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Abstract In this paper, we study the local behaviors of positive solutions of

(−�)σ u = |x |τu p

with an isolated singularity at the origin,where (−�)σ is the fractional Laplacian, 0 < σ < 1,
τ > −2σ and p > 1. Our first results provide a blowup rate estimate near an isolated
singularity, and show that the solution is asymptotically radially symmetric.
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1 Introduction

The Hardy–Hénon equation

− �u = |x |τu p in B1\{0} (1)

has been studied in many papers, where � := ∑n
i=1

∂2

∂x2i
denotes the Laplacian, τ > −2,

p > 1 are parameters, the punctured unit ball B1 \ {0} ⊂ R
n with n ≥ 3.
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42 Y. Li, J. Bao

The blowup rate of solution of (1) has been very well understood. In the special case of
τ = 0, there exists a positive constant C such that

u(x) ≤ C |x |− 2
p−1 near x = 0, 1 < p ≤ n + 2

n − 2
, p �= n

n − 2
. (2)

See Lions [20] for 1 < p < n
n−2 , Gidas–Spruck [10] for n

n−2 < p < n+2
n−2 , Korevaar–

Mazzeo–Pacard–Schoen [14] for p = n+2
n−2 . Aviles [1,2] treated the case of p = n

n−2 and
obtained that

u(x) ≤ C |x |2−n(− ln |x |)− n−2
2 near x = 0. (3)

In the case of −2 < τ < 2, the upper bound has the following forms near x = 0,

u(x) ≤ C |x |2−n if 1 < p < n+τ
n−2 (see [10,21,28]),

u(x) ≤ C |x |− 2+τ
p−1 if n+τ

n−2 < p < n+2
n−2 (see [10]),

u(x) ≤ C |x |2−n(− ln |x |)− n−2
2+τ if p = n+τ

n−2 (see [1,2]).

(4)

Phan–Souplet [22] studied the case of −2 < τ and 1 < p < n+2
n−2 , and derived that

u(x) ≤ C |x |− 2+τ
p−1 , |∇u(x)| ≤ C |x |− p+1+τ

p−1 near x = 0, (5)

where ∇u denotes the gradient of u. We point out that the first estimate of (5) extends a
number of previously results of [10] and [20] regarding them as consequence.

In the classical paper [6], Caffarelli–Gidas–Spruck considered the semilinear elliptic equa-
tions

−�u = g(u) in B1\{0},
and proved that every solution is asymptotically radially symmetric

u(x) = ū(|x |)(1 + O(|x |)) as x → 0. (6)

Here g(u) is a locally Lipschitz function and ū(|x |) := −
∫
Sn

u(|x |θ)dθ is the spherical average
of u. A typical example is g(u) = u p with n

n−2 ≤ p ≤ n+2
n−2 . Li [15] obtained a weaker

asymptotically radially symmetric for more general g(x, u) = |x |τu p , where τ ≤ 0, and
1 < p ≤ n+2+τ

n−2 .
Inspired by previous work, this paper is aiming at studying the local behaviors of positive

solutions of
(−�)σ u = |x |τu p in B1\{0}, (7)

where 0 < σ < 1, τ > −2σ , p > 1, the punctured unit ball B1\{0} ⊂ R
n , n ≥ 2, and

(−�)σ is the fractional Laplacian taking the form

(−�)σ u(x) := Cn,σP.V.
∫

Rn

u(x) − u(y)

|x − y|n+2σ dy = Cn,σ lim
ε→0+

∫

Rn\Bε(x)

u(x) − u(y)

|x − y|n+2σ dy, (8)

here P.V. stands for the Cauchy principal value and

Cn,σ := 22σ σ�( n2 + σ)

π
n
2 �(1 − σ)

with the gamma function �. The operator (−�)σ is well defined in the Schwartz space of
rapidly decaying C∞ functions in Rn .
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Local behavior of solutions to fractional... 43

One can also define the fractional Laplacian acting on spaces of functions with weaker
regularity. Considering the space

Lσ (Rn) :=
{

u ∈ L1
loc(R

n) :
∫

Rn

|u(x)|
1 + |x |n+2σ dx < ∞

}

,

endowed with the norm

‖u‖Lσ (Rn) :=
∫

Rn

|u(x)|
1 + |x |n+2σ dx .

We can verify that if u ∈ C2(B1\{0}) ∩ Lσ (Rn), the integral on the right hand side of (8) is
well defined in B1\{0}. Moreover, from [24, Proposition 2.4], we have

(−�)σ u ∈ C1,1−2σ (B1\{0}), if 0 < σ < 1
2 ,

(−�)σ u ∈ C0,2−2σ (B1\{0}), if 1
2 ≤ σ < 1.

Problems concerning the fractional Laplacian (−�)σ with an internal isolated singularity
have attracted a lot of attention. In particular, Caffarelli–Jin–Sire–Xiong [7] studied the local
behaviors of positive solutions of the fractional Yamabe equations

(−�)σ u = u
n+2σ
n−2σ in B1\{0} (9)

with an isolated singularity at the origin. They obtained sharp blowup rate,

u(x) ≤ C |x |− n−2σ
2 near x = 0, (10)

and proved that every local solution of (9) is asymptotically radially symmetric

u(x) = ū(|x |)(1 + O(|x |)) as x → 0. (11)

It is consistent with the result of Korevaar–Mazzeo–Pacard–Schoen [14] work on Laplacian.
Jin-de Queiroz–Sire–Xiong [13] further studied Eq. (9) in 
 \ �, where 
 is an open set
in R

n , and � is a singular set other than a single point. More work related isolated singular
problem see Chen–Quaas [9] for 1 < p < n+2σ

n−2σ , Sun–Jin [25] for higher order fractional
case.

Our first result provides a blowup rate estimate near an isolated singularity.

Theorem 1.1 Let −2σ < τ , 1 < p < n+2σ
n−2σ . Suppose that u ∈ C2(B1\{0}) ∩ Lσ (Rn) is a

positive solution of (7), then there exists a positive constant C = C(n, σ, τ, p) such that

u(x) ≤ C |x |− 2σ+τ
p−1 , |∇u(x)| ≤ C |x |− 2σ+τ+p−1

p−1 near x = 0. (12)

The result can be understood as an extension of the work (5) and (10). We obtain the
blowup rate estimate (12) by using the method of blowing-up and rescaling argument. (For
more details and references, see, e.g., [7,11,13,22,27]). In particular, the doubling property
(Proposition 2.1) plays a key role in our proof. The idea, by contradiction, is that if an
estimate fails, the violating sequence of solutions uk will be increasingly large along a
sequence of points xk such that each xk has a suitable neighborhood, where the relative
growth of uk remains controlled. After appropriate rescaling, one can blow up the sequence
of neighborhoods and pass to the limit to obtain a bounded solution of a limiting problem in
the whole of Rn . At last, by Liouville theorem, we get a contradiction.

With the help of the estimate (12), we are able to show that the solution of (7) is asymp-
totically radially symmetric.
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44 Y. Li, J. Bao

Theorem 1.2 Let −2σ < τ ≤ 0, n+τ
n−2σ < p ≤ n+2σ+2τ

n−2σ . Suppose that u ∈ C2(B1\{0}) ∩
Lσ (Rn) is a positive solution of (7), then

u(x) = ū(|x |)(1 + O(|x |)) as x → 0,

where ū(|x |) := −
∫
Sn

u(|x |θ)dθ is the spherical average of u.

The result can be understood as an extension of the work (6) and (11). Notice that we
do not use any special structure of the unite ball B1, B1 can be replaced by general open
sets containing the origin. We get the result by the method of moving spheres with Kelvin
transformation, a variant of the method of moving planes, which has been widely used and
has become a powerful and user-friendly tool in the study of nonlinear partial differential
equations (see [8,16–19]). In addition, by Kelvin transformation, the difference between Eqs.
(7) and (9) is that Eq. (9) is a conformally invariant equations but Eq. (7) is not. To deal with
the problem, we need the following useful proposition.

Proposition 1.3 For x ∈ R
n\{0}, y ∈ R

n \ {x}, let yλ := x + λ2(y−x)
|y−x |2 , we have

|x − yλ||y| ≤ |x − y||yλ|. (13)

if and only if

λ2 ≤ |x − y|2 if x · y ≥ |x |2/2,
λ2 ≤ |x |2|x−y|2

|x |2+(−2x ·y)+ or λ2 ≥ |x |2|x−y|2
|x |2−(2x ·y)+ if x · y < |x |2/2. (14)

One consequence of this proposition is the following corollary.

Corollary 1.4 For x ∈ R
n\{0}, 0 < λ < min{|x |, |y − x |}, we have

|x − yλ||y| ≤ |x − y||yλ|. (15)

The outline of this paper is arranged as follows. In Sect. 2, we will obtain the blowup
upper bound (12). Then with the help of the estimate we can devote to asymptotically radially
symmetry property of solutions of (7) in Sect. 3. In Appendix, for readers’ convenience, we
not only prove some preliminaries, but also collect some basic propositions which will be
used in our proof.

2 Upper bound near an isolated singularity

First, we recall the doubling property [23, Lemma 5.1] and denote BR(x) as the ball in R
n

with radius R and center x . For convenience, we write BR(0) as BR for short.

Proposition 2.1 Suppose that ∅ �= D ⊂ 
 ⊂ R
n, 
 is closed and � = 
 \ D. Let

M : D → (0,∞) be bounded on compact subset of D. If for a fixed positive constant k,
there exists y ∈ D satisfying

M(y)dist(y, �) > 2k,

then there exists x ∈ D such that

M(x) ≥ M(y), M(x)dist(x, �) > 2k,

and for all z ∈ D ∩ BkM−1(x)(x),

M(z) ≤ 2M(x).
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Local behavior of solutions to fractional... 45

The second one is called the interior Schauder estimates. See [12, Theorem 2.11] for the
proof. Readers can see [4] for more regularity issues.

Proposition 2.2 Suppose that g ∈ Cγ (BR), γ > 0 and u is a nonnegative solution of

(−�)σ u = g(x) in BR .

If 2σ + γ ≤ 1, then u ∈ C0,2σ+γ (BR/2). Moreover,

‖u‖C0,2σ+γ (BR/2)
≤ C

(‖u‖L∞(B3R/4) + ‖g‖Cγ (B3R/4)

)
,

where C is a positive constant depending on n, σ , γ , R.
If 2σ + γ > 1, then u ∈ C1,2σ+γ−1(BR/2). Moreover,

‖u‖C1,2σ+γ−1(BR/2)
≤ C

(‖u‖L∞(B3R/4) + ‖g‖Cγ (B3R/4)

)
,

where C is a positive constant depending on n, σ , γ , R.

Next, in order to prove Theorem 1.1, we start with the following lemma.

Lemma 2.3 Let 1 < p < n+2σ
n−2σ , 0 < α ≤ 1 and c(x) ∈ C2,α(B1) satisfy

‖c‖C2,α(B1)
≤ C1, c(x) ≥ C2 in B1 (16)

for some positive constants C1, C2. Suppose that u ∈ C2(B1) ∩ Lσ (Rn) is a nonnegative
solution of

(−
)σ u = c(x)u p in B1, (17)

then there exists a positive constant C depending only on n, σ , p, C1, C2 such that

|u(x)| p−1
2σ + |∇u(x)| p−1

p+2σ−1 ≤ C[dist(x, ∂B1)]−1 in B1.

Proof Arguing by contradiction, for k = 1, 2, · · · , we assume that there exist nonnegative
functions uk satisfying (17) and points yk ∈ B1 such that

|uk(yk)|
p−1
2σ + |∇uk(yk)|

p−1
p+2σ−1 > 2k[dist(yk, ∂B1)]−1. (18)

Define

Mk(x) := |uk(x)|
p−1
2σ + |∇uk(x)|

p−1
p+2σ−1 .

Via Proposition 2.1, for D = B1, � = ∂B1, there exists xk ∈ B1 such that

Mk(xk) ≥ Mk(yk), Mk(xk) > 2k[dist(xk, ∂B1)]−1 ≥ 2k, (19)

and for any z ∈ B1 and |z − xk | ≤ kM−1
k (xk),

Mk(z) ≤ 2Mk(xk). (20)

It follows from (19) that

λk := M−1
k (xk) → 0 as k → ∞, (21)

dist(xk, ∂B1) > 2kλk, for k = 1, 2, · · · . (22)

Consider

wk(y) := λ
2σ
p−1
k uk(xk + λk y) in Bk .

123



46 Y. Li, J. Bao

Combining (22), we obtain that for any y ∈ Bk ,

|xk + λk y − xk | ≤ λk |y| ≤ λkk <
1

2
dist(xk, ∂B1),

that is,

xk + λk y ∈ B 1
2 dist(xk ,∂B1)

(xk) ⊂ B1.

Therefore, wk is well defined in Bk and

|wk(y)| p−1
2σ = λk |uk(xk + λk y)| p−1

2σ ,

|∇wk(y)|
p−1

2σ+p−1 = λk |∇uk(xk + λk y)|
p−1

2σ+p−1 .

From (20), we find that for all y ∈ Bk ,

|uk(xk + λk y)|
p−1
2σ + |∇uk(xk + λk y)|

p−1
2σ+p−1 ≤ 2

(

|uk(xk)|
p−1
2σ + |∇uk(xk)|

p−1
p+2σ−1

)

.

That is,

|wk(y)| p−1
2σ + |∇wk(y)|

p−1
2σ+p−1 ≤ 2λkMk(xk) = 2. (23)

Moreover, wk satisfies
(−
)σ wk = ck(y)w

p
k in Bk, (24)

and

|wk(0)|
p−1
2σ + |∇wk(0)|

p−1
2σ+p−1 = 1,

where ck(y) := c(xk + λk y).
By condition (16), we obtain that {ck} is uniformly bounded in R

n . For each R > 0, and
for all y, z ∈ BR , we have

|Dβck(y) − Dβck(z)| ≤ C1λ
|β|
k |λk(y − z)|α ≤ C1|y − z|α, |β| = 0, 1, 2,

for k is large enough. Therefore, by Arzela–Ascoli’s Theorem, there exists a function c ∈
C2(Rn), after extracting a subsequence, ck → c in C2

loc(R
n). Moreover, by (21), we obtain

|ck(y) − ck(z)| → 0 as k → ∞. (25)

This implies that the function c actually is a constant C . By (16) again, ck ≥ C2 > 0, we
conclude that C is a positive constant.

On the other hand, applying Proposition 2.2 a finite number of times to (23) and (24),
there exists some positive γ ∈ (0, 1) such that for every R ∈ (1, k),

‖wk‖C2,γ (BR/2)
≤ C

(‖wk‖L∞(B3R/4) + ‖ckw p
k ‖Cγ (B3R/4)

) ≤ C(R),

where C(R) is a positive constant independent of k. Thus, after passing to a subsequence,
we have, for some nonnegative function w ∈ C2

loc(R
n),

wk → w in C2
loc(R

n).

Moreover, w satisfies
(−
)σ w = Cw p in R

n (26)

and

|w(0)| p−1
2σ + |∇w(0)| p−1

2σ+p−1 = 1.
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Local behavior of solutions to fractional... 47

Since p < n+2σ
n−2σ , this contradicts the Liouville-type result [12, Remark 1.9] that the only

nonnegative entire solution of (26) is w = 0. Then we conclude the lemma. ��
We now turn to prove Theorem 1.1.

Proof For x0 ∈ B1/2\{0}, we denote R := 1
2 |x0|. Then for any y ∈ B1, we have |x0|

2 <

|x0 + Ry| <
3|x0|
2 , and deduce that x0 + Ry ∈ B1\{0}. Define

w(y) := R
2σ+τ
p−1 u(x0 + Ry).

Therefore, we obtain that

(−�)σ w = c(y)w p in B1,

where c(y) := |y + x0
R |τ . Notice that

1 < |y + x0
R

| < 3 in B1.

Moreover,

‖c‖C3(B1)
≤ C, c(y) ≥ 3−2σ in B1.

Applying Lemma 2.3, we obtain that

|w(0)| p−1
2σ + |∇w(0)| p−1

p+2σ−1 ≤ C.

That is,

(R
2σ+τ
p−1 u(x0))

p−1
2σ + (R

2σ+τ
p−1 +1|∇u(x0)|)

p−1
p+2σ−1 ≤ C.

Hence,

u(x0) ≤ CR− 2σ+τ
p−1 ≤ C |x0|−

2σ+τ
p−1 ,

|∇u(x0)| ≤ CR− 2σ+τ+p−1
p−1 ≤ C |x0|−

2σ+τ+p−1
p−1 .

Since x0 ∈ B1/2 \ {0} is arbitrary, Theorem 1.1 is proved. ��

3 Asymptotical radial symmetry

3.1 Proof of Theorem 1.2

Proof Assume that there exists some positive constant ε ∈ (0, 1) such that for all 0 < λ <

|x | ≤ ε, y ∈ B3/4\Bλ(x) and y �= 0,

ux,λ(y) ≤ u(y), (27)

where

ux,λ(y) :=
(

λ

|y − x |
)n−2σ

u

(

x + λ2(y − x)

|y − x |2
)

.

Let r > 0 and x1, x2 ∈ ∂Br be such that

u(x1) = max
∂Br

u, u(x2) = min
∂Br

u,
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48 Y. Li, J. Bao

and define

x3 := x1 + ε(x1 − x2)

4|x1 − x2| , λ :=
√

ε

4

(
|x1 − x2| + ε

4

)
.

Then

|x3| =
∣
∣
∣
∣x1 + ε(x1 − x2)

4|x1 − x2|
∣
∣
∣
∣ ≤ r + ε

4
. (28)

Via some direct computations and |x1|2 = |x2|2 = r2, we find that

λ2 − |x3|2 = ε

4

(
|x1 − x2| + ε

4

)
−
∣
∣
∣
∣x1 + ε(x1 − x2)

4|x1 − x2|
∣
∣
∣
∣

2

= ε(|x2|2 − |x1|2)
4|x1 − x2| − x21 = −x21 < 0,

which follows from this and (28) that λ < |x3| < ε by choosing r < 3ε
4 .

It follows from (27) that

ux3,λ(x2) ≤ u(x2).

Since

x2 − x3 = x2 − x1 + ε(x2 − x1)

4|x1 − x2| = x2 − x1
|x1 − x2|

(
|x1 − x2| + ε

4

)
,

then

|x2 − x3| = |x1 − x2| + ε

4
,

x2 − x3
|x2 − x3|2 = x2 − x1

|x1 − x2|
(|x1 − x2| + ε

4

) ,

and

λ2(x2 − x3)

|x2 − x3|2 = ε(x2 − x1)

4|x1 − x2| .

Hence,

ux3,λ(x2) =
(

λ

|x2 − x3|
)n−2σ

u

(

x3 + λ2(x2 − x3)

|x2 − x3|2
)

=
(

λ

|x1 − x2| + ε
4

)n−2σ

u

(

x3 + ε(x2 − x1)

4|x1 − x2|
)

=
(

λ

|x1 − x2| + ε
4

)n−2σ

u(x1).

On the other hand,

ux3,λ(x2) =
(

λ

|x1 − x2| + ε
4

)n−2σ

u(x1) = u(x1)
(
4|x1−x2|

ε
+ 1

) n−2σ
2

≥ u(x1)
( 8r

ε
+ 1

) n−2σ
2

,

then

u(x1) ≤
(
8r

ε
+ 1

) n−2σ
2

ux3,λ(x2) ≤ (1 + Cr)
n−2σ
2 u(x2),
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for some C = C(ε). That is,

max
∂Br

u ≤ (1 + Cr)min
∂Br

u.

Hence for any x ∈ ∂Br ,

u(x)

ū(|x |) − 1 ≤ max∂Br u

min∂Br u
− 1 ≤ Cr,

u(x)

ū(|x |) − 1 ≥ min∂Br u

max∂Br u
− 1 ≥ 1

1 + Cr
− 1 > −Cr,

In conclusion, we have
∣
∣
∣
∣
u(x)

ū(|x |) − 1

∣
∣
∣
∣ ≤ Cr.

It follows that

u(x) = ū(|x |)(1 + O(r)) as x → 0.

Therefore, in order to complete the proof of Theorem 1.2, it suffices to prove (27). ��
3.2 Proof of (27)

Since the operator (−�)σ is nonlocal, the traditional methods on local differential operators,
such as on Laplacian, may not work on this nonlocal operator. To circumvent this difficulty,
Caffarelli and Silvestre [5] introduced the extension method that reduced this nonlocal prob-
lem into a local one in higher dimensions with the connormal derivative boundary condition.

In order to describe the method in a more precise way, let us give some notations. We use
capital letters, such as X = (x, t) to denote points in R

n+1+ . We denote BR(X) as the ball in
R
n+1 with radius R and center X , and B+

R (X) as BR(X)∩R
n+1+ . We also write BR(0), B+

R (0)
as BR , B+

R for short respectively. For a domain D ⊂ R
n+1+ with boundary ∂D, we denote

∂ ′D := ∂D ∩ ∂Rn+1+ and ∂ ′′D := ∂D ∩R
n+1+ . In particular, ∂ ′B+

R (X) := ∂B+
R (X) ∩ ∂Rn+1+

and ∂ ′′B+
R (X) := ∂B+

R (X) ∩ R
n+1+ .

More precisely, for u ∈ C2(B1\{0}) ∩ Lσ (Rn), define

U (x, t) :=
∫

Rn
Pσ (x − y, t)u(y)dy, (29)

where

Pσ (x, t) := β(n, σ )t2σ

(|x |2 + t2)(n+2σ)/2

with a constant β(n, σ ) such that
∫
Rn Pσ (x, 1)dx = 1. Then

U ∈ C2(Rn+1+ ) ∩ C(B+
1 \{0}), t1−2σ ∂tU (x, t) ∈ C(B+

1 \{0})
satisfying

div(t1−2σ ∇U ) = 0 in R
n+1+ , (30)

U = u on ∂ ′B+
1 \{0}. (31)

123



50 Y. Li, J. Bao

In order to study the behaviors of the solution u of (7), we just need to study the behaviors
of U defined by (29). In addition, by works of Caffarelli and Silvestre [5], it is known that
up to a constant,

∂U

∂νσ
= (−�)σ u on ∂ ′B+

1 \{0},

where the connormal derivative

∂U

∂νσ
:= − lim

t→0+ t1−2σ ∂tU (x, t).

From this and (7), we have

∂U

∂νσ
= |x |τu p on ∂ ′B+

1 \{0}. (32)

For all 0 < |x | < 1
4 , X = (x, 0) and λ > 0, define the Kelvin transformation of U as

UX,λ(ξ) =
(

λ

|ξ − X |
)n−2σ

U

(

X + λ2(ξ − X)

|ξ − X |2
)

in R
n+1+ .

The aim is to show that there exists some positive constant ε ∈ (0, 1) such that for 0 < λ <

|x | ≤ ε,
UX,λ(ξ) ≤ U (ξ) in B+

3/4\B+
λ (X). (33)

In particular, choose ξ = (y, 0), y ∈ R
n \ {0}, then for 0 < λ < |x | ≤ ε,

ux,λ(y) ≤ u(y) in B3/4\Bλ(x),

that is (27).

3.3 Proof of (33)

To prove (33), for fixed x ∈ B1/4\{0}, we first define
λ̄(x) := sup

{
0 < μ ≤ |x | ∣∣ UX,λ(ξ) ≤ U (ξ) in B+

3/4\B+
λ (X), ∀ 0 < λ < μ

}
,

and then show λ̄(x) = |x |.
For sake of clarity, the proof of (33) is divided into three steps. For the first step, we need

the following Claim 1 to make sure that λ̄(x) is well defined.
Claim 1: There exists λ0(x) < |x | such that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U (ξ) in B+
3/4\B+

λ (X).

Second, we give that
Claim 2: There exists a positive constant ε ∈ (0, 1) sufficiently small such that for all

0 < λ < |x | ≤ ε,

UX,λ(ξ) < U (ξ) on ∂B+
3/4.

Last, we are going to prove that
Claim 3:

λ̄(x) = |x |.
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Proof of Claim 1 First of all, we are going to show that there exist μ and λ0(x) satisfying
0 < λ0(x) < μ < |x | such that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U (ξ) in B+
μ (X)\B+

λ (X). (34)

Then we will prove that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U (ξ) in B+
3/4\B+

μ (X). (35)

For every 0 < λ < μ < 1
2 |x |, ξ ∈ ∂ ′′B+

μ (X), we have X + λ2(ξ−X)

|ξ−X |2 ∈ B+
μ (X). Thus we

can choose

λ0(x) = μ

⎛

⎜
⎜
⎝

inf
∂ ′′B+

μ (X)

U

sup
B+

μ (X)

U

⎞

⎟
⎟
⎠

1
n−2σ

,

such that for every 0 < λ < λ0(x) < μ,

UX,λ(ξ) =
(

λ

|ξ − X |
)n−2σ

U

(

X + λ2(ξ − X)

|ξ − X |2
)

≤
(

λ0

μ

)n−2σ

sup
B+

μ (X)

U = inf
∂ ′′B+

μ (X)

U ≤ U (ξ).

The above inequality, together with

UX,λ(ξ) = U (ξ) on ∂ ′′B+
λ (X),

implies that for all λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U (ξ) on ∂ ′′B+
μ (X) ∪ ∂ ′′B+

λ (X). (36)

We will make use of the narrow domain technique of Berestycki and Nirenberg from [3],
and show that, for sufficiently small μ, that for λ ∈ (0, λ0(x)),

UX,λ(ξ) ≤ U (ξ) in B+
μ (X)\B+

λ (X).

It is a straightforward computation to show that
⎧
⎨

⎩

div(t1−2σ ∇UX,λ) = 0 in B+
μ (X)\B+

λ (X),

∂
∂νσ UX,λ =

(
λ

|y−x |
)p∗

|yλ|τ u p
x,λ(y) on ∂ ′(B+

μ (X)\B+
λ (X)),

which yield
⎧
⎨

⎩

div(t1−2σ ∇(UX,λ −U )) = 0 in B+
μ (X)\B+

λ (X),

∂
∂νσ (UX,λ −U ) =

(
λ

|y−x |
)p∗

|yλ|τ u p
x,λ(y) − |y|τu p(y) on ∂ ′(B+

μ (X)\B+
λ (X)),

(37)

where yλ := x + λ2(y−x)
|y−x |2 , p∗ := n + 2σ − p(n − 2σ).

Let (UX,λ − U )+ := max(0,UX,λ − U ) which equals 0 on ∂ ′′(B+
μ (X)\B+

λ (X)). Multi-

plying the equation in (37) by (UX,λ − U )+ and integrating by parts in B+
μ (X)\B+

λ (X), we
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have
∫

B+
μ (X)\B+

λ (X)

t1−2σ |∇(UX,λ −U )+|2

=
∫

Bμ(x)\Bλ(x)

[(
λ

|y − x |
)p∗

∣
∣yλ

∣
∣τu p

x,λ(y) − |y|τu p(y)

]

(ux,λ − u)+.

Combining Corollary 1.4 with λ2 = |x − yλ||x − y|, we have
(

λ

|x − y|
)2

≤ |yλ|
|y| ,

which implies that

(
λ

|x − y|
)p∗

≤
( |y|

|yλ|
)τ

,

due to −2τ ≤ p∗ and λ
|x−y| ≤ 1. Therefore,

(
λ

|y − x |
)p∗

∣
∣yλ

∣
∣τ ≤ |y|τ , (38)

and ∫

B+
μ (X)\B+

λ (X)

t1−2σ |∇(UX,λ −U )+|2

≤
∫

Bμ(x)\Bλ(x)
|y|τ (u p

x,λ(y) − u p(y))(ux,λ − u)+.

For any y ∈ Bμ(x)\Bλ(x),

ux,λ(y) =
(

λ

|y − x |
)n−2σ

u(yλ) ≤ u(yλ),

where yλ := x + λ2(y−x)
|y−x |2 . Combining yλ ∈ Bλ(x) ⊂ B |x |

2
(x) with u ∈ C2(B1 \ {0}),

we deduce that there exists a positive constant C depending on x , such that for any y ∈
Bμ(x)\Bλ(x),

ux,λ(y) ≤ C(x).

With the help of mean value theorem and λ < 1
2 |x |, we obtain

∫

B+
μ (X)\B+

λ (X)

t1−2σ |∇(UX,λ −U )+|2

≤
∫

Bμ(x)\Bλ(x)
2−τ |x |τ pu p−1

x,λ (y)[(ux,λ − u)+]2

≤ 2−τ |x |τ p
( ∫

Bμ(x)\Bλ(x)
(ux,λ)

n(p−1)
2σ

) 2σ
n

(∫

Bμ(x)\Bλ(x)
[(ux,λ − u)+] 2n

n−2σ

) n−2σ
n

≤ C(n, p, σ, τ, |x |)|Bμ(x)| 2σn
(∫

B+
μ (X)\B+

λ (X)

t1−2σ |∇(UX,λ −U )+|2
)

,
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where the trace inequality (Proposition 4.1) is used in the last inequality andC(n, p, σ, τ, |x |)
is a positive constant.

We can fix μ sufficiently small such that

C(n, p, σ, τ, |x |)|Bμ(x)| 2σn ≤ 1

2
.

Then

∇(UX,λ(ξ) −U (ξ))+ = 0 in B+
μ (X)\B+

λ (X).

Since (36), we deduce that

(UX,λ(ξ) −U (ξ))+ = 0 in B+
μ (X)\B+

λ (X).

Therefore,

UX,λ(ξ) ≤ U (ξ) in B+
μ (X)\B+

λ (X).

After that, we are going to prove (35). Let

φ(ξ) :=
(

μ

|ξ − X |
)n−2σ

inf
∂ ′′B+

μ (X)

U,

which satisfies
⎧
⎨

⎩

div(t1−2σ ∇φ) = 0 in R
n+1+ \ B+

μ (X),

∂φ

∂νσ
= 0 on ∂ ′(Rn+1+ \ B+

μ (X)),

and

φ(ξ) =
(

μ

|ξ − X |
)n−2σ

inf
∂ ′′B+

μ (X)

U = inf
∂ ′′B+

μ (X)

U ≤ U (ξ) on ∂ ′′B+
μ (X).

In addition, combining Proposition 4.2, we can choose μ small enough such that

lim inf
ξ→0

U (ξ) ≥
(

μ

|X |
)n−2σ

inf
∂ ′′B+

μ (X)

U,

and

U (ξ) ≥
(

μ

|ξ − X |
)n−2σ

inf
∂ ′′B+

μ (X)

U on ∂ ′′B+
3/4,

By the standard maximum principle (Proposition 4.3), we have

U (ξ) ≥
(

μ

|ξ − X |
)n−2σ

inf
∂ ′′B+

μ (X)

U in B+
3/4\B+

μ (X). (39)

Then for all ξ ∈ B+
3/4\B+

μ (X) and λ ∈ (0, λ0) ⊂ (0, μ), we have

UX,λ(ξ) =
(

λ

|ξ − X |
)n−2σ

U (X + λ2(ξ − X)

|ξ − X |2 )

≤
(

λ0

|ξ − X |
)n−2σ

sup
B+

μ (X)

U =
(

μ

|ξ − X |
)n−2σ

inf
∂ ′′B+

μ (X)

U

≤ U (ξ),
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where (39) is used in the last inequality. Then Claim 1 is proved. ��
Proof of Claim 2 For y ∈ B1, 3

8 ≤ |y| ≤ 7
8 and 0 < λ < |x | < 1

8 , we have

|y − x | ≥ |y| − |x | ≥ 1

4
> 2|x |.

Hence
∣
∣
∣
∣x + λ2(y − x)

|y − x |2
∣
∣
∣
∣ ≤ |x | + |x |2

|y − x | ≤ 3|x |
2

,

and
∣
∣
∣
∣x + λ2(y − x)

|y − x |2
∣
∣
∣
∣ ≥ |x | − |x |2

|y − x | ≥ |x |
2

.

It follows from Theorem 1 that

u

(

x + λ2(y − x)

|y − x |2
)

≤ C |x |− 2σ+τ
p−1 ,

Thus, for 0 < λ < |x | < 1
8 ,

3
8 ≤ |y| ≤ 7

8 , we conclude that

ux,λ(y) = UX,λ(y, 0) ≤
(

λ

|y − x |
)n−2σ

C |x |− 2σ+τ
p−1

≤ C4n−2σ λn−2σ |x |− 2σ+τ
p−1 ≤ C |x | p(n−2σ)−n−τ

p−1 .

Since n+τ
n−2σ < p ≤ n+2σ+2τ

n−2σ , we have p(n−2σ)−n−τ
p−1 > 0. By Harnack inequality (Propo-

sition 4.4), ε > 0 can be chosen sufficiently small to guarantee that for all 0 < λ < |x | ≤ ε

and |ξ | = 3
4 ,

UX,λ(ξ) ≤ C |x | p(n−2σ)−n−τ
p−1 < U (ξ). (40)

��
Proof of Claim 3 We prove Claim 3 by contradiction. Assume λ̄(x) < |x | ≤ ε for some

x �= 0. We want to show that there exists a positive constant ε̃ ∈ (0, |x |−λ̄(x)
2 ) such that for

λ ∈ (λ̄(x), λ̄(x) + ε̃),
UX,λ(ξ) ≤ U (ξ) in B+

3/4\B+
λ (X), (41)

which contradicts the definition of λ̄(x), then we obtain λ̄(x) = |x |.
Divide the region B+

3/4\B+
λ (X) into three parts,

K1 =
{
ξ ∈ B+

3/4

∣
∣ 0 < |ξ | < δ1

}
,

K2 =
{
ξ ∈ B+

3/4

∣
∣ δ1 ≤ |ξ |, |ξ − X | ≥ λ̄(x) + δ2

}
,

K3 =
{
ξ ∈ B+

3/4

∣
∣ λ ≤ |ξ − X | ≤ λ̄(x) + δ2

}
,

where δ1, δ2 will be fixed later. To obtain (41) it suffices to prove that it established on K1,
K2, K3. And then we are going to prove it respectively. By Claim 1, we have

UX,λ̄(x)(ξ) ≤ U (ξ) in B+
3/4\B+

λ̄(x)
(X).
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With the help of Claim 2 and the strong maximum principle, we deduce that

UX,λ̄(x)(ξ) < U (ξ) in B+
3/4\B+

λ̄(x)
(X). (42)

Choose R ∈ (0, |x |−λ̄(x)
2 ), then

{
div(t1−2σ ∇(U −UX,λ̄(x))) = 0 in B+

R ,
∂(U−UX,λ̄(x))

∂νσ = |y|τu p(y) − (
λ̄(x)
|y−x |

)p∗ ∣
∣yλ̄(x)

∣
∣τu p

x,λ̄(x)
(y) ≥ 0 on ∂ ′B+

R \ {0},

where yλ̄(x) := x + λ̄(x)2(y−x)
|y−x |2 .

By (42) and Proposition 4.2, we get

lim inf
ξ→0

(U (ξ) −UX,λ̄(x)(ξ)) > 0.

Thus, there exists a positive constant δ1 ∈ (0, |x |−λ̄(x)
2 ) and a positive constant C1 such that

U (ξ) −UX,λ̄(x)(ξ) > C1 in K1.

By the uniform continuity of U on compact sets, there exists a positive constant ε1 small
enough such that for λ ∈ (λ̄(x), λ̄(x) + ε1),

UX,λ̄(x)(ξ) −UX,λ(ξ) > −C1

2
in K1.

From the above argument, we conclude that for λ ∈ (λ̄(x), λ̄(x) + ε1),

U (ξ) −UX,λ(ξ) >
C1

2
in K1. (43)

Next, choose δ2 to be small, the aim is to show that there exist positive constants C2 and
ε2, such that for λ ∈ (λ̄(x), λ̄(x) + ε2),

U (ξ) −UX,λ(ξ) >
C2

2
in K2. (44)

From (42) and K2 is compact, there exist a positive constant C2 such that

U (ξ) −UX,λ̄(x)(ξ) > C2 in K2.

By the uniform continuity ofU on compact sets, there exists a positive constant ε2 sufficiently
small such that for all λ ∈ (λ̄(x), λ̄(x) + ε2),

UX,λ̄(x)(ξ) −UX,λ(ξ) > −C1

2
in K2.

Hence for all λ ∈ (λ̄(x), λ̄(x) + ε2), we have

U (ξ) −UX,λ(ξ) >
C1

2
in K2.

Then we obtain (44).
Last, let us focus on the region K3. We can choose a positive constant ε̃ as small as we

want (less then ε1 and ε2) such that for λ ∈ (λ̄(x), λ̄(x) + ε̃),

UX,λ(ξ) ≤ U (ξ) on ∂ ′′K3.
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Using the narrow domain technique as that the proof of (34) in Claim 1, we can choose δ2
to be small such that

UX,λ(ξ) ≤ U (ξ) in K3. (45)

Together with (43), (44) and (45), we can see that the moving sphere procedure may continue
beyond λ̄(x) where we reach a contradiction. ��

At last, we give a proof for Proposition 1.3 and Corollary 1.4, which have been used in
our proof.

Proof of Proposition 1.3 Via a straightforward calculation, (13) is rewritten as

λ2|y| ≤ ∣
∣x(x − y)2 + λ2(y − x)

∣
∣,

that is,

λ4(|x |2 − 2x · y) + 2λ2|x − y|2(x · y − |x |2) + |x |2|x − y|4 ≥ 0.

Let

s := λ2,

f (s) := s2(|x |2 − 2x · y) + 2s|x − y|2(x · y − |x |2) + |x |2|x − y|4.
If |x |2 − 2x · y = 0, it is easy to see that f (s) is a affine function, and

f (0) = |x |2|x − y|4 > 0, f (|x − y|2) = 0.

Therefore,
f (s) ≥ 0 ⇔ 0 ≤ s ≤ |x − y|2. (46)

If |x |2 − 2x · y �= 0, it follows that f (s) is a quadratic polynomial, and always has two
roots,

s1 = |x − y|2, s2 = |x |2|x − y|2
|x |2 − 2x · y .

Now, let us divide into the following three cases to consider.
Case 1: For |x |2 − 2x · y < 0, then s2 < 0 < s1, which implies that

f (s) ≥ 0 ⇔ 0 ≤ s ≤ s1. (47)

Case 2: For |x |2 − 2x · y > 0 and x · y ≥ 0, then 0 < s1 ≤ s2, it is obviously to obtain
that

f (s) ≥ 0 ⇔ 0 ≤ s ≤ s1 or s ≥ s2. (48)

Case 3: For |x |2 − 2x · y > 0 and x · y < 0, then 0 < s2 ≤ s1. As before, we have

f (s) ≥ 0 ⇔ 0 ≤ s ≤ s2 or s ≥ s1. (49)

Combining (46), (47), (48) and (49), we finish the proof of this proposition. ��
Proof of Corollary 1.4 If x · y ≥ 0, it is easy to see that

|x |2|x − y|2
|x |2 + (−2x · y)+ = |y − x |2.

It follows that λ satisfies (14) whether x · y is bigger or smaller than |x |2/2.
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If x · y < 0, by a direct calculation, we have

|x |2|x − y|2
|x |2 + (−2x · y)+ ≥ |x |2.

This also implies that λ satisfies (14). Therefore, (13) has been established. ��

4 Appendix

The first one is called the trace inequality.

Proposition 4.1 [12, Proposition 2.1] If U ∈ C2
c (R

n+1+ ), then there exists a positive constant
C depending only on n and σ such that

(∫

Rn
|U (·, 0)| 2n

n−2σ dx

) n−2σ
2n ≤ C

(∫

R
n+1+

t1−2σ |∇U |2dxdt
) 1

2

(50)

The next one is on a maximum principle for positive supersolutions with an isolated
singularity.

Proposition 4.2 [12, Proposition 3.1] Suppose that U ∈ C2(B+
R ∪ ∂ ′B+

R \ {0}) and U > 0
in B+

R ∪ ∂ ′B+
R \ {0} is a solution of

⎧
⎨

⎩

div(t1−2σ ∇U ) ≤ 0 in B+
R ,

∂U

∂νσ
≥ 0 on ∂ ′B+

R \ {0},
then

lim inf
X→0

U (X) > 0.

We also recall the standard maximum principle.

Proposition 4.3 [12, Lemma 2.5] Suppose that U ∈ C2(D) ∩ C1(D) is a solution of
⎧
⎨

⎩

div(t1−2σ ∇U ) ≤ 0 in D,

∂U

∂νσ
≥ 0 on ∂ ′D,

where D ⊂ R
n+1+ is an open domain. If U ≥ 0 on ∂ ′′D, then U ≥ 0 in D.

The last one is the Harnack inequality, and Tan-Xiong [26] provide more details for the
Harnack inequality.

Proposition 4.4 [12, Proposition 2.6] Suppose that U ∈ C2(B+
2R) ∩ C1(B+

2R) is a nonneg-
ative solution of

⎧
⎨

⎩

div(t1−2σ ∇U ) = 0 in B+
2R,

∂U

∂νσ
= a(x)U (x, 0) on ∂ ′B+

2R .
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If a ∈ Lq(B2R) for some q > n
2σ , then we have

sup
B+

R

U ≤ C inf
B+

R

U,

where the positive constant C depends only on n, σ , R and ‖a‖Lq (B2R).
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