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Abstract
It is known that there exist only four six-dimensional homogeneous non-Kähler, nearlyKähler
manifolds: the sphere S6, the complex projective space CP3, the flag manifold F3 and S3 ×
S
3. So far, most of the results about submanifolds have been obtained when the ambient

space is the nearly Kähler S6. Recently, the investigation of almost complex and Lagrangian
submanifolds of the nearly Kähler S3 ×S

3 has been initiated. Here we start the investigation
of three-dimensional CR submanifolds of S3 × S

3. The tangent space of three-dimensional
CR submanifold can be naturally split into two distributions D1 and D⊥

1 . In this paper, we
found conditions that three-dimensional CR submanifolds with integrable almost complex
distributionD1 should satisfy, andwegive someconstructionswhich allowus to define awide-
range family of examples of this type of submanifolds. Our main result is classification of the
three-dimensional CR submanifolds with totally geodesics both, almost complex distribution
D1 and totally real distribution D⊥

1 .
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1 Introduction

An almost Hermitian manifold ( ˜M, g, J), with Levi-Civita connection ˜∇, is called a nearly
Kähler manifold if for any tangent vector X it holds (˜∇XJ)X = 0. If, moreover, ˜∇J is a
vanishing tensor, ˜M is said to be a Kähler manifold. It is known that there exist only four
six-dimensional homogeneous nearly Kähler manifolds, that are not Kähler: the sphere S6,
the complex projective space CP3, the flag manifold F

3 and S
3 × S

3, see [8]. One should
also remark that the first examples of complete non-homogeneous Kähler manifolds were
recently discovered by Foscolo and Haskins in [16].

It is natural to investigate for a submanifold M of an almost Hermitian manifold ( ˜M, g, J)
its relation with respect to the structure J. If JTpM = TpM for any p ∈ M , M is called an
almost complex submanifold and if JTpM ⊂ TpM⊥, for each p ∈ M , M is a totally real
submanifold. Here, we denote by TpM⊥ the normal space of the submanifold at a point p.
One of the natural generalisations of these two notions is the notion of a CR submanifold as
introduced by Bejancu in [3].

In general, a submanifold M of ( ˜M, g, J) is called a CR submanifold if there exists a
C∞-differential J invariant distribution D1 on M (i.e. JD1 = D1), such that its orthogonal
complement D⊥

1 in T M is totally real (JD⊥
1 ⊆ T⊥M), where T⊥M is the normal bundle

over M . We say that M is proper if it is neither almost complex, nor totally real. Note that in
the specific case of a three-dimensional submanifold M of a six-dimensional (nearly) Kähler
manifold, we have that M is a proper CR submanifold if and only if JTpM ∩ TpM is a two-
dimensional distribution. Note that a three-dimensional CR submanifold is automatically of
maximal CR dimension, see [20].

In the past years, special types of submanifolds have been mostly investigated in the case
of the nearly Kähler S6. Here we mention for example [6,7,9,10,15,17,18,23]. Recently,
the investigation of the geometry of almost complex and three-dimensional totally real
submanifolds of the nearly Kähler S

3 × S
3 has been initiated; we refer the reader to

[4,5,11,12,19,21,24].
We investigate here three-dimensional CR submanifolds of S3 ×S

3, and we are interested
in the properties of the distribution D1 = JTpM ∩ TpM and its complement. We investigate
in particular when the distribution D1 is integrable or totally geodesic. We also classify the
three-dimensional CR submanifolds for which the second fundamental form restricted to
both D1 and D⊥

1 vanishes. Note that one has immediately from the fundamental equations
that h(D1,D

⊥
1 ) cannot vanish identically. Similar problems for CR submanifolds of S6 and of

the Sasakian S7 were, respectively, treated in [1,14]. Further interesting results were recently
obtained on CR manifolds, see, for instance, [13].

2 The nearly Kähler structure on S
3 × S

3

Let S3 be a unit sphere in the space R4 which we identify with the space of quaternions H.
Therefore, by using the isomorphism of the spaces T(p,q)(S

3 × S
3) ∼= TpS

3 ⊕ TqS3 we can
represent an arbitrary tangent vector at a point (p, q) ∈ S

3 × S
3 by Z = (pα, qβ), where α

andβ are imaginary quaternions. The almost complex structure on S3×S
3 is given by, see, for

example, [5,8]: JZ(p,q) = 1√
3
(p(2β −α), q(−2α +β)). Since the almost complex structure

is not an isometry with respect to the standard product metric of S3 × S
3, inherited from the

space R
8, which we also denote by 〈·, ·〉, we define a compatible metric g by g(Z , Z ′) =

1
2 (〈Z , Z ′〉 + 〈JZ , JZ ′〉). Let G denote the (0, 2)-type tensor G(X , Y ) := (˜∇XJ)Y , where ˜∇
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Three-dimensional CR submanifolds of the nearly Kähler… 229

is the Levi-Civita connection of the metric g. Then a straightforward calculation shows that
G is skew-symmetric, which makes (S3 × S

3, g, J) a nearly Kähler manifold. For the basic
formulas, we refer to [5,11,12]. We simply remark that in this case, as introduced in [5], see
also [23], the following almost product structure P plays an important role: P(pα, qβ) =
(pβ, qα). It is in particular compatible with the metric and it anticommutes with J .

Finally, for X = (pα, qβ), Y = (pγ, qδ) ∈ T(p,q)S
3 × S

3 it follows that

G(X , Y ) = 2

3
√
3
(p(β × γ + α × δ + α × γ − 2β × δ),

q(−α × δ − β × γ + 2α × γ − β × δ)). (1)

In [11], it was shown that the relation between the Euclidean connection ∇E of S3 × S
3

and ˜∇ is given by

∇E
X Y = ˜∇XY + 1

2
(JG(X ,PY ) + JG(Y ,PX)). (2)

Also, we note the following. Since the connection D in the space R
8 satisfies DEi f =

d f (Ei ) = (pαi , qβi ), we have that

∇E
E j
Ei = (p(α j × αi + E j (αi )), q(β j × βi + E j (βi ))). (3)

3 Three-dimensional CR submanifolds of S3 × S
3

3.1 Some constructions

In order to show that the class of proper three-dimensional CR submanifolds is a large
class, we first give some constructions which allow us to define a wide-range family of
examples. The first construction of a family of three-dimensional CR submanifolds of S3×S

3

starts with an almost complex surface. It is an immediate corollary of the fact that the maps
Fabc(p, q) = (apc̄, bqc̄)where a, b, c are unitary quaternions are isometries preserving the
almost complex structure J .

Proposition 1 Let a(t), b(t), c(t) be curves in S
3 and g : U ⊂ R

2 → S
3 × S

3 : (x, y) �→
(p(x, y), q(x, y)) be an almost complex surface of S3×S

3. Then, providing that the mapping
f (x, y, t) = (apc, bqc) is an immersion, it is a CR immersion, for which the almost complex
distribution D1 is integrable.

Example 1 If we start from the almost complex totally geodesic immersions introduced in
[5] by

(p, q)(s, t) = (cos s + i sin s, cos t + i sin t). (4)

and

(p, q)(x) = 1

2

(

1 − √
3x, 1 + √

3x
)

, x ∈ S
2 ⊂ ImH. (5)

we obtain the following CR immersions:

(

p(x1, x2, t), q(x1, x2, t)
) = (a(x3)(cos x1 + i sin x1)c(x3), b(x3)(cos x2 + i sin x2)c(x3)) ,

(6)
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230 M. Antić

(

p(x, t), q(x, t)
) =

(

a(x3)
1 − √

3x

2
c(x3), b(x3)

1 + √
3x

2
c(x3)

)

, x ∈ S
2 ⊂ ImH, (7)

where a, b, c are curves depending on x3 in S
3. Here, the distribution D1 is totally geodesic

and satisfies PD1 = D1 and PD1 ⊥ D1, respectively.

Note that for a distribution D on M we say that M is D-totally geodesic if and only if the
second fundamental form restricted to vector fields belonging to D vanishes identically.

Proposition 2 Let M be a three-dimensional,D1-geodesic, CR submanifold of S3×S
3. Then

M is locally congruent to one of the immersions (6) and (7).

Proof Denote by∇D1 the orthogonal projection of the connection∇ to the distributionD1 and
denote by E3 the unit vector field spanning the totally real distribution. Denote by E4 = JE3,
the vector field orthogonal to M . Then for the vector fields X , Y ∈ D1 we can write

˜∇XY = ∇D1
X Y + g(˜∇XY , E3)E3 + h(X , Y ),

and since the ambient manifold is nearly Kähler we have that ˜∇X (JX) = J(˜∇X X).
Taking hD1 = 0, this equality reduces to ∇D1

X (JX) = J(∇D1
X X) and g(˜∇X X , E3) =

g(˜∇X (JX), E3) = 0. Since, for a nonzero vector field X ∈ D1, X and JX span D1, we
obtain that D1 is integrable with totally geodesic leaves in S

3 × S
3. Therefore, each of the

leaves is locally congruent either to (4) or to (5).
Note also that for X ∈ D1, the angle θ = ∠(PX ,D1) is independent of the choice of

X and is a differentiable function and therefore a continuous function. Since (4) and (5),
respectively, have the tangent spaces invariant for P or orthogonal to its image under P, the
function θ is also discrete and therefore a constant. Hence, all the leaves of one immersion
are mutually congruent. More precisely, they are congruent to either one of (4) or (5) which
we denote by (p, q).

We can take the local coordinates x1, x2, x3 of the submanifold M such that x1, x2 spanD .
Then, for an arbitrary point x along the coordinate curve for x3 there exist unit quaternions
a, b, c, depending on x3, such thatFa,b,c maps (p, q) into the corresponding leaf through x .
The functions a, b, c are clearly differentiable. Moreover, we can then write the immersion
as (apc, bqc). This concludes the proof. ��
Proposition 3 Let μ(t), ν(t) be mappings into unit quaternions S3 and let

f (x1, x2, t) = (p(x1, x2, t), q(x1, x2, t))

be a three-dimensionalCR immersionwith integrable almost complex distributionD1, param-
eterised by x1, x2. Then (μ(t)p, ν(t)q), provided that it is an immersion, is also a CR
immersion of the same type.

Proof For a three-dimensional CR submanifold, it is sufficient to check that M admits a two-
dimensional invariant distribution. As for fixed t , (μ(t)p, ν(t)q) is congruent by an isometry
Fμ(t)ν(t)1 to the almost complex surface (p(x1, x2, t), q(x1, x2, t)) this is immediate as the
isometry Fμ(t)ν(t)1 preserves the complex structure. ��

3.2 The suitable moving frame for three-dimensional CR submanifolds

Nowwe will construct a moving frame along a three-dimensional proper CR submanifold M
suitable for computing. We have that the almost complex distributionD1 is two-dimensional,
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Three-dimensional CR submanifolds of the nearly Kähler… 231

while the totally real distribution D⊥
1 is of dimension one. We can take unit vector fields E1

and E2 = JE1 that span D1, and E3 that spans D⊥
1 . We consider the nearly Kähler metric g

throughout the paper, if it is not explicitly stated otherwise. We have that E4 = JE3 is a unit
normal vector field. If we then put E5 = √

3G(E1, E3) and E6 = √
3G(E2, E3) = −JE5,

we obtain an orthonormal moving frame. Moreover, we obtain the following equalities

G(E1, E2) = 0, G(E1, E3) = 1√
3
E5, G(E1, E4) = 1√

3
E6,

G(E1, E5) = − 1√
3
E3, G(E1, E6) = − 1√

3
E4, G(E2, E3) = 1√

3
E6,

G(E2, E4) = − 1√
3
E5, G(E2, E5) = 1√

3
E4, G(E2, E6) = − 1√

3
E3,

G(E3, E4) = 0, G(E3, E5) = 1√
3
E1, G(E3, E6) = 1√

3
E2,

G(E4, E5) = − 1√
3
E2, G(E4, E6) = 1√

3
E1, G(E5, E6) = 0. (8)

Note that, under the assumption that E1, E2, E3 is a positively oriented tangent frame of
M , the vector field E3 is uniquely determined. However, we have a freedom to rotate E1 in
the almost complex distribution D1. Then, for some rotation angle ϕ, we have

˜E1 = cosϕE1 + sin ϕE2, ˜E2 = JE1 = − sin ϕE1 + cosϕE2,
˜E3 = E3, ˜E4 = E4,
˜E5 = cosϕE5 + sin ϕE6, ˜E6 = − sin E5 + cosϕE6.

Now, let us denote the following

Γ k
i j = g(˜∇Ei E j , Ek), hki j = g(˜∇Ei E j , Ek+3), bki j = g(˜∇Ei E j+3, Ek+3),

for 1 ≤ i, j, k ≤ 3. Since the second fundamental form is symmetric, and˜∇ is the Levi-Civita
connection, we have that

Γ k
i j = −Γ

j
ik, bki j = −b j

ik, hki j = hkji .

Similarly, using that M is a 3-dimensional CR submanifold, together with the properties of
the nearly Kaehler sphere we get that (see [2]):

Lemma 1 The coefficients Γ k
i j , h

k
i j , b

k
i j satisfy

Γ 3
11 = h112, Γ 3

12 = −h111, Γ 3
21 = h122, Γ 3

22 = −h112, Γ 3
31 = h123,

Γ 3
32 = −h113, h211 = −h312, h212 = h311, h313 = h223 + 1√

3
, h222 = h312,

h322 = −h311, h323 = −h213, b211 = h313 + 1√
3
, b311 = −h213,

b221 = −h213, b321 = −h313 + 2√
3
, b231 = h333, b331 = −h233.

Lemma 2 It holds

b312 = Γ 2
11 − Γ 3

32, b322 = Γ 2
21 + Γ 3

31, b332 = h133 + Γ 2
31.

Now, let us investigate the tensor field P.
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232 M. Antić

Lemma 3 On an open dense subset of M, we can chose the orthonormal frame for D1 so
that the tensor field P is given in the frame E1, . . . , E6 by

PE1 = cos θE1 + a1 sin θE3 + a2 sin θE4 + a3 sin θE5 + a4 sin θE6,

PE2 = − cos θE2 + a2 sin θE3 − a1 sin θE4 − a4 sin θE5 + a3 sin θE6,

PE3 = a1 sin θE1 + a2 sin θE2 + (a23 − a24 + (a22 − a21) cos θ)E3

+ 2(a3a4 − a1a2 cos θ)E4 − (a1a3 + a2a4)(1 + cos θ)E5

+ (a2a3 − a1a4)(−1 + cos θ)E6

PE4 = a2 sin θE1 − a1 sin θE2 + 2(a3a4 − a1a2 cos θ)E3

+ (a24 − a23 + (a21 − a22) cos θ)E4 − (a2a3 − a1a4)(−1 + cos θ)E5

+ (a1a3 + a2a4)(1 + cos θ)E6,

PE5 = a3 sin θE1 − a4 sin θE2 − (a1a3 + a2a4)(1 + cos θ)E3

− (a2a3 − a1a4)(−1 + cos θ)E4 + (a21 − a22 + (a24 − a23) cos θ)E5

+ 2(a1a2 − a3a4 cos θ)E6,

PE6 = a4 sin θE1 + a3 sin θE2 + (a2a3 − a1a4)(−1 + cos θ)E3

− (a1a3 + a2a4)(1 + cos θ)E4 + 2(a1a2 − a3a4 cos θ)E5

+ (a22 − a21 + (a23 − a24) cos θ)E6, (9)

for some differentiable functions θ, a1, a2, a3, a4 such that
∑

a2i = 1.

Proof The function u �→ g(Pu, u) attains the maximum on a unit sphere in D1(p) at every
point p of the submanifold. Since we have the freedom for rotating the orthonormal frame
E1, E2, we can assume that this maximum is attained for E1(p). Then, the differentiable
function f (t) = g(P(cos t E1 + sin t E2), cos t E1 + sin t E2)(p) attains the maximum for
t = 0. Moreover, the equality f ′(0) = 0 reduces to 2g(PE1, E2) = 0. Also, we have that
g(PE2, E2) = −g(PE1, E1). Therefore, if we denote by cos θ = g(PE1, E1) we have that
cos θ ≥ 0.

Assume first, that sin θ �= 0. Then, there exists a unit vector field F1 orthogonal to D1

such that

PE1 = cos θE1 + sin θF1. (10)

Then, for F2 = JF1 we have that

PE2 = − cos θE2 − sin θF2, (11)

and also

PF1 = sin θE1 − cos θF1, PF2 = − sin θE2 + cos θF2. (12)

Further on, we denote by F3 = √
3G(E1,PE1) = √

3/ sin θG(E1, F1). Straightforward
computations show that F3 and F4 = JF3 are unit vector fields, orthogonal to E1, E2, F1, F2,
such that

PF3 = F3,PF4 = −F4. (13)
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Three-dimensional CR submanifolds of the nearly Kähler… 233

If sin θ = 0, then E1, E2 are eigenvector fields for P, so in the distribution D⊥
1 invariant

for P we can choose F1, F2 = JF1, F3, F4 = JF3 such that (10), (11), (12), (13) hold.

Note that there exist differentiable functions a1, a2, a3, a4 such that
∑

a2i = 1 and

F1 = a1E3 + a2E4 + a3E5 + a4E6, F2 = −a2E3 + a1E4 + a4E5 − a3E6.

By a straightforward computation, we obtain

F3 = −a3E3 − a4E4 + a1E5 + a2E6, F4 = a4E3 − a3E4 + a2E5 − a1E6.

Now, the expressions for the tensor P in the frame E1, E2, F1, F2, F3, F4 are easily trans-
formed into the given ones for the frame E1, . . . , E6. ��

4 D1 integrable

Theorem 1 Let M be a three-dimensional CR submanifold of S3 × S
3 with cos θ �= 0 and

with integrable almost complex distributionD1. Then M is of the form (p(u, v, t), q(u, v, t))
where p and q are solutions of the system of differential equations

pu = pα, pv = pβ, pt = pγ, (14)

qu = q

(

1

2
α +

√
3

2
β

)

, qv = q

(

−
√
3

2
α + 1

2
β

)

, qt = qδ. (15)

Here α and β are family of solutions of

αv − βu = 2α × β, αu + βv = 2√
3
α × β. (16)

depending on u, v, t , and γ and δ are solutions of the system of differential equations

γu = αt + 2γ × α, γv = βt + 2γ × β, (17)

δu = 1

2
αt +

√
3

2
βt + 2δ ×

(

1

2
α +

√
3

2
β

)

, δv = −
√
3

2
αt + 1

2
βt + 2δ ×

(

−
√
3

2
α + 1

2
β

)

.

(18)

Proof We can choose a local coordinate system (u, v, t) such that D1 is spanned by ∂u, ∂v .
First, let us show that there exist coordinates u, v which are isothermal on each leaf of D1.
We suppose that D1 is integrable, so from equation [E1, E2] = −Γ 2

11E1 − Γ 2
21E2 − (h111 +

h122)E3 we get h122 = −h111. Also, we can assume that the operator P is defined as in (9).
Taking X ∈ {E1, E2} and Y = E1 in

G(X ,PY ) + PG(X , Y ) = −2J((˜∇XP)Y ), (19)

we obtain the equations:

Γ 2
11 cos θ − (−h111a1 + h112a2 + h311a3 + h312a4

)

sin θ = 0,

Γ 2
21 cos θ + (

h112a1 + h111a2 − h312a3 + h311a4
)

sin θ = 0.

Now, if we suppose that cos θ �= 0 and sin θ �= 0 we have

123



234 M. Antić

Γ 2
11 = (−h111a1 + h112a2 + h311a3 + h312a4

)

tan θ,

Γ 2
21 = − (

h112a1 + h111a2 − h312a3 + h311a4
)

tan θ.

Note that for the function f (θ) = 1√
cos θ

, the Lie bracket [ f (θ)E1, f (θ)E2] vanishes, so
there exist local coordinates (u, v) such that f (θ)E1 = ∂u and f (θ)E2 = ∂v . We get
g(∂u, ∂v) = g( f (θ)E1, f (θ)E2) = f 2(θ)g(E1, E2) = 0, so ∂u and ∂v are orthogonal. Also,
g(∂u, ∂u) = g( f (θ)E1, f (θ)E1) = f 2(θ). Analogously, g(∂v, ∂v) = f 2(θ). We get that ∂u
and ∂v are orthogonal and have the same length, so (u, v) are isothermal coordinates on each
leaf of D1. If we suppose that sin θ = 0, taking X ∈ {E1, E2} and Y = E1 in (19) we obtain
Γ 2
11 = Γ 2

21 = 0, so the Lie brackets for vectors E1 and E2 vanish and we can conclude that
the coordinates that correspond to them are isothermal.

Now, up to a possible permutation of u and v we can say that J∂u = ∂v . If f (u, v, t) =
(p, q)(u, v, t) is the immersion, we then have that (16) hold. We also denote

∂t p = pt = pγ, ∂t q = qt = qδ,

where γ and δ are also purely imaginary mappings satisfying (17) and (18). Moreover, the
remaining integrability conditions are obtained from

put = pγα + pαt , ptu = pαγ + pγu,

pvt = pγβ + pβt , ptv = pβγ + pγv

and

qut = q

(

δ

(

1

2
α +

√
3

2
β

)

+ 1

2
αt +

√
3

2
βt

)

, qtu = q

((

1

2
α +

√
3

2
β

)

δ + δu

)

,

qvt = q

(

δ

(

−
√
3

2
α + 1

2
β

)

−
√
3

2
αt + 1

2
βt

)

, qtv = q

((

−
√
3

2
α + 1

2
β

)

δ + δv

)

.

They reduce, respectively, to (17) and (18).
Conversely, assume we have a family of solutions of (16) α, β depending on u, v, t . Then,

we need functions γ, δ satisfying (17) and (18). If we use the first relation of (16) and the
Jacobi identity for the cross product, we easily get that the integrability condition for γ ,
given by γuv − γvu = 0, is satisfied. Similarly, a straightforward computation shows that
the integrability conditions are also satisfied for δ. So with a prescribed initial condition
γ (0, 0, t) = γ0(t), δ(0, 0, t) = δ0(t) we have solutions. Moreover, system (15) has a unique
solution for given initial conditions (p(0, 0, 0), q(0, 0, 0)) which is a CR immersion of
required type. ��
Remark 1 We note that for the previous theorem to hold it is sufficient that the submanifold
admits local coordinates such that u, v are isothermal on each leaf of D1. In the particular
case of cos θ = 0, when PD1 = Span{E3, JE3}, we can choose E1 such that PE1 = E3.
Taking (X , Y ) ∈ {(E1, E1), (E2, E2)} in (19) we obtain Γ 2

11 = −h113, Γ 2
21 = −h123 and

if we take (X , Y ) = (E3, E2) in (19) we get h113 = 0, h123 = 0. Also, we have that
[E1, E2] = −Γ 2

11E1 − Γ 2
21E2 − (h111 + h122)E3, so, we get that in this case E1 and E2

correspond to coordinate vector fields. One may notice that such submanifolds exist.

Remark 2 Note that for a mapping k(t) into unit quaternions S3 and α(u, v, t) and β(u, v, t)
solutions of (16), we have that α∗ = k(t)αk(t)−1, β∗ = k(t)βk(t)−1 are also solutions of
(16).
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5 D1 andD⊥
1 totally geodesic

The main result that we prove in this section is the following.

Theorem 2 Let M be a three-dimensional CR submanifold of S3×S
3, withD1 andD⊥

1 being
totally geodesic distributions. Then M is locally congruent to the immersions (p1, q1), given
by

p1 = (cos(c1t) cos x1, cos(c2t) sin x1, sin(c2t) sin x1,− sin(c1t) cos x1),

q1 = (cos(d1t) cos x2, cos(d2t) sin x2, sin(d2t) sin x2,− sin(d1t) cos x2), (20)

where

c1 =
√

3 − χ2
1 − χ2

2 − χ2

4
√
3

, c2 =
√

3 − χ2
1 − χ2

2 + χ2

4
√
3

,

d1 =
√

3 − χ2
1 − χ2

2 − χ1

4
√
3

, d2 =
√

3 − χ2
1 − χ2

2 + χ1

4
√
3

,

for χ1, χ2 ≥ 0, χ2
1 + χ2

2 ≤ 3.

Proof From the assumption that D1 and D⊥
1 are totally geodesic, we obtain a first set of

relations:

h111 = 0, h211 = 0, h311 = 0, h112 = 0, h212 = 0, h312 = 0,

h122 = 0, h222 = 0, h322 = 0, h133 = 0, h233 = 0, h333 = 0.

Notice that this makes D1 integrable as well. Next, we evaluate the curvature tensor
R(E1, E2)E1 once using the definition and once using its expression from [2]. Then, take
the difference between these two identities for the curvature tensor. For convenience, further
on in this section we will refer to this procedure for vector fields Ei , E j , Ek , as to the two
identities for the curvature. In this case, for R(E1, E2)E1, as a1, a2, a3 and a4 do not vanish
simultaneously, we obtain that cos θ sin θ = 0. Therefore, we will have to treat two cases:
θ = 0 and θ = π

2 .
Case 1. θ = 0. We make the following notation, in the definition of P:

b1 := −a21 + a22 + a23 − a24 , b2 := 2a3a4 − 2a1a2, b3 := 2(a1a3 + a2a4).

Weevaluate Eq. (19) successively for X = E1, Y = E1; X = E3, Y = E1; X = E2, Y = E1

and obtain, respectively, that Γ 2
11 = 0, Γ 2

31 = 0 and Γ 2
21 = 0. We will determine the

derivatives w.r.t. E1, E2 and E3 of the remaining unknown functions hki j . In order to do so,
we use the two identities for the curvature. We evaluate them for E2, E3, E1; E1, E3, E1;
E1, E3, E5 and replace successively every value found for each derivative, until we finally
obtain:

E2(h
1
13) = 1

12

(

−4b1 + 12
(

h113
)2 − 12

(

h213
)2 − 12

(

h123
)2 − 12

(

h223
)2 + 5

)

,

E2(h
2
13) = 1

3

(

6h113h
2
13 + √

3h123
)

, E2(h
1
23) = 1

3

(

b2 + 6h113h
1
23 − √

3h213
)

,

E2(h
2
23) = 1

3
(6h113h

2
23 − b3); E1(h

1
13) = 1

3

(

−b2 − 6h113h
1
23 + √

3h213
)

,

E1(h
1
23) = 1

12

( − 4b1 + 12(h113)
2 + 12(h213)

2 − 12(h123)
2 + 12(h223)

2 + 8
√
3h223 − 1

)

,
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E1(h
2
13) = 1

3

(

b3 − √
3h113 − 6h213h

1
23

)

, E1(h
2
23) = −2

3
h123

(

3h223 + √
3
)

;
E3

(

h113
) = 0, E3

(

h213
) = 0, E3

(

h123
) = 0, E3

(

h223
) = 0. (21)

We may as well find the derivatives of b1, b2, b3 as following. Use Eq. (19) for E3, E3 and
E1, E3, respectively, in order to determine

E3(b1) = 0, E3(b2) = 0, E3(b3) = 0; E1(b1) = 2b2h
1
13 − 2b3h

2
13,

E1(b2) = −2b1h
1
13 − b3

(

2h223 + √
3
)

, E1(b3) = 2b1h
2
13 + b2

(

2h223 + √
3
)

. (22)

Provided that den := 12(h113)
2 + 12(h213)

2 + 12(h123)
2 + 12(h223)

2 + 4
√
3h223 + 1 is differ-

ent than zero, we can express b1, b2 and b3 w.r.t. hki j , by using (19) for E3, E1:

b1 = − 1
den

(

12
(

h113
)2 + 12

(

h213
)2 − 12

(

h123
)2 − 12

(

h223
)2 − 4

√
3h223 − 1

)

,

b2 = 1
den (4

(

6h113h
1
23 − 6h213h

2
23 − √

3h213

)

),

b3 = − 1
den (4

(

6h113h
2
23 + √

3h113 + 6h213h
1
23

)

).

(23)

In fact, the denominator is always different than zero, as it follows. Suppose it was not.
Then, we would have h113 = 0, h213 = 0, h123 = 0 and h223 = − 1

2
√
3
. From the identities of

the curvature, it follows on the one hand that for E1, E3, E1 we have b2 = b3 = 0, b1 = −1
and then for E1, E2, E3, we get that 2

3 = 0. This is a contradiction. We shall continue then
from Eq. (23).
Let ρ = 1√

8+den
and choose to work with the frame E1, E2, ρE3. One may see that the Lie

brackets vanish [E1, E2] = 0, [E1, ρE3] = 0 and [E2, ρE3] = 0, which means that there
exist coordinate vector fields on the three-dimensional submanifold satisfying ∂u = E1,

∂v = E2, ∂t = ρE3. We have that PE1 = E1, so we can write

∂u = (pu, qu) = (pα1, qα1), ∂v = (pv, qv)

= 1√
3
(pα1,−qα1), ∂t = (pt , qt ) = (pα3, qβ3). (24)

Also, we have that

PE3 =b1E3 + b2E4 − b3E5,

=
(

p
1

ρ

(

b1α3 + b2√
3
(2β3 − α3) − 2b3

3
(2α1 × α3 − α1 × β3)

)

,

q
1

ρ

(

b1β3 + b2√
3
(−2α3 + β3) − 2b3

3
(−2α1 × β3 + α1 × α3)

))

and at the same time, by definition of P, we have PE3 = (p β3
ρ

, q α3
ρ

). It gives:

β3 = 1

2 + b1 − √
3b2

(

(1 + 2b1)α3 − 2b3α1 × α3

)

, (25)

when 2+ b1 − √
3b2 �= 0. By using (23), we get that 2+ b1 − √

3b2 = 0 only in case when
h113 = 0, h213 = 1

2 , h
1
23 = 0, h223 = − 1√

3
. Denote with dp(X) and dq(X) projections of

vector X on tangent space of both spheres. If we use (2), we get:

∇E
∂udp(∂u) = 0, ∇E

∂udp(∂v) = 0, ∇E
∂vdp(∂v) = 0, ∇E

∂t dp(∂t) = 4

3
f1

(

1

2
E1 +

√
3

2
E2

)

,
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∇E
∂udq (∂u) = 0, ∇E

∂udq (∂v) = 0, ∇E
∂vdq (∂v) = 0, ∇E

∂t dq (∂t) = 4

3
g1

(

1

2
E1 −

√
3

2
E2

)

(26)

and from we have that:

〈α1, α1〉 = 3
4 , 〈α3, α3〉 = f2, 〈β3, β3〉 = g2, 〈α1, α3〉 = 0, 〈α1, β3〉 = 0, (27)

where we denote with:

f1 =1

8

⎛

⎝

h113

(√
3 − 6h223

)

− 6(h213 + 1)h123

8 + den
+

h113

(

6h223 + √
3
)

+ 6h213h
1
23

den

⎞

⎠ , (28)

f2 =
3

(

4
√
3(2h213 + 1)h223 + (2h213 + 1)2 + 4(h113 − √

3h123)
2 + 12(h223)

2
)

4den(den + 8)
, (29)

g1 =1

8

⎛

⎝

−h113

(√
3 − 6h223

)

+ 6(h213 − 1)h123

8 + den
−

h113

(

6h223 + √
3
)

+ 6h213h
1
23

den

⎞

⎠ , (30)

g2 =
3

(

4
√
3(1 − 2h213)h

2
23 + (1 − 2h213)

2 + 4(h113 + √
3h123)

2 + 12(h223)
2
)

4den(den + 8)
. (31)

Directly we obtain:

puu = −3

4
p, puv = −

√
3

4
p, ptt = 4

3
f1 pu − f2 p,

quu = −3

4
q, quv =

√
3

4
q, qtt = 4

3
g1qu − g2q (32)

so, the general solutions for immersions p and q are:

p(u, v, t) = a1(t) cos

(√
3u + v

2

)

+ a2(t) sin

(√
3u + v

2

)

,

q(u, v, t) = b1(t) cos

(√
3u − v

2

)

+ b2(t) sin

(√
3u − v

2

)

, (33)

where a1(t), a2(t) b1(t), b2(t) ∈ H. A straightforward computation gives us the following
relations: ∂uu f1 = −3 f1, ∂vv f1 = − f1, ∂t f1 = 0, ∂u f2 = −2 f1, ∂t f2 = 0,−∂u f1+ 3

2 f2 =
c3; ∂uug1 = −3g1, ∂vvg1 = −g1, ∂t g1 = 0, ∂ug2 = −2g1, ∂t g2 = 0, ∂ug1 − 3

2 g2 = d3.
General solutions of these functions are:

f1(u, v) = c1 cos(
√
3u + v) + c2 sin(

√
3u + v),

f2(u, v) = − 2√
3
c1 sin(

√
3u + v) + 2√

3
c2 cos(

√
3u + v) + 2

3c3,

g1(u, v) = d1 cos(
√
3u − v) + d2 sin(

√
3u − v),

g2(u, v) = − 2√
3
d1 sin(

√
3u − v) + 2√

3
d2 cos(

√
3u − v) − 2

3d3,

(34)

for some real constants c1, c2, c3, d1, d2, d3. As they are constants, we can rewrite them on
a following way:

c1 = ξ1 cosw1, c2 = ξ1 sinw1, d1 = ξ2 cosw2, d2 = ξ2 sinw2, (35)
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for some constants ξ1, ξ2 ≥ 0 and w1, w2 ∈ [0, 2π). Expressions of f1, f2, g1, g2 depend
on h113, h

2
13, h

1
23, h

2
23, and using relations among them we get following equation:

−12
(

8d23 − 8d3g2 + d3 − 8c23 − 8c3 f2 + c3 − 6g22 + 6 f 22
)2 − 768( f1 + g1)4 − 4( f1 + g1)2·

(

640d23 − 16d3(64c3 − 24g2 − 9)+ 640c23 − 48c3(8 f2 + 3) + 9
(

32g22 + 32 f 22 + 1
)) = 0.

(36)

On the other hand, whenwe compute it in the equivalent way, by using (34), we obtain a poly-
nomial in sin(2

√
3u+ 2v), cos(2

√
3u+ 2v), sin(2

√
3u− 2v), cos(2

√
3u− 2v), sin(2

√
3u),

cos(2
√
3u), sin(2v), cos(2v) for which all the coefficients must vanish. Therefore, we obtain

nine expressions which are all zero. By using them we get:

ξ21
(

(−3 + 32c3)(−3 + 32c3 − 32d3) + 768ξ22
) = 0,

ξ22
(

(3 + 32d3)(3 − 32c3 + 32d3) + 768ξ21
) = 0. (37)

Consider now the case when ξ1, ξ2 do not vanish. We solve the previous equation for ξ21 and
ξ22 and get

ξ21 = − 1

768
(3 + 32d3)(3 − 32c3 + 32d3), ξ22 = − 1

768
(−3 + 32c3)(−3 + 32c3 − 32d3).

As these expressions are positive, we need to have 3+ 32d3 > 0, 3− 32c3 + 32d3 < 0 and
−3 + 32c3 < 0. In order to simplify the previous equations, we introduce constants χ1 > 0

and χ2 > 0 such that χ2
1 + χ2

2 < 3 and c3 := −χ2
1+3
32 , d3 := χ2

2−3
32 . Then from the previous

two equations, we obtain

ξ1 =
χ2

√

3 − χ2
1 − χ2

2

16
√
3

, ξ2 =
χ1

√

3 − χ2
1 − χ2

2

16
√
3

.

Notice that f1, f2, g1, g2 become now in terms of u, v, w1, w2, χ1, χ2.

f1 = 1
16

√
3
χ2

√

3 − χ2
1 − χ2

2 cos(
√
3u + v − w1),

f2 = 1
48 (3 − χ2

1 − 2χ2

√

3 − χ2
1 − χ2

2 sin(
√
3u + v − w1)),

g1 = 1
16

√
3
χ1

√

3 − χ2
1 − χ2

2 sin(
√
3u − v − w2),

g2 = 1
48 (3 − χ2

1 − 2χ1

√

3 − χ2
1 − χ2

2 sin(
√
3u − v − w2)).

(38)

As w1 and w2 are constants, we will keep the same notation for
√
3u + v := √

3u + v − w1

and
√
3u−v := √

3u−v−w2. Further on, we would like to find explicitly the immersion f .
We replace f1, f2, g1, g2 from (38), together with general solution of p and g in expression
of ptt and qtt from (32), and we get the following system of differential equations:

a′′
1 (t) = 1

48

(

(−3 + χ2
1

)

a1(t) + 2χ2

√

3 − χ2
1 − χ2

2 a2(t)

)

,

a′′
2 (t) = 1

48

(

(−3 + χ2
1

)

a2(t) + 2χ2

√

3 − χ2
1 − χ2

2 a1(t)

)

;

b′′
1(t) = 1

48

(

(−3 + χ2
2

)

b1(t) + 2χ1

√

3 − χ2
1 − χ2

2 b2(t)

)

,

b′′
2(t) = 1

48

(

(−3 + χ2
2

)

b2(t) + 2χ1

√

3 − χ2
1 − χ2

2 b1(t)

)

.
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We solve these systems for a1(t), a2(t), b1(t) and b2(t), and we find

a1(t) = C1 cos

(

|
√

3−χ2
1−χ2

2−χ2|
4
√
3

t

)

+ C2 sin

(

|
√

3−χ2
1−χ2

2−χ2|
4
√
3

t

)

+C3 cos

(√

3−χ2
1+χ2

2+χ2

4
√
3

t

)

+ C4 sin

(√

3−χ2
1−χ2

2+χ2

4
√
3

t

)

,

a2(t) = C1 cos

(

|
√

3−χ2
1−χ2

2−χ2|
4
√
3

t

)

+ C2 sin

(

|
√

3−χ2
1−χ2

2−χ2|
4
√
3

t

)

−C3 cos

(√

3−χ2
1+χ2

2+χ2

4
√
3

t

)

− C4 sin

(√

3−χ2
1−χ2

2+χ2

4
√
3

t

)

;

b1(t) = D1 cos

(

|
√

3−χ2
1−χ2

2−χ1|
4
√
3

t

)

+ D2 sin

(

|
√

3−χ2
1−χ2

2−χ1|
4
√
3

t

)

+ D3 cos

(√

3−χ2
1+χ2

2+χ1

4
√
3

t

)

+ D4 sin

(√

3−χ2
1−χ2

2+χ1

4
√
3

t

)

,

b2(t) = D1 cos

(

|
√

3−χ2
1−χ2

2−χ1|
4
√
3

t

)

+ D2 sin

(

|
√

3−χ2
1−χ2

2−χ1|
4
√
3

t

)

− D3 cos

(√

3−χ2
1+χ2

2+χ1

4
√
3

t

)

− D4 sin

(√

3−χ2
1−χ2

2+χ1

4
√
3

t

)

.

(39)

Therefore, in order to determine the immersion p we need to determine the quaternion
constants Ci and Di , i = 1, 2, 3, 4. From (32), we obtain the following derivatives:

α1u = 0, α1v = 0, α3t = 4

3
f1α1, β3t = 4

3
g1α1. (40)

Further on, as 2+ b1 − √
3b2 = 0 is equivalent with f2 = 0, which here is not case because

ξ1 �= 0, we take the derivatives with respect to t both in the left- and right-hand sides of the
equal sign in (25) and then cross product at right with α3 gives α1t as

α1t = f1
2b3 f2

α3 + 1

2b3 f2

4

3

(

g1 − 1 + 2b1
2 + b1 − √

3b2
f1

)

α1 × α3. (41)

b3 vanish in case when ξ1 = ξ2 = 0, so here we can divide with it. Taking the derivative with
respect to t in the above equation, we obtain that

α1t t = − 1

12
(3 − χ2

1 − χ2
2 )α1.

Therefore, if necessary, we can always apply an isometry Fabc such that the choice of c,
for new tangent vector ( p̃α̃1, q̃˜β1), must satisfy that α̃1 = cα1c̄ is imaginary quaternion

with components i and j, only. Therefore, for initial conditions α1(u0, v0, 0) =
√
3
2 i and

α′
1(u0, v0, 0) = 1

4

√

3 − χ2
1 − χ2

2 j, we obtain that

α1(t) =
√
3

2
cos

⎛

⎝

√

3 − χ2
1 − χ2

2

2
√
3

t

⎞

⎠ i +
√
3

2
sin

⎛

⎝

√

3 − χ2
1 − χ2

2

2
√
3

t

⎞

⎠ j . (42)
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Next, we compute the cross product between α1t and α3

α1t × α3 = 1

24

(

−3 + χ2
1 + χ2

2 + χ2

√

3 − χ2
1 − χ2

2 sin
(√

3u + v − w1

)

)

α1.

Multiplying at left with α1t in the above relation and, considering that α1t × (α1t × α3) =
− f1α1t + 1

16 (−3 + χ2
1 + χ2

2 )α3, we obtain that α3 is given by

α3(t) = − 4 f1
√

3 − χ2
1 − χ2

2

⎛

⎝− sin

⎛

⎝

√

3 − χ2
1 − χ2

2

2
√
3

t

⎞

⎠ i + cos

⎛

⎝

√

3 − χ2
1 − χ2

2

2
√
3

t

⎞

⎠ j

⎞

⎠

−
√
3

12

(
√

3 − χ2
1 − χ2

2 − χ2 sin(
√
3u + v − w1)

)

k.

By a convenient choice of a and b, we can fix the immersion p such that for initial conditions
at the point (u0, v0, t0), where

√
3u0 + v0 − w1 = π

2 ,
√
3u0 − v0 − w2 = π

2 , t = 0, we
have p(u0, v0, 0) = √

2C1, for C1 = 1√
2
(1, 0, 0, 0). We then denote the real coefficients of

Ci by Ci = (Ci1,Ci2,Ci3,Ci4), for i ∈ 2, 3, 4.
Then p becomes

p = C3 cos(tk2)
(

cos
√
3u+v−w1

2 − sin
√
3u+v−w1

2

)

+
(

C1 cos(t(k1 − k2)) + C2 sin(t(k1 − k2))
)(

cos
√
3u+v−w1

2 + sin
√
3u+v−w1

2

)

+C4 sin(tk2)
(

cos
√
3u+v−w1

2 − sin
√
3u+v−w1

2

)

,

(43)

where k1 and k2 stand for k1 =
√

3−χ2
1−χ2

2

2
√
3

, k2 =
√

3−χ2
1+2χ2

√

3−χ1
1−χ2

2

4
√
3

.
Having in mind the

expression for α1 in (42), we compute α1(t) = p̄ pu . We compare its component in i , with
the one from (42), and this gives a polynomial in cos((k1−2k2)t), sin((k1−2k2)t), cos(k1)t ,
sin(k1t) which vanishes identically. This implies C42 = 0 and C32 = − 1√

2
. By a similar

reasoning for the component of α1 in j , we find C33 = 0, C43 = − 1√
2
. The fact that p

has constant length implies C21 = 0 and then C41 = 0, C34 = 0, C22 = 0. We see that
C2
31 = C2

44 andC
2
23 = 1

2 −C2
24, which leads to obtaining thatC44 = 0,C31 = 0 andC23 = 0.

Finally, we find C24 = − 1√
2
and determine the immersion p:

p = 1√
2
cos

t

(

2
√

3−χ2
1−χ2

2−
√

3−χ2
1+2

√

−χ2
2

(

χ2
1+χ2

2−3
)

)

4
√
3

(

cos
√
3u+v−w1

2 + sin
√
3u+v−w1

2

)

− 1√
2
cos

t

√

3−χ2
1+2

√

−χ2
2

(

χ2
1+χ2

2−3
)

4
√
3

(

cos
√
3u+v−w1

2 − sin
√
3u+v−w1

2

)

i

− 1√
2
sin

t

√

3−χ2
1+2

√

−χ2
2

(

χ2
1+χ2

2−3
)

4
√
3

(

cos
√
3u+v−w1

2 − sin
√
3u+v−w1

2

)

j

− 1√
2
sin

t

(

2
√

3−χ2
1−χ2

2−
√

3−χ2
1+2

√

−χ2
2

(

χ2
1+χ2

2−3
)

)

4
√
3

(

cos
√
3u+v−w1

2 + sin
√
3u+v−w1

2

)

k.

(44)
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It then follows that q is given by

q = 1√
2
cos

t

(

2
√

3−χ2
2−χ2

1−
√

3−χ2
2+2

√

−χ2
1

(

χ2
2+χ2

1−3
)

)

4
√
3

(

cos
√
3u−v−w2

2 + sin
√
3u−v−w2

2

)

− 1√
2
cos

t

√

3−χ2
2+2

√

−χ2
1

(

χ2
2+χ2

1−3
)

4
√
3

(

cos
√
3u−v−w2

2 − sin
√
3u−v−w2

2

)

i

− 1√
2
sin

t

√

3−χ2
2+2

√

−χ2
1

(

χ2
2+χ2

1−3
)

4
√
3

(

cos
√
3u−v−w2

2 − sin
√
3u−v−w2

2

)

j

− 1√
2
sin

t

(

2
√

3−χ2
2−χ2

1−
√

3−χ2
2+2

√

−χ2
1

(

χ2
2+χ2

1−3
)

)

4
√
3

(

cos
√
3u−v−w2

2 + sin
√
3u−v−w2

2

)

k.

(45)

A reparametrisation then completes the proof. We also note that the other cases following
from (35) can be treated in a similar way leading to the same result.

Case 2. θ = π
2 . Now we will still split into two subcases, according to whether h113 =

h123 = 0 or (h113)
2 + (h123)

2 �= 0. However following similar arguments as in the previous
case, we obtain in both subcases a contradiction. ��
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