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Abstract In this work, we study the existence of invariant almost complex structures on
real flag manifolds associated to split real forms of complex simple Lie algebras. We show
that, contrary to the complex case where the invariant almost complex structures are well
known, some real flag manifolds do not admit such structures. We check which invariant
almost complex structures are integrable and prove that only some flag manifolds of the Lie
algebra C; admit complex structures.
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1 Introduction

A flag manifold of a non-compact semisimple Lie algebra g is a quotient space Fg = G/ Po,
where G is a connected group with Lie algebra g and Py is a parabolic subgroup. If K C G
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is a maximal compact subgroup and Kg = K N Pg, then the flag Fg can be written in the
formFg = K/Kp.

In this work, we study the existence and integrability of invariant almost complex structures
on real flag manifolds F g in the case that g is a split real form of a complex simple Lie algebra.
Our goal is to make an exhaustive investigation of the real flag manifolds F that admit K -
invariant almost complex structures and to verify their integrability, that is, when they are
indeed complex structures.

The invariant geometry of complex flag manifolds has been extensively studied. Regarding
invariant geometry of complex flag manifolds, the literature is exhaustive and goes back to
Borel [2] and Wolf-Gray [21,22]. Recent works are [1,3-5,7,9,13,14,19,20] and [1].

For real flag manifolds, the literature is much more sparse. There is no systematic treatment
of the invariant geometric structures on these flag manifolds. An attempt to fill this gap was
made recently by Patrdo and San Martin [15] who provide a detailed analysis of the isotropy
representations for the flag manifolds of the split real forms of the complex simple Lie
algebras.

In this paper, we rely on the results of [15] to build (or to prove the non-existence of)
K-invariant almost complex structures on the real flag manifolds. The conclusion is that
only a few flag manifolds (associated to split real forms) admit K -invariant almost complex
structures. In this sense, we obtain the following result.

Theorem 1 A real flag manifold Fo = K /Ke admits a K -invariant almost complex struc-
ture if and only if it is a maximal flag of type A3, By, Go, C; for [ even or D; forl > 4, or if
it is one of the following intermediate flags:

— of type Bz and ® = {A1 — Ay, Ao — A3};

— of type Cy with © = {Ag — Ag41,---, M—1 — A1, 2N} ford > 1, d odd.

— of type Dy with | = 4 and © being one of: {A1 — A2, A3 — A4}, {A1 — A2, A3 + A4},
{A3 — A4, A3 + Mg}

The next step is to check which of the existing almost complex structures are integrable.
By making computations with the Nijenhuis tensor, we arrive at the following result.

Theorem 2 A real flag manifold Fo = K/Kg admits K-invariant complex structures if
and only if it is of type C; and ©® = {Ag — Ag41, .., M—1 — A1, 20} withd > 1, d odd.

These complex flag manifolds are realized as manifolds of flags (V| C --- C Vi) of sub-
spaces of R? that are isotropic with respect to the standard symplectic form of R% . Moreover,
Fep is finitely covered by U (I)/U (I — d) and the complex structures on [Fg can be lifted to
this covering space.

To prove the results above, we mainly use the isotropy decomposition of Tj,Fg, the
tangent space of the flag a the origin bg. In [15] there are described the Kg-invariant and
irreducible components of this representation obtaining a decomposition

ThoFo=V1®...® VL.

This decomposition is essential to find K-invariant geometries on Fg. It is well known
that the compact isotropy group is a product Kg = M (Kg)o where M is the isotropy of
the maximal flag and (K)o the connected component of the identity. An almost complex
structure commutes with the isotropy representation of K if and only if it commutes with
the M and (K@ )o representations on the tangent space. This allows us to split the proofs in
two stages: study M-invariance on the one hand, and the condition of commutativity with
ady for all X € ¢ = Lie(Kg), on the other hand.
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A necessary and sufficient condition for a real flag to admit M-invariant almost complex
structures is that every M-equivalence class on 777\ ()" has an even amount of elements.
Two roots « and g lie in the same M -equivalence class if the representations of M on g, and
gp are equivalent. This condition is necessary for Fg to admit K g invariant almost complex
structures, so by inspection of these equivalence classes we discard many flags manifolds. For
the remaining cases, we focus on the £¢ representation on 7j, Fe. We should remark that in
all cases we give the almost complex structures explicitly, in a constructive way. Integrability
is proved by computing the Nijenhuis tensor.

It is worth stressing a main difference in the isotropy representation of Ko between the
real case and the complex case. In the real flag, there are cases where two K g-invariant
and irreducible components are equivalent. In the complex case, this fact does not occur.
Consequently, on the complex case, the Kg-invariant and irreducible components, in the
isotropy representation of Fg, are invariant by almost complex structures. On the real flag,
there are cases where JV; = V;, for V; and V; equivalent Kg-invariant and irreducible
components.

This work is organized in the following manner. In Sect. 2 we fix notations and present the
first results on existence of M-invariant complex structures. We give necessary and sufficient
conditions for a flag manifold to admit such structure. In the case of a maximal flag, that
is ® = {, this is all we need to pursue our study since Ko = M. Section 3 focuses in
this case. Section 4 deals with intermediate flags, that is @ # (). We only consider those
intermediate flags verifying the necessary condition of Sect. 2. The full comprehension of
the isotropy representation of K¢ is needed, so we fully describe it for the cases under study.
The propositions in Sects. 3, 4 account to Theorems 1, 2 above.

2 Notation and preliminary results

We refer to [11,17] for further developments of the concepts in this section. We assume
throughout the paper that g is the split real form of a complex simple Lie algebra gc. If
g = £ ® a @ nis an Iwasawa decomposition then a is a Cartan subalgebra. Denote IT the set
of roots of g associated to a. If « € a* is a root then we write

ge={Xeg:ad(H)X=a(H)X, Hea}

for the corresponding root space, which is one-dimensional since g is split. Let ITT be a set
of positive roots and X' the corresponding positive simple roots.

The set of parabolic Lie subalgebras of g is parametrized by the subsets of simple roots
Y. Given ® C X, the corresponding parabolic subalgebra is given by

Po=a® ) 0@ ) G=0® Y  Gu® Y o

aellt ae(@)~ ac(@)tU(O)~ aellT\(®)T

where (@)% is the set of positive/negative roots generated by ©.

Denote by G the group of inner automorphisms of g, which is connected and generated by
exp ad(g) inside GL(g). Let K be the maximal compact subgroup of G, then K is generated by
ad(®). The standard parabolic subgroup Pg of G is the normalizer of pg in G. The associated
flag manifold is defined by Fg = G/ Pg. The compact subgroup K acts transitively on Fg
so we obtain Fg = K/Kg where Ko = K N Pg. Fixing an origin bp in Fg, we identify
the tangent space Tj, Fo with the nilpotent Lie algebra
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Inn~, the isotropy representation of Ko on T, [Fg is just the adjoint representation, since
ng is normalized by K. The Lie algebra tg of K¢ is

to= ) (G®g-w) Nt
ae(®)tu(O)~

Compactness of K implies that €9 admits a reductive complement mg so that € = g G mep
and Tj,Fp is identified also with mg. The map Xo — Xo¢ — X_o fora € [T7\ (®) " is
a Kg invariant map from ng to mg. Along the paper, we will call isotropy representation
either the representation of Ko on ng or on mg, without making any difference or special
mention. In some cases, we will even use nzf) instead of n,.

Let M be the centralizer of ain K. Then Kg = M - (Kg)o where (Kg)g is the connected
component of the identity of Kg. Thus M acts on T}, Fg by restricting the isotropy repre-
sentation of K. The group M is finite and acts on n, leaving each root space g, invariant.
Moreover, it m € M and X € gq then Ad(m)X = +X. Two roots « and g are called
M-equivalent, which we will denote by o ~ s B, if the representations of M on the root
spaces g and gg are equivalent. The M-equivalence classes were described in [15].

When ® = @, we drop all the sub-indexes @. The associated flag manifold is the maximal
flag F = K /M and the tangent space at the origin b will be identified with n™.

Let U be a group of linear maps of the vector space V. A subspace W C U is U -invariant
ifux € Wforall x € W and for all u € U. A complex structure on V is endomorphism
J 1V — V such that J> = —1 and it is said to be U-invariant if uJ = Ju forallu € U.
We shall prove two technical results.

Lemma 1 Let W C V be a U-invariant space. Then the following statements are true:

1. JW is U-invariant as well.

2. W is irreducible if and only if JW is irreducible.

3. The representations of U on W and JW are equivalent.

4. If W is irreducible then either W N JW = {0} or JW = W.
5. Ifdm W =1 then WN JW = {0}.

Proof Takeu € U and x € W. Then, uJx = Jux € JW showing that JW is U -invariant.

Suppose that W is irreducible and let A C JW be a U-invariant subspace. Then J ' A =
JA C W is also U-invariant. Hence, JA = W or JA = {0}, which implies that A = JW
or A = {0}. Thus JW is irreducible.

As J commutes with the elements of U, the map J : W — J W intertwines the represen-
tations on W and J W so that they are equivalent. Since W N JW C W is U-invariant and W
is irreducible we get item 4. Finally W N JW = {0} if dim W = 1 because the eigenvalues
of J are £ hence W is not invariant by J. O

Lemma 2 Let W;, i = 1,2 be U-invariant and irreducible subspaces of V such that W1 N
Ws = 0 and the representation of U on Wy is not equivalent to that on Wp. If V.= W1 &
W> @ W for some complementary subspace W and J is a U-invariant complex structure,
then Jwy € Wy @& W for all w; € Wy.

Proof Consider P : V —> W, the projection map with respect to the decomposition above.
The map P o J : Wi — W, is U-invariant and bijective if nonzero, since its domain and
target spaces are irreducible. Thus it is an equivalence between the representations of U, if
nonzero. Therefore, P o J = 0 and the result follows. O
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Under the hypothesis of the lemma above, in the particular case of V. = W; & W, we have
JW; =W, i=1,2.

From the general theory of invariant tensors on homogeneous manifolds, we know that
K -invariant almost complex structures on the flag manifold Fg = K/Kg are in one-to-one
correspondence with K g-invariant complex structures J : Tp,Fo — Tj,Fe. Recall that
Ty, Fo identifies with ng, (or mg) and this identification preserves the K¢ representation.
So K-invariant almost complex structures on g also correspond to K g-invariant complex
structures on n,.

LetJ : ng —> ng be acomplex structure and assume itis only M-invariant. Since Ko =
M (K @g)o we have that J is also Kg-invariant if and only if / commutes with the elements
in (Kg)o, or equivalently, adxy J = J ady for all X € £o (because of connectedness).

Proposition 1 LetFg be a real flag manifold associated to a split real form. Then a necessary
and sufficient condition for the existence of a M -invariant complex structure J : Tp,Fo —
Ty, Fo is that the amount of elements in each M -equivalence class [a] in IT~\(®)™ is even.
In this case, the M-invariant complex structures are given by direct sums of invariant
structures on the subspaces Vg = Z p~ya 98 C Ng. In a subspace Viq) the set of M
-invariant structures is parametrized by Gl(d, R)/Gl(d /2, C), where d = dim V.

Proof 1f a € [17\(®)~ then gy € ng and dim g, = 1 (because g is a split real form). The
subspace Jgo C ng is different of go by 5 in Lemma 1 and the representation of M in J g is
equivalent to the representation on g,. Lemma 2 implies that J g, is contained in the subspace
Viel = Y p~ya 98- Applying the same argument to the roots # that are M -equivalent to «,
we obtain JV, = V,. As J 2 — —1, it follows that dim V. is even and, hence, the amount of
roots M-equivalent to « is even. This proves that the condition is necessary.

To see the sufficiency take a M-equivalent class [«] so that by assumption the subspace
Vie] = Zﬂ~M¢x gp is even dimensional. Given m € M we have Ad (m) X = £X if X
belongs to a root space X € gg. In this equality, the sign does not change when 8 runs
through a M -equivalence class. It follows that Ad (m) = %1 on V|4]. Hence any complex
structure on V|4 is M-invariant. Taking direct sums of complex structures on the several V[
we get M-invariant complex structures on T, Fg >~ ng.

Finally the set of complex structures in a d-dimensional real space (d even) is parametrized
by Gl(d, R)/Gl(d/2, C). O

We use the results in [15] to present in Table 1 all possible subsets ® C X for which
the M-equivalence classes in 77\ (®)~ have an even amount of elements. Even though we
do not give the explicit computations to construct this table, we present the M-equivalence
classes for some cases in the followings sections.

Complex structures on Fg which are invariant under K are induced by Kg-invariant
complex structures on the tangent space and, in particular, are M -invariant. Hence Proposition
1 and a simple inspection of Table 1 give the following result.

Proposition 2 Let Fg be a real flag manifold associated to a split real form. If Fg admits
a K -invariant almost complex structure, then © is in Table 1.

An invariant complex structure J : ng, — ng induced is integrable if the Nijenhuis
tensor vanishes, that is if

Ny(X,Y)=[JX,JY]-[X, Y] - J[JX, Y] - J[X,JY] =0, forall X,Y €ng.
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1826 A. P. C. Freitas et al.

Table 1 M-equivalence classes in [T~ \(®)~ with even elements

Type (]
A3 (]
By ]
B3 (A1 — 22, A0 — A3}
Cq DAr1 — A2, A3 — Aa} (A3 — Ag, 204}
Ci,l#4 # only for [ even, {Ag — Ag41, -, A—1 — A, 20}, 1 <d <1 —1,d odd, forall /
D, {r1 — A2, A3 — A, (A1 — A2, A3 + A4},
Dy (A3 — Ag, A3 + b (A1 — A2, A2 — A3, A3 — A4}
(A1 =22, 22 — A3, A3 + A4}, (A2 — A3, A3 — A4, A3 + A4}
Dy, 1 >5 BoAhg = Ag41, s M—1 — A A1+ M) L <d <1 -1
G ]

3 K-invariant complex structures on maximal flags

For a maximal flag manifold, the isotropy subgroup Ke is the centralizer of a inside K,
that is, Ko = M. Hence Proposition 1 solves the question of existence of almost complex
structures, remaining only integrability to be solved. The main result of this section is the
following.

Proposition 3 The maximal real flag F associated to a split real form admits a K -invariant
almost complex structure if and only if F is of type A3, By, G, C; for evenl and D; forl > 4.
None of these structures is integrable.

Proof By Proposition 1, a maximal flag F admits an M-invariant almost complex structure
if and only if it appears in Table 1.

Recall that a M-invariant almost complex structure in F is given by an endomorphism
J :nT — n~ which is a sum of almost complex structures Jio] : Vioj —> V]q, for
o € I1~. We address integrability of these structures by fixing one of these J : n= — n~
and we study case by case.

Notice that if V[o] is two dimensional with basis 3, then the matrix of Jj4) in B is

q —U+a®)
c , witha,c e R, ¢ #0. (1)
c

—a
— CaseAz The M-equivalence classes of negative roots are:
A2 = A1, da — A3}, (A3 —Ap, A — Ao} e {Ag — A1, A3 — Ao}
Thus for i = 2,3,4, dim V[,_,; = 2 and it is spanned by {E;i, Es;} with s > 1,
{s,t}N{i,1} =@ and {s,t} U{i, 1} = {1, ..., 4}; here E j; is the 4 x 4 matrix with 1 in

the jk entry and zero elsewhere. Fori = 2, 3,4, leta;, ¢; € R such that J|V“‘i*)‘1] in this
basis has the following form
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Explicit computations give

Nj(Ea1, E31) = (3 — c2)caEzn + (c2a3 — axes + as(cz — ¢2)) Ean,
Nj(Ez, Esq1) = ca(az — a2) E31 + ca(ca + ¢3) Esn.
These two equations cannot be zero simultaneously since ¢; # 0. Thus the Nijenhuis

tensor does not vanish and J is not integrable.
— CaseB, The M-equivalence classes of negative roots are

{A2 — A1, —A2 — A} e {—A1, —A2}.

Let X1, Y21, X1 and X, be elements of a Weyl basis generating g, —»,, §—r,—1;» 9—1,
and g_;,, respectively. Thus J verifies

JXo1 = axn Xo1 + 21 Y21, JX1=a1 X1+ c1 X2,
JY21 = —(1+a3)Xa1/co1 — a2 Yor, JXo = —(1 +a})X1/c1 — a1 Xa,

with ¢, 21 # 0.
Let m = mjy,_3,,—5, # 0 be the corresponding coefficient in the Weyl basis, that is,
[X21, X2] =mX;. Then

Nj(Xa1, X1) = [T X210, JX1] — [Xo1, X11— J[X21, T X411 — J[J X21, X1]
—mci X, + mey(az — a)) X,

which is never zero since mc% 2 0. Therefore, J is not integrable.
— CaseC4 The M-equivalence classes are:

(Ao — A1, £hg — A3}, {£ A3 — A1, £ Ag — Ao}, {F A — Ay, £ A3 — Aol
(<20 i=1,...,4)

Notice that dim Vo = dim V[)“i_}"l] =4 fori = 2,3,4. Let (aij)ij, (b,'j),’j, (Cij)ij
be the matrices corresponding to J|V[A2—A1]’ JIV[M_M], JlV[M—M]’ respectively, in a Weyl
basis of n™.
Then Nj(X_y,—x;, X_25,) = 0and Nj(X_y,—»;, X_25,) = O imply a;p = azs =0
and moreover a124 + a§4 # 0 because otherwise X _;,_,, would be an eigenvector of J.
Analogously we obtain b1y = b3y = c12 = ¢34 = 0 and b%4 + b%4 #0, c%4 + c%4 #0.
With these conditions, Ny (X_3,—x,, X—2;,) = 0 imply az» = 0 and a4p # 0. Similar
computations give b3p = c3 = 0 and bay # 0, cao # 0. Now J 2= imply
ais = b1y =c14 =0.
All this account to Ny (X;,—,, X—x;—1,) = 0and Nj(X;,-5,, X—»,—2,) = 0 only if,
respectively, az; = c42 and a3z = —c42. This clearly cannot hold since c42 # 0.

— CaseCy,l even and | > 6. The M-equivalence classes are

{(£ry, — A}, 1<i<s <[, and {2A1,...,2M).

Let X;;, Y5; and X; be the generators of the roots spaces g;,—»;, g—x,—»; and g9-23;
respectively, corresponding to a Weyl basis. In this case, we have dim V[, ;] = 2 while
dim V|2;,] = [, even. Thus JX| = le=1 bjX;jandfors =1,...,/ we have

2
1+ asl)X
Cs1

JXs1 = aaXs1 +ca¥s1, JY51 =— st —as1Ys1, cs1 #0.
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1828 A. P. C. Freitas et al.

We compute the Nijenhuis tensor on the vectors X and X1, for s = 2,...,[. Denote
m =my _y, -2, 7 0, then we get

Ny(Xs51, X1) = [V X1, T X1] = [ X1, X1] = J [ X1, J X1 = J[J X551, X1]
!
= [as1 X51 + 51 Y51, ijXj] —bsmJYy

Jj=1
(1+a?)
= as1bymYy — bsm(_TSlel —as1Ys1)
s
(1+a?)
= bsmiﬂxsl + as1 (bgm + 1)Yq.

Cs1

Hence N (X1, X1) = 0 if and only if bym = 0. Thus J integrable implies by = 0 for
s =2, ..., 1. and therefore J X| = b; X1, which contradicts the fact that J2 = —1. Thus
J is not integrable.

— CaseDy. The M-equivalence classes are

{£X2 — A1, £hg — A3}, (A3 — A, EAg — M), {Fhg — A, £A3 — Aol

Clearly,dim V}y, 5,1 = 4fori = 2, 3, 4. We proceed as in the Cy4 case. Let (a;;);j, (bi})ij,
(cij)ij be the matrices corresponding to J|V{‘Az—m’ J|VM3—MJ’ J|VM4—MJ’ respectively, in
a Weyl basis of n™.

By imposing Nj(X,, X5) = 0for y € [A3 — A;] and § € [A4 — A1] we obtain that the
matrix of J| Vil in the Weyl basis is

—byg —b3y by bu

—byz  —b3z  bas b3
by b3y  —byp —bp
by b3y —bxy  —bn

With this, Nj(Xn,—2;, X—pu—2;) = 0, Ny(Xpy—as, X53-2;) = 0 and Nj(Xy, s,
X _j55-3;) = 0imply b1obzy = 0, b1obsr = 0 and b3rbsr = 0. But we know that
“%2 + “%2 + “4%2 # 0 since X_,_;, is not an eigenvector. So we conclude that only one
of b1, b3y, bgy is not zero. In each of the three cases, we obtain ajp = a3y = aqp = 0if
N vanishes, which cannot happen since X _;,_;, is not an eigenvector of J.

— CaseDy, | > 5. The M-equivalence classes are:

{£A; — ), I<i<j<l

For1l <i < j <1, we have dim V[,\jfx,-] = 2; let X;; be a generator of [T and let
Y;; be a generator of Ori42)- Thus V[,\j,;”.] is spanned by {X;;, Y;;} and J in this basis

has a matrix of the form
*(l+al-2j)
dij cij , where ¢;; # 0.

C,'j —a,-j

Conditions Ny (X13, X23) = 0 and N;(X12, X23) = 0 imply

Mjy—hohotas _ CI3 M —h3.00+43 )

My —h2,20—13 €23 My +2r3,00-23
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Now using Jacobi identity, we have

0 = [Y23, [X12, X23]] — [[Y23, X12], X23] — [X12, [Y23, X23]]
= My, —ap,ha—23 (Y23, X131+ My 05,0, -2 [X23, Y13]
= (M —r,00—23Mig+r3, 0143 T m)»2+)»3,)~1—)»zm)»z—)»3,)»1+)»3) Yio.

Thus

My —roha—23Mp 423,01 =23 = ~Mjp+423, 01 —Aa Mo —23,01+23

= Ty —h A +A3 M +03,00—A3

and therefore
My —ha.do4rs _ Mai—23,024+43

3

My —r2,h0—23 Myi4+43,00—13

This equation clearly contradicts (2) and hence J is not integrable.
— CaseGy The M-equivalence classes are

{=A1, =2X2 — A1}, {=22 — A1, =3%2 — A1}, {=A2, =32 — 2A¢}.

For (i, j) € {(1,0), (0, 1), (1, 1)}, dim V[—;», - jx,] = 2. In a Weyl basis of n™, we have
that the matrix of J|y,_;, _; , has the form

- —(l+a,-2j)
aij cij , where ¢;j # 0.

Cij —djj

Denote m = m_),4,),—1, then

Nyj(X_n—nys Xpp) = mlanaor — DXy, 25, —m(ar +ao)J X, 21,
=m ((a11a01 — 1) + ajolarr +ao1)) X, -2,
1 +a%0

€10

+m(ay + ao1) X5

Thus
Nj(X_p -, X-2,) =0 & agy = —ajr and ajjap =1,

and J is not integrable.

4 K-invariant complex structures on intermediate flags

In this section, we study existence of invariant almost complex structures on intermediate
flags F o, and their integrability. We obtain the classification of the flags admitting K -invariant
complex structures, only some of type C; do, and also we describe the complex structures
explicitly.

Proposition 2 states thatif Fg = K /K g with @ # () admits a K -invariant almost complex
structure, then Fg is one of the following:

— of type Bz and ©® = {A| — A2, A2 — A3};
— of type C; withl =4 and ® = {A| — A2, A3 — Ag} or © = {A3 — A4, 2A4}; 0r] # 4 and
O ={Ag — Ad+1,--->s M—1 — A1, 20} ford > 1, d odd.
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— of type D; with [ = 4 and ® being one of: {A| — A2, A3 — Aa}, {A1 — A2, A3 + A4},
{A3 — Ag, Az + Aa), (A1 — A2, A2 — A3, A3 — Aql, {A1 — A2, Ao — A3, A3 + A4, (A2 —
A3, A3 — Ag, A3 + Mg 01l > 5Sand © = {Ag — Agy1, -0 s Ai—1 — A, M-y + A} for
l<d<Il—-1.

We analyse the cases B, C and D separately in the next subsections. We need to treat them
separately since the isotropy representations differ significantly. In the three cases, we start
by imposing necessary conditions for the flag to admit an invariant complex structure, which
we shall describe in the next paragraph. We obtain that only in few cases one can obtain that
type of structure.

Recall that K -invariant almost complex structures on [F'g are in one-to-one correspondence

with Kg-invariant maps J : ng —> ng, such that J 2=1.
Assume J : ng —> ng is Kg-invariant and J? = —1.Then J is necessarily M-invariant

since M C Ko = M(Kg)o, hence by Proposition 1 we have
JVia] = Vo) foreacha € IT7\ (@) . 4)

In addition, J is also (K g )q invariant and therefore
ady J = J ady forall X € tp. 5)

Assume ng = W; @ --- & Wy is a decomposition on Kg-invariant and irreducible
subspaces. If the representation on W; is not equivalent to the representation on any other
W;, j # i then JW; = W; because of Lemma 2. Notice that if this is the case W; is even
dimensional. To the contrary, if JW; = W; for some i # j, then the K¢ representation on
these subspaces are equivalent, and J gives such an equivalence.

To address the non-existence of almost complex structures, we prove that some of the
necessary conditions above cannot hold simultaneously. For the cases where an invariant
almost complex structure does exist, we use these necessary conditions to build them explic-
itly. Notice that, for instance, if J : ng —> ng with J 2=—1 satisfying (4) and (5) is K¢
invariant.

We remark that the conditions related to the K¢ and £ representation on ng, are dealt
with through a description of g as a matrix Lie algebra. Integrability of the almost complex
structure is established by computing the Nijenhuis tensor, as in the maximal flag case.

4.1 Flags of B3 = s0(3, 4).

The set of simple roots is X' = {A; — A2, Ao — A3, A3}, and we take @ = {A| — Ay, Ao — A3}
obtaining (@) = £{A; — X2, Ao — A3, A1 — A3}. Notice that the flag is a six dimensional
manifold. The M-equivalence classes outside of ® are: {A; + A2, A3}, {A1 + A3, A2} and
{X2 + A3, A1}. The compact subgroup (K e ) is isomorphic to SO(3).

We consider the realization of B3 = s0(3, 4) in real matrices of the type

o B v
-y A B |,
- Cc AT

with A, B, C are 3 x 3 matrices, 8, ¥ 1 x 3 matrices and B + BT = C + CT = 0. Then,
(K®)q (respectively M ) is given by matrices of the form

1 0 O
0 g 0],
0 0 g
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with g € SO(3) (respectively, g diagonal with entries =1 and an even amount of —1 entries).
The root space corresponding to the short root A1 is given by matrices where the components
A, B, C and B vanish and y is a multiple of e; = (1, 0, 0). The same holds for the roots A,
and A3 with e, = (0, 1, 0) and ez = (0, 0, 1), respectively. The root spaces corresponding to
Ai +Aj have B as unique non-vanishing component and it has the following form, depending
on the long root:

0 -1 0 0o 0 -1
M+rm:B=|1 0 O M+23:B=10 0 O
0O 0 O 1 0 O

0o 0 O

M+23:B=]10 0 -1

0O 1 0

The subspaces V. = ), gy, and V; = Zi, j Gri+a; are both invariant subspaces under
the adjoint representation of Kg = M - SO(3). The representation of the SO (3) on V, is
isomorphic to canonical representation on R, while the representation on V; is the adjoint
representation. These two representations of SO(3) are isomorphic. In fact, an isomorphism
is constructed via the identification of R3 with the imaginary quaternions H: if p, ¢ € H then
ad(¢)p = g, p] € Im H and ad(g) € so(3) that commutes with the representations of the
SO(3). This isomorphism also commutes with the representations of M. Indeed, considering
the basis {e1, e2, e3} = {i, j, k} € R? = Im H, we have

0 0 O 0 0 2
ad@)=10 0 -2),ad(j)=| 0 0 O
0 2 0 -2 0 0

0 -2 0

and ad(k)=(2 0 O

0 0 0

The isomorphism P : V. — V, takes the root spaces g5, g, and g, to the root spaces
Oir+230 Oai+2; and @i, 45, , respectively. In addition, it commutes with the representation
of (K)o and with the representations of M. Therefore, P : V. — V; commutes with the
representation of K¢g.

Proposition 4 The flag manifold Fg of Bz with ® = {A| — Ay, A2 — A3} admits K -invariant
almost complex structures and each of them is given by J,, for some a # 0 where J, : n;; —
nJ(; is defined by

Jo(X)=aPX)ifX € Ve, Jo(X)=—a"'P'X)ifX €V,

These structures are not integrable.

Proof We have n?,} = V. @ V; as Kg-invariant irreducible subspaces and because of the
reasoning above, Ja is indeed invariant by Kg. Thus, there is a one-parameter family of
invariant almost complex structures on Fg.

Furthermore, a K g-invariant complex structure J on nJ(; is of this form. In fact, any K-
invariant complex structure J : n;’) — nJ([) interchanges V. with V; by 4. in Lemma 1, since
these are irreducible odd dimensional subspaces. Moreover, the subspaces gj,+1, @ gx;.
I11+43 D@ Ory» Oar+25 @ ga, are J-invariant because of (4). The fact that ady J = J ady for
all X € g implies that J is actually a multiple of P.
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These structures are never integrable. In fact, [V, V.] = V; and [V}, ng] = 0. Thus, for
X,Y € V. wehave J, X, J,Y € V, and therefore N;,(X,Y) = —[X, Y]. Hence N; never
vanishes. ]

Remark 1 This flag Fg of type Bz and ® = {A; — A2, 2> — A3} is the Grassmannian of
three-dimensional isotropic subspaces of R’, that is, three-dimensional subspaces in which
the quadratic form matrix

1 0 0
0 0 13x3
013x3 O

vanishes. The proposition above gives a family of K -invariant almost complex structures on
this flag which is parametrized by R\ {0}.

4.2 Flags of C; = sp(l, R)

The set of simple roots is X' = {A1 — A2, ..., A\j—1 — A7, 2A;}. For the analysis of these flags,
we separate the case [ = 4 where the M-equivalence classes are different from the general
case.

4.2.1 Case C;, 1 #4

Assume [ # 4 andlet ©® = {Agy1 — Ag42, ..., M—1 — A7, 2A01} withd € {0, --- |1} and d
even. Noftice that ® gives a Dynkin sub-diagram C), of C; with p = [ — d, thus £g is the
maximal compact subalgebra of sp(p, R), that is, €9 >~ u(p).

The M-equivalence classes in 77\ (©)" are

i —djohi4+ajh 1<i<d, i<j<I, and {2i,...,24a}.

For each positive root o denote t, = (gy @ g—o) N E. Then £ = o G me where g is the
vector space sum of t, where « runs in (@) and

me = Z bi—x, Ot & Dty
I<i<d,i<j<l

is a reductive complement of £g.
The invariant and irreducible subspaces of mg by the Ko action were described in [15,
Section 5.3] and we present them below. Define

R={M+r:1<i<j<diUf2xn:1<i<d).
II={Er:d+1<j<l}, i=1....d,

andlet Wg =3, cpboand Wi =3 g 8o i = 1,...,d. We have

d
mo=Weg® ) Wi (6)
i=1
and the subspaces above are M -invariant.
Ifo € Rand B € O, then £« + B is never a root so [Y, X] = O for any Y € £p and
X € Wg. Thus Ad(g)X = X for any g € (K)o, since (K@)o is connected, and therefore
Wg is invariant by Ad(Kg).
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Each subspace W; is K¢ invariant and is irreducible subspace and the respective repre-
sentations are not equivalent if i # j (see [15, Lemma 5.11]). We make use of the following
isomorphism between the compact algebra € and u(/) given by

A —B - T _ T _
(B A>|—>A+1B, A+A" =B—B" =0.

The isomorphism takes £g in the algebra of anti-Hermitian matrices of the form

to: (o v)- ™

being X a p x p matrix. Moreover, Wg corresponds to the matrices of the form

* 0
WR'(O 0)’

with d x d upper left block, while the subspace W = Z;’;l W; corresponds to

—=T
[0 —C
W.(C 0 ) (®)

where C is d x p. A subspace W; is given by those matrices C having non-vanishing entries
in column j. The representation of €5 in W is given by the adjoint action:

630 )]-(e o)

Thus C having non-vanishing entries on column j implies that the same occurs for XC. So
the subspaces W; are, in fact, invariant.

The image of &,;—;, in u(/) through the isomorphism is generated by the real anti-
symmetric matrix A jr = Ejr — Ey;, while the image of €, 15, is generated by the imaginary
symmetric matrix S = i (Ej; + Ej;).

Lemma 3 . An almost complex structure J : mg —> mg is M-invariant if and only if
J leaves invariant each subspace EM*M D8y, iy and £y, @ -+ @ toy,.
2. An M-invariant almost complex structure J is Kg-invariant if and only if for each

Jj=1,...,d there is some ¢; = *x1 such that J Ayj = &;S; and J Syj = —¢&;A; for
alld <k <1.
Proof Let J : mg —> mg be an isomorphism such that J2 = —1. From Proposition 1 and

taking into account the M-equivalence classes given above we have that J is M-invariant if
and only if it preserves each E)\i—)hj @ E,\,Hj and &, & - @ by,

Now assume J is M-invariant, then J is Kg-invariant if and only if ady J = J ady for
allY € tp.

Notice that J preserves each W; and Wg in (6). Since [X, Y] = OforallY € tg, X € Wp
we see that J |y, is Kg-invariant. Recall that W; is spanned by A j;, S;; withd +1 < j <.

LetY € tp beasin(7) with X imaginary diagonal matrix,i.e. X = diag(iay, ..., ia,). We
have ad(Y)Ay; = a;Sk; and ad(Y)Sx; = —a;Ag; for some a; € R. Thatis, E/\j—)% ® EA_,-+/\,<
is invariant by ad(Y) and the matrix of ad(Y) in the basis {Ag;, Sk;} is

0 —a;
(a/ 01>' ©
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If we denote Ji; the restriction of J to {3)\,- i EBE;LJ. 4y, fork > j we see that J;; commutes
with ad(Y) only when its matrix in the basis {Ay;, Sk;} is

Jij = k) <? _01> with g = £1. (10)

Fixje{l,...,d}andlet] > s,t > d+1,consider ZbeasinEq. (7) with X = E;;— E;
and let D be as in Eq. (8) with C = Ej;. Then

0 -xc'

ad(Z)D = (XC 0

), with XC = Ey;.

This implies that ad(Z)Ay; = A;; and ad(Z)S;; = §;;. Recall that J in the basis restricted
to €35, @ €142, has a matrix of the form in Eq. (10) in the appropriate basis. In order J
to commute with ad(Z) above, we need

Ethtj = JAtj = Jad(Z)Asj = ad(Z)JASj = ad(Z)estsj = SSjStj.

Thuseg; = ¢;j foralll > 5,t > d+1,and we define ¢ this value. We have then J Ayj = & 8;
and JSy; = —¢jAgj foralld < k <.

Next we prove that this condition is sufficient for J to commute with the adjoint of elements
in £g. Indeed, for j, s, t as above, we only have left to verify that / commutes with matrices
Z as in Eq. (7) with X = i(E;; + E,). We consider D as in Eq. (8) with C = Ejj, then
XC = iE,;j and we obtain ad(Z)A,; = S;;. Likewise, if C = i Ej;, then XC = —E;; and
thus ad(Z)Ss; = —A,;. Therefore,

ad(Z)JAsj = 8jad(Z)SSj = —8jA[j = JStj = Jad(Z)Asj

and
ad(Z)JSSj = —sjad(Z)Asj = —SjStj = —JAZJ' = Jad(Z)Ssj.

[m}

Remark 2 The set of K invariant almost complex structures on the flags Fo in Lemma 3 is
parametrized by Gl(d — 1, R)/Gl(d — 1/2,C) x (R? UR?)4@=D x 74

The component GI(d — 1, R) /Gl(d — 1/2, C) corresponds to the complex structures on the
space generated by long roots outside (@)*. The component (R? UR?)4@=D corresponds to
the structures on the spaces generated by the roots {A; — Ag, Aj + A }. The set RZUR? is the
disjoint union of the two copies of R2, that is G1(2, R) /GI(1, C). Finally, Z3~" parametrizes
the signs €.

We introduce two technical lemmas which will lead to the determination of the integrable
structures.

Lemmad Let J be a K g-invariant almost complex structure. If J is integrable then for each
i,je{l,...,d}, j>i,wehave JAj; =cj;Sji and JSj; = —cjjAj;, with cj; = £1.

Proof Take 1 <i < j < d then by M-invariance J S;; = Zk by Sk and

1""“2','
aji ——*

J|{A_/i75j,'} =" cji where ¢;; # 0.
cji —aji

@ Springer



Invariant almost complex structures on real flag manifolds 1835

We have
(1442) (1+a%)
Ny(Siis Aji) = Aji (2Cji(bii = bji) +2(0bji — bi)— = = 2¢jiaji — 2aji —2 )
+Sji (20ji(bji —bii) +2+2a;i(bj; — bi;) — 2(a]2-l- + C?i)>
Therefore,

(bii — b} —1—a%) —aji(c% + 1+a%) =0

Nj(Sii,Aij)) =0 &
7 (Sii> Aji) C?iZZaj,‘(bji—bii)-Fl—a%i

Cfi =2aji(bji — bij) + 1 —a?,-

=
((bii = bji)* + Daj; =0
aji =0

< Cji =41

[m}

Up to this moment, we have proved that if J is K g-invariant and integrable then for each
j=1,...,d:

— JAyj = cxjSkj and JSg; = —cpjAxj fork =1,...,d,k # j and
— JAyj =¢jSjand JS;j = —¢gjAgjforallk =d + 1, ..., 1.

where ¢, cx; € {#1}. To simplify notation in the following lemma we write

TAwj = jSij, ISk = —jAgjforall j=1,....d, j <k #1. (11)

Lemma 5 Let J be a Kg-invariant (integrable) complex structure. Then for any triple k >
Jj > ssuchthat j,s € {1, ...,d} the possible values for (jirs, tkj, i js) are:

(Mkss Mks» Mks)s (Mkss —Mks» Pks) and (Wi, ks, —Mks)-,  Mks = 1.
In particular, if e; = —&g then cj; = &;.
Proof By Eq. (11) we obtain

0 = Ny(Akj, Aks) = (1 + mijitjs — Ikjtis — Hksijs) Ajs
= ((kj — Bks)tjs + (s — M) ks ) Ajs
= ((js — )iy + (js — trs)ibjs) Ajs-

From the second row of this equation, we see that pg; = —pugs implies pjs = ps;
while the third row implies pug; = —pjs = ps if (js = —pks. We conclude then that
the possible values for the triple (s, fkj, [Ljs) are: (His, Miss His)s (Mks» —Mks» ks) and
(ks> ks> —Mks)- O
Proposition 5 Let J : mg —> mg be such that J> = —1 and moreover it preserves
€5, ® - @Yy, and J Ay = g Skj, I Skj = —mkjAxjforall j=1,...,d, j <k <d,
with Kkj = +1.

Then J is Kg-invariant and integrable if and only if the following hold:

—foreach j=1,...,d, uj=¢jforallk=d+1,...,L
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— foreachtriple k > j > s suchthat j,s € {1, ..., d} the coefficients (jirs, pikj, W js) are
one of the following:

(Kkss Mhs» Mks)s (s, —Mks, Mks) and (ks , ks, —Mks)-

Conversely, any K -invariant complex structure on Fg is induced by J as above.

Proof Itis necessary for J to be M-invariant to preserve €2, @ - - @€, and Exj—xk @E;\jﬂk.
The conditions above are necessary as proved in Lemma 3 in order J to be K -invariant and
Lemmas 4, 5 to be integrable. As seen there, such J verifies Ny (S, Axj) =07 =1,...,4d,
J < k < land Nj(Ayj, Axs) = 0 for each triple in the second item. To show that these
conditions are sufficient, we have to show that i) N; (Skx, Skj) = 0,1ii) Ny (Sk;j, Sks) = 0, iii)
Nj(Skj, Axs) =0andiv) Ny(Sjj, Sgs) =0forall j > 5 e{l,...,d}andk > j > 5.
Clearly (iv) holds since these matrices are diagonal. Moreover, Nj(Aygj, Axs) =
Nj(Skj, Sks) so (ii) also holds. Similar computations as in the proof of Lemma 4 give (i).
Finally N (Skj, Axs) = (—1 — Mkjjs + Hkj ks + Mksﬂjs) S5 so reasoning as in Lemma
5 one obtains (iii). ]

Example 1 We consider the flag Fg of C3, with ® = {2A3}. The component Wg of tangent
space at the origin of flag is given by sum of €,, « € R, and has the following form:
R = {A; £ A2} U {241, 242} . The components W; are determined by the sets of roots

I = {x £ 23}, T ={h £23}.
Fixej = £1 j = 1,2 v = £1 such that
(81a827‘))€{(17131)3 (_17_17_1)7(17_171)7(_1719_1)7(1713_1)7 (_17_171)}a

and let ayy, c;; € R st ¢c1 # 0. The following table gives all Kg-invariant integrable
complex structures J in Fg.

Components K g-invariant complex structures

1141 JA3) = €1831, JS1 = —¢€1A31,

Wa JAz = 2832, JS30 = —62A3
JAx =v821, 21 = —vAyy,
JS11 =ayS S22,

Wg 11 ali+212+611 22
JS» =——L81 —aS»

1

4.2.2 Case Cy4

The M-equivalence classes of positive roots are
{A1 £ 22, A3 £ A4}, {A1 £ A3, Ao £ AaH{A1 £ Ag, A2 = A3}, {244, 242, 243, 204}

Proposition 6 The realflagF o of Cawith® = {A|—A2, A3—A4} does not admit K -invariant
almost complex structures.
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Proof According to [15, Section 5.3], the K¢ irreducible components of ng, are given by

Vi = (X2 — X2, Xp—ny) Va = (Xoasy + Xong)s
V2 = (XZ)L] + lez)v V3 = (X2k3 - XZ)\45 X*)L47)\3)

Vs = (Xog—n + Xou—rps Xoz—2p — Xag—1y)
V6 = (X)@f}\z + X)»47)Lls X}\.47A.2 - XA.37)\.1>’
Vi= (X g + Xny—n Xog—io — Xu—iy)
VS = <X_)\43_)\,2 + X—)»4—M P X—)»4—)»2 - X—)»3—M >7

where X, is a generator of root space gy .

The components V2, Vs and Vg are equivalent to the components Vs, V7 and Vg, respec-
tively. The subspaces Vi and V3 are neither equivalent between them nor to any other
representation subspace.

Assume J is a Kg-invariant complex structure J on ng. Then JV; = Vi since it is
irreducible and non-equivalent to any other representation subspace. Moreover, Vi_j,_3,] =
9—1—1, DP—x,—a; and J preserves this subspaces too because of its M -invariance. Therefore,
Vi N ViZiy—a,] = (X_5,-2,) is an invariant subspace of J, which is a contradiction. So we
conclude that no K -invariant complex structure exists in this case. O

Fix ® = {A3 — A4, 2A4} for C4. The Kg-irreducible components of mg are [15, Section
5.3]:

Vi=g-2, V3=0n-1
Vo =925, Va=g-5-2,
Vs = @iz—i1 ® 9—n3—211 @ Gau—r; D G—ny—n»

12
Vo = Br3—20 D 91520 D Grg—10 © 9—ns—ns- (12)

The components V; and V3 are equivalent to, respectively, the components V; and Vj4. The
components Vs and Vg are not equivalent.

As in the previous section, we consider the isomorphism between £ and u(4). Under this
map, €o = ({A43, S43, 533, S44}) and

mo = Wr & EB Wij
j=1.2

k=34
where Wg = Wh @ Way with Wy = ({S11, S22}) and Wy; = ({Aj. Sij}).

Proposition 7 The flag manifold Fo of C4 with ® = {A3 — A4, 214} admits K -invariant
almost complex structures and each of them is induced by a map J : mg —> mg verifying

JS11 = viSx0, JSn = —vy 'S with v #0,

JAy = 1S, JSH = —v;lAzl with vy # 0,

JAkj = SjSkj, JSkj = —é’;‘jAkj fork € {3,4}, j € {1,2},
withej = £1.

Such structure is integrable if and only if vo» = £1 and vy = € if &2 = —e¢1.

Proof We already know that Fg admits M-invariant almost complex structures and such J
is the direct sum of almost complex structures in each Viy), o € 1T T\ ¢ ©)". In this case, the
M-equivalence classes are

{A1 = A2, Ar + A2}, (A £ A3, 02 £ Aq), {1 £ A4, A2 A3}, {244, 222},
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So, in particular, W}?, Wai, Wa; @ Wap and W3y @ Wy are J-invariant.

Moreover, since Vs = W31 @ Wy and Vg = Wiy @ Wyp in (12) are irreducible and
non-equivalent, we have J Vs = Vs and J Vg = Vi. Therefore, each Wy, k = 3,4, j =1,2
is invariant, since it can be described as an intersection of V|4) and V; for suitable root and
index.

We proceed as in the general case C;, [ # 4 to show that J has the form given in the
statement of the proposition.

Forany Y € tg and Z € Wg, we have [Y, Z] = 0 so J restricted to this subspace is also
Eo-invariant. Let Y = a3S33 + a4S44 € to, then ady J = J ady implies that for k = 3, 4,
j =1, 2 the matrix of Jlwy; in the basis {Ag;, Sg;} is

0 -1
Mkj(l 0 >,Mkj=ﬂ:1.

Now let Y = a3A43 + a4S43 € kg and let Z € Wy; withk = 3,4, thenady JZ = Jady Z
holds if and only if e4; = £3; for j = 1, 2. It is not hard to see that these conditions are also
sufficient for J to be K g-invariant.

To address integrability, notice that, as in the general case, we have

Ny(Sis Aar) = =2 (v (2 = v Aoy + (<1 +1D)S21)
Nj(A4, Ap) = (8182 — 1+ (1 — 82)v{1) Az

Therefore, J is integrable if vy = £1 and v» = &7 in the case that £; = ¢3. One can check
that these conditions are sufficient for J to be integrable. O

4.3 Flags of D; = so(l, 1)

A root system is given by &A; £ A;, i # j, and the corresponding set of simple roots is
givenby X = {A; — Ao, ..., A1 — A, -1 + M}, 1 <0 < j <. The maximal compact
subalgebra of so(l, 1) is € >~ so (/) & so (I).

As in the C; case, we deal first with the case D; with [ > 5 and later we address the case
of [ = 4 because of the difference between the M-equivalence classes.

4.3.1 Case D;, | > 5

We consider ® = {Ag — Ag+1, ..., Ai—1 — Ag, Aj—1 + Ay}, this gives a sub-diagram D, of
Dy with p =1 —d + 1, thus €9 >~ s0 (p); @ so(p),. The set (@) of roots generated by @
is given by
(©)={£(ri*tr;):d=<i<j<I.
The roots in ITT\ (@) are
AEAjwithl <i < j<d, andX;*A;withi=1,...,d—-1, j=d,...IL

and the M-equivalence classes are {A; — A;, A; + A;}. Consider the subsets of roots in
a\(e)":

R={,=xxr;j:1<i<j=<d}
I ={}£xr;:d=<j=<l}, i=1,...,d-1

@ Springer



Invariant almost complex structures on real flag manifolds 1839

andlet Wg =), cp 0o and W; = Zaem go- Clearly we obtain
d—1
NG =Wy Wi (13)
i=1
The subspace Wg is Ko _invariant and irreducible. Moreover, each W; decomposes as
W, = Vi1 ® Viz, where Vl.] is irreducible Kg-invariant and the representations are not
equivalent [15]. We present an explicit description of these subspaces.
A split real form of D is so (/, ]) and it is represented by real matrices of the form

(é_iT>,where B+BT =c+cT =o. (14)

The algebra g (@) generated by go, @ € (@) is given by matrices in Eq. (14) such that A, B
and C have the form
0 0
(6 2)

where the nonzero part is squared of size p =/ — d + 1. The Lie algebra g () is of type
D,,, isomorphic to 50 (p, p).
The compact part € inside so(/, /) is given by the subset matrices in (14) having the form

A B T _ T _
(BA>,where A+A" =B+ B =0.

It is well known that £ decomposes as a sum of two ideals, both isomorphic to so (/). The
compact Lie algebra €g lies inside £ and also inside g(®) and consists of matrices of the

form
<2§>,withA,Be({Es,—E,s:d§s<t§l}). (15)

The Lie algebra £ also decomposes as a sum of two ideals, both isomorphic to so (p), which
are

5Mm1:{(22>5A€“Eﬂ_aﬂdfs<t§”d,

50(p)y = {(_AA _AA) cAe ({Ey — Ey :d§s<t§l})}.

Fixi € {I,...,d — 1} and denote S; = {X = (ay) € gl(l, R) : a5, = O for all (st) ¢
{Gj): j=d,...,1}}.Forany j =d, ..., theroot space O1—2; is represented by matrices
(14) where A = E;;, C = B = 0; meanwhile, g, 1 ; is represented by the matrices of the
above form where B = E;j — Ej;, A = C = 0. Thus W; is given by

_ oyt
<}(§ Y_X)T/ ) where X, Y € S;. (16)
For Z € S; denote
zz7-2zT zZ-z+2ZT
XZ:(O _zT >, YZ:<0 T ) (17)

and define Vi1 ={Xz:ZesS}, Vl.2 ={Yz: Z € §;}. Clearly, Vl.l, Vi2 C W;. Moreover, a
matrix as in (16) can be written as the sum of two matrices in (17) by taking Z = (X +Y)/2,

@ Springer



1840 A. P. C. Freitas et al.

Z' = (X —Y)/2. Thus we obtain W; = Vi1 &) Vl.2 and dim Vl.l = dim Vl.2 =l—-d+1=
p=16].

We compute the £ action on Vi1 and Viz:letN € tpasin(15)andlet Xz € Vil, Yz € Vl.2
then AZ=0=BZ,ZTA=0=2Z"Bso

[N, Xz]1=X_z+p), and [N,Yz]=Y_z_p).

This implies that so(p), acts trivially on Vl.] while for N € so(p); the action is [N, Xz] =
X_274.Similarly, so(p); acts trivially on Vl.2 while for N € so(p), the actionis [N, Xz] =
X_274. We conclude that the o representation on Vi1 is equivalent to the so(p) @ so(p)
representation on R” where the action of so(p); is the canonical and the action of so(p); is
trivial. Similarly, the £ representation on Vi2 isequivalent to the so(p) @so(p) representation
on R?” where the action of so(p); is by zero and the action of so(p)> is the canonical one.

Wekeepi =1,...,d — 1 fixed. Let s, t € {d...l}, s # t and consider Nslt being as in
(15) with A = E;; — E;y and B = A (i.e. N € so(p)1). Then

[N}, Xg, ] = —2Xg, and [N},, X, ] = 2X g, while [N}, Yg, ] =O0forall j. (18)

is?

Similarly, denote NSQ, € s50(p)> being the matrix in &g associated to A = E5; — E;s and
B = —A, then
[N

st

Yg,] = —2Yg, and [N}

st

Yg, 1 =2Yg,, , while [Nf,, Xg;1=0forall j.  (19)
Having described the g representation on nJ@r we can state:

Proposition 8 The real flags Fo of D; withl > 5 and ® # () do not admit K g-invariant
complex structures.

Proof Assume J : n?; — nJ@r is a Kg-invariant almost complex structure. As it is M-

invariant and each subspace in (13) is sum of M -equivalence classes, we have that J Wr = Wg
and JW; = W; foralli =1,...,d — 1.

Recall that W; isnotirreducible, fori = 1, ...,d—1.Instead W; = Vi1 @ Vl.2 where each of
these subspace is invariant and irreducible by the K g action, and the induced representations
are not equivalent [15]. By Lemma 2, we conclude that Vi] N Vi2 are J-invariant. In particular,
Vi1 and Vi2 are even dimensional and thus p is even.

Fixi =1,...,d —1andlet j € {d,...,I}. In the notation (17) one can see that
9r—n; ® Or+a; = ({XE;. YE;}), which is a J-invariant subspace of W; because of the
M -invariance of J. Thus JXEU = “inE,-j + cinEU with ¢;; # 0. Forany s € {d,...,1},
s # j we apply (18) and obtain

ad 1 JXEU- =ady1 (ainEij + cij YE;J-) = —2a;jXg,,, while
sj sj
Jadyi Xg; = J(=2Xg,) = =2ais X, +cisVE,),
but ¢;s # 0, contradicting the K g-invariance of J. ]

4.3.2 Case Dy

Now we proceed to the study of flags of D4 with ® as in Table 1. The M-equivalence classes
of positive roots in Dy are:

(A1 — A2, Ap + A2, A3 — Ag, A3 + Aa), (A1 — A3, A1 + A3, A2 — Ag, Ao + A4l
{A1 — Aay AL+ da, A — A3, Ao + A3}
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As in the general case, we work with the split form so(4, 4). In what follows we denote
by X;j = E; j — E;4j+; a generator of 03— and by Y;; = E;;y; — Ej4; a generator
03;+»;> Where E; j is the 8 x 8 matrix with 1 in the position ij and zeroes elsewhere.

The group M consists of 8 x 8 diagonal matrices diag(ey, €2, €3, €4, €1, €2, €3, €4) Where
€; = =1 and €1 €364 = 1, that is, there is an even amount of —1’s in the diagonal of matrices
of M.

Proposition 9 The real flag manifold Fg of type D4 with ® = {A] — Ay, A3 — A4} admits
Ko invariant almost complex structures. These structures are not integrable.

Proof The following is the decomposition of ng in K invariant and irreducible subspaces

4
NG =G, © Gasiay D Z Vi,

i=1
where

= (X13 — X24, X14 + X23)
(X13 + Xo4, X14 — X23)
(
{

Y13 — Yo4, Y14 + Y23)

Vi
Va
V3
\Z Y13 + Yo4, Yig — Y23)

The map T13 : V1 —> V3 defined by T13(X13 — X24) = Y13 — Y24 and T13(X14 + X23) =
Y14 + Y>3 commutes with adg,. Moreover, the linear map To4 : Vo — Vi, verifying
Tr4(X13 + X24) = Y23 + Yoq and Th4(X14 — X23) = Y14 — Y23 commutes with the adjoints
of to. Therefore, the (K@ )o representations on V| and V3 and the representations on V, and
V4 are equivalent. One can see that these two different representations are not equivalent.

Assume J : nzg — ng is a Kp-invariant almost complex structure. The M-invariance
implies that V|4 is M-invariant. For instance, V|5, ;) = ({X13, Y13, X24, Y24}) is invariant
under J. Because of the £g representations described above, we have that JV; = V; or
JV1 = V3. In the first case, we may have X3 — X24 as an eigenvalue of J, which is not
possible, so we obtain J V| = V3 and J(X13 — X24) = ¢1(Y13 — Y24) for some ¢; # 0. By
analogous reasoning, we obtain that J is as follows:

JY1o =aYp + cYa,
JYss = (1 +a®)Yi2/c —aYs,
J(X13 — X24) = c1(Y13 — Y24),
J(X14 + X23) = c2(Y14 + Y23),
J(X13 + X24) = c3(Y13 + Y24),
J(X14 — X23) = ca(Y14 — Y23),

where c¢;, ¢ # 0. But Jady = adyx J for X € tp implies c; = c4 and ¢» = c¢3. Direct
computations show that this is M-invariant and J ady = ady J for all X € £p, therefore, a
K g-invariant almost complex structure.

Regarding integrability, it suffices to remark that, for instance, Nj (Y12, X13 — Xp4) is
never zero. O

Proposition 10 The real flag manifold Fo of type D4 with ® = {A; — Ay, A3 + I} admits
Ko invariant almost complex structures. These structures are not integrable.
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Proof We proceed as in the previous proof. The following is a decomposition into Kg
invariant and irreducible subspaces

4
Ny = Gr+i D Orz—ny @ Z Vi,
i=1
where

= (X13 — Ya4, Y14 + X23)
V2 = (X13 + Y24, Y14 — X23)
= (Y13 — Xo4, X14 + Y23)
V4 = (Y13 + Xo4, X14 — Y23)

The subspace V| is £g-equivalent to the subspace V3 and the subspace V> is g -equivalent
to the subspace V4 through the following linear transformations 713 : Vi — V3 and
4 @ Vo —> Vi, given by T13(X13 — Y24) = Y13 — Xo4, T1i3(Y14 + X23) = X14 + Yo3,
Tr4(X13 + Y24) = Y13 + X24 and Tr4(Y14 — X23) = X14 — Y23. The other representations
are not g equivalent.
Assume J is a K g-invariant almost complex structure. As before, JV; = V3 and JV, =
V4 and J verifies
JY12 = aXszq + cYio,
I X3 = (1+a*)X3s/c —aYna,
J(X13 — Y2a) = c1(Y13 — X24),
J (Y14 + X23) = c2(X14 + Y23),
J(X13 + Y24) = c3(Y13 + X24),
J (Y14 — X23) = ca(X14 — Y23),

J commuting with ady, for X € g implies ¢; = ¢, and ¢3 = ¢4, and any such J commutes
with all ady € €g, soitis (K@) invariant. One can verify that J is also M-invariant.
Again, it is possible to see that N; (Y2, X13 — Y24) never vanishes. O

Proposition 11 The real flag manifold Feg of type Dy with ©® = {A3 — A4, A3 + ra} admits
K@ invariant almost complex structures. These structures are not integrable.

Proof The following is a decomposition into (K)o invariant and irreducible subspaces

4

n;; =gr—h @ G40, @ Z Vi,
i=1

where

= (Xi3+Y3, Xiu+Yuu
Vz— X3 — Y13, X14 — Y4
Xo3 + Y23, Xog + You

)
)
)
V4 = (X3 — Y23, X024 — Y24)

= (
(
= (
(

The subspace V| is £g-equivalent to the subspace V3 and the subspace V> is £g-equivalent
to the subspace V4. Indeed, we consider the linear transformations 713 : Vi —> V3 given
by T13(X13 + Y13) = Xo4 + Y24 and T13(X14 + Y14) = —(X23 + Y23) and Tog : Vo —> V4
given by To4(X13 — Y13) = Xo4 — Yog4 and T24(X14 — Y14) = —(X23 — ¥23).
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Any (K g )p-invariant complex structure J is of form

JX12 =aXpp +cY,

JY12 = (1 +a»)X12/c —aYra,
J(X13 +Y13) = c1(X24 + Y24),
J (X144 Y14) = —c1(X23 + Y23),
J(X13 — Y13) = c2(X24 — Y24),
J(X14 — Y14) = —c2(X23 — Y23),

Direct computations show that this is also M-invariant and therefore K g -invariant. For such
structure, Ny (X12, X13 + Y13) never vanishes. ]

Proposition 12 The real flag manifolds Fg of type D4 where @ is one of the following sets:

— O1={A1 — A2, A2 — A3, A3 — A4},
— Oy ={A1 — A2, A2 — A3, A3 + A4},
— O3 ={A2 — A3, A3 — A4, A3 + A4},

do not admit K g -invariant almost complex structures.

Proof Below we give the respective decompositions of n?;_ in Kp invariant and irreducible
i
subspaces.

Ng, = (Y124 Y34, Y13 — Y24, Y14 + Y23) @ (Y12 — Y34, Y13 + Y24, Y14 — V3).
ng, = (Y124 X34, Y13 — X4, X14 + Y23) © (Y12 — X34, Y13 + X24, X14 — V23).
Ny, = (X124 Y12, X13 + Y13, X14 + Y14) © (X12 — Y12, X13 — Y13, X14 — Y14).

We see that each of them decomposes as a sum of two irreducible subspaces V| and V;
which induce non-equivalent representations and such that dim V| = dim V, = 3. Lemma 2
implies that any K g-invariant complex structure preserves each of these irreducible compo-
nents, which is not possible since these are odd dimensional. Therefore, Fg, does not admit
K -invariant almost complex structures fori = 1, 2, 3. O
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