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Abstract
We present a way of defining the Dirichlet-to-Neumann operator on general Hilbert spaces
using a pair of operators for which each one’s adjoint is formally the negative of the other.
In particular, we define an abstract analogue of trace spaces and are able to give meaning
to the Dirichlet-to-Neumann operator of divergence form operators perturbed by a bounded
potential in cases where the boundary of the underlying domain does not allow for a well-
defined trace.Moreover, a representation of theDirichlet-to-Neumannoperator as a first-order
system of partial differential operators is provided. Using this representation, we address con-
vergence of the Dirichlet-to-Neumann operators in the case that the appropriate reciprocals
of the leading coefficients converge in the weak operator topology. We also provide some
extensions to the case where the bounded potential is not coercive and consider resolvent
convergence.

Keywords Dirichlet-to-Neumann operator · Resolvent convergence · Continuous
dependence on the coefficients
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1 Introduction

In the theory of elliptic partial differential operators, the Dirichlet-to-Neumann operator is
a central object of study. In recent years, it has attracted a lot of attention and triggered
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profound research in many directions. In particular, we mention applications of the form
method, relations to the extension theory of symmetric operators as well as the intimate
connection to the Calderón problem, see, for instance, the references in [6].

The Dirichlet-to-Neumann operator relates Dirichlet boundary data to the corresponding
Neumann boundary data of solutions to a partial differential equation. As an introduction,
we provide a definition for the Dirichlet-to-Neumann operator in its arguably simplest form.

Let� ⊂ R
d be a bounded domain with smooth boundary � = ∂� and where d � 2. Note

that in this case, the trace map Tr from H1(�) into H1/2(�) is a well-defined, surjective and
continuous operator. Let ϕ ∈ H1/2(�), and let u ∈ H1(�) be the solution of the boundary
value problem

−�u = 0 weakly on � and Tr u = ϕ.

The Dirichlet-to-Neumann operator � assigns to ϕ the normal derivative of u, that is, �ϕ =
∂νu ∈ H−1/2(�).

We can also consider the part of � in L2(�). If we call this restriction �L2(�), then
�L2(�) is an unbounded operator in L2(�) such that for all ϕ,ψ ∈ L2(�) it follows that
ϕ ∈ dom(�L2(�)) and �L2(�)ϕ = ψ if and only if there exists a u ∈ H1(�) such that
−�u = 0 weakly on �, Tr u = ϕ and ψ = ∂νu. A problem with the above descriptions is
that they only make sense if the boundary of � is sufficiently smooth. We may also refer to
[2] for a variant of the Dirichlet-to-Neumann operator for domains with a rough boundary
that has finite (d − 1)-dimensional Hausdorff measure. If, however, � has for example a
fractal boundary with infinite (d −1)-dimensional Hausdorff measure, then in [2] there is no
notion of the Dirichlet-to-Neumann operator at hand simply because there is no appropriate
notion of a trace. Using the concepts developed in [13] (with extensions in [12] and [16]),
we are able to provide a substitute for the space H1/2(�). We note here that this ‘trace-free’
concept has proven to be useful for dealing with boundary value problems on domains with
rough boundary, see [11].

The substitute for the space H1/2(�) is a variant of 1-harmonic functions in �. This
removes the need for function evaluation at the boundary. For the definition of this substitute
of H1/2(�), the only concept that we use, if we relate our findings to the Laplacian, is that
the matrix

( 0 div
grad 0

)
is skew-symmetric on the space of infinite differentiable functions with

compact support, see Example 2.3. Thus, without further effort, our results directly apply to
similar problems involving the equations of linearized elasticity or the full three-dimensional
system of static Maxwell’s equations. More generally, our methods apply to the covariant
derivative defined on suitable L2-tensor fields and a formal skew-adjoint.

As our central object of study, we shall deviate from the classical elliptic partial differential
operator −� discussed above and treat abstract divergence form operators of the form

−DaG + m, (1)

where a andm are bounded coercive operators (called coefficients) and D and G are densely
defined, closed, unbounded operators in Hilbert spaces H1 and H0 with the property −D∗ ⊂
G, like div and grad.

If dom(G), endowedwith the graph norm, embeds compactly into H0, wewill also address
the concept of continuous dependence of the Dirichlet-to-Neumann operator associated with
(1) on the bounded coefficients a and m under the weak operator topology. This result
has applications in homogenization problems, see [15] and [18] Section 5.5. Moreover, it
complements the study of continuous dependence of the Dirichlet-to-Neumann operator on
its coefficients in [4], where the authors focus on possible non-coercive cases and convergence
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The Dirichlet-to-Neumann operator for divergence form problems 179

of the principal coefficients in L∞(�). In order to prove convergence results, we derive a
reformulation of the Dirichlet-to-Neumann operator as a system of two first-order partial
differential equations, similar to [5].

In the present work, we also consider removing the coercivity condition on m. That is
to say, we define the abstract analogue of the Dirichlet-to-Neumann graph with m being
possibly not coercive. We note here that these results are the abstract counterpart of results
developed in [6] and [4]. In the case that the potentials m are not coercive, we consider
resolvent convergence for Dirichlet-to-Neumann operators. Under different assumptions,
convergence of Neumann-to-Dirichlet operators was obtained in [14].

We mention here that a possible nonlinear variant of the Dirichlet-to-Neumann operator,
where the coercive operator a is replaced by a (strictly) maximal monotone relation, can
be discussed using the results of [17]. This, however, is beyond the scope of the present
manuscript and will be addressed in future work.

We briefly comment on the organization of the paper. In Sect. 2, we provide the basic
functional analytic setting and recall some notions and results of [12,13] and [16]. We then
state the definition of the Dirichlet-to-Neumann operator in the abstract setting discussed
above. We also provide an extensive example that justifies this abstraction by relating it
to the classical formulation of the Dirichlet-to-Neumann operator. In Sect. 3, we give a
representation formula for the Dirichlet-to-Neumann operator in terms of a first-order system
and show that this operator ism-sectorial, provided bothm and a are coercive. For this, we use
a representation result for operators given via forms, see [3]. In Sect. 4, we prove resolvent
convergence of the Dirichlet-to-Neumann operators when the coefficients converge in an
appropriate weak operator topology. Under some additional hypotheses, we also obtain in
Theorem 4.2 uniform convergence even though the coefficients converge in theweak operator
topology only. In Sect. 5,we consider the non-coercive case and discuss the domain andmulti-
valued parts of the Dirichlet-to-Neumann graph when m is merely assumed to be a bounded
operator, that is, not necessarily coercive. Moreover, we also prove a convergence theorem
for the non-coercive case in Sect. 6. We conclude with two more examples in Sect. 7.

2 The Dirichlet-to-Neumann operator and boundary spaces

We start with a description of boundary data spaces as in [13] Subsection 5.2. Throughout
this paper, fix Hilbert spaces H0 and H1. Further, let G be an operator in H0 with values in
H1 and let D be an operator in H1 with values in H0. We assume throughout that both G and
D are densely defined and closed, and that −G∗ ⊂ D. We define D̊ = −G∗ and G̊ = −D∗.

Note that

(G̊u, q)H1 = −(u, D̊q)H0

for all u ∈ dom(G̊) and q ∈ dom(D̊). Equivalently, the matrix
(
0 D̊
G̊ 0

)

with dense domain dom(G̊) × dom(D̊) is skew-symmetric in H0 × H1.

Remark 2.1 Note that G̊ = −D∗ ⊂ −(−G∗)∗ = G = G. So one can simultaneously swap
H0 with H1 and D with G.
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180 A. F. M. ter Elst et al.

Example 2.2 All examples in this paper are of the following type. Let H0 and H1 be Hilbert
spaces. Consider dense subspaces dom(Ĝ) ⊂ H0 and dom(D̂) ⊂ H1. Let Ĝ : dom(Ĝ) →
H1 and D̂ : dom(D̂) → H0 be two operators such that

(Ĝu, q)H1 = −(u, D̂q)H0 (2)

for all u ∈ dom(Ĝ) and q ∈ dom(D̂). Equivalently, the matrix
(
0 D̂
Ĝ 0

)

with dense domain dom(Ĝ) × dom(D̂) is skew-symmetric in H0 × H1.
Then, Ĝ ⊂ −(D̂)∗ and D̂ ⊂ −(Ĝ)∗, so both Ĝ and D̂ are closable. Let G̊ and D̊

denote the closures. Define G = −(D̊)∗ and D = −(G̊)∗. Since D̊ and G̊ are closed,
therefore closable, it follows that G and D are densely defined. Obviously, both G and D
are closed. Next, G∗ = −(D̊)∗∗ = −D̊ since D̊ is closed and similarly D∗ = −G̊. Also
D̊ ⊂ −(Ĝ)∗ = −(G̊)∗, so G̊ ⊂ −(D̊)∗ = G. Similarly D̊ ⊂ D. Then, G∗ = −D̊ ⊂ −D as
required.

The classical example for this paper is as follows.Note thatwe do not assume any condition
on the boundary of �.

Example 2.3 Let � ⊂ R
d be open. Define Ĝ : C∞

c (�) → L2(�)d and D̂ : C∞
c (�)d →

L2(�) by

Ĝu = (∂1u, . . . , ∂du) and D̂q =
d∑

k=1

∂kqk .

Define H0 = L2(�) and H1 = L2(�)d . Then, (2) in Example 2.2 follows from integration
by parts. The associated operators are denoted by G = grad, G̊ = ˚grad, D = div and
D̊ = ˚div. It is not hard to show that dom( ˚grad) = H1

0 (�), dom(grad) = H1(�) and
dom(div) = Hdiv(�) = {q ∈ L2(�)d : div q ∈ L2(�)}.

We next define an (abstract) variant of the trace spaces H1/2(�) and H−1/2(�). Through-
out this paper, we provide the domain of an operator with the graph norm. Define

BD(G) = dom(G̊)⊥dom(G) and BD(D) = dom(D̊)⊥dom(D) .

We provide BD(G) and BD(D) with the induced inner products of dom(G) and dom(D).
We denote by πBD(G) and πBD(D) the corresponding projections onto BD(G) and BD(D),
respectively.

Example 2.4 Let �, G and D be as in Example 2.3. Then, BD(G) = {u ∈ H1(�) : �u =
u weakly on �}. Indeed, let u ∈ BD(G). Then, u ∈ H1(�) and 0 = (u, v)dom(G) =
(u, v)L2(�) + (grad u, grad v)L2(�) for all v ∈ dom(G̊) = H1

0 (�). So �u = u weakly
on �. The converse inclusion is similar.

Lemma 2.5 BD(G) = ker(I − DG) and BD(D) = ker(I − GD).

Proof By Remark 2.1, it suffices to prove the first equality. Let u ∈ BD(G). Then,

(u, v)H0 + (Gu, G̊v)H1 = (u, v)dom(G) = 0

for all v ∈ dom(G̊). So Gu ∈ dom((G̊)∗) = dom(D) and DGu = −(G̊)∗Gu = u.
Therefore, u ∈ ker(I − DG). The converse follows similarly. �	
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The Dirichlet-to-Neumann operator for divergence form problems 181

Corollary 2.6 If u ∈ BD(G), then Gu ∈ BD(D). If q ∈ BD(D), then Dq ∈ BD(G).

Proof Let u ∈ BD(G). Then, u ∈ dom(DG) and DGu = u ∈ dom(DG). Therefore,
u ∈ dom(GDG) and (I −GD)Gu = G(I − DG)u = 0. So Gu ∈ ker(I −GD) = BD(D)

by Lemma 2.5. The other statement follows similarly. �	
Define Ġ : BD(G) → BD(D) and Ḋ : BD(D) → BD(G) by

Ġu = Gu and Ḋq = Dq.

Lemma 2.7 The operators Ġ and Ḋ are unitary. Moreover, (Ġ)∗ = Ḋ.

Proof See [13, Theorem5.2]. For the convenience of the reader, we include the proof. Clearly,
ḊĠ = IBD(G) and Ġ Ḋ = IBD(D) by Lemma 2.5. Moreover,

(Ġu, q)BD(D) = (Ġu, q)H1 + (ḊĠu, Ḋq)H0 = (Ġu, Ġ Ḋq)H1 + (u, Ḋq)H0

= (u, Ḋq)BD(G)

for all u ∈ BD(G) and q ∈ BD(D), from which the lemma follows. �	
In the situation of Example 2.3, the space BD(G)models the boundary data of an H1(�)-

function if � is a bounded Lipschitz domain, as shown in [16, Corollary 4.4]. Indeed, let
� = ∂�. Since Tr : H1(�) → H1/2(�) is continuous, surjective and ker Tr = H1

0 (�) =
dom( ˚grad), it follows that

Tr |BD(G) : BD(G) → H1/2(�) (3)

is bijective and hence a topological isomorphism.
We next consider the space BD(D). Denote by BD(G)′ the space of all antilinear contin-

uous maps from BD(G) into C. There is a natural unitary map from BD(D) onto BD(G)′.

Proposition 2.8 Define � : BD(D) → BD(G)′ by
(
�(q)

)
(u) = (Dq, u)H0 + (q,Gu)H1 .

Then, � is unitary.

Proof Let q ∈ BD(D) and u ∈ BD(G). Then,
(
�(q)

)
(u) = (Dq, u)H0 + (q,Gu)H1

= (q,Gu)H1 + (Dq, DGu)H0 = (q,Gu)dom(D) = (q, Ġu)BD(D). (4)

Then, the proposition follows from Lemma 2.7 and the Riesz representation theorem. �	
For clarity and contrast, we include the proof of the next proposition.WeprovideTr H1(�)

with the quotient norm.

Proposition 2.9 Let � ⊂ R
d be open, bounded with Lipschitz boundary. Then, one has the

following.

(a) For all q ∈ Hdiv(�), there exists a unique Q ∈ (Tr H1(�))′ such that

〈Q,Tr u〉(Tr H1(�))′×Tr H1(�) =
∫

�

(divq)u +
∫

�

q · ∇u (5)

for all u ∈ H1(�).
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182 A. F. M. ter Elst et al.

(b) If q ∈ dom( ˚div), then Q = 0, where Q is as in (5).
(c) If q ∈ H1(�)d , then Q = ν ·Tr q, where ν is the outward normal vector on the boundary

� of � and Q is as in (5).

Proof ‘(a)’. Define F : H1(�) → C by

F(u) =
∫

�

(divq)u +
∫

�

q · ∇u.

Then, F ∈ H1(�)′. Moreover, if u ∈ H1
0 (�), then F(u) = 0. Hence, there exists a unique

continuous antilinear map F̃ : Tr H1(�) → C such that F̃(Tr u) = F(u) for all u ∈ H1(�).
Then, the first statement follows.

‘(b)’. We use the notation as in Example 2.3. Let q ∈ dom(D̊). Since D̊ = −G∗ one
deduces that F(u) = ∫

�
(divq)u + ∫

�
q · ∇u = (D̊q, u)H1 + (q,Gu)H0 = 0 for all u ∈

dom(G). So Q = 0, because dom(G) is dense in H1(�).
‘(c)’. Suppose that q ∈ H1(�)d . Let u ∈ H1(�). Then, uq ∈ W 1,1(�)d and the diver-

gence theorem gives
∫

�

(divq)u +
∫

�

q · ∇u =
∫

�

div(uq) =
∫

�

ν · Tr(uq) =
∫

�

(ν · Tr q)Tr u.

So Q = ν · Tr q . �	

If q ∈ Hdiv(�), and Q and ν are as in Proposition 2.9, then we define (νq) = Q. So
(νq) = ν · Tr q if q ∈ H1(�)d .

Example 2.10 Let � be a bounded Lipschitz domain with boundary �. Let G and D be as in
Example 2.3. Let � be as in Proposition 2.8. Then,

(�(q))(u) = 〈(νq),Tr u〉(Tr H1(�))′×Tr H1(�)

for all q ∈ BD(D) and u ∈ BD(G).
It follows from (3) and Proposition 2.8 that the spaces BD(D) and H−1/2(�) are isomor-

phic. Hence, Ġ is a variant of the Dirichlet-to-Neumann operator.

Next, we introduce the (variable) coefficients for our abstract Dirichlet-to-Neumann oper-
ator. Recall that a bounded operator M in a Hilbert space H is called coercive if there exists
a μ > 0 such that Re M � μI , where Re M = 1

2 (M + M∗). That is, M is coercive if and
only if there exists a μ > 0 such that Re(Mx, x) � μ‖x‖2H for all x ∈ H .

As for the classical Dirichlet-to-Neumann operator, we first show that the Dirichlet prob-
lem has a unique solution.

Proposition 2.11 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Let u0 ∈ BD(G). Then, there
exists a unique u ∈ dom(DaG) such that mu − DaGu = 0 and u − u0 ∈ dom(G̊).

For the proof of the proposition, we need several auxiliary results.

Lemma 2.12 Let H be a Hilbert space, M ∈ L(H) and A a skew-adjoint operator in H.
Let λ > 0 and assume that Re(Mx, x)H � λ‖x‖2H for all x ∈ H. Then, the operator
M + A is invertible. Moreover, the operator (M + A)−1 is bounded from H into dom(A)

and ‖(M + A)−1‖H→dom(A) � 1+λ+‖M‖
λ

.
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The Dirichlet-to-Neumann operator for divergence form problems 183

Proof If x ∈ dom(A), then Re((M + A)x, x)H = Re((Mx, x)H � λ‖x‖2H . Hence, M + A
is one-to-one, its range is closed, and M + A is continuously invertible on its range. Since
Re(Mx, x)H = Re(M∗x, x)H for all x ∈ H , we obtain similarly that (M + A)∗ = M∗ − A
is one-to-one. Therefore, M+ A is onto. So M+ A is invertible and ‖(M+ A)−1‖H→H � 1

λ
.

Since A(M + A)−1 = I − M(M + A)−1, the operator A(M + A)−1 is bounded from H
into H and the estimate follows. �	

Next, we consider matrix operators.

Lemma 2.13 Let a ∈ L(H1) and m ∈ L(H0) be coercive.

(a) The operators

(
m −D̊

−G a−1

)
and

(
m −D

−G̊ a−1

)
in H0 × H1 are invertible.

(b) The operator

(
m −D̊

−G a−1

)−1

is bounded from H0 × H1 into dom(G) × dom(D̊).

(c) The operator

(
m −D

−G̊ a−1

)−1

is bounded from H0 × H1 into dom(G̊) × dom(D).

Proof LetH = H0×H1,M =
(
m 0
0 a−1

)
and A =

(
0 −D̊

−G 0

)
withdom(A) = dom(G)×

dom(D̊). Since −D̊∗ = G and −G∗ = D̊, the operator A is skew-adjoint. Also, Re a−1 �
‖a‖−2 Re a, so M is coercive. Therefore, M + A is invertible and the operator (M + A)−1

is bounded from H into dom(A) by Lemma 2.12. This proves the first part of Statement (a)
and Statement (b)

The remaining parts of the lemma follow similarly. �	
Lemma 2.14 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Let u ∈ dom(G), q ∈ dom(D),
u0 ∈ BD(G) and q0 ∈ BD(D).

(a) The following conditions are equivalent.

(i) Dq = mu, q = aGu and u − u0 ∈ dom(G̊).
(ii) q = aGu, u − u0 ∈ dom(G̊) and

(aGu, G̊v)H1 = −(mu, v)H0

for all v ∈ dom(G̊).

(iii)

(
u − u0

q

)
=

(
m −D

−G̊ a−1

)−1 (−mu0
Gu0

)
.

(b) The following conditions are equivalent.

(i) Dq = mu, q = aGu and q − q0 ∈ dom(D̊).

(ii)

(
u

q − q0

)
=

(
m −D̊

−G a−1

)−1 (
Dq0

−a−1q0

)
.

Proof ‘(a)’. ‘(i)⇔(ii)’. This follows immediately from the equality D = −(G̊)∗.
‘(i)⇔(iii)’. By a simple algebraic manipulation, Condition (i) is equivalent to

u − u0 ∈ dom(G̊) and

(
m −D

−G a−1

) (
u − u0

q

)
=

(−mu0
Gu0

)
.

By Lemma 2.13(a), this is equivalent to Condition (iii).
‘(b)’. The proof is similar. �	
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184 A. F. M. ter Elst et al.

Now, we are able to prove Proposition 2.11.

Proof of Proposition 2.11 First we show existence. Let u ∈ dom(G) and q ∈ dom(D) be
such that

(
u − u0

q

)
=

(
m −D

−G̊ a−1

)−1 (−mu0
Gu0

)
.

Then, u satisfies the desired properties by Lemma 2.14(a) (iii)⇒(i).
It remains to show uniqueness. Let ũ ∈ dom(DaG) and suppose that mũ − DaGũ = 0

and ũ − u0 ∈ dom(G̊). Set q̃ = aGũ. Then, it follows from Lemma 2.14(a) (i)⇒(iii) that
(
ũ − u0

q̃

)
=

(
m −D

−G̊ a−1

)−1 (−mu0
Gu0

)
,

which implies that u = ũ. �	
There is a similar version of Proposition 2.11 for the Neumann problem.

Proposition 2.15 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Let q0 ∈ BD(D). Then, there
exists a unique u ∈ dom(DaG) such that mu − DaGu = 0 and aGu − q0 ∈ dom(D̊).

Proof This follows similarly to the proof of Proposition 2.11, but now use Lemma 2.14(b)
instead of Lemma 2.14(a). �	

At this stage, we are able to define the Dirichlet-to-Neumann operator with variable
coefficients as an operator acting fromBD(G) (the abstract realization of H1/2(�)) to BD(D)

(the abstract realization of H−1/2(�)).

Definition 2.16 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Define the operator

� : BD(G) → BD(D)

as follows. Let u0 ∈ BD(G). By Proposition 2.11, there exists a unique u ∈ dom(DaG)

such that mu − DaGu = 0 and u − u0 ∈ dom(G̊). Then, we define �u0 = πBD(D)aGu.
We call � the Dirichlet-to-Neumann operator associated with −DaG + m.

So the graph of the operator � is equal to

{(πBD(G)u, πBD(D)aGu) : u ∈ dom(DaG) and mu − DaGu = 0}.
Theorem 2.17 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Then, the operator � associated
with −DaG + m is bounded and invertible. Moreover,

�u0 = (
0 πBD(D)

) (
m −D

−G̊ a−1

)−1 (−m
G

)
u0

for all u0 ∈ BD(G) and

�−1q0 = (
πBD(G) 0

) (
m −D̊

−G a−1

)−1 (
D

−a−1

)
q0

for all q0 ∈ BD(D).

Proof The expression for � follows from Lemma 2.14(a), arguing as in the proof of Propo-
sition 2.11. The boundedness of � is then a consequence of Lemma 2.13(c).

The proof for�−1 is similar, using Lemma 2.14(b), Proposition 2.15 and Lemma 2.13(b).
�	
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The Dirichlet-to-Neumann operator for divergence form problems 185

3 An intermediate operator andm-sectoriality

In Proposition 2.8, we showed that the space BD(D) is naturally isomorphic to BD(G)′. In
this section, we assume that there is a Hilbert space H such that BD(G) ↪→ H ↪→ BD(G)′
is a Gelfand triple. Then, we study the part of the Dirichlet-to-Neumann operator in H . In
the model example, Example 2.3, one can take H = L2(�).

Throughout this section, we adopt the notation and assumptions as in the beginning of
Sect. 2. In addition, let H be a Hilbert space and κ ∈ L(BD(G), H). We assume that κ is
one-to-one and has dense range.

Example 3.1 Let � be a bounded Lipschitz domain with boundary �. Let G and D be as
in Example 2.3. Let σ ∈ (−∞, 1

2 ] and choose H = Hσ (�). Define κ : BD(G) → H by
κ(u) = Tr u. Then, κ is one-to-one and has dense range. Note that κ is compact if and only
if σ < 1

2 .
Now, suppose that σ = 0, so H = L2(�). Let ψ ∈ L2(�) and set u = κ∗ψ . Then,

u ∈ BD(G), so u ∈ H1(�) and �u = u weakly on � by Example 2.4. If v ∈ BD(G), then
∫

�

ψTr v = (ψ, κ(v))L2(�) = (κ∗ψ, v)BD(G) = (u, v)BD(G)

=
∫

�

uv +
∫

�

∇u · ∇v =
∫

�

(�u)v +
∫

�

∇u · ∇v.

Alternatively, if v ∈ H1
0 (�) = dom(G̊), then
∫

�

ψTr v = 0 =
∫

�

(�u)v +
∫

�

∇u · ∇v.

So by linearity
∫

�

ψTr v =
∫

�

(�u)v +
∫

�

∇u · ∇v

for all v ∈ H1(�). Hence, u has a weak normal derivative and ∂νu = ψ .

We consider the Gelfand triple

BD(G)
κ

↪→ H � H ′ κ ′
↪→ BD(G)′

with H as pivot space. Recall that BD(G)′ is naturally isomorphic to BD(D) by Propo-
sition 2.8. We aim to describe the part of the Dirichlet-to-Neumann operator � in H . We

describe the image of H in BD(D) under the above maps H � H ′ κ ′
↪→ BD(G)′ � BD(D).

Lemma 3.2 Let � : BD(D) → BD(G)′ be as in Proposition 2.8. Define F : H → H ′ by
(Fϕ)(ψ) = (ϕ, ψ)H . Then, �−1 ◦ κ ′ ◦ F = G ◦ κ∗.

Proof Let ϕ ∈ H and write q = (�−1 ◦ κ ′ ◦ F)(ϕ). Let u ∈ BD(G). Then, it follows from
Lemma 2.7 and (4) that

(Ḋq, u)BD(G) = (q, Ġu)BD(D)

= (�(q))(u) = ((κ ′ ◦ F)ϕ)(u) = (ϕ, κ(u))H = (κ∗ϕ, u)BD(G).

So Ḋq = κ∗ϕ and q = Ġ Ḋq = Ġκ∗ϕ. �	
Now, we are able to define the part of the Dirichlet-to-Neumann operator in H .
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Definition 3.3 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Define the operator �H in H
as follows. Let ϕ,ψ ∈ H . Then, we say that ϕ ∈ dom(�H ) and �Hϕ = ψ if there exists
a u0 ∈ BD(G) such that κ(u0) = ϕ and �u0 = (G ◦ κ∗)(ψ), where � is the Dirichlet-
to-Neumann operator associated with −DaG + m. We call �H the Dirichlet-to-Neumann
operator in H associated with −DaG + m.

Despite the abundance of choice of the space H , see Example 3.1, the operator −�H is
always a semigroup generator.

Theorem 3.4 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Then, the Dirichlet-to-Neumann
operator �H associated with −DaG + m is m-sectorial. In particular, if both a and m are
symmetric, then �H is self-adjoint.

The proof of this theorem is based on form methods and the next theorem.

Theorem 3.5 Let H̃ , V be Hilbert spaces, and let j ∈ L(V , H̃)with dense range. Let b : V ×
V → C be a continuous coercive sesquilinear form, that is, there exists a μ > 0 such that
Re b(v) � μ‖v‖2V for all v ∈ V . Define the operator A in H̃ as follows. Let x, f ∈ H̃ .
Then, x ∈ dom(A) and Ax = f if there exists a u ∈ V such that j(u) = x and b(u, v) =
( f , j(v))H̃ for all v ∈ V . Then, A is well-defined and m-sectorial. If, in addition, b is
symmetric, then A is self-adjoint.

Proof See [3, Theorem 2.1]. �	
In the situation of Theorem 3.5, we call A the operator associated with (b, j).
Theorem 3.4 is an immediate consequence of Theorem 3.5 and the next proposition.

Proposition 3.6 Let a ∈ L(H1) and m ∈ L(H0) be coercive. Define the sesquilinear form
b : dom(G) × dom(G) → C by

b(u, v) = (aGu,Gv)H1 + (mu, v)H0 .

Then, b is coercive and continuous. Further define j : dom(G) → H by j = κ ◦ πBD(G).
Then, the Dirichlet-to-Neumann operator �H associated with −DaG + m is equal to the
operator associated with (b, j).

Proof The form b is coercive since both a and m are coercive. Obviously, b is continuous.
Let A be the operator associated with (b, j). It remains to prove that A = �H .

‘�H ⊂ A’. Let ϕ ∈ dom(�H ) and set ψ = �Hϕ. Then, there exists a u0 ∈ BD(G)

with κ(u0) = ϕ and �u0 = (G ◦ κ∗)ψ . By definition, there exists a u ∈ dom(DaG) such
that mu − DaGu = 0, u − u0 ∈ dom(G̊) and �u0 = πBD(D)(aGu). Then, (G ◦ κ∗)ψ =
πBD(D)(aGu) and j(u) = κπBD(G)u = κ(u0) = ϕ.

Next, if v ∈ dom(G̊), then

b(u, v) = (aGu, G̊v)H1 + (mu, v)H0

= −(DaGu, v)H0 + (DaGu, v)H0 = 0 = (ψ, 0)H = (ψ, j(v))H .

If v ∈ BD(G), then Lemma 2.7 gives

(ψ, j(v))H = (κ∗ψ, v)BD(G) = (Gκ∗ψ,Gv)BD(D) = (πBD(D)(aGu),Gv)BD(D)

= (aGu,Gv)dom(D) = (aGu,Gv)H1 + (DaGu, DGv)H0

= (aGu,Gv)H1 + (mu, v)H0 = b(u, v).
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Since dom(G) = BD(G) ⊕ dom(G̊), it follows that b(u, v) = (ψ, j(v))H for all v ∈
dom(G). So ϕ ∈ dom(A) and Aϕ = ψ .

‘A ⊂ �H ’. Let ϕ ∈ dom(A) and write ψ = Aϕ. Then, there exists a u ∈ dom(G) such
that j(u) = ϕ and

(aGu,Gv)H1 + (mu, v)H0 = b(u, v) = (ψ, j(v))H (6)

for all v ∈ dom(G). If v ∈ dom(G̊), then

(aGu, G̊v)H1 + (mu, v)H0 = (ψ, j(v))H = 0.

So aGu ∈ dom((G̊)∗) = dom(D) and DaGu = −(G̊)∗aGu = mu. Moreover,

�πBD(G)u = πBD(D)(aGu) (7)

by the definition of �. Note that κ(πBD(G)u) = j(u) = ϕ.
Now, let v ∈ BD(G). Then, (6) gives

(κ∗ψ, v)BD(G) = (ψ, κ(v))H

= (aGu,Gv)H1 + (mu, v)H0

= (aGu,Gv)H1 + (DaGu, DGv)H0

= (aGu,Gv)dom(D)

= (πBD(D)(aGu),Gv)BD(D)

= (DπBD(G)(aGu), v)BD(G),

where we used Lemma 2.7 in the last step. So, κ∗ψ = DπBD(D)(aGu). Hence,

(G ◦ κ∗)(ψ) = πBD(D)(aGu) = �πBD(G)u

by Lemma 2.7 and (7). Therefore, ϕ ∈ dom(�H ) and �Hϕ = ψ . �	
We next show that the operator �H is invertible and determine its inverse.

Proposition 3.7 The operator �H is invertible and

�−1
H ψ = κ

(
πBD(G) 0

) (
m −D̊

−G a−1

)−1 (
1

−a−1G

)
κ∗ψ

for all ψ ∈ H.

Proof Since the form b in Proposition 3.6 is coercive, it follows that the operator �H is
invertible. Let ϕ ∈ dom(�H ) and write ψ = �Hϕ. Then, there exists a u0 ∈ BD(G) such
that κ(u0) = ϕ and �u0 = Gκ∗ψ . By Theorem 2.17, we obtain that

u0 = �−1Gκ∗ψ = (
πBD(G) 0

) (
m −D̊

−G a−1

)−1 (
D

−a−1

)
Gκ∗ψ

= (
πBD(G) 0

) (
m −D̊

−G a−1

)−1 (
I

−a−1G

)
κ∗ψ,

where we used Lemma 2.7 in the last step. Next, apply κ to both sides. Since the inverse
matrix maps H0 × H1 into dom(G) × dom(D) by Lemma 2.13(b), the proposition follows.

�	
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4 Resolvent convergence

In this section,we consider a sequence ofDirichlet-to-Neumann operators and show resolvent
convergence.

Throughout this section, we adopt the notation and assumptions as in the beginning of
Sect. 2. Let H be a Hilbert space and κ ∈ L(BD(G), H) injective with dense range. Fur-
ther, we let mn,m ∈ L(H0) and an, a ∈ L(H1) for all n ∈ N. Let μ > 0 and assume
that Re mn,Re m � μIH0 and Re an,Re a � μIH1 for all n ∈ N. Moreover, assume
that supn ‖an‖L(H1) < ∞. Let �,�1,�2, . . . be the Dirichlet-to-Neumann operators from
BD(G) into BD(D) associated with −DaG + m,−Da1G + m1,−Da2G + m2, . . . as in
Definition 2.16. Similarly, let �H ,�

(1)
H ,�

(2)
H , . . . be the Dirichlet-to-Neumann operators in

H as in Definition 3.3.
Throughout this section, we suppose in addition that the inclusion dom(G) ↪→ H0 is

compact.
The compactness assumption is valid in our model case, Example 2.3, if � is bounded

and has a continuous boundary or, equivalently, if � has the segment property.
We state two well-known consequences of the compactness assumption.

Lemma 4.1 (a) There exists a c > 0 such that ‖u‖H0 � c‖Gu‖H1 for all u ∈ dom(G) ∩
ker(G)⊥H0 .

(b) The space ran(G) is closed in H1.

Proof ‘(a)’. Suppose not. Then, there exists a sequence (un)n∈N in dom(G) ∩ ker(G)⊥H0

such that ‖un‖H0 = 1 and
‖un‖H0 � n‖Gun‖H1 (8)

for all n ∈ N. Then, (un)n∈N is bounded in dom(G). We may assume without loss of
generality that there exists a u ∈ dom(G) such that lim un = u weakly in dom(G). Since
the inclusion dom(G) ⊂ H0 is compact, we obtain that lim un = u in H0. Then, u ∈
ker(G)⊥H0 since ker(G)⊥H0 is closed in H0. Moreover, ‖u‖H0 = 1 and in particular u �= 0.
Alternatively, (8) implies that ‖Gu‖H1 � lim infn→∞ ‖Gun‖H1 = 0. So u ∈ ker(G). Hence,
u ∈ ker(G) ∩ ker(G)⊥H0 = {0} and u = 0. This is a contradiction.

‘(b)’. This is a consequence of Statement (a) and the closedness of G. �	
Weprovide ran(G)with the induced normof H1. Throughout the remainder of this section,

we denote by ι : ran(G) ↪→ H1 the embedding map. Note that ι∗ is the orthogonal projection
from H1 onto ran(G). The main result of this section is the following theorem.

Theorem 4.2 Suppose that limmn = m in the weak operator topology on L(H0) and
limn→∞(ι∗anι)−1 = (ι∗aι)−1 in the weak operator topology on L(ran(G)). Then,

lim
n→∞(�

(n)
H )−1 = �−1

H

in the weak operator topology on L(H). Moreover, if in addition the map κ is compact, then
the convergence is uniform in L(H).

If the mn are multiplication operators, then convergence in the weak operator topology
can be rephrased.

Example 4.3 If � ⊂ R
d is open, H0 = L2(�), Vn, V ∈ L∞(�) and mn,m are the multi-

plication operators associated with Vn and V for all n ∈ N, then limmn = m in the weak
operator topology on L(H0) if and only if lim Vn = V in the weak∗-topology on L∞(�).
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For the proof of Theorem 4.2, we need some preliminary results. The first one contains
an identity for � involving ran(G).

Lemma 4.4 (a) Let q ∈ H1. Then, q ∈ dom(D̊) if and only if ι∗q ∈ dom(D̊). In that case
D̊q = D̊ι∗q.

(b) The operator D̊ι : ran(G) ∩ dom(D̊) → H0 is a closed and densely defined operator in
ran(G). Moreover, (D̊ι)∗ = −ι∗G.

(c) The operator D̊ι is injective.
(d) The inclusion dom(D̊ι) ⊂ H1 is compact.

(e) The operator

(
m −D̊ι

−ι∗G (ι∗aι)−1

)
: dom(G) × (

ran(G) ∩ dom(D̊)
) → H0 × ran(G) is

invertible.

(f) The operator

(
m −D̊ι

−ι∗G (ι∗aι)−1

)−1

is bounded from H0×ran(G) into dom(G)×dom(D̊).

(g) If q0 ∈ BD(D), then

�−1q0 = (
πBD(G) 0

) (
m −D̊ι

−ι∗G (ι∗aι)−1

)−1 (
D

−(ι∗aι)−1ι∗
)
q0.

Proof ‘(a)’. First q − ι∗q ∈ (ran(G))⊥H1 = ker(G∗) = ker(D̊) ⊂ dom(D̊). This shows the
equivalence. Since D̊(q − ι∗q) = 0, the last statement follows.

‘(b)’. Let q ∈ ran(G). Since dom(D̊) is dense in H1 there exists a sequence (qn)n∈N in
dom(D̊) such that lim qn = q in H1. Then, ι∗qn ∈ ran(G) ∩ dom(D̊) for all n ∈ N by
Statement (a) and lim ι∗qn = ι∗q = q in H1. So ran(G) ∩ dom(D̊) is dense in ran(G).

Because ran(G) is closed in H1 and D̊ is a closed operator, one deduces easily that the
operator D̊ι is closed. It remains to show that (D̊ι)∗ = −ι∗G.

Let u ∈ dom((D̊ι)∗). Write q = (D̊ι)∗u. Note that q ∈ ran(G). Let q ′ ∈ dom(D̊). Then,
Statement (a) implies that

(u, D̊q ′)H0 = (u, D̊ι∗q ′)H0 = (u, (D̊ι)ι∗q ′)H0

= ((D̊ι)∗u, ι∗q ′)ran(G) = (q, ι∗q ′)ran(G) = (q, q ′)H1 .

So u ∈ dom((D̊)∗) = dom(G) and Gu = −(D̊)∗u = −q . Therefore, −ι∗Gu = q =
(D̊ι)∗u. This implies that (D̊ι)∗ ⊂ −ι∗G. The converse inclusion is easier and is left to the
reader.

‘(c)’. Let q ∈ ran(G)∩dom(D̊) and suppose that D̊ιq = 0. There exists a u ∈ dom(G)∩
(ker G)⊥H0 such that q = Gu. Then, ‖Gu‖2H1

= −(q, (D̊)∗u)H1 = −(D̊ιq, u)H0 = 0. So
u ∈ ker G and u = 0.

‘(d)’. Let q, q1, q2, . . . ∈ dom(D̊ι) and suppose that lim qn = q weakly in dom(D̊ι). For
all n ∈ N, there exists a unique un ∈ dom(G) ∩ ker(G)⊥H0 such that qn = Gun . Since
lim qn = q weakly in H1, the sequence (qn)n∈N is bounded in H1. Hence, the sequence
(un)n∈N is bounded in H0 by Lemma 4.1(a). Passing to a subsequence if necessary, there
exists a u ∈ H0 such that lim un = u weakly in H0. Since G is a weakly closed operator, one
deduces that u ∈ dom(G) and Gu = q . Then, lim un = u weakly in dom(G), so lim un = u
strongly in H0 by the compactness assumption. Note that G∗ = −D̊. So

lim
n→∞ ‖qn‖2H1

= lim
n→∞(qn,Gun)H1 = lim

n→∞(−D̊qn, un)H0

= (−D̊q, u)H0 = (q,Gu)H0 = ‖q‖2H1
.
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Hence, lim qn = q in H1.
‘(e)’ and ‘(f)’. This is as in the proof of Lemma 2.13(a) and (b).
‘(g)’. Let q0 ∈ BD(D). By Proposition 2.15, there exists a unique u ∈ dom(DaG) such

thatmu−DaGu = 0 and aGu−q0 ∈ dom(D̊). Then,�−1q0 = πBD(G)u. Write q = aGu.
Then, q − q0 ∈ dom(D̊), so D̊(q − q0) = D̊ι∗(q − q0) = (D̊ι)ι∗(q − q0) by Statement (a).
Therefore,

Dq0 = mu − D̊(q − q0) = mu − (D̊ι)ι∗(q − q0). (9)

Also, ι∗q = ι∗aGu = (ι∗aι)ι∗Gu. Hence one deduces that (ι∗aι)−1ι∗q = ι∗Gu and
−ι∗Gu + (ι∗aι)−1ι∗(q − q0) = −(ι∗aι)−1ι∗q0. Together with (9), this gives

(
m −D̊ι

−ι∗G (ι∗aι)−1

) (
u

ι∗(q − q0)

)
=

(
D

−(ι∗aι)−1ι∗
)
q0.

Finally, use Statement (e). �	
Next, we need a sequential version of Lemma 2.12.

Lemma 4.5 Let H̃ be a Hilbert space, M ∈ L(H̃) and A a skew-adjoint operator in H̃ .
Further, let (Mn)n∈N be a sequence in L(H̃) and suppose that lim Mn = M in the weak
operator topology on L(H̃). Assume that the inclusion dom(A) ⊂ H̃ is compact and that
there exists a λ > 0 such that Re Mn � λIH̃ for all n ∈ N. Let (xn)n∈N be a sequence in H̃
which converges weakly to x ∈ H̃ . Then, M + A is invertible and limn→∞(Mn + A)−1xn =
(M + A)−1x weakly in dom(A).

Proof Obviously, Re M � λIH̃ , so M + A is invertible by Lemma 2.12. Consider zn =
(Mn + A)−1xn for all n ∈ N. Then, ‖zn‖dom(A) � 1+λ+‖Mn‖

λ
‖xn‖H̃ for all n ∈ N by

Lemma 2.12. So the sequence (zn)n∈N is bounded in dom(A). Passing to a subsequence, we
may assume without loss of generality that there exists a z ∈ dom(A) such that lim zn = z
weakly in dom(A). Then, lim zn = z in H̃ by the compactness assumption. Consequently,
lim Mnzn = Mz weakly in H̃ . Now, Mnzn + Azn = xn for all n ∈ N. Take the limit
n → ∞ and notice that both sides converge weakly in H̃ . It follows that Mz + Az = x , so
z = (M + A)−1x . Now, the lemma follows by a standard subsequence argument. �	

We need one more convergence result for the proof of Theorem 4.2. This result is also of
independent interest.

Proposition 4.6 Suppose that limmn = m in the weak operator topology on L(H0) and
lim(ι∗anι)−1 = (ι∗aι)−1 in the weak operator topology on L(ran(G)). Let q, q1, q2, . . . ∈
BD(D) and assume that lim qn = q in BD(D). Then,

lim
n→∞ �−1

n qn = �−1q

weakly in BD(G).

Proof Choose H̃ = H0 × ran(G) and let A =
(

0 −D̊ι

−ι∗G 0

)
with dom(A) = dom(G) ×

(
ran(G)∩dom(D̊)

)
. Then, A is skew-adjoint in H̃ by Lemma 4.4(b).Moreover, the inclusion

dom(A) ⊂ H̃ is compact by Lemma 4.4(d) and the compactness assumption. Further let

M =
(
m 0
0 (ι∗aι)−1

)
and Mn =

(
mn 0
0 (ι∗anι)−1

)
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for all n ∈ N. Then, lim Mn = M in the weak operator topology on L(H̃). Since

Re(ι∗anι)−1 � ‖ι∗anι‖−2
L(ran(G)) Re(ι

∗anι) � ‖an‖−2
L(H1)

Re(ι∗anι)

for all n ∈ N and supn ‖an‖L(H1) < ∞, it follows that there exists a λ > 0 such that
Re Mn � λI for all n ∈ N. We use Lemma 4.4(g) for �−1 and �−1

n . Obviously,

lim
n→∞(Dqn,−(ι∗anι)−1ι∗qn) = (Dq,−(ι∗aι)−1ι∗q)

weakly in H̃ . Hence,

lim
n→∞

(
mn −D̊ι

−ι∗G (ι∗anι)−1

)−1 (
D

−(ι∗anι)−1ι∗
)
qn =

(
m −D̊ι

−ι∗G (ι∗aι)−1

)−1 (
D

−(ι∗aι)−1ι∗
)
q

weakly in dom(A) by Lemma 4.5. Consequently, lim�−1
n qn = �−1q weakly in BD(G) by

Lemma 4.4(g). �	
Now, we are able to prove the main theorem of this section.

Proof of Theorem 4.2 Let ψ ∈ H . Then, lim�−1
n Gκ∗ψ = �−1Gκ∗ψ weakly in BD(G) by

Proposition 4.6. Hence,

lim
n→∞(�

(n)
H )−1ψ = lim

n→∞ κ�−1
n Gκ∗ψ = κ�−1Gκ∗ψ = �−1

H ψ

weakly in H . This proves the first statement in Theorem 4.2.
Now, suppose that κ is compact. Suppose lim(�

(n)
H )−1 = �−1

H in L(H) is false. Passing
to a subsequence if necessary, there exist δ > 0 and ψ1, ψ2, . . . ∈ H such that

‖(�(n)
H )−1ψn − �−1

H ψn‖H > δ‖ψn‖H (10)

for all n ∈ N. Without loss of generality, wemay assume that ‖ψn‖H = 1 for all n ∈ N. Pass-
ing again to a subsequence if necessary, there exists aψ ∈ H such that limψn = ψ weakly in
H . Then, lim κ∗ψn = κ∗ψ in BD(G) since κ is compact. Therefore, limGκ∗ψn = Gκ∗ψ
in BD(D). Hence, lim�−1

n Gκ∗ψn = �−1Gκ∗ψ weakly in BD(G) by Proposition 4.6.

Using again that κ is compact, it follows that lim(�
(n)
H )−1ψn = (�H )−1ψ in H . Similarly,

lim(�H )−1ψn = (�H )−1ψ in H . So lim ‖(�(n)
H )−1ψn − �−1

H ψn‖H = 0. This contradicts
(10) for large n. �	

In Example 6.1 and Proposition 6.2, we show that in the setting of the classical example
(Example 2.3) H -convergence implies limn→∞(ι∗anι)−1 = (ι∗aι)−1 in the weak operator
topology of L(ran(G)). Moreover, we compare it with a condition introduced in Sect. 6. In
the real symmetric case, we prove in Example 6.7 that all are actually equivalent.

5 The non-coercive case

In this section, we drop the coerciveness condition on m. As a result, the Dirichlet-to-
Neumann operator can become multi-valued, that is, it is a graph and no longer an operator.
The Dirichlet-to-Neumann graph associated with the Schrödinger operator−�+m has been
studied in [4] and [6].

Throughout this section, we adopt the notation and assumptions as in the beginning of
Sect. 2. Further, we fix an element m ∈ L(H0) and a coercive a ∈ L(H1). We emphasize
that we do not require that m is coercive. The definition of the Dirichlet-to-Neumann graph,
however, remains the same as in the single-valued case in Definition 2.16.
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Definition 5.1 Set

� = {(πBD(G)u, πBD(D)aGu) ∈ BD(G) × BD(D) : u ∈ dom(DaG) and mu − DaGu = 0}.
We call � the Dirichlet-to-Neumann graph associated with −DaG + m.

We briefly recall some definitions in the area of (linear) graphs. Let H , K be Hilbert
spaces. Then, a graph A is a vector subspace of H × K . The domain, multi-valued part and
inverse of A are defined by

dom(A) = {h ∈ H : there exists a k ∈ K such that (h, k) ∈ A},
mul(A) = {k ∈ K : (0, k) ∈ A} and

A−1 = {(k, h) ∈ K × H : (h, k) ∈ A}.
We say that A is single-valued or an operator if mul(A) = {0}. The next lemma is trivial.

Lemma 5.2 (a) mul(�) = {πBD(D)aGu : u ∈ ker(m − DaG̊)}.
(b) If ker(m − DaG̊) = {0}, then � is single-valued.

As in Proposition 3.6, define the sesquilinear form b : dom(G) × dom(G) → C by

b(u, v) = (aGu,Gv)H1 + (mu, v)H0 .

We also need the Dirichlet version of b defined by b̊ = b|dom(G̊)×dom(G̊)
. Then, b and b̊ are

continuous. Hence, there exist T ∈ L(dom(G)) and T̊ ∈ L(dom(G̊)) such that b(u, v) =
(Tu, v)dom(G) for all u, v ∈ dom(G) and b̊(u, v) = (T̊ u, v)dom(G̊)

for all u, v ∈ dom(G̊).

Note that ker(T̊ ) = ker(m − DaG̊), since (G̊)∗ = −D.
With a condition on ran(T̊ ), we can characterize the domain of the Dirichlet-to-Neumann

graph �.

Proposition 5.3 Suppose that ran(T̊ ) is closed in dom(G̊). Then,

dom(�) = {u0 ∈ BD(G) : (Gu0, πBD(D)a
∗Gv)BD(D) = 0 for all v ∈ ker(m∗ − Da∗G̊)}.

Proof ‘⊂’. Let u0 ∈ dom(�). Then, there exists a u ∈ dom(G) such that mu − DaGu = 0
and u0 = πBD(G)u. Let v ∈ dom(G̊). Then, (mu, v)H0 = (DaGu, v)H0 = −(aGu, G̊v)H1

and

(T̊ (u − u0), v)dom(G̊)
= b̊(u − u0, v) = (aG(u − u0), G̊v)H1 + (m(u − u0), v)H0

= −(aGu0, G̊v)H1 − (mu0, v)H0 .

Note that T̊ (u − u0) ∈ ran(T̊ ) = (ker((T̊ )∗))⊥dom(G̊) since ran(T̊ ) is closed.
Now, let v ∈ ker(m∗ − Da∗G̊) = ker((T̊ )∗). Then,

0 = −(T̊ (u − u0), v)dom(G̊)
= (aGu0, G̊v)H1 + (mu0, v)H0

= (Gu0, a
∗G̊v)H1 + (u0,m

∗v)H0

= (Gu0, a
∗G̊v)H1 + (DGu0, Da∗G̊v)H0

= (Gu0, a
∗G̊v)dom(D) = (Gu0, πBD(D)a

∗G̊v)BD(D)

as required.
‘⊃’. The proof is similar and for this inclusion it is essential that ran(T̊ ) is closed. �	
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Corollary 5.4 Suppose that ran(T̊ ) is closed in dom(G̊). Then,

dom(�) = {u0 ∈ BD(G) : (
�(πBD(D)a

∗Gv)
)
(u0) = 0 for all v ∈ ker(m∗ − Da∗G̊)},

where � : BD(D) → BD(G)′ is the natural unitary map as in Proposition 2.8.

We emphasize that boundary regularity is not needed in Corollary 5.4.
The next lemma gives an easy-to-verify condition which implies that T̊ has closed range.

Lemma 5.5 If the inclusion τ : dom(G̊) → H0 is compact, then T̊ has closed range.

Proof There existμ,ω > 0 such thatμ‖u‖2
dom(G̊)

� Re b̊(u)+ω‖τu‖2H0
for allu ∈ dom(G̊).

Then, μ‖u‖2
dom(G̊)

� Re(T̊ u, u)dom(G̊)
+ ω(τ ∗τu, u)dom(G̊)

= Re((T̊ + ωτ ∗τ)u, u)dom(G̊)

for all u ∈ dom(G̊). So T̊ + ωτ ∗τ is injective and has closed range. Similarly, (T̊ )∗ + ωτ ∗τ
is injective. So T̊ + ωτ ∗τ is invertible. Since ωτ ∗τ is compact, the operator T̊ is Fredholm.
In particular, the range of T̊ is closed. �	

Note that the operator τ is compact in the situation of Example 2.3.

Example 5.6 Let � ⊂ R
d be a bounded Lipschitz domain with boundary �. Let G and D be

as in Example 2.3. If u0 ∈ BD(G), v ∈ H0 and� : BD(D) → BD(G)′ is the natural unitary
map as in Proposition 2.8, then it follows from Example 2.10 and Proposition 2.9(b) that

(
�(πBD(D)a

∗Gv)
)
(u0) = 〈(νπBD(D)a

∗Gv),Tr u0〉(Tr H1(�))′×Tr H1(�)

= 〈(νa∗Gv),Tr u0〉(Tr H1(�))′×Tr H1(�)

= 〈(∂a∗
ν v),Tr u0〉H−1/2(∂�),H1/2(∂�),

where ∂a
∗

ν is the co-normal derivative. So Corollary 5.4 gives

dom(�) = {u0 ∈ BD(G) : 〈(∂a∗
ν v),Tr u0〉H−1/2(∂�),H1/2(∂�) = 0 for all v ∈ ker(m∗ − Da∗G̊)},

in agreement with [8] Proposition 4.10.

Next, we turn to the Neumann-to-Dirichlet graph.

Proposition 5.7 Assume that ran(T ) is closed in dom(G). Then,

dom(�−1) = {q0 ∈ BD(D) : (Dq0, πBD(G)v)BD(G) = 0 for all v ∈ ker(m∗ − D̊a∗G)}.
Before we prove the latter proposition, we need a lemma.

Lemma 5.8 Let q0 ∈ BD(D). Let f0 ∈ dom(G) be such that

( f0, v)dom(G) = (Dq0, πBD(G)v)BD(G)

for all v ∈ dom(G). Let u ∈ dom(G). Then, the following statements are equivalent.

(i) Tu = f0.
(ii) u ∈ dom(DaG), mu − DaGu = 0 and q0 = πBD(D)aGu.

Proof ‘(i)⇒(ii)’. Let v ∈ dom(G). Then,

(mu, v)H0 + (aGu,Gv)H1 = b(u, v) = (Tu, v)dom(G) = ( f0, v)dom(G)

= (Dq0, πBD(G)v)BD(G).
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Hence, (mu, v)H0 + (aGu, G̊v)H1 = 0 for all v ∈ dom(G̊). So aGu ∈ dom((G̊)∗) =
dom(D) and DaGu = −(G̊)∗aGu = mu. In particular, u ∈ dom(DaG). Alternatively, if
v ∈ BD(G), then

(Dq0, v)BD(G) = (Dq0, πBD(G)v)BD(G) = (mu, v)H0 + (aGu,Gv)H1

= (DaGu, DGv)H0 + (aGu,Gv)H1 = (aGu,Gv)dom(D)

= (πBD(D)aGu,Gv)BD(D) = (DπBD(D)aGu, v)BD(G)

by Lemma 2.7. So q0 = πBD(D)aGu.
‘(ii)⇒(i)’. Let v ∈ dom(G̊). Since (G̊)∗ = −D one deduces that

(Tu, v)dom(G) = b(u, v) = (aGu, G̊v)H1 + (mu, v)H0

= −(DaGu, v)H0 + (mu, v)H0 = 0 = (Dq0, πBD(G)v)BD(G)

= ( f0, v)dom(G).

Alternatively, if v ∈ BD(G), then

(Tu, v)dom(G) = b(u, v) = (aGu,Gv)H1 + (mu, v)H0

= (aGu,Gv)H1 + (DaGu, DGv)H0

= (aGu,Gv)dom(D) = (πBD(D)aGu,Gv)BD(D) = (q0,Gv)BD(D)

= (Dq0, v)BD(G) = ( f0, v)dom(G).

So by linearity (Tu, v)dom(G) = ( f0, v)dom(G) for all v ∈ dom(G) and Tu = f0. �	
Proof of Proposition 5.7 Let q0 ∈ BD(D). Let f0 ∈ dom(G) be as in Lemma 5.8. Then, it
follows from Lemma 5.8 that q0 ∈ dom(�−1) if and only if f0 ∈ ran(T ). But ran(T ) =
(ker(T ∗))⊥dom(G) since ran(T ) is closed in dom(G). Now, ker(T ∗) = ker(m∗ − D̊a∗G)

because G∗ = −D̊. Hence, f0 ∈ ran(T ) if and only if (Dq0, πBD(G)v)BD(G) = 0 for all
v ∈ ker(m∗ − D̊a∗G). �	

As in Lemma 5.5, one has the following sufficient condition for the closedness of ran(T ).

Lemma 5.9 If the inclusion dom(G) ⊂ H0 is compact, then ran(T ) is closed in dom(G).

In our model case Example 2.3, the inclusion dom(G) ⊂ H0 is compact if � is bounded
and has a continuous boundary.

We conclude with a variant of the Dirichlet-to-Neumann graph involving an intermediate
space as in Sect. 3. Throughout the remainder of this section, let H be a Hilbert space and
κ ∈ L(BD(G), H) injective with dense range. Define

�H = {(ϕ, ψ) ∈ H × H : there exists a u0 ∈ BD(G) such that

κ(u0) = ϕ and (u0,Gκ∗ψ) ∈ �}.
We call �H the Dirichlet-to-Neumann graph in H associated with −DaG + m. It follows
from Lemma 5.2 that �H is single-valued if ker(m − DaG̊) = {0}.

The graph �H can be described with a form.

Proposition 5.10 Define j : dom(G) → H by j = κ ◦ πBD(G). Then,

�H = {(ϕ, ψ) ∈ H × H : there exists a u ∈ dom(G) such that

j(u) = ϕ and b(u, v) = (ψ, j(v))dom(G) for all v ∈ dom(G)}.
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Proof This follows as in the proof of Proposition 3.6. �	
Corollary 5.11 If ker(−DaG̊ +m) = {0} and the inclusion dom(G) ⊂ H0 is compact, then
�H is an m-sectorial operator.

Proof Let j = κ ◦ πBD(G) : dom(G) → H and let V (b) = {u ∈ dom(G) : b(u, v) =
0 for all v ∈ ker j}. Then, V (b) ∩ ker j = ker(−DaG̊ + m) = {0}. Then, the statement
follows from [1] Theorem 8.11 and Proposition 5.10. �	

Even if the inclusion dom(G) ⊂ H0 is compact, then in general �H is not an m-sectorial
graph. A counterexample has been given in [7] Example 3.7.

6 Resolvent convergence, non-coercive case

In this section, we consider resolvent convergence of a sequence of Dirichlet-to-Neumann
operators without the coercivity condition on m. Throughout this section, we adopt the
notation and assumptions as in the beginning of Sect. 2. Let H be a Hilbert space, and let
κ ∈ L(BD(G), H) be one-to-one with dense range. Set j = κ ◦ πBD(G) : dom(G) → H .

We need a stronger version of convergence for the leading coefficients, which we next
introduce. Let a, a1, a2, . . . ∈ L(H1) be coercive. We say that (an)n∈N converges to a inde-
pendent of the boundary conditions if for every strictly increasing sequence (nk)k∈N in N,
all f , f1, f2, . . . ∈ H0 and all u, u1, u2, . . . ∈ dom(G) with

⎡

⎢
⎣

lim
k→∞ fk = f weakly in H0,

lim
k→∞ uk = u weakly in dom(G), and

uk ∈ dom(DankG) and − DankGuk = fk for all k ∈ N

(11)

it follows that lim
k→∞ ankGuk = aGu weakly in H1.

Note that D is weakly closed and limk→∞ D(ankGuk) = limk→∞ − fk = − f weakly in
H0. So aGu ∈ dom(D) and −DaGu = f . In particular, u ∈ dom(DaG).

Example 6.1 In this example, we show that in the classical situation, convergence of the
coefficients independent of the boundary conditions is equivalent to the already studied
notion of H -convergence, see [15] and [9].

Let � ⊂ R
d be open and bounded. Further, let H0, H1, G and D be as in Example 2.3.

We identify an element of L∞(�,Cd×d) with an element of L(H1) in the natural way. Let
a, a1, a2, . . . ∈ L∞(�,Rd×d). Note that we require that the matrices are real valued, but
they do not have to be symmetric. Suppose that Re an � μI for all n ∈ N, Re a � μI and
supn ‖an‖L(H1) < ∞.

Recall that the sequence (an)n∈N is called H -convergent to a, if for all f ∈ H−1(�) and
for all n ∈ N with un ∈ H1

0 (�) satisfying

(an grad un, grad v)L2(�)d = f (v)

for all v ∈ H1
0 (�), it follows that limn→∞ un = u weakly in H1

0 (�) and limn→∞ an grad un
= a grad u weakly in L2(�)d , where u ∈ H1

0 (�) is such that

(a grad u, grad v)L2(�)d = f (v)

for all v ∈ H1
0 (�).
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Suppose that the sequence (an)n∈N is H -convergent to a. We show that (an)n∈N converges
to a independent of the boundary conditions. Let f , f1, f2, . . . ∈ L2(�), u, u1, u2, . . . ∈
H1(�) and (nk)k∈N satisfy (11). Then, every subsequence (ank )k∈N is H -convergent to a
by the discussion after Definition 6.4 in [15]. So without loss of generality we may assume
that nk = k for all k ∈ N. As (uk)k∈N converges to u weakly in H1(�), it also converges
weakly in H1

loc(�). The inclusion H1
0 (�) ⊂ L2(�) is compact since � is bounded. Hence,

also the inclusion L2(�) ⊂ (H1
0 (�))′ = H−1(�) is compact. Therefore, ( fk)k∈N converges

strongly to f in H−1(�) ⊂ H−1
loc (�). Then, the criteria of Lemma 10.3 in [15] are fulfilled

and we obtain that (akGuk)k∈N converges weakly to aGu in L2,loc(�)d . Since the sequence
(akGuk)k∈N in L2(�)d is bounded in L2(�)d , there exists a q ∈ L2(�)d and a subsequence
of (akGuk)k∈N that weakly converges to q in L2(�)d . By uniqueness of limits in L2,loc(�)d ,
we must have that q = aGu. So the subsequence converges to aGu in L2(�)d . Using the
standard subsequence argument, we deduce that (akGuk)k∈N converges weakly to aGu in
L2(�)d = H1.

Conversely, suppose that (an)n∈N converges to a independent of the boundary conditions.
We shall prove that the sequence (an)n∈N is H -convergent to a. Let f ∈ H−1(�). For all
n ∈ N, let un, u ∈ H1

0 (�) satisfy

(an grad un, grad v)L2(�)d = f (v) and (a grad u, grad v)L2(�)d = f (v)

for all v ∈ H1
0 (�). We need to show that lim un = u weakly in H1

0 (�) and lim an grad un =
a grad u weakly in L2(�)d . Since L2(�) is dense in H−1(�), there exists a sequence ( f�)�∈N
in L2(�) such that lim�→∞ f� = f in H−1(�). For all n, � ∈ N, let u�

n, u
� ∈ H1

0 (�) be
such that

(an grad u�
n, grad v)L2(�)d = ( f�, v)L2(�) and (a grad u�, grad v)L2(�)d = ( f�, v)L2(�)

for all v ∈ H1
0 (�).

Let � ∈ N.We shall show that limn→∞ u�
n = u� weakly in H1

0 (�) and limn→∞ an grad u�
n

= a grad u� weakly in L2(�)d . Note that the sequence (u�
n)n∈N is bounded in H1

0 (�).
Choose (nk)k∈N to be a strictly increasing sequence of natural numbers such that (u�

nk )k∈N
weakly converges in H1

0 (�), say tow� ∈ H1
0 (�). Since the sequence (an)n∈N converges to a

independent of the boundary conditions, one deduces that limk→∞ ank grad u�
nk = a gradw�

weakly in L2(�)d and

(a gradw�, grad v)L2(�)d = ( f�, v)L2(�)

for all v ∈ H1
0 (�). Uniqueness of u� implies w� = u�. Hence, limn→∞ u�

n = u� weakly
in H1

0 (�) by a subsubsequence argument. Since the sequence (an)n∈N converges to a inde-
pendent of the boundary conditions, we obtain limn→∞ an grad u�

n = a grad u� weakly in
L2(�)d .

By the Dirichlet-type Poincaré inequality, there exists a c0 > 0 such that ‖v‖L2(�) �
c0‖ grad v‖L2(�)d for all v ∈ H1

0 (�). If n, � ∈ N, then

μ‖ grad(u�
n − un)‖2L2(�)d

� Re(an grad(u�
n − un), grad(u

�
n − un))L2(�)d

= Re( f� − f )(u�
n − un)

� ‖ f� − f ‖H−1(�)‖u�
n − un‖H1

0 (�)

� (1 + c0)‖ f� − f ‖H−1(�)‖ grad(u�
n − un)‖L2(�)d .
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Therefore,

‖u�
n − un‖H1

0 (�) � (1 + c0)‖ grad(u�
n − un)‖L2(�)d � (1 + c0)

2μ−1‖ f� − f ‖H−1(�).

Similarly, ‖u� − u‖H1
0 (�) � (1 + c0)2μ−1‖ f� − f ‖H−1(�). If n, � ∈ N, then

‖an grad u�
n − an grad un‖L2(�)d � c‖u�

n − un‖H1
0 (�) � c(1 + c0)

2μ−1‖ f� − f ‖H−1(�),

where c = ‖a‖L(H1)∨supk∈N ‖ak‖L(H1). Similarly, onededuces‖a grad u�−a grad u‖L2(�)d

� c(1 + c0)2μ−1‖ f� − f ‖H−1(�). Now, let v ∈ H1
0 (�). Then,

|(un − u, v)H1
0 (�)| � |(un − u�

n, v)H1
0 (�)| + |(u�

n − u�, v)H1
0 (�)| + |(u� − u, v)H1

0 (�)|
� (1 + c0)

2μ−1‖ f − f�‖H−1(�)‖v‖H1
0 (�) + |(u�

n − u�, v)H1
0 (�)|

+ (1 + c0)
2μ−1‖ f − f�‖H−1(�)‖v‖H1

0 (�)

for all �, n ∈ N, which yields limn→∞ un = u weakly in H1
0 (�). It follows similarly

that limn→∞ an grad un = a grad u weakly in L2(�)d . Hence, the sequence (an)n∈N is
H -convergent to a.

The condition (an)n∈N converges to a independent of the boundary conditions, which we
use in this section, is stronger than the condition used for the convergence in Theorem 4.2.

Proposition 6.2 Let a, a1, a2, . . . ∈ L(H1) and μ > 0. Suppose that Re an � μI for all
n ∈ N and Re a � μI . Suppose that (an)n∈N converges to a independent of the boundary
conditions. Further assume that the inclusion dom(G) ⊂ H0 is compact. Let ι : ran(G) ↪→
H1 be the embeddingmap. Then, limn→∞(ι∗anι)−1 = (ι∗aι)−1 in theweakoperator topology
on L(ran(G)).

Proof Let q ∈ ran(G)∩dom(D̊). Let n ∈ N. Write rn = (ι∗anι)−1q . Then, rn ∈ ran(G) and
‖rn‖H1 � μ−1‖q‖H1 . There exists a un ∈ dom(G)∩(ker(G))⊥H0 such thatGun = rn . Then,
the sequence (un)n∈N is bounded in dom G by Lemma 4.1(a). Passing to a subsequence if
necessary, there exists a u ∈ dom(G) such that lim un = u weakly in dom(G). Let n ∈ N.
Then, q = ι∗anιrn = ι∗anGun . Since q ∈ dom(D̊) it follows from Lemma 4.4(a) that
anGun ∈ dom(D̊) and D̊anGun = D̊ι∗anGun = D̊q . Because (an)n∈N converges to a
independent of the boundary conditions, we obtain that lim anGun = aGu weakly in H1.
Since the operator D̊ is closed, we obtain that aGu ∈ dom(D̊) and D̊aGu = D̊q . Using
again Lemma 4.4(a), one deduces that ι∗aGu ∈ dom(D̊) and D̊ι∗aGu = D̊q . Hence,
(D̊ι)ι∗aιGu = (D̊ι)q . Since D̊ι is injective by Lemma 4.4(c), it follows that ι∗aιGu = q .
So Gu = (ι∗aι)−1q . Then,

lim
n→∞(ι∗anι)−1q = lim

n→∞ rn = lim
n→∞Gun = Gu = (ι∗aι)−1q

weakly in ran(G).
Finally, since sup ‖(ι∗anι)−1‖L(ran(G)) < ∞ and ran(G)∩ dom(D̊) is dense in ran(G) by

Lemma 4.4(b), one concludes that lim(ι∗anι)−1 = (ι∗aι)−1 in the weak operator topology
on L(ran(G)). �	
Remark 6.3 The above proposition is also valid if ι is replaced by the embedding of a closed
subspace of ran(G)which contains ran(G̊). This is themotivation for the terminology (an)n∈N
converges to a independent of the boundary conditions.

The main theorem of this section is as follows.
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Theorem 6.4 Let a, a1, a2, . . . ∈ L(H1), m,m1,m2, . . . ∈ L(H0) and μ > 0. Suppose
that Re an � μI for all n ∈ N, Re a � μI and supn ‖an‖L(H1) < ∞. Suppose that
(an)n∈N converges to a independent of the boundary conditions and limmn = m in the
weak operator topology on L(H0). Assume that ker(mn − DanG̊) = {0} for all n ∈ N and
ker(m − DaG̊) = {0}. Further assume that the inclusion dom(G) ⊂ H0 is compact.

For all n ∈ N, let �
(n)
H and �H be the Dirichlet-to-Neumann operators in H associated

with −DanG + mn and −DaG + m, respectively. Then, one has the following.

(a) The sequence (�
(n)
H )n∈N of operators is uniformly sectorial.

(b) limn→∞(λI + �
(n)
H )−1 = (λI + �H )−1 in the weak operator topology for all large

λ > 0.
(c) If κ is compact, then

lim
n→∞(λI + �

(n)
H )−1 = (λI + �H )−1

uniformly in L(H) for all large λ > 0.

The proof requires a lot of preparation. Adopt the notation and assumptions of Theo-
rem 6.4. For all n ∈ N, define bn : dom(G) × dom(G) → C by

bn(u, v) = (anGu,Gv)H1 + (mnu, v)H0

and define V (bn) = {u ∈ dom(G) : bn(u, v) = 0 for all v ∈ ker j}. Define similarly b and
V (b).

Lemma 6.5 For all ε > 0, there exists an ω > 0 such that

‖u‖2H0
� ε‖u‖2dom(G) + ω‖ j(u)‖2H

for all n ∈ N and u ∈ V (bn).

Proof Let n ∈ N. Since ker(mn − DanG̊) = {0}, the restriction j |V (bn) is injective. Because
also the inclusion dom(G) ⊂ H0 is compact, it follows that for all ε > 0 there exists an
ω > 0 such that

‖u‖2H0
� ε‖u‖2dom(G) + ω‖ j(u)‖2H

for all u ∈ V (bn). We next show that one can choose ω uniformly in n.
Suppose the lemma is false. Then, without loss of generality and passing to a subsequence

if necessary there exist ε > 0 and for all n ∈ N there exists a un ∈ V (bn) such that

‖un‖2H0
> ε‖un‖2dom(G) + n‖ j(un)‖2H .

Without loss of generality, we may assume that ‖un‖H0 = 1 for all n ∈ N. Then,
ε‖un‖2dom(G) � 1 for all n ∈ N, so the sequence (un)n∈N is bounded in dom(G). Pass-
ing to a subsequence if necessary there exists a u ∈ dom(G) such that lim un = u weakly in
dom(G). Since the inclusion dom(G) ⊂ H0 is compact, it follows that u = lim un in H0. In
particular, ‖u‖H0 = 1 and u �= 0. Also, j(u) = lim j(un) = 0 in H , so u ∈ ker j = dom(G̊).

If n ∈ N, then (anGun, G̊v)H1 = −(mnun, v)H0 for all v ∈ dom(G̊) = ker j , since
un ∈ V (bn). Therefore, anGun ∈ dom((G̊)∗) = dom(D) and −DanGun = −mnun .
Next, limmnun = mu weakly in H0. Since (an)n∈N converges to a independent of the
boundary conditions one deduces that aGu ∈ dom(D) and −DaGu = −mu. Then, u ∈
ker(m − DaG̊) = {0}. So u = 0. This is a contradiction. �	
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Lemma 6.6 There exist μ̃, ω > 0 such that

μ̃‖u‖2dom(G) � Re bn(u) + ω‖ j(u)‖2H
for all n ∈ N and u ∈ V (bn).

Proof Let ω̃ = μ + supn ‖mn‖L(H0). Then,

μ‖u‖2dom(G) � Re(anGu,Gu)H1 + μ‖u‖2H0
� Re bn(u) + ω̃‖u‖2H0

for all n ∈ N and u ∈ dom(G).
Choose ε = μ

2ω̃ and let ω > 0 be as in Lemma 6.5. Let n ∈ N and u ∈ V (bn). Then,

μ‖u‖2dom(G) � Re bn(u) + ω̃‖u‖2H0

� Re bn(u) + ω̃
( μ

2ω̃
‖u‖2dom(G) + ω‖ j(u)‖2H

)

= Re bn(u) + μ

2
‖u‖2dom(G) + ωω̃‖ j(u)‖2H .

So
μ

2
‖u‖2dom(G) � Re bn(u) + ωω̃‖ j(u)‖2H

and the lemma follows. �	
Now, we are able to prove Theorem 6.4.

Proof of Theorem 6.4 Let μ̃, ω > 0 be as in Lemma 6.6.
‘(a)’. Set c = supn∈N(‖an‖L(H1) + ‖mn‖L(H0)). Let n ∈ N and ϕ ∈ dom(�

(n)
H ). There

exists a u ∈ dom(G) such that j(u) = ϕ and bn(u, v) = (�
(n)
H ϕ, j(v))H for all v ∈ dom(G).

Then, u ∈ V (bn) and ((�
(n)
H +ωI )ϕ, ϕ)H = bn(u)+ω‖ j(u)‖2H , soRe((�(n)

H +ωI )ϕ, ϕ)H �
μ̃‖u‖2dom(G). Therefore,

| Im((�
(n)
H + ωI )ϕ, ϕ)H | = | Im bn(u)| � c‖u‖2dom(G) � c

μ̃
Re((�(n)

H + ωI )ϕ, ϕ)H .

Hence, the operators �
(n)
H are sectorial with vertex −ω and semi-angle arctan c

μ̃
, uniformly

in n.
‘(b)’. In order not to repeat part of the proof in Statement (c), we first prove something

more general. Let λ > ω. Let ψ,ψ1, ψ2, . . . ∈ H and suppose that limψn = ψ weakly in
H . We shall prove that lim(λI + �

(n)
H )−1ψn = (λI + �H )−1ψ weakly in H .

Let n ∈ N. Set ϕn = (λI + �
(n)
H )−1ψn . There exists a un ∈ V (bn) such that j(un) = ϕn

and
bn(un, v) + λ( j(un), j(v))H = (ψn, j(v))H (12)

for all v ∈ dom(G). Choose v = un . Then, Lemma 6.6 gives

μ̃‖un‖2dom(G) � Re bn(un) + λ‖ j(un)‖2H = Re(ψn, j(un))H

� ‖ψn‖H ‖ j‖L(dom(G),H) ‖un‖dom(G).

So ‖un‖dom(G) � μ̃−1‖ψn‖H ‖ j‖L(dom(G),H). Since the sequence (ψn)n∈N is bounded in
H , the sequence (un)n∈N is bounded in dom(G). Passing to a subsequence if necessary,
there exists a u ∈ dom(G) such that lim un = u weakly in dom(G). Since the inclusion
dom(G) ⊂ H0 is compact, one deduces that lim un = u in H0. Then, limmnun = mu
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weakly in H0. Moreover, lim ϕn = lim j(un) = j(u) weakly in H . Next, we show that
j(u) = (λI + �H )−1ψ .

Let n ∈ N. If v ∈ ker j = dom(G̊), then bn(un, v) = 0, so (anGun, G̊v)H1 =
−(mnun, v)H0 . Hence, anGun ∈ dom((G̊)∗) = dom(D) and −DanGun = −mnun . In par-
ticular, un ∈ dom(DanG). Moreover, lim un = u weakly in dom(G) and limmnun = mu
weakly in H0. Since (an)n∈N converges to a independent of the boundary conditions, one
deduces that lim anGun = aGu weakly in H1.

Let v ∈ dom(G). If n ∈ N, then (12) gives

(anGun,Gv)H1 + (mnun, v)H0 + λ( j(un), j(v))H = (ψn, j(v))H .

Taking the limit n → ∞, one establishes

(aGu,Gv)H1 + (mu, v)H0 + λ( j(u), j(v))H = (ψ, j(v))H .

So b(u, v)+λ( j(u), j(v))H = (ψ, j(v))H . Therefore, j(u) ∈ dom(�H ) and one establishes
that (λI + �H ) j(u) = ψ . With the usual subsequence argument, we proved that lim(λI +
�

(n)
H )−1ψn = (λI+�H )−1ψ weakly in H . Now, Statement (b) follows by choosingψn = ψ

for all n ∈ N.
‘(c)’. Finally, suppose that κ is compact. Then, also j is compact. Let λ > ω. Suppose

lim(λI + �
(n)
H )−1 = (λI + �H )−1 in L(H) is false. Passing to a subsequence if necessary,

there exist δ > 0 and ψ1, ψ2, . . . ∈ H such that

‖(λI + �
(n)
H )−1ψn − (λI + �H )−1ψn‖H > δ‖ψn‖H

for all n ∈ N. Without loss of generality, we may assume that ‖ψn‖H = 1 for all n ∈ N.
Passing again to a subsequence if necessary, there exists a ψ ∈ H such that limψn = ψ

weakly in H . Let un ∈ V (bn) and u ∈ dom(G) be as in Part (b) for all n ∈ N. Then,
lim un = u weakly in dom(G), so

lim
n→∞(λI + �

(n)
H )−1ψn = lim

n→∞ j(un) = j(u) = (λI + �H )−1ψ

in H by the compactness of j . Similarly limn→∞(λI + �
(n)
H )−1ψ = (λI + �H )−1ψ in H .

So

lim
n→∞ ‖(λI + �

(n)
H )−1ψn − (λI + �H )−1ψn‖H = 0.

This is a contradiction. �	
Note that the limit Dirichlet-to-Neumann graph �H is an operator in Theorem 6.4. In [4]

Theorem 5.11, a different condition on the an is used to obtain resolvent convergence for
symmetric operators/graphs, but possibly multi-valued limit graph�H . Since we do not wish
to require symmetry in Theorem 6.4 and we need that the limit graph �H is m-sectorial, we
require conveniently that all graphs are single-valued. See also the discussion at the end of
Sect. 5.

Finally, we compare various conditions on the an in the classical case.

Example 6.7 In this example, we characterize the condition limn→∞(ι∗anι)−1 = (ι∗aι)−1 in
theweak operator topology ofL(ran(G)) in Theorem4.2 for the classical case of Example 2.3
and real symmetric coefficients.

Let � ⊂ R
d be open, bounded and connected. Assume that H1(�) embeds compactly

into L2(�). Further, let H0, H1, G and D be as in Example 2.3. We identify an ele-
ment of L∞(�,Cd×d) with an element of L(H1) in the natural way. Let a, a1, a2, . . . ∈
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L∞(�,Rd×d). Suppose that an = a∗
n � μI for all n ∈ N and supn ‖an‖L(H1) < ∞.

Moreover, assume that a = a∗ � μI . We emphasize that the an and a are real valued and
symmetric. Then, the following three conditions are equivalent.

(a) The sequence (an)n∈N is H -convergent to a.
(b) The sequence (an)n∈N converges to a independent of the boundary conditions.
(c) limn→∞(ι∗anι)−1 = (ι∗aι)−1 in the weak operator topology of L(ran(G)).

We proved the implications (a)⇒(b)⇒(c) in Example 6.1 and Proposition 6.2. So it remains
to show the implication (c)⇒(a).

Suppose that limn→∞(ι∗anι)−1 = (ι∗aι)−1 in the weak operator topology of L(ran(G)).
Since an � μI for all n ∈ N and supn ‖an‖L(H1) < ∞, it follows from [15] Theorem 6.5
that the sequence (an)n∈N has a subsequence (ank )k∈N which is H -convergent. Hence, there
exist b ∈ L∞(�,Rd×d) and ν > 0 such that Re b � ν I and the sequence (ank )k∈N is H -
convergent to b. Then, b = b∗ by [15] Lemma 10.2. It follows from the implication (a)⇒(c)
that limk→∞(ι∗ank ι)−1 = (ι∗bι)−1 in the weak operator topology of L(ran(G)). Therefore,
(ι∗aι)−1 = (ι∗bι)−1 and (ι∗aι) = (ι∗bι). So

(a grad u, grad v)L2(�)d = (b grad u, grad v)L2(�)d

for all u, v ∈ H1(�). Write c = a − b. Then, (c grad u, grad v)L2(�)d = 0 for all u, v ∈
H1(�). We shall show that c = 0. Let τ ∈ C∞

c (�) and ξ ∈ R
d . For all λ � 1, define

uλ ∈ C∞
c (�) by uλ(x) = τ(x) eiλξ ·x . Then,

0 = (c grad uλ, grad uλ)L2(�)d = (c(grad τ + iλτξ), (grad τ + iλτξ))L2(�)d .

Dividing by λ2 and taking the limit λ → ∞ gives
∫
�

|τ(x)|2〈c(x)ξ, ξ 〉Cd dx = 0. This
implies that 〈c(x)ξ, ξ 〉Cd = 0 for almost all x ∈ �. Since Rd is separable and c = c∗, this
implies that c = 0 almost everywhere. So b = a almost everywhere. We proved that the
sequence (ank )k∈N is H -convergent to a.

It follows similarly that every subsequence of (an)n∈N has a subsubsequence which is
H -convergent to a. Since the topology of H -convergence is metrizable by the discussion
after Definition 6.4 in [15] one concludes that the sequence (an)n∈N is H -convergent to a.
This completes the proof of the implication (c)⇒(a).

In [19] Theorem1.2, it is proved that the three equivalent conditions are also equivalent to a
version of Condition (c), where grad is replaced by ˚grad and ι by the embedding ran( ˚grad) ⊂
H1; see also Remark 6.3.

Remark 6.8 In the situation of Example 6.7, we deduce that convergence of (an)n∈N in the
weak∗ topology of L∞(�,Rd×d) neither implies nor is implied by lim(ι∗anι)−1 = (ι∗aι)−1

in the weak operator topology of L(ran(G)). One may also consult [20, Examples 3.2 and
3.4] on this.

7 More examples

The first example is from linearized elasticity.

Example 7.1 Let � ⊂ R
d be open. Set

L2,sym(�) = {S ∈ L2(�)d×d : ST = S a.e.}.
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Choose H0 = L2(�)d and H1 = L2,sym(�). Define Ĝ : C∞
c (�)d → L2,sym(�) by

(Ĝu)kl = 1

2

(
∂kul + ∂l uk

)
.

Further define D̂ : C∞
c (�)d×d ∩ L2,sym(�) → L2(�)d by

(D̂q)k =
d∑

l=1

∂lqkl .

Then, dom(Ĝ) is dense in H0 and dom(D̂) is dense in H1. Moreover, using integration by
parts one deduces that (2) is valid. Then, one can apply Example 2.2.

Korn’s first inequality implies that ‖∂kul‖L2(�) �
√
2‖Ĝu‖H1 for all u ∈ C∞

c (�)d and
k, l ∈ {1, . . . , d}. So dom(G̊) ⊂ H1

0 (�). In particular, the inclusion dom(G̊) ⊂ H0 is
compact if � is bounded.

Under some regularity conditions on the boundary of �, Korn’s second inequality states
that there exists a c > 0 such that ‖∂kul‖L2(�) � c‖u‖dom(G) for all u ∈ dom(G) and
k, l ∈ {1, . . . , d}. For example, if � is bounded with a Lipschitz boundary, then Korn’s
second inequality is valid. For an easy proof see [10] Section 3. If Korn’s second inequality
is valid, then dom(G) ⊂ H1(�)d . Consequently, if Korn’s second inequality is valid and �

has a continuous boundary, then the inclusion H1(�) ⊂ L2(�) is compact and hence the
inclusion dom(G) ⊂ H0 is compact. We point out that Korn’s second inequality is not a
necessary condition for the inclusion dom(G) ⊂ H0 to be compact, see [21] Theorem 1.

In particular, suppose � is bounded with a Lipschitz boundary and write � = ∂�. Let
σ ∈ (−∞, 1

2 ] and set H = Hσ (�)d . Then, Tr u ∈ H for all u ∈ dom(G). Moreover,
Tr |BD(G) : BD(G) → H is injective and has dense range. So one can consider as in Sect. 3
a Dirichlet-to-Neumann operator in H . Note that Tr |BD(G) is compact if σ < 1

2 .

The second example is from electro-magneto statics.

Example 7.2 Let � ⊂ R
3 be open. Using integration by parts, one deduces that

(curl u, v)L2(�)3 = (u, curl v)L2(�)3

for all u, v ∈ C∞
c (�)3. Therefore, let H0 = H1 = L2(�)3 and define Ĝ = D̂ : C∞

c (�)3 →
L2(�)3 by Ĝu = D̂u = i curl u. Then, (2) is satisfied.Using the construction inExample 2.2,
one obtains a new example.
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