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Abstract In this paper, we introduce generic limits of triply periodic minimal surfaces and
consider the genus-three case. We will prove that generic limits of such minimal surfaces
consist of a one-parameter family of Karcher’s saddle towers and Rodríguez’ standard exam-
ples.
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1 Introduction

It is known that properly immersed triply periodic minimal surfaces inR3 have been used for
the description of lipids or synthetic surfactants in physics, chemistry, and so on. Moreover,
there are transitions from these membranes to lamellar phases, which are periodic parallel
planes by environment conditions. In the previous paper [1], we showed that Rodríguez’
standard examples [16] appear as limits of the real five-dimensional family of triply periodic
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minimal surfaces given byMeeks [9]. Limits of the standard examples including the Riemann
minimal examples look like singly periodic parallel planes similar to lamellar phases. This
suggests that limits of triply periodic minimal surfaces might be mathematical description of
the transition. This paper continues this work.

Let f : M → R
3/� be a compact oriented minimal surface in a flat three-torus. By

the isothermal coordinates, M can be reconsidered as a Riemann surface, and we call f a
conformal minimal immersion. The following theorem gives an explicit description for a
conformal minimal immersion (see for instance [9]).

Theorem 1.1 (Weierstrass representation formula) Let f : M → R
3/� be a conformal

minimal immersion. Then, up to translations, f can be represented by the following path
integrals:

f (p) = �
∫ p

p0

t (ω1, ω2, ω3) mod �, (1.1)

where p0 is a fixed point on M and the ωi ’s are holomorphic differentials on M satisfying
the following three conditions:

ω2
1 + ω2

2 + ω2
3 = 0, (1.2)

ω1, ω2, ω3 have no common zeros, (1.3){
�

∫
C

t (ω1, ω2, ω3)

∣∣∣∣ C ∈ H1(M, Z)

}
is a sublattice of �. (1.4)

Conversely, the real part of path integrals of holomorphic differentials satisfying the above
three conditions defines a conformal minimal immersion.

Remark 1.1 We canwrite outω1, ω2, ω3 in Theorem 1.1 as (ω1, ω2, ω3) = (1−g2, i(1+
g2), 2g)ω for someholomorphic one-formω andmeromorphic function g,which is theGauss
map composed with stereographic projection onto C ∪ {∞}.

A minimal surface in R
3 is said to be periodic if it is connected and invariant under a

group � of isometries of R3 that acts properly discontinuously and freely (see [11]). � can
be chosen to be a rank-three lattice � in R

3 (the triply periodic case), a rank-two lattice
� ⊂ R

2 ×{0} generated by two linearly independent translations (the doubly periodic case),
or a cyclic group � generated by a screw motion symmetry, that is, a rotation around the
x3-axis composed with a non-trivial translation by a vector on the x3-axis (the singly periodic
case). The geometry of a periodic minimal surface in R

3 can usually be described in terms
of the geometry of its quotient surface M in the flat three-manifold R

3/�. Hence, a triply
periodic minimal surface is a minimal surface in a flat three-torus T3, a doubly periodic
minimal surface is a minimal surface in T

2 × R where T2 is a flat two-torus, and a singly
periodic minimal surface is a minimal surface in S1 × R

2.
We will focus on the genus-three case because of the following motivation in terms of the

Morse index of a minimal surface. The Morse index of a compact oriented minimal surface
in a flat three-torus is defined as the sum of the dimensions of the eigenspaces corresponding
to negative eigenvalues of the Jacobi operator of the area. A minimal surface is said to be
stable if it has Morse index zero. It is well known that a compact oriented stable minimal
surface in a flat three-torus must be a totally geodesic subtorus in the torus. Thus, a compact
oriented minimal surface in a flat three-torus which is not totally geodesic must have Morse
index at least one, that is, the Morse index one case is the least one. In 2006, Ros [17] proved
that a compact oriented minimal surface in a flat three-torus with Morse index one has genus
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On limits of triply periodic minimal surfaces 1741

three. So the genus-three case might be important for natural phenomena. In fact, many one-
parameter families of compact oriented minimal surfaces of genus three in flat three-tori have
been studied in physics and chemistry (see, for example, [8,18]).

Recall that a compact oriented minimal surface of genus three in a flat three-torus is
hyperelliptic, that is, it can be represented as a two-sheeted branched covering of the sphere
(see p. 49 in [13] or Corollary 3.2 in [9]). In this case, the Riemann surface M in Theorem 1.1
can be given by w2 = ∏8

i=1(z − ai ) for distinct eight complex numbers a1, . . . , a8 or
w2 = ∏7

i=1(z−bi ) for distinct seven complex numbers b1, . . . , b7 (see p. 102 in [2] or p. 254
in [3]).We consider the former case sincewe can apply the similar arguments to the latter case.
We define generic limits of triply periodic minimal surfaces as limits of f in Theorem 1.1
for the following three cases: (i) the case a2 → a1, (ii) the case (a2, a4) → (a1, a3), (iii) the
case (a2, a4, a6) → (a1, a3, a5) (see Sect. 2 for the details). Our main result is as follows.

Main Theorem For a compact oriented embedded minimal surface of genus three in a
flat three-torus, generic limits of the minimal surface consist of a one-parameter family of
Karcher’s saddle towers and Rodríguez’ standard examples.

The paper is organized as follows. In Sect. 2, we discuss generic limits of triply periodic
minimal surfaces and give their properties. In Sect. 3, we prove our main result, and finally
in Sect. 4, we introduce some singly periodic examples derived from generic limits of triply
periodic minimal surfaces.

2 Generic limits

In this section, we will refer to the details of generic limits of triply periodic minimal surfaces
for the genus-three case. The arguments essentially appear in Sect. 3 of [1].

For eight distinct complex numbers a1, . . . , a8, let M be the hyperelliptic Riemann sur-
face of genus three defined by w2 = ∏8

i=1(z − ai ). We can write out a basis of holomorphic
differentials on M by {dz/w, zdz/w, z2dz/w} (see p. 255 in [3]). Let f : M → R

3/� be
a conformal minimal immersion of M into a flat three-torus, and we can choose g = z and
ω = dz/w in Theorem 1.1 (see Theorem 3.1 in [9], see also Corollary of Theorem 2 in [13]).

We now consider each behavior of f for the following three cases: (i) the case a2 → a1,
(ii) the case (a2, a4) → (a1, a3), (iii) the case (a2, a4, a6) → (a1, a3, a5). We only treat
the case (i) since the similar arguments work for the other two cases.

We first construct M as a two-sheeted branched covering of the sphere by the Gauss map
M � (z, w) 	→ z ∈ C ∪ {∞} ∼= S2. The branch locus of the Gauss map consists of the
following eight points on S2:

a1, a2, a3, a4, a5, a6, a7, a8.

We prepare two copies of C ∪ {∞} ∼= S2 and take two closed curves passing through the
eight points, respectively. So we can divide S2 into two domains and label “+′′ and “−′′ (see
Fig. 1). Slit thick curves as in the upper pictures in Fig. 1 and glue (i) and (ii) as in the lower
pictures in Fig. 1. The thin curves in the upper pictures in Fig. 1 correspond to the thin curves
in the lower pictures in Fig. 1.By this procedure, we obtain the hyperelliptic Riemann surface
M of genus three.

We now consider the case a2 → a1. Let α be a closed curve enclosing a1 and a2 in the
z-plane. Lift α to closed curves in M and name them α̂ and α̂′. Choosing suitable α, we can
divide M into two disjoint sets in M with the following properties: One set contains (a1, 0)
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Fig. 1 The hyperelliptic Riemann surface M of genus three

a2 a1z-plane

α

(ii)

(i)

α̂

α̂

a1 a2 a3 a4 a5 a6 a7 a8

Fig. 2 Closed curves α, α̂, α̂′

and (a2, 0) whose boundary consists of α̂ and α̂′, and the other set is the remaining one (see
Fig. 2). Let Mα denote the latter.

The Weierstrass integral (1.1) along any closed curve in Mα is contained in the lattice of
the target torus. So the Weierstrass integral depends only on the endpoint of a path in Mα .
We now assume p0 ∈ Mα . Taking t as a local complex coordinate on Mα , we can write

1 − z2

w
dz = ϕ1(t)dt,

i(1 + z2)

w
dz = ϕ2(t)dt,

2z

w
dz = ϕ3(t)dt
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On limits of triply periodic minimal surfaces 1743

for some holomorphic functions ϕ1(t), ϕ2(t), ϕ3(t). Then, the three functions ϕ1(t), ϕ2(t),
ϕ3(t) converge uniformly on Mα as a2 → a1. Hence, the limits can be moved inside the
integrals.

After that, letting α shrink to a point, we define generic limits of f for the case a2 → a1
as a limit of f .

For the case a2 → a1, M converges to the following Riemann surface with node, denoted
by M ′:

w2 = (z − a1)
2

8∏
j=3

(z − a j ).

Let M1 be the Riemann surface of genus two defined by

v2 = (z − a3)(z − a4)(z − a5)(z − a6)(z − a7)(z − a8).

Then, there exists the following reparametrization of M ′:

M1 � (z, v) 	→ (z, (z − a1)v) ∈ M ′.

By using them, the limit, as a2 → a1, of f is

�
∫ p

p0

t (1 − z2, i(1 + z2), 2z)
dz

(z − a1)v
(2.1)

on M1 \ {(a1, ±v(a1))}.
For the case (a2, a4) → (a1, a3), M converges to the following Riemann surface with

nodes, denoted by M ′′:

w2 = (z − a1)
2(z − a3)

2
8∏
j=5

(z − a j ).

Let M2 be the torus defined by

v2 = (z − a5)(z − a6)(z − a7)(z − a8).

Then, there exists the following reparametrization of M ′′:

M2 � (z, v) 	→ (z, (z − a1)(z − a3)v) ∈ M ′′.

By using them, the limit, as (a2, a4) → (a1, a3), of f is

�
∫ p

p0

t (1 − z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)v
(2.2)

on M2 \ {(a1, ±v(a1)), (a3, ±v(a3))}.
For the case (a2, a4, a6) → (a1, a3, a5), M converges to the following Riemann surface

with nodes, denoted by M ′′′:

w2 = (z − a1)
2(z − a3)

2(z − a5)
2(z − a7)(z − a8).

Let M3 be the sphere defined by

v2 = (z − a7)(z − a8).

Then, there exists the following reparametrization of M ′′′:

M3 � (z, v) 	→ (z, (z − a1)(z − a3)(z − a5)v) ∈ M ′′′.
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By using them, the limit, as (a2, a4, a6) → (a1, a3, a5), of f is

�
∫ p

p0

t (1 − z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)(z − a5)v
(2.3)

on M3 \ {(a1, ±v(a1)), (a3, ±v(a3)), (a5, ±v(a5))}.
Next, we consider the asymptotic behavior of ends for (2.1), (2.2), (2.3). We set

� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t (1 − z2, i(1 + z2), 2z)
dz

(z − a1)v
(for (2.1))

t (1 − z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)v
(for (2.2))

t (1 − z2, i(1 + z2), 2z)
dz

(z − a1)(z − a3)(z − a5)v
(for (2.3))

It is straightforward to check that we have the Laurent expansion of � at (a1, v(a1))

1

z
α + β + γ z + · · · ,

where

α =

⎧⎪⎨
⎪⎩

t (1 − a21 , i(1 + a21), 2a1)
1

v(a1)
(for (2.1))

t (1 − a21 , i(1 + a21), 2a1)
1

(a1−a3)v(a1)
(for (2.2))

t (1 − a21 , i(1 + a21), 2a1)
1

(a1−a3)(a1−a5)v(a1)
(for (2.3))

Let 〈·, ·〉 be the complex bilinear inner product. Then, we have 〈α, α〉 = 0. Thus, α is not
real nor pure imaginary, and so �(2π iα) �= 0. We call the end Scherk-type end with period
�(2π iα) (see, for instance, Theorem 5 in [11]).

Note that there exists the hyperelliptic involution (z, v) 	→ (z, −v) on each Mj (1 ≤
j ≤ 3). Hence, we obtain a pair of parallel Scherk-type ends given by α/z + β + γ z + · · ·
and −(α/z + β + γ z + · · · ) with nonzero periods ±�(2π iα).

Lemma 2.1 For (2.1), (2.2), and (2.3), ends consist of pairs of parallel Scherk-type ends. For
each pair of parallel Scherk-type ends, up to translation in R

3, one end can be transformed
into the other end by a suitable inversion. In particular, the Gaussian curvature at each end
converges to zero.

We conclude this section with the following proposition.

Proposition 2.1 Generic limits of triply periodic embedded minimal surfaces of genus three
consist of singly periodic or doubly periodic properly embedded minimal surfaces inR3 with
pairs of Scherk-type ends. For each pair of Scherk-type ends, the Gauss image at one end
coincides with the Gauss image at the other end.

Proof We use the notation as above. Let f j : Mj \ E j → R
3 (1 ≤ j ≤ 3) be an element

of generic limits of triply periodic embedded minimal surfaces of genus three defined by
(2.1), (2.2), (2.3), where E j is a set of ends for each f j . Note that f j might be multivalued
in general. Thus, by taking a suitable covering space M̃ j → Mj \ E j , there exists a single-
valuedminimal immersion f̃ j : M̃ j → R

3. By similar arguments to the proof of Theorem 7.1
in [9], M̂ j = f̃ j (M̃ j ) = f j (Mj \ E j ) is embedded.

It is straightforward to check that each M̂ j is complete from (2.1), (2.2), (2.3). By
Lemma 2.1, M̂ j has only Scherk-type ends, and thus it has bounded Gaussian curvature.
Combining the two facts yields M̂ j is proper (see [12]), and in particular, M̂ j is orientable.
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On limits of triply periodic minimal surfaces 1745

Recall that each f̃ j : M̃ j → R
3 is derived from a triply periodic minimal surface f :

M → R
3/�. To obtain f̃ j , we collapse some one cycles on M . By (1.4), f̃ j must be triply

periodic or doubly periodic or singly periodic or non-periodic minimal embedding. Since f̃ j
has Scherk-type ends with nonzero periods and is proper, it cannot be triply periodic nor be
non-periodic minimal embedding. Therefore, f̃ j is singly periodic or doubly periodic.

It follows that the minimal embedding f̃ j : M̃ j → R
3 gives rise to a conformal minimal

embedding f j of a Riemann surface Mj into an S1 ×R
2 or a T2 ×R. Also, f j is a conformal

minimal immersion of Mj \ E j into the S1 × R
2 or the T2 × R, and there exists a covering

map π : Mj \ E j → Mj such that f j = f j ◦ π . Hence, f j has finite total curvature, and
so Mj is biholomorphic to a compact Riemann surface N j with a finite number of points
removed. Moreover, π extends to a covering map π : Mj → N j .

Let G and G be the Gauss map of f j and f j , respectively. Note that G and G can be
extended to holomorphic maps Mj → S2 and N j → S2, respectively. Then, we have
G = G ◦ π . Note that G can be obtained by (z, v) 	→ z, and so deg(G) = 2. To show
deg(π) = 1, we now assume deg(G) = 1, and thus G is biholomorphic.

For each k = 1, 3, 5, the equation G(ak, v(ak)) = G(ak, −v(ak)) implies that f j is a
singly periodic or doubly periodic properly minimal embedding of genus zero with at most
three ends. However, for each case, f j has at least four ends ([10,15]), and it leads to a
contradiction.

Therefore, we have deg(π) = 1, and so f j coincides with f j . Again, by the equation
G(ak, v(ak)) = G(ak, −v(ak)), the Gauss image at one end coincides with the Gauss
image at the other end for each pair of ends. ��

3 Proof of main theorem

In this section, we will prove Main Theorem in Introduction. We use the notation as in the
previous section.

We first consider f1 defined by (2.1), and then f1 is a properly embedded singly or doubly
periodic minimal surface with a pair of Scherk-type ends with periods ±�(2π iα). Suppose
that f1 is singly periodic. Let {E1, E ′

1} be the pair of Scherk-type ends and G(E1), G(E ′
1)

their Gauss images. In this case, there exists a plane� such that its normal vector is parallel to
G(E1), and by the strong halfspace theorem [4], it intersects theminimal surface at an interior
point (see Fig. 3). However, it contradicts the maximum principle for minimal surfaces. Thus,

Π

E1

E1

G(E1)

G(E1)

(2πiα)

Fig. 3 A singly periodic minimal surface with a pair of Scherk-type ends
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(i)

E1
G(E1)

E2

G(E2)

E2

G(E2)

E1

G(E1)

(ii)

E1

G(E1)

E2

G(E2)

E2

G(E2)

E1G(E1)

Fig. 4 Two pairs of Scherk-type ends {E1, E ′
1} and {E2, E ′

2}

f1 is doubly periodic, but it contradicts Meeks–Rosenberg’s result [10]. Hence, this case is
excluded.

We next consider f2 defined by (2.2), and in this case, f2 gives a properly embedded singly
periodic or doubly periodic minimal surface of genus one with two pairs of Scherk-type ends.
If f2 is singly periodic, then by Proposition 2.1, there are two essential cases as in Fig. 4.
For both cases, there exists a closed curve which intersects the minimal surface once (see the
curves in Fig. 4), and it contradicts the classical result in surface theory. Suppose that f2 is
doubly periodic. If the ends are not parallel, thenwe can apply the same arguments as in Fig. 4,
and it contradicts. Hence, the ends are parallel, and by the result of Pérez–Rodríguez–Traizet
[14], it must be Rodríguez’ standard example.

We finally consider f3 defined by (2.3), and then f3 is a singly or doubly periodic minimal
embedding of genus zero with six Scherk-type ends. Combining Lazard-Holly and Meeks’
result [7] and Pérez–Traizet’s result [15] yields that f3 must be a singly periodic Scherk
surface or Karcher saddle tower or doubly periodic Scherk surface. It has six ends, and thus,
it must be the Karcher saddle tower.

Remark 3.1 There exists a doubly periodic Scherk surface with a handle [5]. It has two pairs
of Scherk-type ends, and its ends are not parallel. However, for each pair of ends, the Gauss
image at one end is distinct from the Gauss image at the other end. By Proposition 2.1, this
surface cannot be contained in generic limits of triply periodic minimal surfaces of genus
three.

4 Appendix (related examples)

We now consider singly periodic minimal surfaces given by (2.3). By the period condition
for singly periodic minimal surfaces, it can be reduced to two cases essentially. One is given
by

a1 = −eiπ/4, a3 = ei(θ+π/4), a5 = ei(−θ+π/4),

a7 = ei(ϕ+π/4), a8 = ei(−ϕ+π/4) (4.1)

in (2.3), where θ ∈ (π/2, π) and

ϕ = arccos

(
2 sin2 θ

1 − 2 cos θ
− 1

)

are constants (see the left-hand side of Fig. 5). One can see that none of this family is
embedded, and thus, it cannot be included in generic limits of embedded triply periodic
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On limits of triply periodic minimal surfaces 1747

Fig. 5 Left: Singly periodic minimal surface given by (4.1) with θ = 3π/4. Right: Singly periodic minimal
surface given by Sect. 2.5.1 in [6] with r = 1/2

minimal surfaces of genus three. The other is embedded (see the right-hand side of Fig. 5);
more precisely, these singly periodicminimal surfaces were found byKarcher. See Sect. 2.5.1
in [6].

It is known that the symmetric Karcher saddle tower (Sect. 2.5.1 in [6] with r = 0) is a
limit of a family of embedded triply periodic minimal surfaces of genus three, called Schwarz
H family. However, a family of embedded triply periodic minimal surfaces of genus three
whose limit is non-symmetric Karcher saddle tower is yet to be found, leading us to the
following open problem:

Problem Whether there exists a family of embedded triply periodic minimal surfaces of
genus three whose limit is non-symmetric Karcher saddle tower (Sect. 2.5.1 in [6] with
r �= 0) or not?
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