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Abstract In this work, we study the existence of invariant almost complex structures on
real flag manifolds associated to split real forms of complex simple Lie algebras. We show
that, contrary to the complex case where the invariant almost complex structures are well
known, some real flag manifolds do not admit such structures. We check which invariant
almost complex structures are integrable and prove that only some flag manifolds of the Lie
algebra Cl admit complex structures.
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1 Introduction

A flag manifold of a non-compact semisimple Lie algebra g is a quotient space FΘ = G/PΘ ,
where G is a connected group with Lie algebra g and PΘ is a parabolic subgroup. If K ⊂ G
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is a maximal compact subgroup and KΘ = K ∩ PΘ , then the flag FΘ can be written in the
form FΘ = K/KΘ .

In thiswork,we study the existence and integrability of invariant almost complex structures
on real flagmanifoldsFΘ in the case that g is a split real form of a complex simple Lie algebra.
Our goal is to make an exhaustive investigation of the real flag manifolds FΘ that admit K -
invariant almost complex structures and to verify their integrability, that is, when they are
indeed complex structures.

The invariant geometry of complex flagmanifolds has been extensively studied. Regarding
invariant geometry of complex flag manifolds, the literature is exhaustive and goes back to
Borel [2] and Wolf-Gray [21,22]. Recent works are [1,3–5,7,9,13,14,19,20] and [1].

For real flagmanifolds, the literature ismuchmore sparse. There is no systematic treatment
of the invariant geometric structures on these flag manifolds. An attempt to fill this gap was
made recently by Patrão and San Martin [15] who provide a detailed analysis of the isotropy
representations for the flag manifolds of the split real forms of the complex simple Lie
algebras.

In this paper, we rely on the results of [15] to build (or to prove the non-existence of)
K -invariant almost complex structures on the real flag manifolds. The conclusion is that
only a few flag manifolds (associated to split real forms) admit K -invariant almost complex
structures. In this sense, we obtain the following result.

Theorem 1 A real flag manifold FΘ = K/KΘ admits a K -invariant almost complex struc-
ture if and only if it is a maximal flag of type A3, B2, G2, Cl for l even or Dl for l ≥ 4, or if
it is one of the following intermediate flags:

– of type B3 and Θ = {λ1 − λ2, λ2 − λ3};
– of type Cl with Θ = {λd − λd+1, . . . , λl−1 − λl , 2λl} for d > 1, d odd.
– of type Dl with l = 4 and Θ being one of: {λ1 − λ2, λ3 − λ4}, {λ1 − λ2, λ3 + λ4},

{λ3 − λ4, λ3 + λ4}.
The next step is to check which of the existing almost complex structures are integrable.

By making computations with the Nijenhuis tensor, we arrive at the following result.

Theorem 2 A real flag manifold FΘ = K/KΘ admits K -invariant complex structures if
and only if it is of type Cl and Θ = {λd − λd+1, . . . , λl−1 − λl , 2λl} with d > 1, d odd.

These complex flag manifolds are realized as manifolds of flags (V1 ⊂ · · · ⊂ Vk) of sub-
spaces ofR2l that are isotropic with respect to the standard symplectic form ofR2l . Moreover,
FΘ is finitely covered by U (l)/U (l − d) and the complex structures on FΘ can be lifted to
this covering space.

To prove the results above, we mainly use the isotropy decomposition of TbΘFΘ , the
tangent space of the flag a the origin bΘ . In [15] there are described the KΘ -invariant and
irreducible components of this representation obtaining a decomposition

TbΘFΘ = V1 ⊕ . . . ⊕ Vk .

This decomposition is essential to find K -invariant geometries on FΘ . It is well known
that the compact isotropy group is a product KΘ = M(KΘ)0 where M is the isotropy of
the maximal flag and (KΘ)0 the connected component of the identity. An almost complex
structure commutes with the isotropy representation of KΘ if and only if it commutes with
the M and (KΘ)0 representations on the tangent space. This allows us to split the proofs in
two stages: study M-invariance on the one hand, and the condition of commutativity with
adX for all X ∈ kΘ = Lie(KΘ), on the other hand.
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Invariant almost complex structures on real flag manifolds 1823

A necessary and sufficient condition for a real flag to admit M-invariant almost complex
structures is that every M-equivalence class on Π+\〈Θ〉+ has an even amount of elements.
Two roots α and β lie in the same M-equivalence class if the representations of M on gα and
gβ are equivalent. This condition is necessary for FΘ to admit KΘ invariant almost complex
structures, so by inspection of these equivalence classes we discardmany flagsmanifolds. For
the remaining cases, we focus on the kΘ representation on TbΘFΘ . We should remark that in
all cases we give the almost complex structures explicitly, in a constructive way. Integrability
is proved by computing the Nijenhuis tensor.

It is worth stressing a main difference in the isotropy representation of KΘ between the
real case and the complex case. In the real flag, there are cases where two KΘ -invariant
and irreducible components are equivalent. In the complex case, this fact does not occur.
Consequently, on the complex case, the KΘ -invariant and irreducible components, in the
isotropy representation of FΘ , are invariant by almost complex structures. On the real flag,
there are cases where JVi = Vj , for Vi and Vj equivalent KΘ -invariant and irreducible
components.

This work is organized in the following manner. In Sect. 2 we fix notations and present the
first results on existence of M-invariant complex structures. We give necessary and sufficient
conditions for a flag manifold to admit such structure. In the case of a maximal flag, that
is Θ = ∅, this is all we need to pursue our study since KΘ = M . Section 3 focuses in
this case. Section 4 deals with intermediate flags, that is Θ 
= ∅. We only consider those
intermediate flags verifying the necessary condition of Sect. 2. The full comprehension of
the isotropy representation of KΘ is needed, so we fully describe it for the cases under study.
The propositions in Sects. 3, 4 account to Theorems 1, 2 above.

2 Notation and preliminary results

We refer to [11,17] for further developments of the concepts in this section. We assume
throughout the paper that g is the split real form of a complex simple Lie algebra gC. If
g = k⊕ a⊕ n is an Iwasawa decomposition then a is a Cartan subalgebra. Denote Π the set
of roots of g associated to a. If α ∈ a∗ is a root then we write

gα = {X ∈ g : ad (H) X = α (H) X, H ∈ a}

for the corresponding root space, which is one-dimensional since g is split. Let Π+ be a set
of positive roots and Σ the corresponding positive simple roots.

The set of parabolic Lie subalgebras of g is parametrized by the subsets of simple roots
Σ . Given Θ ⊂ Σ , the corresponding parabolic subalgebra is given by

pΘ = a ⊕
∑

α∈Π+
gα ⊕

∑

α∈〈Θ〉−
gα = a ⊕

∑

α∈〈Θ〉+∪〈Θ〉−
gα ⊕

∑

α∈Π+\〈Θ〉+
gα

where 〈Θ〉± is the set of positive/negative roots generated by Θ .
Denote byG the group of inner automorphisms of g, which is connected and generated by

exp ad(g) insideGL(g). Let K be themaximal compact subgroup ofG, then K is generated by
ad(k). The standard parabolic subgroup PΘ ofG is the normalizer of pΘ inG. The associated
flag manifold is defined by FΘ = G/PΘ . The compact subgroup K acts transitively on FΘ

so we obtain FΘ = K/KΘ where KΘ = K ∩ PΘ . Fixing an origin bΘ in FΘ , we identify
the tangent space TbΘFΘ with the nilpotent Lie algebra
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n−
Θ =

∑

α∈Π−\〈Θ〉−
gα.

In n−, the isotropy representation of KΘ on TbΘFΘ is just the adjoint representation, since
n−

Θ is normalized by KΘ . The Lie algebra kΘ of KΘ is

kΘ =
∑

α∈〈Θ〉+∪〈Θ〉−
(gα ⊕ g−α) ∩ k.

Compactness of K implies that kΘ admits a reductive complementmΘ so that k = kΘ ⊕mΘ

and TbΘFΘ is identified also with mΘ . The map Xα −→ Xα − X−α for α ∈ Π−\ 〈Θ〉− is
a KΘ invariant map from n−

Θ to mΘ . Along the paper, we will call isotropy representation
either the representation of KΘ on n−

Θ or on mΘ , without making any difference or special
mention. In some cases, we will even use n+

Θ instead of n−
Θ .

Let M be the centralizer of a in K . Then KΘ = M · (KΘ)0 where (KΘ)0 is the connected
component of the identity of KΘ . Thus M acts on TbΘFΘ by restricting the isotropy repre-
sentation of KΘ . The group M is finite and acts on n−

Θ leaving each root space gα invariant.
Moreover, if m ∈ M and X ∈ gα then Ad(m)X = ±X . Two roots α and β are called
M-equivalent, which we will denote by α ∼M β, if the representations of M on the root
spaces gα and gβ are equivalent. The M-equivalence classes were described in [15].

WhenΘ = ∅, we drop all the sub-indexesΘ . The associated flag manifold is the maximal
flag F = K/M and the tangent space at the origin b will be identified with n−.

LetU be a group of linear maps of the vector space V . A subspaceW ⊂ U isU -invariant
if ux ∈ W for all x ∈ W and for all u ∈ U . A complex structure on V is endomorphism
J : V −→ V such that J 2 = −1 and it is said to be U -invariant if u J = Ju for all u ∈ U .
We shall prove two technical results.

Lemma 1 Let W ⊂ V be a U-invariant space. Then the following statements are true:

1. JW is U-invariant as well.
2. W is irreducible if and only if JW is irreducible.
3. The representations of U on W and JW are equivalent.
4. If W is irreducible then either W ∩ JW = {0} or JW = W.
5. If dimW = 1 then W ∩ JW = {0}.
Proof Take u ∈ U and x ∈ W . Then, u J x = Jux ∈ JW showing that JW is U -invariant.

Suppose thatW is irreducible and let A ⊂ JW be aU -invariant subspace. Then J−1A =
J A ⊂ W is also U -invariant. Hence, J A = W or J A = {0}, which implies that A = JW
or A = {0}. Thus JW is irreducible.

As J commutes with the elements ofU , the map J : W → JW intertwines the represen-
tations onW and JW so that they are equivalent. SinceW ∩ JW ⊂ W isU -invariant andW
is irreducible we get item 4. Finally W ∩ JW = {0} if dimW = 1 because the eigenvalues
of J are ± i hence W is not invariant by J . ��
Lemma 2 Let Wi , i = 1, 2 be U-invariant and irreducible subspaces of V such that W1 ∩
W2 = 0 and the representation of U on W1 is not equivalent to that on W2. If V = W1 ⊕
W2 ⊕ W for some complementary subspace W and J is a U-invariant complex structure,
then Jw1 ∈ W1 ⊕ W for all w1 ∈ W1.

Proof Consider P : V −→ W2 the projection map with respect to the decomposition above.
The map P ◦ J : W1 −→ W2 is U -invariant and bijective if nonzero, since its domain and
target spaces are irreducible. Thus it is an equivalence between the representations of U , if
nonzero. Therefore, P ◦ J ≡ 0 and the result follows. ��
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Invariant almost complex structures on real flag manifolds 1825

Under the hypothesis of the lemma above, in the particular case of V = W1 ⊕ W2 we have
JWi = Wi , i = 1, 2.

From the general theory of invariant tensors on homogeneous manifolds, we know that
K -invariant almost complex structures on the flag manifold FΘ = K/KΘ are in one-to-one
correspondence with KΘ -invariant complex structures J : TbΘFΘ → TbΘFΘ . Recall that
TbΘFΘ identifies with n−

Θ (or mΘ ) and this identification preserves the KΘ representation.
So K -invariant almost complex structures on FΘ also correspond to KΘ -invariant complex
structures on n−

Θ .
Let J : n−

Θ −→ n−
Θ be a complex structure and assume it is onlyM-invariant. Since KΘ =

M(KΘ)0 we have that J is also KΘ -invariant if and only if J commutes with the elements
in (KΘ)0, or equivalently, adX J = J adX for all X ∈ kΘ (because of connectedness).

Proposition 1 LetFΘ be a real flagmanifold associated to a split real form. Then a necessary
and sufficient condition for the existence of a M-invariant complex structure J : TbΘFΘ →
TbΘFΘ is that the amount of elements in each M-equivalence class [α] in Π−\〈Θ〉− is even.

In this case, the M-invariant complex structures are given by direct sums of invariant
structures on the subspaces V[α] = ∑

β∼Mα gβ ⊂ n−
Θ . In a subspace V[α] the set of M

-invariant structures is parametrized by Gl(d,R)/Gl(d/2,C), where d = dim V[α].

Proof If α ∈ Π−\〈Θ〉− then gα ∈ n−
Θ and dim gα = 1 (because g is a split real form). The

subspace Jgα ⊂ n−
Θ is different of gα by 5 in Lemma 1 and the representation of M in Jgα is

equivalent to the representation on gα . Lemma 2 implies that Jgα is contained in the subspace
V[α] = ∑

β∼Mα gβ . Applying the same argument to the roots β that are M -equivalent to α,

we obtain JVα = Vα . As J 2 = −1, it follows that dim Vα is even and, hence, the amount of
roots M-equivalent to α is even. This proves that the condition is necessary.

To see the sufficiency take a M-equivalent class [α] so that by assumption the subspace
V[α] = ∑

β∼Mα gβ is even dimensional. Given m ∈ M we have Ad (m) X = ±X if X
belongs to a root space X ∈ gβ . In this equality, the sign does not change when β runs
through a M -equivalence class. It follows that Ad (m) = ±1 on V[α]. Hence any complex
structure on V[α] is M-invariant. Taking direct sums of complex structures on the several V[α]
we get M-invariant complex structures on TbΘFΘ � n−

Θ .
Finally the set of complex structures in a d-dimensional real space (d even) is parametrized

by Gl(d,R)/Gl(d/2,C). ��

We use the results in [15] to present in Table 1 all possible subsets Θ ⊂ Σ for which
the M-equivalence classes in Π−\〈Θ〉− have an even amount of elements. Even though we
do not give the explicit computations to construct this table, we present the M-equivalence
classes for some cases in the followings sections.

Complex structures on FΘ which are invariant under K are induced by KΘ -invariant
complex structures on the tangent space and, in particular, areM-invariant. Hence Proposition
1 and a simple inspection of Table 1 give the following result.

Proposition 2 Let FΘ be a real flag manifold associated to a split real form. If FΘ admits
a K -invariant almost complex structure, then Θ is in Table 1.

An invariant complex structure J : n−
Θ −→ n−

Θ induced is integrable if the Nijenhuis
tensor vanishes, that is if

NJ (X, Y ) := [J X, JY ] − [X, Y ] − J [J X, Y ] − J [X, JY ] = 0, for all X, Y ∈ n−
Θ.
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1826 A. P. C. Freitas et al.

Table 1 M-equivalence classes in Π−\〈Θ〉− with even elements

Type Θ

A3 ∅
B2 ∅
B3 {λ1 − λ2, λ2 − λ3}
C4 ∅,{λ1 − λ2, λ3 − λ4},{λ3 − λ4, 2λ4}
Cl , l 
= 4 ∅ only for l even, {λd − λd+1, · · · , λl−1 − λl , 2λl }, 1 < d ≤ l − 1, d odd, for all l

D4

∅, {λ1 − λ2, λ3 − λ4}, {λ1 − λ2, λ3 + λ4},
{λ3 − λ4, λ3 + λ4}, {λ1 − λ2, λ2 − λ3, λ3 − λ4}
{λ1 − λ2, λ2 − λ3, λ3 + λ4}, {λ2 − λ3, λ3 − λ4, λ3 + λ4}

Dl , l ≥ 5 ∅, {λd − λd+1, · · · , λl−1 − λl , λl−1 + λl }, 1 < d ≤ l − 1.

G2 ∅

3 K -invariant complex structures on maximal flags

For a maximal flag manifold, the isotropy subgroup KΘ is the centralizer of a inside K ,
that is, KΘ = M . Hence Proposition 1 solves the question of existence of almost complex
structures, remaining only integrability to be solved. The main result of this section is the
following.

Proposition 3 The maximal real flag F associated to a split real form admits a K -invariant
almost complex structure if and only if F is of type A3, B2, G2, Cl for even l and Dl for l ≥ 4.
None of these structures is integrable.

Proof By Proposition 1, a maximal flag F admits an M-invariant almost complex structure
if and only if it appears in Table 1.

Recall that a M-invariant almost complex structure in F is given by an endomorphism
J : n− −→ n− which is a sum of almost complex structures J[α] : V[α] −→ V[α], for
α ∈ Π−. We address integrability of these structures by fixing one of these J : n− −→ n−
and we study case by case.

Notice that if V[α] is two dimensional with basis B, then the matrix of J[α] in B is

(
a −(1+a2)

c
c −a

)
, with a, c ∈ R, c 
= 0. (1)

– CaseA3 The M-equivalence classes of negative roots are:

{λ2 − λ1, λ4 − λ3}, {λ3 − λ1, λ4 − λ2} e {λ4 − λ1, λ3 − λ2}.
Thus for i = 2, 3, 4, dim V[λi−λ1] = 2 and it is spanned by {Ei1, Est } with s > t ,
{s, t} ∩ {i, 1} = ∅ and {s, t} ∪ {i, 1} = {1, . . . , 4}; here E jk is the 4× 4 matrix with 1 in
the jk entry and zero elsewhere. For i = 2, 3, 4, let ai , ci ∈ R such that J |V[λi−λ1] in this
basis has the following form

(
ai

−(1+a2i )

ci
ci −ai

)
, ci 
= 0.
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Invariant almost complex structures on real flag manifolds 1827

Explicit computations give

NJ (E21, E31) = (c3 − c2)c4E32 + (c2a3 − a2c3 + a4(c3 − c2))E41,

NJ (E21, E41) = c4(a3 − a2)E31 + c4(c2 + c3)E42.

These two equations cannot be zero simultaneously since ci 
= 0. Thus the Nijenhuis
tensor does not vanish and J is not integrable.

– CaseB2 The M-equivalence classes of negative roots are

{λ2 − λ1,−λ2 − λ1} e {−λ1,−λ2}.
Let X21, Y21, X1 and X2 be elements of a Weyl basis generating gλ2−λ1 , g−λ2−λ1 , g−λ1

and g−λ2 , respectively. Thus J verifies

J X21 = a21X21 + c21Y21, J X1 = a1X1 + c1X2,

JY21 = −(1 + a221)X21/c21 − a21Y21, J X2 = −(1 + a21)X1/c1 − a1X2,

with c1, c21 
= 0.
Let m = mλ2−λ1,−λ2 
= 0 be the corresponding coefficient in the Weyl basis, that is,
[X21, X2] = mX1. Then

NJ (X21, X1) = [J X21, J X1] − [X21, X1] − J [X21, J X1] − J [J X21, X1]
= −mc21X2 + mc1(a21 − a1)X1

which is never zero since mc21 
= 0. Therefore, J is not integrable.
– CaseC4 The M-equivalence classes are:

{± λ2 − λ1,± λ4 − λ3}, {± λ3 − λ1,± λ4 − λ2}, {± λ4 − λ1,± λ3 − λ2},
{−2λi : i = 1, . . . , 4}.

Notice that dim V[2λ1] = dim V[λi−λ1] = 4 for i = 2, 3, 4. Let (ai j )i j , (bi j )i j , (ci j )i j
be the matrices corresponding to J |V[λ2−λ1] , J |V[λ3−λ1] , J |V[λ4−λ1] , respectively, in a Weyl
basis of n−.
Then NJ (X−λ2−λ1 , X−2λ2) = 0 and NJ (X−λ4−λ3 , X−2λ4) = 0 imply a12 = a34 = 0
and moreover a214 + a224 
= 0 because otherwise X−λ4−λ3 would be an eigenvector of J .
Analogously we obtain b12 = b34 = c12 = c34 = 0 and b214 + b224 
= 0, c214 + c224 
= 0.
With these conditions, NJ (X−λ2−λ1 , X−2λ4) = 0 imply a32 = 0 and a42 
= 0. Similar
computations give b32 = c32 = 0 and b42 
= 0, c42 
= 0. Now J 2 = −1 imply
a14 = b14 = c14 = 0.
All this account to NJ (Xλ2−λ1 , X−λ3−λ1) = 0 and NJ (Xλ2−λ1 , X−λ4−λ1) = 0 only if,
respectively, a31 = c42 and a31 = −c42. This clearly cannot hold since c42 
= 0.

– CaseCl , l even and l ≥ 6. The M-equivalence classes are

{±λs − λi }, 1 ≤ i < s ≤ l, and {2λ1, . . . , 2λl}.
Let Xsi , Ysi and X j be the generators of the roots spaces gλs−λi , g−λs−λi and g−2λ j ,
respectively, corresponding to aWeyl basis. In this case, we have dim V[λs−λi ] = 2 while
dim V[2λ1] = l, even. Thus J X1 = ∑l

j=1 b j X j and for s = 1, . . . , l we have

J Xs1 = as1Xs1 + cs1Ys1, JYs1 = − (1 + a2s1)

cs1
Xs1 − as1Ys1, cs1 
= 0.
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1828 A. P. C. Freitas et al.

We compute the Nijenhuis tensor on the vectors X1 and Xs1, for s = 2, . . . , l. Denote
m = mλs−λ1,−2λs 
= 0, then we get

NJ (Xs1, X1) = [J Xs1, J X1] − [Xs1, X1] − J [Xs1, J X1] − J [J Xs1, X1]

= [as1Xs1 + cs1Ys1,
l∑

j=1

b j X j ] − bsm JYs1

= as1bsmYs1 − bsm(− (1 + a2s1)

cs1
Xs1 − as1Ys1)

= bsm
(1 + a2s1)

cs1
Xs1 + as1(bsm + 1)Ys1.

Hence NJ (Xs1, X1) = 0 if and only if bsm = 0. Thus J integrable implies bs = 0 for
s = 2, . . . , l. and therefore J X1 = b1X1, which contradicts the fact that J 2 = −1. Thus
J is not integrable.

– CaseD4. The M-equivalence classes are

{±λ2 − λ1,±λ4 − λ3}, {±λ3 − λ1,±λ4 − λ1}, {±λ4 − λ1,±λ3 − λ2}.
Clearly, dim V[λi−λ1] = 4 for i = 2, 3, 4.Weproceed as in theC4 case. Let (ai j )i j , (bi j )i j ,
(ci j )i j be the matrices corresponding to J |V[λ2−λ1] , J |V[λ3−λ1] , J |V[λ4−λ1] , respectively, in
a Weyl basis of n−.
By imposing NJ (Xγ , Xδ) = 0 for γ ∈ [λ3 − λ1] and δ ∈ [λ4 − λ1] we obtain that the
matrix of J |V[λ4−λ1] in the Weyl basis is

⎛

⎜⎜⎝

−b44 −b34 b24 b14
−b43 −b33 b23 b13
b42 b32 −b22 −b12
b41 b31 −b21 −b11

⎞

⎟⎟⎠ .

With this, NJ (Xλ2−λ1 , X−λ4−λ1) = 0, NJ (X−λ4−λ3 , X−λ3−λ1) = 0 and NJ (Xλ4−λ3 ,

X−λ3−λ1) = 0 imply b12b32 = 0, b12b42 = 0 and b32b42 = 0. But we know that
a212 + a232 + a242 
= 0 since X−λ2−λ1 is not an eigenvector. So we conclude that only one
of b12, b32, b42 is not zero. In each of the three cases, we obtain a12 = a32 = a42 = 0 if
NJ vanishes, which cannot happen since X−λ2−λ1 is not an eigenvector of J .

– CaseDl , l ≥ 5. The M-equivalence classes are:

{±λ j − λi }, 1 ≤ i < j ≤ l.

For 1 ≤ i < j ≤ l, we have dim V[λ j−λi ] = 2; let Xi j be a generator of gλi−λ j and let
Yi j be a generator of gλi+λ j . Thus V[λ j−λi ] is spanned by {Xi j , Yi j } and J in this basis
has a matrix of the form

(
ai j

−(1+a2i j )

ci j
ci j −ai j

)
, where ci j 
= 0.

Conditions NJ (X13, X23) = 0 and NJ (X12, X23) = 0 imply

mλ1−λ2,λ2+λ3

mλ1−λ2,λ2−λ3

= c13
c23

= −mλ1−λ3,λ2+λ3

mλ1+λ3,λ2−λ3

. (2)
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Invariant almost complex structures on real flag manifolds 1829

Now using Jacobi identity, we have

0 = [Y23, [X12, X23]] − [[Y23, X12], X23] − [X12, [Y23, X23]]
= mλ1−λ2,λ2−λ3 [Y23, X13] + mλ2+λ3,λ1−λ2 [X23, Y13]
= (

mλ1−λ2,λ2−λ3mλ2+λ3,λ1−λ3 + mλ2+λ3,λ1−λ2mλ2−λ3,λ1+λ3

)
Y12.

Thus

mλ1−λ2,λ2−λ3mλ2+λ3,λ1−λ3 = −mλ2+λ3,λ1−λ2mλ2−λ3,λ1+λ3

= −mλ1−λ2,λ2+λ3mλ1+λ3,λ2−λ3 ,

and therefore mλ1−λ2,λ2+λ3

mλ1−λ2,λ2−λ3

= mλ1−λ3,λ2+λ3

mλ1+λ3,λ2−λ3

. (3)

This equation clearly contradicts (2) and hence J is not integrable.
– CaseG2 The M-equivalence classes are

{−λ1,−2λ2 − λ1}, {−λ2 − λ1,−3λ2 − λ1}, {−λ2,−3λ2 − 2λ1}.
For (i, j) ∈ {(1, 0), (0, 1), (1, 1)}, dim V[−iλ1− jλ2] = 2. In a Weyl basis of n−, we have
that the matrix of J |V[−iλ1− jλ2] has the form

(
ai j

−(1+a2i j )

ci j
ci j −ai j

)
, where ci j 
= 0.

Denote m = m−(λ1+λ2),−λ2 then

NJ (X−λ1−λ2 , X−λ2) = m(a11a01 − 1)X−λ1−2λ2 − m(a11 + a01)J X−λ1−2λ2

= m ((a11a01 − 1) + a10(a11 + a01)) X−λ1−2λ2

+m(a11 + a01)
1 + a210
c10

X−λ1 .

Thus

NJ (X−λ1−λ2 , X−λ2) = 0 ⇔ a01 = −a11 and a11a01 = 1,

and J is not integrable.

��

4 K -invariant complex structures on intermediate flags

In this section, we study existence of invariant almost complex structures on intermediate
flagsFΘ , and their integrability.We obtain the classification of the flags admitting K -invariant
complex structures, only some of type Cl do, and also we describe the complex structures
explicitly.

Proposition 2 states that ifFΘ = K/KΘ withΘ 
= ∅ admits a K -invariant almost complex
structure, then FΘ is one of the following:

– of type B3 and Θ = {λ1 − λ2, λ2 − λ3};
– of type Cl with l = 4 and Θ = {λ1 − λ2, λ3 − λ4} or Θ = {λ3 − λ4, 2λ4}; or l 
= 4 and

Θ = {λd − λd+1, . . . , λl−1 − λl , 2λl} for d > 1, d odd.
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– of type Dl with l = 4 and Θ being one of: {λ1 − λ2, λ3 − λ4}, {λ1 − λ2, λ3 + λ4},
{λ3 − λ4, λ3 + λ4}, {λ1 − λ2, λ2 − λ3, λ3 − λ4}, {λ1 − λ2, λ2 − λ3, λ3 + λ4}, {λ2 −
λ3, λ3 − λ4, λ3 + λ4}; or l ≥ 5 and Θ = {λd − λd+1, · · · , λl−1 − λl , λl−1 + λl} for
1 < d ≤ l − 1.

We analyse the cases B,C and D separately in the next subsections. We need to treat them
separately since the isotropy representations differ significantly. In the three cases, we start
by imposing necessary conditions for the flag to admit an invariant complex structure, which
we shall describe in the next paragraph. We obtain that only in few cases one can obtain that
type of structure.

Recall that K -invariant almost complex structures onFΘ are in one-to-one correspondence
with KΘ -invariant maps J : n−

Θ −→ n−
Θ such that J 2 = −1.

Assume J : n−
Θ −→ n−

Θ is KΘ -invariant and J 2 = −1. Then J is necessarily M-invariant
since M ⊂ KΘ = M(KΘ)0, hence by Proposition 1 we have

JV[α] = V[α] for each α ∈ Π−\ 〈Θ〉− . (4)

In addition, J is also (KΘ)0 invariant and therefore

adX J = J adX for all X ∈ kΘ. (5)

Assume n−
Θ = W1 ⊕ · · · ⊕ Ws is a decomposition on KΘ -invariant and irreducible

subspaces. If the representation on Wi is not equivalent to the representation on any other
Wj , j 
= i then JWi = Wi because of Lemma 2. Notice that if this is the case Wi is even
dimensional. To the contrary, if JWi = Wj for some i 
= j , then the KΘ representation on
these subspaces are equivalent, and J gives such an equivalence.

To address the non-existence of almost complex structures, we prove that some of the
necessary conditions above cannot hold simultaneously. For the cases where an invariant
almost complex structure does exist, we use these necessary conditions to build them explic-
itly. Notice that, for instance, if J : n−

Θ −→ n−
Θ with J 2 = −1 satisfying (4) and (5) is KΘ

invariant.
We remark that the conditions related to the KΘ and kΘ representation on n−

Θ are dealt
with through a description of g as a matrix Lie algebra. Integrability of the almost complex
structure is established by computing the Nijenhuis tensor, as in the maximal flag case.

4.1 Flags of B3 = so(3, 4).

The set of simple roots is Σ = {λ1 − λ2, λ2 − λ3, λ3}, and we take Θ = {λ1 − λ2, λ2 − λ3}
obtaining 〈Θ〉 = ±{λ1 − λ2, λ2 − λ3, λ1 − λ3}. Notice that the flag is a six dimensional
manifold. The M-equivalence classes outside of Θ are: {λ1 + λ2, λ3}, {λ1 + λ3, λ2} and
{λ2 + λ3, λ1}. The compact subgroup (KΘ)0 is isomorphic to SO(3).

We consider the realization of B3 = so(3, 4) in real matrices of the type
⎛

⎝
0 β γ

−γ T A B
−βT C −AT

⎞

⎠ ,

with A, B,C are 3 × 3 matrices, β, γ 1 × 3 matrices and B + BT = C + CT = 0. Then,
(KΘ)0 (respectively M ) is given by matrices of the form

⎛

⎝
1 0 0
0 g 0
0 0 g

⎞

⎠ ,
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with g ∈ SO(3) (respectively, g diagonal with entries±1 and an even amount of−1 entries).
The root space corresponding to the short root λ1 is given by matrices where the components
A, B,C and β vanish and γ is a multiple of e1 = (1, 0, 0). The same holds for the roots λ2
and λ3 with e2 = (0, 1, 0) and e3 = (0, 0, 1), respectively. The root spaces corresponding to
λi +λ j have B as unique non-vanishing component and it has the following form, depending
on the long root:

λ1 + λ2 : B =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ λ1 + λ3 : B =
⎛

⎝
0 0 −1
0 0 0
1 0 0

⎞

⎠

λ2 + λ3 : B =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ .

The subspaces Vc = ∑
i gλi and Vl = ∑

i, j gλi+λ j are both invariant subspaces under
the adjoint representation of KΘ = M · SO(3). The representation of the SO (3) on Vc is
isomorphic to canonical representation on R

3, while the representation on Vl is the adjoint
representation. These two representations of SO(3) are isomorphic. In fact, an isomorphism
is constructed via the identification ofR3 with the imaginary quaternionsH: if p, q ∈ H then
ad(q)p = [q, p] ∈ Im H and ad(q) ∈ so(3) that commutes with the representations of the
SO(3). This isomorphism also commutes with the representations of M . Indeed, considering
the basis {e1, e2, e3} = {i, j, k} ∈ R

3 = Im H, we have

ad(i) =
⎛

⎝
0 0 0
0 0 −2
0 2 0

⎞

⎠ , ad( j) =
⎛

⎝
0 0 2
0 0 0

−2 0 0

⎞

⎠

and ad(k) =
⎛

⎝
0 −2 0
2 0 0
0 0 0

⎞

⎠ .

The isomorphism P : Vc → Vl takes the root spaces gλ1 , gλ2 and gλ3 to the root spaces
gλ2+λ3 , gλ1+λ3 and gλ1+λ2 , respectively. In addition, it commutes with the representation
of (KΘ)0 and with the representations of M . Therefore, P : Vc → Vl commutes with the
representation of KΘ .

Proposition 4 The flag manifold FΘ of B3 with Θ = {λ1 −λ2, λ2 −λ3} admits K -invariant
almost complex structures and each of them is given by Ja for some a 
= 0where Ja : n+

Θ −→
n+

Θ is defined by

Ja(X) = aP(X) if X ∈ Vc, Ja(X) = −a−1P−1(X) if X ∈ Vl .

These structures are not integrable.

Proof We have n+
Θ = Vc ⊕ Vl as KΘ -invariant irreducible subspaces and because of the

reasoning above, Ja is indeed invariant by KΘ . Thus, there is a one-parameter family of
invariant almost complex structures on FΘ .

Furthermore, a KΘ -invariant complex structure J on n+
Θ is of this form. In fact, any KΘ -

invariant complex structure J : n+
Θ −→ n+

Θ interchanges Vc with Vl by 4. in Lemma 1, since
these are irreducible odd dimensional subspaces. Moreover, the subspaces gλ1+λ2 ⊕ gλ3 ,
gλ1+λ3 ⊕ gλ2 , gλ2+λ3 ⊕ gλ1 are J -invariant because of (4). The fact that adX J = J adX for
all X ∈ kΘ implies that J is actually a multiple of P .
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These structures are never integrable. In fact, [Vc, Vc] = Vl and [Vl , n+
Θ ] = 0. Thus, for

X, Y ∈ Vc we have Ja X, JaY ∈ Vl and therefore NJa (X, Y ) = −[X, Y ]. Hence NJ never
vanishes. ��
Remark 1 This flag FΘ of type B3 and Θ = {λ1 − λ2, λ2 − λ3} is the Grassmannian of
three-dimensional isotropic subspaces of R7, that is, three-dimensional subspaces in which
the quadratic form matrix ⎛

⎝
1 0 0
0 0 13×3

0 13×3 0

⎞

⎠

vanishes. The proposition above gives a family of K -invariant almost complex structures on
this flag which is parametrized by R\{0}.
4.2 Flags of Cl = sp(l,R)

The set of simple roots is Σ = {λ1 −λ2, . . . , λl−1 −λl , 2λl}. For the analysis of these flags,
we separate the case l = 4 where the M-equivalence classes are different from the general
case.

4.2.1 Case Cl , l 
= 4

Assume l 
= 4 and let Θ = {λd+1 − λd+2, . . . , λl−1 − λl , 2λl} with d ∈ {0, · · · , l} and d
even. Notice that Θ gives a Dynkin sub-diagram Cp of Cl with p = l − d , thus kΘ is the
maximal compact subalgebra of sp(p,R), that is, kΘ � u(p).

The M-equivalence classes in Π+\ 〈Θ〉+ are

{λi − λ j , λi + λ j }, 1 ≤ i ≤ d, i < j ≤ l, and {2λ1, . . . , 2λd}.
For each positive root α denote tα = (gα ⊕ g−α) ∩ k. Then k = kΘ ⊕ mΘ where kΘ is the
vector space sum of tα where α runs in 〈Θ〉+ and

mΘ =
∑

1≤i≤d,i< j≤l

tλi−λ j ⊕ t2λ1 ⊕ · · · ⊕ t2λd

is a reductive complement of kΘ .
The invariant and irreducible subspaces of mΘ by the KΘ action were described in [15,

Section 5.3] and we present them below. Define

R = {λi ± λ j : 1 ≤ i < j ≤ d} ∪ {2λi : 1 ≤ i ≤ d}.
Πi = {λi ± λ j : d + 1 ≤ j ≤ l}, i = 1 . . . , d,

and let WR = ∑
α∈R kα and Wi = ∑

α∈Πi
kα , i = 1, . . . , d . We have

mΘ = WR ⊕
d∑

i=1

Wi (6)

and the subspaces above are M-invariant.
If α ∈ R and β ∈ Θ , then ±α ± β is never a root so [Y, X ] = 0 for any Y ∈ kΘ and

X ∈ WR . Thus Ad(g)X = X for any g ∈ (KΘ)0, since (KΘ)0 is connected, and therefore
WR is invariant by Ad(KΘ).
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Each subspace Wi is KΘ invariant and is irreducible subspace and the respective repre-
sentations are not equivalent if i 
= j (see [15, Lemma 5.11]). We make use of the following
isomorphism between the compact algebra k and u(l) given by

(
A −B
B A

)
�−→ A + i B, A + AT = B − BT = 0.

The isomorphism takes kΘ in the algebra of anti-Hermitian matrices of the form

kΘ :
(
0 0
0 X

)
, (7)

being X a p × p matrix. Moreover, WR corresponds to the matrices of the form

WR :
( ∗ 0
0 0

)
,

with d × d upper left block, while the subspace W = ∑d
i=1 Wi corresponds to

W :
(
0 −C

T

C 0

)
, (8)

where C is d × p. A subspaceWj is given by those matrices C having non-vanishing entries
in column j . The representation of kΘ in W is given by the adjoint action:

[(
0 0
0 X

)
,

(
0 −C

T

C 0

)]
=

(
0 C

T
X

XC 0

)
.

Thus C having non-vanishing entries on column j implies that the same occurs for XC . So
the subspaces Wj are, in fact, invariant.

The image of kλ j−λk in u(l) through the isomorphism is generated by the real anti-
symmetric matrix A jk = E jk −Ekj , while the image of kλ j+λk is generated by the imaginary
symmetric matrix S jk = i(E jk + Ekj ).

Lemma 3 1. An almost complex structure J : mΘ −→ mΘ is M-invariant if and only if
J leaves invariant each subspace kλi−λ j ⊕ kλi+λ j and k2λ1 ⊕ · · · ⊕ k2λd .

2. An M-invariant almost complex structure J is KΘ -invariant if and only if for each
j = 1, . . . , d there is some ε j = ±1 such that J Akj = ε j Sk j and J Sk j = −ε j Ak j for
all d < k ≤ l.

Proof Let J : mΘ −→ mΘ be an isomorphism such that J 2 = −1. From Proposition 1 and
taking into account the M-equivalence classes given above we have that J is M-invariant if
and only if it preserves each kλi−λ j ⊕ kλi+λ j and k2λ1 ⊕ · · · ⊕ k2λd .

Now assume J is M-invariant, then J is KΘ -invariant if and only if adY J = J adY for
all Y ∈ kΘ .

Notice that J preserves eachWi andWR in (6). Since [X, Y ] = 0 for all Y ∈ kΘ , X ∈ WR

we see that J |WR is KΘ -invariant. Recall thatWi is spanned by A ji , S ji with d + 1 ≤ j ≤ l.
LetY ∈ kΘ be as in (7)with X imaginary diagonalmatrix, i.e. X = diag(ia1, . . . , iam).We

have ad(Y )Akj = a j Sk j and ad(Y )Skj = −a j Ak j for some a j ∈ R. That is, kλ j−λk ⊕ kλ j+λk

is invariant by ad(Y ) and the matrix of ad(Y ) in the basis {Akj , Skj } is
(

0 −a j

a j 0

)
. (9)
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If we denote Jk j the restriction of J to kλ j−λk ⊕kλ j+λk , for k > j we see that Jk j commutes
with ad(Y ) only when its matrix in the basis {Akj , Skj } is

Jk j = εk j

(
0 −1
1 0

)
with εk j = ±1. (10)

Fix j ∈ {1, . . . , d} and let l ≥ s, t ≥ d+1, consider Z be as in Eq. (7) with X = Ets −Est

and let D be as in Eq. (8) with C = Esj . Then

ad(Z)D =
(

0 −XC
T

XC 0

)
, with XC = Et j .

This implies that ad(Z)Asj = At j and ad(Z)Ss j = St j . Recall that J in the basis restricted
to kλ j−λk ⊕ kλ j+λk has a matrix of the form in Eq. (10) in the appropriate basis. In order J
to commute with ad(Z) above, we need

εt j St j = J At j = J ad(Z)Asj = ad(Z)J As j = ad(Z)εs j Ss j = εs j St j .

Thus εs j = εt j for all l ≥ s, t ≥ d+1, andwedefine ε j this value.Wehave then J Akj = ε j Sk j
and J Sk j = −ε j Ak j for all d < k ≤ l.

Nextwe prove that this condition is sufficient for J to commutewith the adjoint of elements
in kΘ . Indeed, for j, s, t as above, we only have left to verify that J commutes with matrices
Z as in Eq. (7) with X = i(Ets + Est ). We consider D as in Eq. (8) with C = Esj , then
XC = i Et j and we obtain ad(Z)Asj = St j . Likewise, if C = i Es j , then XC = −Et j and
thus ad(Z)Ss j = −At j . Therefore,

ad(Z)J As j = ε jad(Z)Ss j = −ε j At j = J St j = Jad(Z)Asj

and
ad(Z)J Ss j = −ε jad(Z)Asj = −ε j St j = −J At j = Jad(Z)Ss j .

��

Remark 2 The set of K invariant almost complex structures on the flags FΘ in Lemma 3 is
parametrized by Gl(d − 1,R)/Gl(d − 1/2,C) × (R2 ∪ R

2)d(d−1) × Z
d
2 .

The component Gl(d−1,R)/Gl(d−1/2,C) corresponds to the complex structures on the
space generated by long roots outside 〈Θ〉+. The component (R2 ∪R

2)d(d−1) corresponds to
the structures on the spaces generated by the roots {λ j −λk, λ j +λk}. The setR2 ∪R

2 is the

disjoint union of the two copies ofR2, that is Gl(2,R)/Gl(1,C). Finally,Z(d−1)
2 parametrizes

the signs ε j .

We introduce two technical lemmas which will lead to the determination of the integrable
structures.

Lemma 4 Let J be a KΘ -invariant almost complex structure. If J is integrable then for each
i, j ∈ {1, . . . , d}, j > i , we have J A ji = c ji S ji and J S ji = −c ji A ji , with c ji = ±1.

Proof Take 1 ≤ i < j ≤ d then by M-invariance J Sii = ∑
k bki Skk and

J |{A ji ,S ji } =
(
a ji − 1+a2j i

c ji
c ji −a ji

)
where c ji 
= 0.
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We have

NJ (Sii , A ji ) = A ji

(
2c ji (bii − b ji ) + 2(b ji − bii )

(1+a2j i )

c ji
− 2c ji a ji − 2a ji

(1+a2j i )

c ji

)

+S ji

(
2a ji (b ji − bii ) + 2 + 2a ji (b ji − bii ) − 2(a2j i + c2j i )

)

Therefore,

NJ (Sii , A ji ) = 0 ⇔
{

(bii − b ji )(c2j i − 1 − a2j i ) − a ji (c2j i + 1 + a2j i ) = 0
c2j i = 2a ji (b ji − bii ) + 1 − a2j i

⇔
{
c2j i = 2a ji (b ji − bii ) + 1 − a2j i
((bii − b ji )

2 + 1)a ji = 0

⇔
{
a ji = 0
c ji = ±1

.

��

Up to this moment, we have proved that if J is KΘ -invariant and integrable then for each
j = 1, . . . , d:

– J Akj = ck j Sk j and J Sk j = −ck j Ak j for k = 1, . . . , d , k 
= j and
– J Akj = ε j Sk j and J Sk j = −ε j Ak j for all k = d + 1, . . . , l.

where ε j , ck j ∈ {±1}. To simplify notation in the following lemma we write

J Akj = μk j Sk j , J Sk j = −μk j Ak j for all j = 1, . . . , d, j < k 
= l. (11)

Lemma 5 Let J be a KΘ -invariant (integrable) complex structure. Then for any triple k >

j > s such that j, s ∈ {1, . . . , d} the possible values for (μks, μk j , μ js) are:

(μks, μks, μks), (μks,−μks, μks) and (μks, μks,−μks)., μks = ±1.

In particular, if ε j = −εs then c js = εs .

Proof By Eq. (11) we obtain

0 = NJ (Akj , Aks) = (
1 + μk jμ js − μk jμks − μksμ js

)
A js

= (
(μk j − μks)μ js + (μks − μk j )μks

)
A js

= (
(μ js − μks)μk j + (μ js − μks)μ js

)
A js .

From the second row of this equation, we see that μk j = −μks implies μ js = μks ;
while the third row implies μk j = −μ js = μks if μ js = −μks . We conclude then that
the possible values for the triple (μks, μk j , μ js) are: (μks, μks, μks), (μks,−μks, μks) and
(μks, μks,−μks). ��

Proposition 5 Let J : mΘ −→ mΘ be such that J 2 = −1 and moreover it preserves
k2λ1 ⊕ · · · ⊕ k2ld and J Akj = μk j Sk j , J Sk j = −μk j Ak j for all j = 1, . . . , d, j < k ≤ d,
with μk j = ±1.

Then J is KΘ -invariant and integrable if and only if the following hold:

– for each j = 1, . . . , d, μk j = ε j for all k = d + 1, . . . , l.
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– for each triple k > j > s such that j, s ∈ {1, . . . , d} the coefficients (μks, μk j , μ js) are
one of the following:

(μks, μks, μks), (μks,−μks, μks) and (μks, μks,−μks).

Conversely, any K -invariant complex structure on FΘ is induced by J as above.

Proof It is necessary for J to beM-invariant to preserve k2λ1 ⊕· · ·⊕k2ld and kλ j−λk ⊕kλ j+λk .
The conditions above are necessary as proved in Lemma 3 in order J to be KΘ -invariant and
Lemmas 4, 5 to be integrable. As seen there, such J verifies NJ (Skk, Akj ) = 0 j = 1, . . . , d ,
j < k ≤ l and NJ (Akj , Aks) = 0 for each triple in the second item. To show that these
conditions are sufficient, we have to show that i) NJ (Skk, Skj ) = 0, ii) NJ (Skj , Sks) = 0, iii)
NJ (Skj , Aks) = 0 and iv) NJ (S j j , Sss) = 0 for all j > s ∈ {1, . . . , d} and k > j > s.

Clearly (iv) holds since these matrices are diagonal. Moreover, NJ (Akj , Aks) =
NJ (Skj , Sks) so (ii) also holds. Similar computations as in the proof of Lemma 4 give (i).
Finally NJ (Skj , Aks) = (−1 − μk jμ js + μk jμks + μksμ js

)
S js so reasoning as in Lemma

5 one obtains (iii). ��

Example 1 We consider the flag FΘ of C3, with Θ = {2λ3}. The component WR of tangent
space at the origin of flag is given by sum of kα , α ∈ R, and has the following form:
R = {λ1 ± λ2} ∪ {2λ1, 2λ2} . The components Wj are determined by the sets of roots

Π1 = {λ1 ± λ3}, Π2 = {λ2 ± λ3}.
Fix ε j = ±1 j = 1, 2 ν = ±1 such that

(ε1, ε2, ν) ∈ {(1, 1, 1), (−1,−1,−1), (1,−1, 1), (−1, 1,−1), (1, 1,−1), (−1,−1, 1)},
and let a11, c11 ∈ R s.t. c11 
= 0. The following table gives all KΘ -invariant integrable
complex structures J in FΘ .

Components KΘ -invariant complex structures
W1 J A31 = ε1S31, J S1 = −ε1A31,
W2 J A32 = ε2S32, J S32 = −ε2A32

WR

J A21 = νS21, J S21 = −νA21,
J S11 = a11S11 + c11S22,

J S22 = − 1+a211
c11

S11 − a11S22

4.2.2 Case C4

The M-equivalence classes of positive roots are

{λ1 ± λ2, λ3 ± λ4}, {λ1 ± λ3, λ2 ± λ4}{λ1 ± λ4, λ2 ± λ3}, {2λ1, 2λ2, 2λ3, 2λ4}.

Proposition 6 The real flagFΘ ofC4 withΘ = {λ1−λ2, λ3−λ4}does not admit K -invariant
almost complex structures.
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Proof According to [15, Section 5.3], the KΘ irreducible components of n−
Θ are given by

V1 = 〈X2λ1 − X2λ2 , X−λ2−λ1〉 V4 = 〈X2λ3 + X2λ4〉,
V2 = 〈X2λ1 + X2λ2〉, V3 = 〈X2λ3 − X2λ4 , X−λ4−λ3〉

V5 = 〈Xλ3−λ1 + Xλ4−λ2 , Xλ3−λ2 − Xλ4−λ1〉
V6 = 〈Xλ3−λ2 + Xλ4−λ1 , Xλ4−λ2 − Xλ3−λ1〉,
V7 = 〈X−λ3−λ1 + X−λ4−λ2 , X−λ3−λ2 − X−λ4−λ1〉
V8 = 〈X−λ3−λ2 + X−λ4−λ1 , X−λ4−λ2 − X−λ3−λ1〉,

where Xα is a generator of root space gα .
The components V2, V5 and V6 are equivalent to the components V4, V7 and V8, respec-

tively. The subspaces V1 and V3 are neither equivalent between them nor to any other
representation subspace.

Assume J is a KΘ -invariant complex structure J on n−
Θ . Then JV1 = V1 since it is

irreducible and non-equivalent to any other representation subspace. Moreover, V[−λ2−λ1] =
g−λ2−λ1⊕g−λ4−λ3 and J preserves this subspaces too because of itsM-invariance. Therefore,
V1 ∩ V[−λ2−λ1] = 〈

X−λ2−λ1

〉
is an invariant subspace of J , which is a contradiction. So we

conclude that no K -invariant complex structure exists in this case. ��
Fix Θ = {λ3 − λ4, 2λ4} for C4. The KΘ -irreducible components of mΘ are [15, Section

5.3]:

V1 = g−2λ1 , V3 = gλ2−λ1 ,

V2 = g−2λ2 , V4 = g−λ2−λ1 ,

V5 = gλ3−λ1 ⊕ g−λ3−λ1 ⊕ gλ4−λ1 ⊕ g−λ4−λ1 ,

V6 = gλ3−λ2 ⊕ g−λ3−λ2 ⊕ gλ4−λ2 ⊕ g−λ4−λ2 .
(12)

The components V1 and V3 are equivalent to, respectively, the components V2 and V4. The
components V5 and V6 are not equivalent.

As in the previous section, we consider the isomorphism between k and u(4). Under this
map, kΘ = 〈{A43, S43, S33, S44}〉 and

mΘ = WR ⊕
⊕

j=1,2
k=3,4

Wkj

where WR = W 1
R ⊕ W21 with W 1

R = 〈{S11, S22}〉 and Wkj = 〈{Akj , Skj }
〉
.

Proposition 7 The flag manifold FΘ of C4 with Θ = {λ3 − λ4, 2λ4} admits K -invariant
almost complex structures and each of them is induced by a map J : mΘ −→ mΘ verifying

J S11 = ν1S22, J S22 = −ν−1
1 S11 with ν1 
= 0,

J A21 = ν2S21, J S21 = −ν−1
2 A21 with ν2 
= 0,

J Akj = ε j Sk j , J Sk j = −ε j Ak j for k ∈ {3, 4}, j ∈ {1, 2},
with ε j = ±1.

Such structure is integrable if and only if ν2 = ±1 and ν2 = ε1 if ε2 = −ε1.

Proof We already know that FΘ admits M-invariant almost complex structures and such J
is the direct sum of almost complex structures in each V[α], α ∈ Π+\ 〈Θ〉+. In this case, the
M-equivalence classes are

{λ1 − λ2, λ1 + λ2}, {λ1 ± λ3, λ2 ± λ4}, {λ1 ± λ4, λ2 ± λ3}, {2λ1, 2λ2}.
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So, in particular, W 1
R , W21, W31 ⊕ W42 and W32 ⊕ W41 are J -invariant.

Moreover, since V5 = W31 ⊕ W41 and V6 = W32 ⊕ W42 in (12) are irreducible and
non-equivalent, we have JV5 = V5 and JV6 = V6. Therefore, each Wkj , k = 3, 4, j = 1, 2
is invariant, since it can be described as an intersection of V[α] and Vt for suitable root and
index.

We proceed as in the general case Cl , l 
= 4 to show that J has the form given in the
statement of the proposition.

For any Y ∈ kΘ and Z ∈ WR , we have [Y, Z ] = 0 so J restricted to this subspace is also
kΘ -invariant. Let Y = a3S33 + a4S44 ∈ kΘ , then adY J = J adY implies that for k = 3, 4,
j = 1, 2 the matrix of J |Wkj in the basis {Akj , Skj } is

μk j

(
0 −1
1 0

)
, μk j = ±1.

Now let Y = a3A43 + a4S43 ∈ kΘ and let Z ∈ Wkj with k = 3, 4, then adY J Z = J adY Z
holds if and only if ε4 j = ε3 j for j = 1, 2. It is not hard to see that these conditions are also
sufficient for J to be KΘ -invariant.

To address integrability, notice that, as in the general case, we have

NJ (S11, A21) = −2
(
ν1(ν2 − ν−1

2 )A21 + (−1 + ν22 )S21
)

NJ (A41, A42) =
(
ε1ε2 − 1 + (ε1 − ε2)ν

−1
2

)
A21

Therefore, J is integrable if ν2 = ±1 and ν2 = ε1 in the case that ε1 = ε2. One can check
that these conditions are sufficient for J to be integrable. ��
4.3 Flags of Dl = so(l, l)

A root system is given by ±λi ± λ j , i 
= j , and the corresponding set of simple roots is
given by Σ = {λ1 − λ2, . . . , λl−1 − λl , λl−1 + λl}, 1 ≤ i < j ≤ l. The maximal compact
subalgebra of so(l, l) is k � so (l) ⊕ so (l).

As in the Cl case, we deal first with the case Dl with l ≥ 5 and later we address the case
of l = 4 because of the difference between the M-equivalence classes.

4.3.1 Case Dl , l ≥ 5

We consider Θ = {λd − λd+1, . . . , λl−1 − λl , λl−1 + λl}, this gives a sub-diagram Dp of
Dl with p = l − d + 1, thus kΘ � so (p)1 ⊕ so (p)2. The set 〈Θ〉 of roots generated by Θ

is given by
〈Θ〉 = {± (

λi ± λ j
) : d ≤ i < j ≤ l}.

The roots in Π+\ 〈Θ〉+ are

λi ± λ j with 1 ≤ i < j ≤ d, and λi ± λ j with i = 1, . . . , d − 1, j = d, . . . l.

and the M-equivalence classes are {λi − λ j , λi + λ j }. Consider the subsets of roots in
Π+\ 〈Θ〉+:

R = {λi ± λ j : 1 ≤ i < j ≤ d}
Πi = {λi ± λ j : d ≤ j ≤ l}, i = 1, . . . , d − 1
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and let WR = ∑
α∈R gα and Wi = ∑

α∈Πi
gα . Clearly we obtain

n+
Θ = WR ⊕

d−1∑

i=1

Wi . (13)

The subspace WR is KΘ invariant and irreducible. Moreover, each Wi decomposes as
Wi = V 1

i ⊕ V 2
i , where V j

i is irreducible KΘ -invariant and the representations are not
equivalent [15]. We present an explicit description of these subspaces.

A split real form of Dl is so (l, l) and it is represented by real matrices of the form
(
A B
C −AT

)
, where B + BT = C + CT = 0. (14)

The algebra g (Θ) generated by gα , α ∈ 〈Θ〉 is given by matrices in Eq. (14) such that A, B
and C have the form (

0 0
0 ∗

)
,

where the nonzero part is squared of size p = l − d + 1. The Lie algebra g (Θ) is of type
Dp , isomorphic to so (p, p).

The compact part k inside so(l, l) is given by the subset matrices in (14) having the form
(
A B
B A

)
, where A + AT = B + BT = 0.

It is well known that k decomposes as a sum of two ideals, both isomorphic to so (l). The
compact Lie algebra kΘ lies inside k and also inside g(Θ) and consists of matrices of the
form (

A B
B A

)
, with A, B ∈ 〈{Est − Ets : d ≤ s < t ≤ l}〉 . (15)

The Lie algebra kΘ also decomposes as a sum of two ideals, both isomorphic to so (p), which
are

so (p)1 =
{(

A A
A A

)
: A ∈ 〈{Est − Ets : d ≤ s < t ≤ l}〉

}
,

so (p)2 =
{(

A −A
−A A

)
: A ∈ 〈{Est − Ets : d ≤ s < t ≤ l}〉

}
.

Fix i ∈ {1, . . . , d − 1} and denote Si = {X = (ast ) ∈ gl(l,R) : ast = 0 for all (st) /∈
{(i j) : j = d, . . . , l}}. For any j = d, . . . , l the root space gλi−λ j is represented by matrices
(14) where A = Ei j , C = B = 0; meanwhile, gλi+λ j is represented by the matrices of the
above form where B = Ei j − E ji , A = C = 0. Thus Wi is given by

(
X Y − Y t

0 −XT

)
, where X, Y ∈ Si . (16)

For Z ∈ Si denote

XZ =
(
Z Z − ZT

0 −ZT

)
, YZ =

(
Z −Z + ZT

0 −ZT

)
(17)

and define V 1
i = {XZ : Z ∈ Si }, V 2

i = {YZ : Z ∈ Si }. Clearly, V 1
i , V 2

i ⊂ Wi . Moreover, a
matrix as in (16) can be written as the sum of two matrices in (17) by taking Z = (X +Y )/2,
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Z ′ = (X − Y )/2. Thus we obtain Wi = V 1
i ⊕ V 2

i and dim V 1
i = dim V 2

i = l − d + 1 =
p = |Θ|.

We compute the kΘ action on V 1
i and V 2

i : let N ∈ kΘ as in (15) and let XZ ∈ V 1
i , YZ ∈ V 2

i
then AZ = 0 = BZ , ZT A = 0 = ZT B so

[N , XZ ] = X−Z(A+B), and [N , YZ ] = Y−Z(A−B).

This implies that so(p)2 acts trivially on V 1
i while for N ∈ so(p)1 the action is [N , XZ ] =

X−2Z A. Similarly, so(p)1 acts trivially on V 2
i while for N ∈ so(p)2 the action is [N , XZ ] =

X−2Z A. We conclude that the kΘ representation on V 1
i is equivalent to the so(p) ⊕ so(p)

representation on Rp where the action of so(p)1 is the canonical and the action of so(p)2 is
trivial. Similarly, the kΘ representation onV 2

i is equivalent to the so(p)⊕so(p) representation
on R

p where the action of so(p)1 is by zero and the action of so(p)2 is the canonical one.
We keep i = 1, . . . , d − 1 fixed. Let s, t ∈ {d . . . l}, s 
= t and consider N 1

st being as in
(15) with A = Est − Ets and B = A (i.e. N ∈ so(p)1). Then

[
N 1
st , XEis

] = −2XEit and [N 1
st , XEit ] = 2XEis , while [N 1

st , YEi j ] = 0 for all j. (18)

Similarly, denote N 2
st ∈ so(p)2 being the matrix in kΘ associated to A = Est − Ets and

B = −A, then
[
N 2
st , YEis

] = −2YEit and [N 2
st , YEit ] = 2YEis , while [N 2

st , XEi j ] = 0 for all j. (19)

Having described the kΘ representation on n+
Θ we can state:

Proposition 8 The real flags FΘ of Dl with l ≥ 5 and Θ 
= ∅ do not admit KΘ -invariant
complex structures.

Proof Assume J : n+
Θ −→ n+

Θ is a KΘ -invariant almost complex structure. As it is M-
invariant and each subspace in (13) is sumofM-equivalence classes,wehave that JWR = WR

and JWi = Wi for all i = 1, . . . , d − 1.
Recall thatWi is not irreducible, for i = 1, . . . , d−1. InsteadWi = V 1

i ⊕V 2
i where each of

these subspace is invariant and irreducible by the KΘ action, and the induced representations
are not equivalent [15]. By Lemma 2, we conclude that V 1

i , V
2
i are J -invariant. In particular,

V 1
i and V 2

i are even dimensional and thus p is even.
Fix i = 1, . . . , d − 1 and let j ∈ {d, . . . , l}. In the notation (17) one can see that

gλi−λ j ⊕ gλi+λ j = 〈{XEi j , YEi j }
〉
, which is a J -invariant subspace of Wi because of the

M-invariance of J . Thus J XEi j = ai j XEi j + ci j YEi j with ci j 
= 0. For any s ∈ {d, . . . , l},
s 
= j we apply (18) and obtain

adN1
s j

J XEi j = adN1
s j
(ai j XEi j + ci j YEi j ) = −2ai j XEis , while

J adN1
s j

XEi j = J (−2XEis ) = −2(ais XEis + cisYEis ),

but cis 
= 0, contradicting the KΘ -invariance of J . ��

4.3.2 Case D4

Now we proceed to the study of flags of D4 with Θ as in Table 1. The M-equivalence classes
of positive roots in D4 are:

{λ1 − λ2, λ1 + λ2, λ3 − λ4, λ3 + λ4}, {λ1 − λ3, λ1 + λ3, λ2 − λ4, λ2 + λ4}
{λ1 − λ4, λ1 + λ4, λ2 − λ3, λ2 + λ3}.
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As in the general case, we work with the split form so(4, 4). In what follows we denote
by Xi j = Ei, j − El+ j,l+i a generator of gλi−λ j and by Yi j = Ei,l+ j − E j,l+i a generator
gλi+λ j , where Ei, j is the 8 × 8 matrix with 1 in the position i j and zeroes elsewhere.

The group M consists of 8× 8 diagonal matrices diag(ε1, ε2, ε3, ε4, ε1, ε2, ε3, ε4) where
εi = ±1 and ε1ε2ε3ε4 = 1, that is, there is an even amount of−1’s in the diagonal of matrices
of M .

Proposition 9 The real flag manifold FΘ of type D4 with Θ = {λ1 − λ2, λ3 − λ4} admits
KΘ invariant almost complex structures. These structures are not integrable.

Proof The following is the decomposition of n+
Θ in KΘ invariant and irreducible subspaces

n+
Θ = gλ1+λ2 ⊕ gλ3+λ4 ⊕

4∑

i=1

Vi ,

where

V1 = 〈X13 − X24, X14 + X23〉
V2 = 〈X13 + X24, X14 − X23〉
V3 = 〈Y13 − Y24, Y14 + Y23〉
V4 = 〈Y13 + Y24, Y14 − Y23〉

The map T13 : V1 −→ V3 defined by T13(X13 − X24) = Y13 − Y24 and T13(X14 + X23) =
Y14 + Y23 commutes with adkΘ

. Moreover, the linear map T24 : V2 −→ V4, verifying
T24(X13 + X24) = Y23 + Y24 and T24(X14 − X23) = Y14 − Y23 commutes with the adjoints
of kΘ . Therefore, the (KΘ)0 representations on V1 and V3 and the representations on V2 and
V4 are equivalent. One can see that these two different representations are not equivalent.

Assume J : n+
Θ −→ n+

Θ is a KΘ -invariant almost complex structure. The M-invariance
implies that V[α] is M-invariant. For instance, V[λ1−λ3] = 〈{X13, Y13, X24, Y24}〉 is invariant
under J . Because of the kΘ representations described above, we have that JV1 = V1 or
JV1 = V3. In the first case, we may have X13 − X24 as an eigenvalue of J , which is not
possible, so we obtain JV1 = V3 and J (X13 − X24) = c1(Y13 − Y24) for some c1 
= 0. By
analogous reasoning, we obtain that J is as follows:

JY12 = aY12 + cY34,
JY34 = (1 + a2)Y12/c − aY34,

J (X13 − X24) = c1(Y13 − Y24),
J (X14 + X23) = c2(Y14 + Y23),
J (X13 + X24) = c3(Y13 + Y24),
J (X14 − X23) = c4(Y14 − Y23),

where ci , c 
= 0. But J adX = adX J for X ∈ kΘ implies c1 = c4 and c2 = c3. Direct
computations show that this is M-invariant and J adX = adX J for all X ∈ kΘ , therefore, a
KΘ -invariant almost complex structure.

Regarding integrability, it suffices to remark that, for instance, NJ (Y12, X13 − X24) is
never zero. ��

Proposition 10 The real flag manifold FΘ of type D4 with Θ = {λ1 − λ2, λ3 + λ4} admits
KΘ invariant almost complex structures. These structures are not integrable.
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Proof We proceed as in the previous proof. The following is a decomposition into KΘ

invariant and irreducible subspaces

n+
Θ = gλ1+λ2 ⊕ gλ3−λ4 ⊕

4∑

i=1

Vi ,

where

V1 = 〈X13 − Y24, Y14 + X23〉
V2 = 〈X13 + Y24, Y14 − X23〉
V3 = 〈Y13 − X24, X14 + Y23〉
V4 = 〈Y13 + X24, X14 − Y23〉

The subspace V1 is kΘ -equivalent to the subspace V3 and the subspace V2 is kΘ -equivalent
to the subspace V4 through the following linear transformations T13 : V1 −→ V3 and
T24 : V2 −→ V4, given by T13(X13 − Y24) = Y13 − X24, T13(Y14 + X23) = X14 + Y23,
T24(X13 + Y24) = Y13 + X24 and T24(Y14 − X23) = X14 − Y23. The other representations
are not kΘ equivalent.

Assume J is a KΘ -invariant almost complex structure. As before, JV1 = V3 and JV2 =
V4 and J verifies

JY12 = aX34 + cY12,
J X34 = (1 + a2)X34/c − aY12,

J (X13 − Y24) = c1(Y13 − X24),

J (Y14 + X23) = c2(X14 + Y23),
J (X13 + Y24) = c3(Y13 + X24),

J (Y14 − X23) = c4(X14 − Y23),

J commuting with adX , for X ∈ kΘ implies c1 = c2 and c3 = c4, and any such J commutes
with all adX ∈ kΘ , so it is (KΘ)0 invariant. One can verify that J is also M-invariant.

Again, it is possible to see that NJ (Y12, X13 − Y24) never vanishes. ��
Proposition 11 The real flag manifold FΘ of type D4 with Θ = {λ3 − λ4, λ3 + λ4} admits
KΘ invariant almost complex structures. These structures are not integrable.

Proof The following is a decomposition into (KΘ)0 invariant and irreducible subspaces

n+
Θ = gλ1−λ2 ⊕ gλ1+λ2 ⊕

4∑

i=1

Vi ,

where

V1 = 〈X13 + Y13, X14 + Y14〉
V2 = 〈X13 − Y13, X14 − Y14〉
V3 = 〈X23 + Y23, X24 + Y24〉
V4 = 〈X23 − Y23, X24 − Y24〉

The subspace V1 is kΘ -equivalent to the subspace V3 and the subspace V2 is kΘ -equivalent
to the subspace V4. Indeed, we consider the linear transformations T13 : V1 −→ V3 given
by T13(X13 + Y13) = X24 + Y24 and T13(X14 + Y14) = −(X23 + Y23) and T24 : V2 −→ V4
given by T24(X13 − Y13) = X24 − Y24 and T24(X14 − Y14) = −(X23 − Y23).
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Any (KΘ)0-invariant complex structure J is of form

J X12 = aX12 + cY12,
JY12 = (1 + a2)X12/c − aY12,

J (X13 + Y13) = c1(X24 + Y24),
J (X14 + Y14) = −c1(X23 + Y23),
J (X13 − Y13) = c2(X24 − Y24),
J (X14 − Y14) = −c2(X23 − Y23),

Direct computations show that this is also M-invariant and therefore KΘ -invariant. For such
structure, NJ (X12, X13 + Y13) never vanishes. ��
Proposition 12 The real flag manifolds FΘ of type D4 where Θ is one of the following sets:

– Θ1 = {λ1 − λ2, λ2 − λ3, λ3 − λ4},
– Θ2 = {λ1 − λ2, λ2 − λ3, λ3 + λ4},
– Θ3 = {λ2 − λ3, λ3 − λ4, λ3 + λ4},

do not admit KΘ -invariant almost complex structures.

Proof Below we give the respective decompositions of n+
Θi

in KΘ invariant and irreducible
subspaces.

n−
Θ1

= 〈Y12 + Y34, Y13 − Y24, Y14 + Y23〉 ⊕ 〈Y12 − Y34, Y13 + Y24, Y14 − Y23〉.
n−

Θ2
= 〈Y12 + X34, Y13 − X24, X14 + Y23〉 ⊕ 〈Y12 − X34, Y13 + X24, X14 − Y23〉.

n−
Θ3

= 〈X12 + Y12, X13 + Y13, X14 + Y14〉 ⊕ 〈X12 − Y12, X13 − Y13, X14 − Y14〉.
We see that each of them decomposes as a sum of two irreducible subspaces V1 and V2

which induce non-equivalent representations and such that dim V1 = dim V2 = 3. Lemma 2
implies that any KΘ -invariant complex structure preserves each of these irreducible compo-
nents, which is not possible since these are odd dimensional. Therefore, FΘi does not admit
K -invariant almost complex structures for i = 1, 2, 3. ��
Acknowledgements The authors express their gratitude to an anonymous referee for the careful reading of
the manuscript and useful suggestions.
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