricci flow (1.8) if it satisfies
the following conditions.

(1) Forany [6, T] (8, T > 0), there exists constant C such that
C_lwcusp <o) < chusp on [§,T] x (M\D);
(2) on (0, 00) x (M\D), w(t) satisfies smooth Kéhler—Ricci flow;

(3) on (0, 00) x M, w(t) satisfies Eq. (1.8) in the sense of currents;
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(4) there exists (¢) € C° ([0, 00) x (M\D)) N C*® ((0, 00) x (M\D)) such that

w(t) = wp + /—133¢(t) and Tim () = ol iy = 0;
—

(5) on (0, T, llo(t) — ¥ollLemnp) < C;

(6) on [8, T, there exist constant C such that || a‘ggt) lze\py < C.

There are some important results on Kidhler—Ricci flows (as well as its twisted versions with
smooth twisting forms) from weak initial data, such as Chen—Ding [5], Chen-Tian—Zhang
[6], Guedj—Zeriahi [15], Di Nezza—Lu [9], Song-Tian [36], Székelyhidi—Tosatti [38] and
Zhang [48] etc. In [29,30], Lott—Zhang proved some significant results on various Kéhler—
Ricci flows with singularities. In particular in [29], in M\ D, they thoroughly studied the
existence and convergence of Kéhler—Ricci flow whose initial metric is finite volume Kéhler
metric with “superstandard spatial asymptotics” (Definition 8.10 in [29]) and gave some
interesting examples. Their flow keeps “superstandard spatial asymptotics™ and this type of
metrics contain cusp Kihler metrics. Here we study the limiting behavior of conical Kédhler—
Ricci flows when the cone angles tend to 0 on M. The limiting flow admits non-smooth
twisting form globally, cusp singularity along D and weak initial data, it is a solution of cusp
Kéhler—Ricci flow (1.8) and can be seen as Lott—Zhang’s case when we restrict it in M\ D.
In this limiting process, we need prove uniform estimates (independent of 8) for a sequence
of conical flows and consider the asymptotic behavior of the weak solution to the limiting
flow when ¢ tend to OF. There are some other interesting results on singular Ricci flows, see
Ji-Mazzeo—Sesum [20], Kleiner—Lott [21], Mazzeo—Rubinstein—Sesum [32], Topping [43]
and Topping-Yin [44].

In [28], we studied conical Kédhler—Ricci flows which are twisted by non-smooth twisting
forms and start from weak initial data with L?-density for p > 1. Here, by limiting conical
flows (1.6), we prove that the limiting flow with weak initial data ;s is a long-time solution
to cusp Kihler—Ricci flow (1.8). This initial metric only admits L'-density. For obtaining
this limiting flow, in addition to getting uniform estimates ( independent of ) of flows (1.6),
it is important to prove that ¢(¢) converge to ¥y globally in L!-sense and locally in L°°-
sense outside D as t — OV In this process, we need to construct auxiliary function, and we
also need a key observation (Proposition 2.8 and 2.9) that both 15 and ¢g(¢) are monotone
decreasing as 8 N\ 0. Then we obtain a uniqueness result of cusp Kihler—Ricci flow. In fact,
we obtain the following theorem.

Theorem 1.3 Let M be a compact Kihler manifold and wy be a smooth Kdihler metric.
Assume that D C M is a smooth hypersurface which satisfies c1(Ky) + ¢1(D) = [wo].
Then the twisted conical Kdhler—Ricci flows (1.6) converge to a unique long-time solution
w(t) = wy+ J?laéw(t) of cusp Kdahler—Ricci flow (1.8) in Cﬁ)oc-sense in (0, 00) x (M\D)
and globally in the sense of currents.

Remark 1.4 The uniqueness in Theorem 1.3 need to be understood in this sense: if ¢ (¢) €
CY ([0, 00) x (M\D)) N C* ((0, 00) x (M\D)) is a solution to equation
0] (w0 + /=183 (1))"
or ¢ "
t wf)
#(0) = o (1.9)

on (0, 00) x (M\ D) and satisfies (1), (4), (5) and (6) in Definition 1.2, then ¢ (¢) lies below
¢(t) which is obtained by limiting twisted conical Kéhler—Ricci flows (1.6) in Theorem 1.3.

lo — ¢(1) + ho + log s |7
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When n = 1, this uniqueness property is called “maximally stretched” in Topping’s (Remark
1.9 in [42]) and Giesen-Topping’s (Theorem 1.2 in [13]) works.

Remark 1.5 Since Ky + D is ample, K3y + (1 — 8)D is also ample for sufficiently small
B. Guenancia [16] proved that cusp Kihler—Einstein metric is the limit of conical Kihler—
Einstein metrics with background metrics wg — B0 as B — 0. The cohomology classes are
changing in this process. But in the flow case, we cannot obtain above uniqueness of the
limiting flow if we choose the approximating flows that are conical Kédhler—Ricci flows with
background metrics wy — 6. In fact, if we choose the approximating flows that are conical
Kihler—Ricci flows

% = —Ric(wp(1)) — wp(t) + (1 — B)[D]

@p(1)]=0 = wo — PO + =133V (1.10)

with background metrics wo — B0, that is, @g (1) = wy — BO + ﬁaé@,g (1), we can also get
along-time solution & (1) = wp++/—109¢(¢) to Eq. (1.8). But we do not know whether @(r)
is unique or maximal. We can only prove ¢g(t) + S log |s|%l /" ¢(t) outside D as 8 N\ O.
However, by the uniqueness result in Theorem 1.3, ¢(#) must lie below ¢(¢). Therefore, we
set the background metric to wy in this paper.

At last, we prove the convergence of cusp Kihler—Ricci flow (1.8).

Theorem 1.6 Cusp Kihler—Ricci flow (1.8) converges to a Kihler—Einstein metric with cusp
singularity along D in Cy, -topology outside hypersurface D and globally in the sense of
currents.

Kobayashi [22] and Tian—Yau [40] asserted that if the twisted canonical bundle K j; 4+ D is
ample, then there is a unique (up to constant multiple) complete cusp Kéhler—Einstein metric
with negative Ricci curvature in M\ D. The above convergence result recovers the existence
of this cusp Kihler-Einstein metric.

The paper is organized as follows. In Sect. 2, we prove the long-time existence and
uniqueness of cusp Kihler—Ricci flow (1.8) by limiting twisted conical Kihler—Ricci flows
(1.6) and constructing auxiliary function. In Sect. 3, we prove the convergence theorem.

2 The long-time existence of cusp Kahler-Ricci flow

In this section, we prove the long-time existence of cusp Kihler—Ricci flow by limiting
twisted conical Kéhler—Ricci flows (1.6), and we also prove the uniqueness theorem. For
further consideration in the following arguments, we shall pay attention to the estimates
which are independent of S.

From our arguments (Sections 2 and 3 in [28]), we know that there exists a unique long-
time solution gg(t) € Co ([0, 00) x M) [ C* ((0, 00) x (M\D)) to Eq. (1.7). Let Pp(t) =
@p(t) — Vg, we write the Eq. (1.7) as

3¢§(t) ~ log (wp +J?£'33¢ﬁ(t))” 5 +hp
t wg
$5(0) =0 2.1)

21-$)
in (0, 00) x (M\ D), where hg = —rg+ho+log m"migwﬁ is uniformly bounded by constant

C independent of .
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Lemma 2.1 There exists constant C independent of B and t such that
lpg ()|l Loy < C. (2.2)

Proof Fix T > 0.Forany & > 0, we let g () = ¢p(t) +¢log |s|%. Since yg,¢(t) is smooth
in M\ D, bounded from above and goes to —oo near D, it achieves its maximum in M\ D.
Let (7o, xo) be the maximum point of x4 (t) on [0, T] x M with xo € M\D.If tp = 0, then
we have

pp(t) < —eloglsl;. (2.3)

If 19 # 0. At (¢, x0), we have
— 199 n
< Ixpe® _ log (wp + /—130¢p(1))

0 —dg(t) +h
91 wg ¢f5( )+ B
(wp + /=100 xp.¢(t) + 0)"
= log 2 i — pp(t) + hg
@p
<nlog2 —¢g(t)+ C.
Hence, ¢g (19, x0) < C and
pp(t) < C —eloglslj, (2.4)

where constant C independent of B, t and . Let ¢ — 0, we have ¢g(t) < C in M\ D. Since
¢p (1) is continuous, ¢g(t) < C on M.

For the lower bound, we can reproduce the same arguments with xg (1) = ¢g(t) —
elog |s|%,andgetqb,3(t) >ConM. O

‘We now prove the uniform equivalence of volume forms along complex Monge—Ampere
Eq. (2.1). We first recall the following lemma.

Lemma 2.2 If w1 and w; are positive (1, 1)-forms, then

1
@} \" l el
n|—; Strgywr Kn | — ) (rew)" . 2.5)
o w

2

The proof of Lemma 2.2 follows from eigenvalue considerations (section 2 [46]).

Lemma 23 For any T > O, there exists constant C independent of B such that for any
te(0,T],

G +\/Tiaa¢,3(r))" <et in M\D. 2.6)
C wg

Proof For any t > 0, we assume that ¢ € Lﬁ, T] with § > 0. Let Ag, be the Laplacian
operator associated to wg(t) = wg + +/ —100¢p(t). Straightforward calculations show that

9 . .
(& - Aﬁ,t) Ppt) = —¢p(1). 2.7

Let Hy (1) = (¢ —8)¢p(t) —dp(t)+elog |s|2. Since H (1) is smooth in M\ D, bounded
from above and goes to —oo near D, it achieves its maximum in M\ D. Let (y, xo) be the

maximum point of H;S(t) on [8, T] x M with xo € M\D. If tp = §, then

(t = 8)dp(t) < C —elog s7, (2.8)
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where constant C independent of 3, §, ¢ and ¢. If #9 # §, then at (9, xo), we have

(% - Aﬂ,t> H (1) = —(t = 8)p (1) + 1 + 17y, (—wp + £6)
< —(t—8dpt) +n (2.9)
for sufficiently small ¢. By the maximum principle, we have
(t = 8)pp(1) < C —elog|sl;. (2.10)
where constant C independent of 8, §, ¢ and ¢. Let ¢ — 0 and then § — 0, we have
q'bﬁ(t) < % on (0,T] x (M\D), (2.11)

where constant C independent of 8 and ¢.
Let Hfzg(t) = ¢p(t) +2¢p(t) —nlog(t — ) —elog |S|%. Then Hﬂ_’s(t) tend to +oo either
t — 8T orx — D. By computing, we also have

0 _ : n

Assume that (9, xo) is the minimum point of H,s_,s(t) on [6,T] x M with tp > § and
xo € M\ D. Thanks to Lemmas 2.1 and 2.2, there exists constant C; and C, such that

1
0 _ wg " (Og(l‘) Cy
ozl—-A H, (1 >|C +1
> <8t ﬁ,t) 8.eMlw.0) = | C1 (wZ(t)) 0g
1

) e o

l(t0.x0)
n _ 3
wg t—96

where constant C| depends only on n, C; depends only on n, wg and 7. In inequality (2.13),

o CLe % L 1 1og B0
i) > 1 and T(w;’,(t))" + log

the lower bound (2.16) for q'S,g. By the maximum principle, we have

we assume

o] > ( at (7o, xp). Other cases are easy to get
W (to, x0) = Cal(to — )" wj (x0), (2.14)
where C4 independent of 8, ¢ and §. Then it easily follows that

dp(t) = —C +nlog(t — 8) + elog|s|2, (2.15)

where constant C independent of §, € and §. Let ¢ — 0 and then § — 0, we have
¢3ﬂ(t) > —C+nlogt on (0,T] x (M\D), (2.16)
where constant C independent of 8. By (2.11) and (2.16), we obtain (2.6). ]

We first recall Guenancia’s results about the curvature of wg ( Theorem 3.2 [16]).

Lemma 2.4 There exists a constant C depending only on M such that for all g € (0, %], the
holomorphic bisectional curvature of wg is bounded by C.

Next, we prove the uniform equivalence of metrics along twisted conical Kahler—Ricci
flows (1.6) by Chern—Lu inequality.
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Lemma 2.5 For any T > 0, there exists constant C independent of B such that for any
t€(0,Tland B € (0, 1],

e Twp <wp(t) <efwp in M\D. 2.17)
Proof By Chern—Lu inequality [4,31] (see also Proposition 7.1 in [19]), in M\ D, we have
(Ric(wp(1)), wg)

trwﬂ(t)a)ﬁ

wp(t)

Ag: log Irog() 0B > - Ctrwﬂ(t)wﬂ, (2.18)

where (, )wﬁ(,) is the inner product with respect to wg(¢) and constant C depends on the
upper bound for the holomorphic bisectional curvature of wg. In M\ D, we also have

0, (Ric(wp(0) + wp(t) = . wp),, 210
J— t = . .
ar 8! TerOCP Tropn @B @19
By using (2.18) and (2.19), we have
d
(E — Aﬁ’,> log trwﬁ(,)w,g < Ctrwﬁ(,)a)/g +1, (2.20)

where constant C independent of 8.

Let Hg () = (t—§) log [Top(t) W — Agpg(t)+elog|s |ﬁ , A be a sufficiently large constant
and (to, xo) be the maximum point of Hg ¢ (¢) on [8, T'] x (M\ D). We know that xo € M\ D
and we need only consider 7y > 6. By direct calculations,

d .
(E - A/g,,) Hg ¢(t) < log Teg(t)®p + Ctrwﬂ(,)a),g — Agg(t) — Atrwﬂ(,)a)ﬂ + Etrwﬂm@ +C
A wlg (1)
< _Etrwﬂ(t)wﬂ +10gtrw,3(t)w/3 — Alog a)g + C,

where constant C independent of 8 and 4.
Without loss of generality, we assume that —%trwﬁ(,)a)ﬁ + log [Tyynwp < 0 at (z9, x0).
Then at (t9, x9), by Lemma 2.3, we have

9 A
(E - A,g,,> Hpo(1) < = truawp — Anlog(t — 8) + C. (2.21)

By the maximum principle, at (7o, xp),

tropmwp < Clog +C, (2.22)

t—34§
which implies that

1
5+ C) + C —¢elog|s|?. (2.23)

(t — d) log [rpg(nwp < (to — 8) log <C log ;
0 —

Lete — Oand then§ — 0,0n (0, T] x (M\D),

opy@p < €7 . (2.24)
By using Lemmas 2.2 and 2.3, we have

1oy wp(t) < 7, (2.25)
where C independent of 8. From (2.24) and (2.25), we prove the lemma. O
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By the argument as that in Lemma 3.1 of [28], we get the following local Calabi’s C3-
estimates and curvature estimates.

Lemma2.6 Forany T > 0and B,(p) CC M\D, there exist constants C, C' and C" depend
onlyonn, T, wy and dist,,(B,(p), D) such that

Swp) < e’

|meﬁ(f)|5)5(z) = e

|
<
'S

on (0, T] x B% (p).

Since ¢g(t) = @p(t) — ¥ and Yg € coOM) N C°°(M\D), establishing local uniform
estimates for ¢g(t) in M\ D is equivalent to establish the estimates for ¢g(¢). By using the
standard parabolic Schauder regularity theory (Theorem 4.9 in [25]), we obtain the following
proposition.

Proposition 2.7 For any 0 < § < T < oo, k € Nt and B,(p) CC M\D, there exists
constant Cs Tk p,r depends only on n, 8, k, T, wo and dist.,(B,(p), D) such that for

B €, 3],
g Ol ek s, 71% B, (p)) = C8.T.k,p.r- (2.26)

Through a further observation to v/g and Eq. (1.7), we prove the monotonicity of ¥4 and
@p(t) with respect to .

Proposition 2.8 For any x € M, Yg(x) is monotone decreasing as f “\ 0.
Proof By direct computations, for any x € M\ D, we have

2 2
dyg _ o Blsly” loglsfy + 1 — Isfy’

dp B —Isl;") &2

Denote fg(a) = BaPloga + 1 —aP for > 0and a € [0, 1]. By computing, we get
fi(a) = p*a’'loga < 0. (2.28)
Hence fg(a) > fg(1) = 0 and we have % > 0. m]

Proposition 2.9 For any (t, x) € (0, 00) x M, @g(t, x) is monotone decreasing as 8 ~ 0.

Proof By the arguments in section 3 of [28], we obtain Eq. (1.7) by approximating equations

d0p.6 (1) (@0 + v/—103¢p + (1))" -
P~ tog O e (D) + ho + Tog(e + Is )P
@y
05.6(0) = Vg (2:29)

For B1 < B2, let Y1 2(t) = ¢p,,6(t) — ¢p,,6(t). On [, T] x M withn > 0and T < oo,

d
E(et_"lﬁl,z(l))

(e wo + /= 103e' g, o (1) + /—13de' M1 5 (1))"

! 230
(e My + +/—130e'gg, +(t))" o0

< log
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3 Let &1,2(2) =" M1 2(t) — 8(t — i) with § > 0 and (79, xo) be the maximum point of
Y12() on[n, Tl x M.If ty > n, by the maximum principle, at this point,
0 ~ a _
0< —Y120)=— ("p12(0)) =8 < =6 (2.31)
at at
which is impossible, hence ty = n. So for any (¢, x) € [, T] x M,

V12t x) < e " sup vy 2(n, x) + T86. (2.32)
M
Since 111(1)1+ | ©g.e(t) — Vg llLeay= 0, let n — 0, we get
—

Yi2(t, x) < e sup(Yp, — ¥p,) + TS < T6. (2.33)
M

Here we use Proposition 2.8 in the last inequality. Let § — 0 and then ¢ — 0, we conclude
that gg, (t, x) < @g, (t, X). o

For any [, T] x K CC (0,00) x M\D and k > 0, [l¢g(?) ||Ck([5’zjK) is uniformly
bounded by Proposition 2.7. Let § approximate to 0, 7 approximate to oo and K approximate
to M\ D, by diagonal rule, we get a sequence {$;}, such that ¢g, (¢) converge in C}, -topology
in (0, 00) x (M\ D) to a function ¢(¢) that is smooth on C* ((0, co) x (M\ D)) and satisfies
equation

1) _ o, 0t VT

— (1) + ho + log |s]? (2.34)
ot @

in (0, 00) x (M\D). Since @g(t) is monotone decreasing as § — 0, gg(¢) converge in
Cp-topology in (0, 00) x (M\D) to ¢(t). Forany T > 0,

¢ T weusp < 0(1) < €T weusy on (0, T] x (M\D), (2.35)

where w (1) = wg + +/—1 d0¢(1), constants C depend only on 1, wg and T.

Next, by using the monotonicity of ¢g(¢) with respect to B and constructing auxiliary
function, we prove the L'-convergence of ¢(r) as t — 07 as well as ¢(r) converge to ¥ in
L -norm as t — 0" on any compact subset K CC M\D.

Lemma 2.10 There exists a unique vg € PSH(M, wo) (| L (M) to equation
@p

— 199 n _ ,ug—ho
(wo ++/—100vg)" =e 7|s|}21(17ﬂ).

(2.36)

Furthermore, vg € C2%B (M) and || vg — g |lLoo(m) can be uniformly bounded by constant
C independent of B.

Proof By Kotodziej’s theorem (Theorem 2.4.2 in [23], see also Theorem 4.1 in [12]), there
exists a unique continuous solution vg to Eq. (2.36). Then by Guenancia—Paun’s regularity
estimates ( Theorem B in [17], see also Theorem 1.4 in [26]), vg € CZ'O"'S(M) (readers
can refer to page 5731 in [3] for more details about the space CZeP(M)). Next, we prove
Il vg — Vg llLoo(m) can be uniformly bounded. Let ug = vg — ¥g, we write Eq. (2.36) as

(wp + v/ —130ug)" = e"# " o, (2.37)
where hg = Y¥g — ho + log Hmw% is uniformly bounded independent of B. Define
A h U.)ﬁ

Xp,e = upg+elog |s|ﬁ. Then «/—185)(/3,8 = «/—13514,3 —e&6in M\ D. Since g . is smooth
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in M\ D, bounded from above and goes to —oo near D, it achieves its maximum in M\ D.
Let xo be the maximum point of xg . on M with xo € M\ D. By the maximum principle,

"0 Wi (x0) = (wp + V—100up)" (x0) = (wp + V=100 xp.e + £6)" (x0) < 2" W (x0).

Hence, ug < C — ¢log |s|ﬁ, where constant C independent of 8 and €. Let ¢ — 0, we get
the uniform upper bound of ug. By the similar arguments, we can obtain the uniform lower
bound of ug. |

Proposition 2.11 ¢(r) € C° ([0, 00) x (M\D)) and
tl_i)%L @) — YollL1pry = 0. (2.38)

Proof By the monotonicity of ¢g(¢) with respect to g, for any (¢, z) € (0, T'] x (M\D), we
have

@(t,2) —Yo(z) < pp(t,2) — Yo(z)
< lpp(t,z) — ¥p@)| + [¥p(2) — Yo(2)|. (2.39)

Since ¥ converge to ¥ in Cp;. -sense outside D as § — 0, we can insure that for any € > 0
and K CC M\ D, there exists N such that for 1 < %,

g, (2) — Yo(2) Lok < g (2.40)

Fix such B;. Since by the definition of the flow (1.6)

lim |lpp(t, 2) — ¥gllLeomy =0, (241)
t—0t
there exists 0 < §; < T such that
€
sup g, (t,2) — ¥p | < 5 (2.42)
[0,81]x M

Combining the above inequalities together, for any ¢ € (0, 1] and z € K

sup (¢(t,2) — Yo(2)) <e. (2.43)
[0,611xK
We define function
Hg(t) = (1 —te )Ypg +te "vg+ h(t)e™, (2.44)

where vg and ug = vg — ¥y are obtained in Lemma 2.10, and

t
ht)y=(1—¢ — Ollugll oo my + n(tlogt — t)e' — n/ e’slogsds.
0
Straightforward calculations show that

0 _ _

gHﬂ(t) + Hp(t) =Yg+ e ug — e "Nugllpoomy — lluglliLomy + nlogt — nt
< Y¥g+ug+nlogt—nt
=vg +nlogt —nt.

Therefore, we have '

ea%Hﬁ(t)-&-Hﬁ(t)wg < tne—ntevﬂwS.
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Note that te™! < 1, we have

wo +V—130Hp(t) = (1 — te™")(wo + V/—130Yg) + te™" (wo + v/~ 130vp)
> te” (wo + v/—109vp).

Combining the above inequalities,

(o + v/ =139 Hg(1))" > t"e ™ (wo + «/—135%)"
o—hot 2 Hp()+Hg (1)
- | |2(1 B’

which is equivalent to

2(1-p)

%ﬂ(t)il (@0 + /=100 Hp ()" — Hp(t) + ho + log|s|;

d “’0
Hg(0) = ¥g (2.45)

Next, we prove Hg(t) < @p(t) by using Jeffres’ trick [18]. Forany 0 < # < T < oo and
a > 0. =

Denote W(r) = Hg(r) + alsliq — pp(1) and A= fol g;]I_Iﬂ(t)Hl_S)%(t) 5o5z7ds, where
0 < g < 1is determined later. ¥ () evolves along the following equation

aw (1)
ot

< AW@) —al|s — V(@) +als)f.
Since

_ — 1
wo + v —100Hg(t) > (1 — te ) (wo + v =100yg) > Za)o,

_ _cm 1 _coy
wo++—100¢pg(t) = e " wg Zie W,

V=103ls29 = gIs;9 V=10 log |s|? A 3 logls|3 + gls2v/—139 log 5|3,

we obtain the following inequalities
1 1 _cn 1 _cn
— min (5, e N )a)o < Esa)ﬁ +(I—s)e " wg=< SWH () + (1 - s)a)wﬂ(,).
Hence, we have
A|s|2q < 2 ! 92
no=qlsly /0 8sHp(t)+(1—5)pp (1) (8 793 s o g|s|h>

1 _
— 2q ij _
= —qlsl /O 85y (0)+(1-5)95 ()i 79

1
2q l/

A%

Cc((T)
in M\ D, where constant C(¢1,7) = 2K max(2,e 't ) independent of @ and 6 < Kwy.

Then we have

a\gt(t) < AW() — W () +aC(ty, T).
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Let W = W —qC(1, T)e(’i”) —&(t —t1). By choosing suitable 0 < ¢ < 1, we can
assume that the space maximum of W on [t1, T] x M is attained away from D. Let (1, xo)
be the maximum point. If #y > #1, by the maximum principle, at (¢, xp), we have

0= <% - A) b < .
which is impossible, hence #y = #;. Then for (¢, x) € [t1, T] x M, we obtain
Hg(t) — @p(t) < |Hg(t1, x) —@p(t1, X) Loy +aC(t, T) + €T
Since IEr(rJl+ | Hp(t, 2) — ¥gllLoomy = 0 and (2.41), leta — 0 and then t; — 07,
Hg(t) — op(t) < eT.
It shows that Hg(t) < @g(t) after we let ¢ — 0. For any (¢, z) € (0, T] x (M\D)

@p(t,2) —Yo(z) > te "ug + h(t)e™ + g — o
>—-Ct—C(—eH+hi@t)e ", (2.46)

where h1(t) = n(tlogt — t)e' —n fot e’slogs ds, constant C is independent of 8 thanks to
Lemma 2.10. Letting 8 — 0, we have

0(t,2) —Yo(z) = —Ct —C( —e ") +hi(t)e". 2.47)
There exists 8, such that for any 7 € [0, §2] and z € M\ D,

€
@(t,z) — Yo(z) > 5 (2.48)

Let § = min(81, §2), then for any ¢ € (0,6] and z € K,
—e <o, z) —Yo(z) <e. (2.49)

This, together with Proposition 2.7, insures that () € CY ([0, 00) x (M\D)). Since 12
converge to ¥ in L!'-sense on M, for sufficiently small 8, we have

€
/ [V, (2) — Yo (2)| wf < 7 (2.50)
M
By (2.39), (2.41) and (2.48), there exists & such that for any ¢ € (0, §),
/ l(t) = Yo(2)| wy < €, (2.51)
M
which implies (2.38). ]

Theorem 2.12 w(t) = wo + «/—185(/)0) is a long-time solution to cusp Kdhler—Ricci flow
(1.8).

Proof We should only prove that w (¢) satisfies Eq. (1.8) in the sense of currents on (0, co) x M.

Let n = n(z, x) be a smooth (n — 1, n — 1)-form with compact support in (0, co) x M.

Without loss of generality, we assume that its compact support is included in (§, T) x M
2(1-p)

(0 <8 <T < 00).0n 8, T1x (M\D), log L8 _ ) 1og (’)‘S‘h — 0. 9p(1) — Vg

and ¢(t) — Yo are uniformly bounded. On [§, T'], we have

/awﬁ(z) /F883¢ﬁ(t)
M0
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G
=/M log 1 — s — (p()) — vp) + ho | V=Ton

—>/ ( (’)'s"’ —Wo—(w(t)—llfo)-i-ho) =193y

= / (—Ric(w(t)) — w(t) + [D]) A n.
M
In the above limit process, we make use of the uniform convergence theorem. At the same
time, there also holds
d a -0
/ wp(t) A = :/ wo A +/ op()/—103 21
M M at M at

at
—0 d _0
P wO/\—"+/ o()v—195 2!
M at M at

—_—
an
= A —. 2.52
/Mw() o (2.52)
On the other hand,
0 -9 9 st -
2 a)ﬂ(t)/\n=/ ¢ﬁ(t)«/—1aa—"+/ wOA—"+/ 210 T
at Ju M dt dt M ot
-9 9 B] -
M/ ¢(t)«/—188l+/ wo A "+/ % J/Tadn
M at M ot M ot

(2.53)

d
= — 1 A.
y /M () A
Combining equality

O s A / dop®) +/ n
Q. _ S
at Jyu p 7 M Ot g M b Jt

with equalities (2.52)—(2.53), on [8, T], we have
0
87/ o) An = / (—Ric(o(t)) — () +[D]) Ay
tJm M

an
+/Mw(z)A v (2.54)

Since Supp n C (8, T) x M, we have

+ood
f —/a)(t)/\ndt:O.
o dt )y

Integrating form 0 to co on both sides of Eq. (2.54),

/ aw(t)/\ndt:—/ w(t)/\—dt / /w(z)A—dt
0,00)xM Ot (0,00)x M

= / / (—Ric(w(t)) — w(t) +[D]) Andt

o Jm

= / (—=Ric(w(t)) — w(t) + [D]) A ndt.
(0,00)x M

(2.55)
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By the arbitrariness of 1, we prove that w(#) satisfies cusp Kéhler—Ricci flow (1.8) in the
sense of currents on (0, co) x M. O

Now we prove the uniqueness theorem.

Theorem 2.13 Let ¢(t) € C° ([0, 00) x (M\D)) () C*°((0, 00) x (M\D)) be a long-time
solutions to parabolic Monge—Ampere equation

dp(1) — o (w0 + v/—100¢p(1))"
ar & ;)

in (0, 00) x (M\D). If ¢ satisfies

— (1) + ho + log |s]? (2.56)

e Forany(0 < § < T < oo, there exists uniform constant C such that
C weusp < @0 +/=1909(1) < Cowusp on 8, T1x (M\D);

e on (0,T] o) — YollLempy < C;
e on [8, T, there exist constant C* such that ||
o lim 5() Yol = 0.

.
% lLoom\py < C*;

Then ¢(t) < ¢(1).

Proof Forany 0 <t} < T < oo and a > 0. Denote W(t) = ¢(t) + alog |s|%l — @p(t) and
A= fol g‘i/(;(t)ﬂlﬂ)% © %ds. We note that ¢(¢) is bounded from above because it is a
wo-psh function. W (¢) evolves along the following equation
oW (1)
ot

Since —/—130 log |s|3 = 6, we obtain

= AW(r) —aAlog|s|? — W(t) + (a + B)log|s|7.

-
A 2 _ ij -
—Alogls|, = /o gs¢(t)+(1—s)(p,g(t)'9ijds <C,T)
in M\ D. Then we obtain

WO _ Awy — w() +aC, T).

Then by the arguments as that in Proposition 2.11, on [t1, T] x (M\D),

G(t) — gp(t) < e 7 sup (@) — pp(tD) .

Since ¢(t1) converge to ¥ in L!'-sense and @p(t) converge to /g in L°-sense as t; — ot,
by Hartogs Lemma, we have

¢(t) — ¢p(t) < e sup(o — ¥p) <0,
M
after we let 11 — 0. Hence ¢(¢) < ¢(¢) in (0, 00) x (M\D). ]
Remark 2.14 1f M is a compact Kihler manifold with smooth hypersurface D. We can also

consider unnormalized cusp Kéhler—Ricci flow

(1)

5 = ~Ric@®) +[D].
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o())=0 = Weysp (2.57)

If we define w(t) = e~ '@(e’ — 1), then flow (2.57) is actually the same as normalized cusp
Kihler—Ricci flow (1.8) only modulo a scaling. Let

To = sup{ 1 | [wo] — 1(c1(M) — c1(D)) > O}. (2.58)

Combining the arguments of Tian—Zhang [41] and Liu—Zhang [28] with the arguments in
this paper, there exists a unique solution to flow (2.57) on [0, Tp) in some weak sense which
is similar as Definition 1.2.

3 The convergence of cusp Kahler-Ricci flow
In this section, we prove the convergence theorem of cusp Kihler—Ricci flow (1.8).

Proof of Theorem 1.6: Differentiating Eq. (2.56) in time 7, we have

d hI7) RI7)
— A )= 3.1
(dt ’) at ot G-

on [8, T] x (M\D) with § > 0. For any ¢ > 0,

d dp RI7)
(a — A,) <¥ + ¢log |s|%) = T + Etr )0

el
<_ (aif + elog |s|,2l) +eC(5, T), (3.2)

where constant C (8, T') independent of ¢. For any n > 0, let H = e’_‘s(%—‘f + elog |s|ﬁ) —

ge!'0C, T)— n(t—3§). Since %—f isbounded on [§, T'] x (M\ D), the maximum point (¢y, x¢)
of H satisfies xg € M\ D.Ifty > §, by the maximum principle, we get a contradiction. Hence,
to = 8. Then we have

a—f <C@®)e ' —¢log |s|ﬁ +eC(5, T)+nT. (3.3)
Lete — 0,7 — 0 and then T — 00, we obtain

2—? < C(e " in [8,00) x (M\D). 34

By the same arguments, we can get the lower bound of %—‘f. In fact, we obtain
|2—‘f| < C(®e " in [8,00) x (M\D). (3.5)
Foré <t <,
lp(t) — @(s)| < CB)(e™" —e™) in [8,00) x (M\D). (3.6)
Therefore, ¢(t) converge exponentially fast in L>°-sense to ¢ in M\ D. Then making use

of the arguments in the proofs of Lemma 2.5, Lemma 2.6 and Proposition 2.7 for flow (1.8),
we can prove that ¢(r) are locally C¥-bounded (independent of 7) for any k € N* outside D.
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Since ¢() converge in L°-sense to ¢oo, () must converge to ¢oo in CyX.-sense in M\ D.

loc
At the same time, For any smooth (n — 1, n — 1)-form 7,
dw(t dp(t -
/ ©® =/ o0 S Tadn =22 0 3.7)
M Ot M 0t
while
do(t = s (wo + V=139 ()"
/ ()/\r):/ v/ —1909(log h m ¢ — @)+ ho) An
M ot M 0
1|2 (w0 + ~/— 1809 (1))" -
:/ log —" o — Yo — (@) — Yo) + ho | V—=1307
M wq
1512 (o + v/—109¢00)" -
R / log ~ TN Tl iy — (goo — W0) + o | V—T0Bn
M w
= / (—Ric(wxo) — weo + [D]) A 1.
M
which implies the convergence in the sense of currents. ]
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