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Abstract We consider the perturbed Hammerstein integral equation

y(t) = γ (t)H(ϕ(y)) + λ

∫ 1

0
G(t, s) f (s, y(s)) ds

in the case where it may hold that f (t, y) < 0, for each (t, y) ∈ [0, 1] × [0,+∞), and
limy→∞ f (t, y) = −∞; in other words, f may be a strictly negative function on its entire
domain and may uniformly blow up to −∞ as y → +∞. We apply our results, in part, to
radially symmetric solutions of PDEs of the form

−�u(x) = λa(|x|)g(u(x))

subject to nonlocal boundary conditions and show that this problem can possess a positive
solution even if limu→∞ g(u) = −∞. By using a nonstandard cone and attendant open set,
these results are able to be guaranteed by imposing relatively straightforward conditions. In
addition, our results apply to forcing terms f and g with polynomial growth at +∞ of any
degree. We demonstrate that, in principle, our results can be applied to ecological modeling
with density-dependent growth and nonlocal boundary conditions.
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1586 C. S. Goodrich

1 Introduction

In this paper, we consider the existence of at least one positive solution of the perturbed
Hammerstein integral equation

y(t) = γ (t)H(ϕ(y)) + λ

∫ 1

0
G(t, s) f (s, y(s)) ds. (1.1)

The specific conditions imposed on the various constituent parts of Eq. (1.1) will be detailed
in Sect. 2, but essentially the functions γ , H , and f are continuous, whereas the functional
ϕ is a linear functional, realized as the Stieltjes integral ϕ(y) = ∫ 1

0 y(t) dα(t), where α is of
bounded variation on [0, 1] but not necessarily monotone. Under a well-known transforma-
tion, solutions of the perturbed Hammerstein integral Eq. (1.1) can correspond, for example,
to radially symmetric solutions of the PDE

−�u(x) = λa(|x|)g(u(x)
)
, |x| ∈ [R1, R2]

u(x)
∣∣
x∈∂BR1

= 0

u(x)
∣∣
x∈∂BR2

= H
(
ϕ(u)

)
,

(1.2)

for 0 < R1 < R2 < +∞ and x ∈ R
n , where the element H

(
ϕ(u)

)
represents a nonlocal,

possibly nonlinear boundary condition.We provide specific examples of this correspondence
in Sects. 3 and 4. Problems such as (1.1)–(1.2) can arise in thermostat problems, beam
deformation and displacement, and chemical reactor theory among other applications—see
Infante and Pietramala [33,39] and Cabada et al. [4], for example.

The main contribution of this paper is to demonstrate that by using the nonstandard cone

K := {
y ∈ C

([0, 1]): y(t) ≥ q(t)‖y‖, ϕ(y) ≥ C0‖y‖}
for a constant C0 > 0 to be determined later and a continuous function q: [0, 1] → [0, 1],
together with the open set, for ρ > 0,

V̂ρ := {
y ∈ K: ϕ(y) < ρ

}
,

we can construct a new method for attacking problem (1.1) (and, thus, problem (1.2) by
extension) in the case where

lim
y→∞ f (t, y) = −∞.

We have previously utilized a cone similar to K together with the set V̂ρ to deduce existence
results in the case of sign-changing Green’s functions for perturbed Hammerstein integral
equations [22,27] as well as for the positone problem [21,23].

Wewould like to remark briefly that problems similar to (1.2) (or, especially, the analogous
problem in the ODEs setting) have been studied extensive in the local BCs setting within the
context of so-called indefinite weight problems—see the recent article by Feltrin and Zanolin
[13] and the references therein. In this context, the function x �→ a

(|x|) is the “weight.”
Once possible specialization of our results, therefore, is to the problem of (1.2) in which the
weight a satisfies a(t) < 0 for all t ∈ [0,+∞) and in which 0 > a(t)g(u) → −∞ for each
t as u → +∞.

Because of the coercivity condition imposed on ϕ, by means of K, as well as the open set
V̂ρ , the conditions we impose are simple, flexible, and relatively easy to verify—this will be
demonstrated via some examples in Sects. 3 and 4. The primary assumption that we impose
on the map (t, y) �→ f (t, y) is that
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Radially symmetric solutions of elliptic PDEs with uniformly… 1587

lim
y→∞

f (t, y)

yκ0
= 0,

uniformly for t ∈ [0, 1], for some κ0 > 0. We study first the case in which κ0 = 1; this is the
focus of Sects. 2 and 3, whereas in Sect. 4 we study the more general case in which κ0 > 1.
We divide the two cases since the latter introduces some additional technical complications.

Note that the condition limy→∞ f (t, y) = −∞ has some relevance in the realm of
biological modeling. Indeed, it is common in density-dependent ecological modeling (e.g.,
the classical logistic differential equation) to have forcing terms that satisfy this condition. Of
course, in such problems only positive solutions are of relevance. Therefore, there is perhaps
some interest in developing methods that can guarantee existence of positive solutions to
problems even in spite of forcing terms possessing this property. For instance, if we consider
a diffusion problem of the form Ut = �U (t, x) + f

(
t, U (t, x)

)
, and then steady-state

solutions in the one-dimensional setting correspond to solutions of (1.1). If U represents
the density of some population, then forcing terms of the form f (t, y) := y(1 − y) or

f (t, y) = y(1−y)− y2

1+y2
commonly occur in such density-dependent ecologicalmodeling—

see, for example, the well-known spruce budworm model [55]. In these cases, the forcing
terms are of quadratic growth at+∞ and, in addition, uniformly blowup to−∞ as y → +∞.
In spite of the quadratic growth, our results could be applied since we can take κ0 = 3, for
example.

In addition to the possible relevance of biological modeling, from a purely mathematical
point of view, allowing the forcing term f to satisfy the condition limy→∞ f (t, y) = −∞
as well as f (t, y) < 0, for all (t, y), makes the analysis more challenging. Indeed, as we
explain momentarily, accommodating these more general forcing terms requires discarding
the “usual” approach to semipositone problems and inventing a newmethodology for dealing
with this type of problem.

More specifically, the typical analysis of semipositone problems, which can be traced
back to Anuradha et al. [3], involves imposing the so-called semipositone condition, wherein
one assumes that f (t, y) ≥ −η0 for some η0 > 0—or, more generally, f (t, y) ≥ −u(t),
for some nonnegative map u ∈ L1

([0, 1]), say, for each y ∈ [0,+∞). Then, the standard
methodology in the nonlocal setting (see [18,19,25], for instance) is to create a modified
problem of the form

y(t) = γ (t)H∗(ϕ(y − w)
)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s)
]
ds,

where H∗(z) := H
(
max{0, z}) and y∗(t) := max

{
0, (y − w)(t)

}
with w(t) :=

λ
∫ 1
0 G(t, s)u(s) ds, and deduce that this problem has a positive solution under some col-

lection of hypotheses. Finally, the correspondence z(t) := (y − w)(t) provides a positive
solution of the original problem—see, for example, [19, Theorem 3.1].

Here, by contrast, we create a different modification. Instead, we consider the problem

y(t) = γ (t)H∗(ϕ(y − wy)
)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ϕ(y)
]
ds, (1.3)

where we put
y∗(t) := max

{
0, y(t) − wy(t)

}

and
H∗(z) := H

(
max{0, z})
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1588 C. S. Goodrich

and

wy(t) := λ

∫ 1

0
G(t, s)

[
u(s) + ϕ(y)

]
ds.

Thus, the map t �→ wy(t) is now parameterized by the function y, which is in contrast to
the classical approach. The key observation is that since ϕ is a coercive linear functional
due to the cone K, we can use this coercivity to control the quantity f

(
s, y∗(s)

)
so that

even if limy→∞ f (t, y) = −∞, it can still hold that f
(
s, y∗(s)

) + u(s) + ϕ(y) ≥ 0, for
each s ∈ [0, 1]. In the end, it is then easy to show that the translation z(t) := (

y − wy
)
(t)

produces a positive solution, z, of problem (1.1) from a positive solution, y, of problem
(1.3). Finally, by using the open set V̂ρ instead of a more classical open set such as either
�ρ := {

y ∈ K: ‖y‖ < ρ
}
or Vρ := {

y ∈ K: mint∈[a,b] y(t) < ρ
}
it turns out that we can

achieve more refined results.
We demonstrate the aforementioned improvements in Sect. 3, but let us mention at this

point that the results in this paper represent a significant improvement over those we pre-
sented in [24]. The main result of that article, namely [24, Theorem 3.1], requires numerous
assumptions that we do not require here—see Remark 3.6 in Sect. 3. Moreover, while the
results there were certainly applicable, our methodology here is far simpler to apply and
yields better results. Finally, another upshot of the methodology we introduce here is that it
should be readily applicable to numerous other problem utilizing negative forcing terms, and
so, is much more widely applicable than the more narrowly structured results of [24].

To conclude the introduction we would like to mention some of the existing literature in
the area of both semipositone problems and nonlocal boundary value problems. In particu-
lar, as we already mentioned, the paper by Anuradha et al. [3] is important as regards the
semipositone problem. In more recent years, many papers have appeared on semipositone
boundary value problems equipped with a variety of boundary conditions—see, for example,
[1,8,18,19,29,48,58,62,74] and the references therein. In addition, a variety of works have
appeared on radially symmetric solutions for elliptic PDEs, and some representative works
include those by Cianciaruso et al. [7], Dhanya et al. [9], do Ó et al. [10–12], Herrón and
Lopera [32], Infante and Pietramala [41] and Webb [63]. Of particular relevance to our work
here, the papers [41,63] address nonlocal boundary conditions in the elliptic PDEs setting,
whereas [7] addresses nonlocal, possibly nonlinear boundary conditions in the elliptic PDEs
setting.

The paper by Cianciaruso et al. [7] is particularly interesting and relevant because not
only do they treat radially symmetric solutions of an elliptic PDE with possibly nonlinear,
nonlocal boundary conditions, but the condition they impose on the equivalent of our H
in (1.1) is essentially imposed only along the boundary of a set—i.e., only for y satisfying
‖y‖ = ρ. It is thus interesting to compare this condition with the one we utilize in this work
with our new set V̂ρ . We feel that the V̂ρ set offers some advantages in that our existence
results only involve checking the value of H at point and no other growth condition on H
whatsoever—not even along some sort of topological boundary. In fact, in some cases (see,
for example, [26, Remark 3.6]), the V̂ρ-methodology can be superior to that of [7]. The same
remarks can be made about the very recent work of Cabada et al. [5], which while couched in
a somewhat more general context than [7], nonetheless employs the same basic framework
inasmuch as the nonlocal elements are concerned.

More generally, as concerns nonlocal boundary value problems, numerous works have
appeared over the past few years. In addition to the fundamental works of Webb and
Infante [59–61], which addressed linear nonlocal boundary conditions, other interesting
papers have also addressed linear nonlocal boundary conditions in a variety of settings, such
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Radially symmetric solutions of elliptic PDEs with uniformly… 1589

as those by Graef and Webb [30], Infante et al. [35,36,38,40], Jankowski [42], Karakostas
and Tsamatos [44,45], Karakostas [46], Webb [65] and Yang [70,71]. On the other hand,
as concerns the setting of nonlocal, potentially nonlinear boundary conditions, relevant
works include those by Anderson [2], Goodrich [14–17,20], Infante et al. [33,34,37,39],
Kang et al. [43], Karakostas [46] and Yang [68,69]. In addition, a recent paper by Ciancia-
ruso and Pietramala [6] addresses nonlocal, nonlinear boundary conditions in the context of
(p1, p2)-Laplacian equations; it is worth noting that in [6] the authors impose uniform growth
conditions on the nonlinear elements (i.e., the equivalent of H in this paper), whereas, as
noted earlier, due to our use of the V̂ -type set here we impose only pointwise conditions—in
fact, none of these preceding papers imposes only pointwise conditions on the nonlinear
boundary element.

In addition, since we couch our results here in the context of perturbed Hammerstein
integral equations, we note that there have been many works in this area over the past many
years, including contributions by Cabada et al. [4], Cianciaruso et al. [7], Goodrich [22,23],
Lan et al. [49,51–53], Liu and Wu [54], Xu and Yang [67] and Yang [72]. It is also worth
noting that the classical articles by Picone [57] andWhyburn [66]make for interesting reading
on the historical trajectory of nonlocal boundary value problems.

Finally, we would like to highlight the recent article by Lan and Yang [50]. In this article,
the authors develop a new fixed point index, which can handle BVPs with forcing terms
satisfying limy→∞ f (t, y) = −∞. And a distinguishing aspect of our results is that we
allow the forcing term to be always strictly negative. In fact, because for “small” y we only
require f (t, y) ≥ −u(t), for each t ∈ [0, 1], with u ∈ L1

([0, 1]), it is actually possible that
our function f not only satisfies f (t, y) < 0 for all (t, y), but it may also be the case that∣∣ f (t, y)

∣∣ is quite large—in other words, there is no restriction on just “how negative” the
value f (t, y) may be for any particular pair (t, y). By contrast, the results of [50] require the
forcing term to satisfy f (t, 0) ≥ 0, a.e. t ∈ [0, 1]. Thus, in this sense, our results here have
extra flexibility and applicability since, unlike [50], we do not even require the nonnegativity
of the number f (t, 0) for any t ∈ [0, 1]. Moreover, since our results here permit the use of
possibly nonlocal, nonlinear boundary conditions, this allows for some additional flexibility
since themethodology of [50] did not address nonlocal boundary conditions. Thus, our results
here are more flexible in this sense, too.

2 Preliminary lemmata and notation

Webegin by listing the structural and regularity assumptions that wemake regarding problem
(1.1). Note that throughout this workwe denote by ‖·‖ the usual supremumnorm on the space
C
([0, 1]). As mentioned in Sect. 1, for the time being we restrict ourselves, via condition

(H3.1), to the case in which κ0 = 1—i.e., f grows sublinearly at +∞. In Sect. 4, we will
consider the case in which any κ0 > 1 is allowed.

H1: The functional ϕ has the form

ϕ(y) :=
∫

[0,1]
y(t) dα(t),

where α: [0, 1] → R satisfy α ∈ BV
([0, 1]). In addition, we let the constant C1 > 0

satisfy ∣∣ϕ(y)
∣∣ ≤ C1‖y‖,
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1590 C. S. Goodrich

for each y ∈ C
([0, 1]). Finally, letting S0 ⊆ [0, 1] be a set of full measure on which

G(s) := supt∈[0,1] G(t, s) > 0, we assume that the constant C0 defined by

C0 := inf
s∈S0

1

G(s)

∫ 1

0
G(t, s) dα(t)

satisfies +∞ > C0 > 0.
H2: The functions γ : [0, 1] → [0,+∞) and H : [0,+∞) → [0,+∞) are continuous, and

the function γ satisfies the inequality

ϕ(γ ) ≥ C0‖γ ‖.
H3: The function f : [0, 1] × [0,+∞) → R is continuous and satisfies the following two

growth conditions.

(1) limy→+∞ f (t,y)
y = 0, uniformly for t ∈ [0, 1]

(2) There exists a map u ∈ L1
([0, 1]; [0,+∞)

)
such that

f (t, y) ≥ −u(t)

for each t ∈ [0, 1] and y ∈ [0, R0], where

R0 := inf
{

R∗ ∈ (0,+∞): f (t, y) ≥ −C0y, for all y ≥ R∗}.
H4: The function G: [0, 1] × [0, 1] → [0,+∞) satisfies:

(1) G ∈ L1
([0, 1] × [0, 1]);

(2) for each τ ∈ [0, 1] it holds that
lim
t→τ

|G(t, s) − G(τ, s)| = 0, a.e. s ∈ [0, 1]; and

(3) G(s) := supt∈[0,1] G(t, s) < +∞ for each s ∈ [0, 1].
H5: There exists a continuous function q: [0, 1] → [0, 1] with ‖q‖ �= 0 such that

(1) γ (t) ≥ q(t)‖γ ‖, for each t ∈ [0, 1]; and
(2) q(t) ≥ G(t, s) ≥ q(t)G(s), for each (t, s) ∈ [0, 1] × [0, 1].

Remark 2.1 Note that we

• Make no assumptions on the behavior of H either asymptotically or on nondegenerate
intervals—only pointwise assumptions will be made (see Theorem 3.1);

• Makenogrowth assumptions on the behavior of (t, y) �→ f (t, y) exceptwhen y → +∞;
and

• Allow for forcing terms, f , such that not only can f (t, y) → −∞ as y → +∞ but also
it can hold that f (t, y) < 0 for all (t, y) ∈ [0, 1] × [0,+∞) with no restriction at all on
the size of the quantity

∣∣ f (t, y)
∣∣.

We would also like to point out that the range of allowable values of the parameter λ is
explicitly computable here.

Remark 2.2 For commonly occurring kernels, G, the function q is easy to calculate. For
example, if

G(t, s) :=
{

t (1 − s), 0 ≤ t ≤ s ≤ 1

s(1 − t), 0 ≤ s ≤ t ≤ 1
,

then one may take q(t) := min{t, 1 − t}, for example.
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We begin bymentioning some properties of the set V̂ρ , whichwas described in Sect. 1. The
proof of this lemma can be isolated from [23, Lemmata 2.9–2.10] with only minor additions
and alterations, and so, we omit the proof.

Lemma 2.3 Given numbers ρ > 0 and ρ2 > ρ1 > 0 each of the following is true.

(1) The set V̂ρ is open (relative to K).
(2) The set V̂ρ is bounded.
(3) V̂ρ2 ⊃ V̂ρ1

(4) V̂ρ2\V̂ ρ1 �= ∅

(5) Assuming that C1 > C0, it holds that V̂ρ ⊆ � ρ
C0

\� ρ
C1

�= ∅.

(6) If y ∈ ∂ V̂ρ , then ϕ(y) = ρ.

For future use, we define the operator T : K → K by

(T y)(t) = γ (t)H∗(ϕ(y − wy)
)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ϕ(y)
]
ds. (2.1)

Recall that

K :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y ∈ C
([0, 1]): y(t) ≥ q(t)‖y‖, ϕ(y) ≥

(
infs∈S0

1

G(s)

∫ 1

0
G(t, s) dα(t)

)
︸ ︷︷ ︸

=:C0

‖y‖

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Remark 2.4 Wewould like to point out that the coneK above is related to the cones introduced
by Graef et al. [28], Ma and Zhong [56] and Webb [64]. In some sense, it is an extension and
amalgamation of the ideas introduced in those articles and then suitably modified to suit our
purposes here.

Note that K �= ∅, and it is not trivial—i.e., K �= {0}. These facts are due to assumptions
(H1)–(H5) and, in particular, the assumptions on γ that ensure that γ ∈ K. With this in mind,
our next preliminary lemma is to demonstrate that T (K) ⊆ K.

Lemma 2.5 Assume that conditions (H1)–(H5) are satisfied. Then, with the operator T
defined as in (2.1) it holds that T (K) ⊆ K.

Proof We first show that when y ∈ K it follows that (T y)(t) ≥ q(t)‖T y‖ for each t ∈ [0, 1].
To this end, notice that, by definition, γ (t)H∗(ϕ(y − wy)

) ≥ 0, for each t ∈ [0, 1]. So, we
certainly deduce that

γ (t)H∗(ϕ(y − wy)
) ≥ q(t)‖γ ‖H∗(ϕ(y − wy)

)
. (2.2)

At the same time, we claim that f
(
s, y∗(s)

) + u(s) + ϕ(y) ≥ 0, for each s ∈ [0, 1]. To
see that this claim is true, note that by the definition of the number R0, we know that if
y∗(s) ∈ [0, R0], then it follows that f

(
s, y∗(s)

)+ u(s) ≥ 0, whereas if y∗(s) ∈ (R0,+∞),
then it holds that

f
(
s, y∗(s)

)+ u(s) + ϕ(y) ≥ f
(
s, y∗(s)

)+ ϕ(y) ≥ −C0y∗(s) + C0‖y‖
≥ −C0y(s) + C0‖y‖
≥ (

C0 − C0
)‖y‖

= 0,
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1592 C. S. Goodrich

using the fact that ‖y‖ ≥ ‖y∗‖, for if y∗(s) > 0, then y(s) ≥ y∗(s) > 0 by the definition
of the map s �→ y∗(s). Thus, we conclude that f

(
s, y∗(s)

) + u(s) + ϕ(y) ≥ 0, for each
s ∈ [0, 1]. So, by the properties imposed on the kernel G we may estimate

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+u(s)+ϕ(y)
]

︸ ︷︷ ︸
≥0

ds ≥
∫ 1

0
q(t)G(s)

[
f
(
s, y∗(s)

)+u(s)+ϕ(y)
]
ds

≥ q(t) sup
t∈[0,1]

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+u(s)+ϕ(y)
]
ds.

(2.3)
Then, upon putting (2.2)–(2.3) together we conclude that

(T y)(t) ≥ q(t)‖T y‖,
for each y ∈ K.

On the other hand, to see that ϕ(T y) ≥ C0‖T y‖ whenever y ∈ K, we write

ϕ(T y) = ϕ(γ )H∗(ϕ(y − wy)
)+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ϕ(y)
]

︸ ︷︷ ︸
≥0

dα(t) ds

≥ C0‖γ ‖H∗(ϕ(y − wy)
)

+ λ

∫ 1

0

[
1

G(s)

∫ 1

0
G(t, s) dα(t)

]
G(s)

[
f
(
s, y∗(s)

)+ u(s) + ϕ(y)
]
ds

≥ C0‖γ ‖H∗(ϕ(y − wy)
)+ λ

∫ 1

0
C0G(s)

[
f
(
s, y∗(s)

)+ u(s) + ϕ(y)
]
ds

≥ C0‖T y‖.
So, we conclude that T (K) ⊆ K, and this completes the proof. 
�

We next provide a sequence of three lemmata, which collectively ensure that a fixed point
of the operator T can, in fact, be related back to a solution of the original integral Eq. (1.1),
provided that certain conditions are imposed on λ and the norm of the fixed point. Our first of
these three lemmata provides a condition so that ϕ(y −wy) ≥ 0 holds. This will be important
in ensuring that solutions of the modified integral equation can, in fact, be related back to
solutions of the original integral equation.

Lemma 2.6 Suppose that conditions (H1)–(H5) are true. Assume that λ is selected so that

0 < λ <

(∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

.

If y ∈ ∂ V̂ρ , where ρ satisfies

ρ >

(
λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)(
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

,

then ϕ(y − wy) ≥ 0.
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Proof Let y ∈ ∂ V̂ρ . Then, recalling that wy := λ
∫ 1
0 G(t, s)

[
u(s) + ϕ(y)

]
ds, we calculate

ϕ(y − wy) = ϕ(y) − ϕ(wy)

= ρ − λ

∫ 1

0

∫ 1

0
G(t, s)

[
u(s) + ϕ(y)

]
dα(t) ds

= ρ − λ

∫ 1

0

∫ 1

0
G(t, s)

[
u(s) + ρ

]
dα(t) ds

= ρ

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds.

(2.4)
Consequently, for y ∈ ∂ V̂ρ we deduce that ϕ(y − wy) ≥ 0 provided that

ρ >

(
λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)(
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

.

Since, by assumption we have that−λ
∫ 1
0

∫ 1
0 G(t, s) dα(t) ds > 0, the above quantity is well

defined. And this completes the proof. 
�
Lemma 2.7 Suppose that conditions (H1)–(H5) are true. Assume that 0 < λ < 1

C1
. In

addition, for the number λ so fixed, suppose that the number ρ satisfies

ρ >
λC1

1 − λC1

∫ 1

0
u(s) ds.

Then, whenever y ∈ K\V̂ρ , it follows that y∗ ≡ y − wy .

Proof Recall that the definition of the map t �→ y∗(t) is

y∗(t) := max
{
0, y(t) − wy(t)

} = max

{
0, y(t) − λ

∫ 1

0
G(t, s)

[
u(s) + ϕ(y)

]
ds

}
.

Note that condition (H5) allows us to estimate

y(t) − λ

∫ 1

0
G(t, s)

[
u(s) + ϕ(y)

]
ds ≥ q(t)‖y‖ − λ

∫ 1

0
q(t)

[
u(s) + ϕ(y)

]
ds

≥ q(t)

[
‖y‖ − λ

∫ 1

0

[
u(s) + C1‖y‖] ds

]

= q(t)

[
‖y‖ (1 − λC1) − λ

∫ 1

0
u(s) ds

]

≥ q(t)

[
ρ

C1
(1 − λC1) − λ

∫ 1

0
u(s) ds

]
,

(2.5)

where to obtain the final inequality we have used both the fact that y ∈ K\V̂ρ , by assumption,
so that

C1‖y‖ ≥ ϕ(y) ≥ ρ.

and the fact that by the restriction on λ in the statement of this lemma, it follows that
1− λC1 > 0. Thus, we conclude from the above remarks, the restriction on ρ, and (2.5) that

y(t) − λ

∫ 1

0
G(t, s)

[
u(s) + ϕ(y)

]
ds ≥ 0,
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for each t ∈ [0, 1]. Consequently, by the definition of the map t �→ y∗(t), we deduce that
y∗ ≡ y − wy , as claimed. 
�
Remark 2.8 Note that Lemma 2.7 actually implies something stronger than the conclusion
as stated. In particular, since λ is strictly less than C−1

1 , it follows that the quantity

ρ

C1
(1 − λC1) − λ

∫ 1

0
u(s) ds,

which appears in (2.5), is actually strictly greater than zero. This means that

y(t) − wy(t) > 0,

whenever q(t) �= 0.

Our final preliminary lemma demonstrates that solutions of the modified integral equation
can be related back to solutions of the original integral equation by means of the map t �→(
y − wy

)
(t).

Lemma 2.9 Suppose that conditions (H1)–(H5) are true. Assume that

0 < λ < min

{
1

C1
,

(∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1
}

.

If y0 is a positive solution of the modified integral Eq. (1.3) satisfying y0 ∈ K\V̂ρ∗ , where
the number ρ∗ > 0 is defined by

ρ∗ := max

{(
λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)(
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

,

λC1

1 − λC1

∫ 1

0
u(s) ds

}
,

then the function z: [0, 1] → [0,+∞) defined by z(t) := (
y0 − wy0

)
(t) is a solution of the

original integral Eq. (1.1).

Proof Define the function z: [0, 1] → [0,+∞) by z0(t) := (
y0 − wy0

)
(t). Since y0 solves

the modified problem (1.3) we know that

y0(t) = γ (t)H∗(ϕ(y0 − wy0)
)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗

0 (s)
)+ u(s) + ϕ(y0)

]
ds. (2.6)

By Lemma 2.6, the fact that
K\V̂ρ∗ =

⋃
ρ̂ >ρ∗

∂ V̂ρ̂ ,

and the condition imposed on λ in the statement of this present lemma, we know that ϕ
(
y0 −

wy0

) ≥ 0, so that, by definition,

H∗(ϕ(y0 − wy0)
) = H

(
ϕ(y0 − wy0)

) = H
(
ϕ(z)

)
. (2.7)

At the same time, since y0 ∈ K\V̂ρ∗ we deduce from Lemma 2.7 that, in fact,

y∗
0 ≡ y0 − wy0 ≡ z. (2.8)
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Consequently, we deduce from estimates (2.6)–(2.8) that

z(t) = y0(t) − wy0(t)

= γ (t)H
(
ϕ(z)

)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗

0 (s)
)+ u(s) + ϕ(y0)

]
ds

− λ

∫ 1

0
G(t, s)

[
u(s) + ϕ (y0)

]
ds

= γ (t)H
(
ϕ(z)

)+ λ

∫ 1

0
G(t, s)

[
f
(
s,
(
y0 − wy0

)
(s)
)]

ds

= γ (t)H
(
ϕ(z)

)+ λ

∫ 1

0
G(t, s) f

(
s, z(s)

)
ds.

Thus, z solves the original integral Eq. (1.1). Finally, since ϕ(y0) > ρ∗, we know from
a combination of Lemma 2.7 and Remark 2.8 that z(t) = (

y0 − wy0

)
(t) > 0 whenever

q(t) �= 0. Hence, since ‖q‖ �= 0, it follows that ‖z‖ �= 0. Thus, z is a nontrivial, positive
solution of the original integral Eq. (1.1). And this completes the proof. 
�

We conclude this section by stating a fixed point result that we will utilize in Sects. 3
and 4. One may consult, for example, Guo and Lakshmikantham [31], Infante et al. [40], or
Zeidler [73] for further details on these types of results.

Lemma 2.10 Let D be a bounded open set and, withK a cone in a Banach spaceX , suppose
both that D ∩ K �= ∅ and that D ∩ K �= K. Let D1 ⊇ {0} be open in X with D1 ⊆ D ∩ K.
Assume that T : D ∩ K → K is a compact map such that T x �= x for x ∈ K ∩ ∂ D. If
iK (T, D ∩ K) = 1 and iK (T, D1 ∩ K) = 0, then T has a fixed point in (D ∩K)\ (D1 ∩ K).
Moreover, the same result holds if iK(T, D ∩ K) = 0 and iK (T, D1 ∩ K) = 1.

3 Results for sublinear growth

We begin by stating and proving our main existence theorem for problem (1.1). We then
provide some examples of the application of this theorem. Note that we will use the following
notation both in this section and in Sect. 4.

• For a continuous function f : [0, 1] × R → R, a set [a, b] ⊆ [0, 1], and numbers
0 ≤ r1 < r2 ≤ +∞, we denote

(1) f M[a,b]×[r1,r2]
:= max(t,y)∈[a,b]×[r1,r2] f (t, y);

(2) f m
[a,b]×[r1,r2]

:= min(t,y)∈[a,b]×[r1,r2] f (t, y); and

(3) | f |M[a,b]×[r1,r2]
:= max(t,y)∈[a,b]×[r1,r2]

∣∣ f (t, y)
∣∣.

Theorem 3.1 Assume that conditions (H1)–(H5) are satisfied. Let λ0 > 0 be defined by

λ0 := min

{(∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

,
1

C1

}
.

Suppose that for fixed λ ∈ (
0, λ0

)
that there exist numbers ρ2 > ρ1 > ρ∗, where ρ∗ is the

number from Lemma 2.9, such that each of

H

(
ρ1

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)
>

ρ1

ϕ(γ )
(3.1)
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and

ϕ(γ )

ρ2
H

(
ρ2

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

⎡
⎢⎣

| f |M

[0,1]×
[
0, ρ2

C0

]

ρ2
+ u(s)

ρ2
+ 1

⎤
⎥⎦ dα(t) ds < 1 (3.2)

is true. Then problem (1.1) has at least one positive solution.

Proof The operator T is evidently completely continuous. Therefore, we omit the proof of
this fact.

So, first suppose for contradiction that there exists y ∈ ∂ V̂ρ1 such that y = T y + μe for
some μ ≥ 0, where we put e(t) := γ (t). Note that this is an admissible choice of e since
γ ∈ K, by assumption. Then, by applying ϕ to both sides of the operator equation and using
that ϕ(y) = ρ1 we deduce that

ρ1 ≥ ϕ(γ )H∗(ρ1 − ϕ(wy)
)+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ1
]
dα(t) ds

= ϕ(γ )H

(
ρ1

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ1
]

︸ ︷︷ ︸
≥0

dα(t) ds

︸ ︷︷ ︸
≥0

≥ ϕ(γ )H

(
ρ1

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)
,

(3.3)
wherewe have used equality (2.4) from the proof of Lemma2.6 and the fact that f

(
s, y∗(s)

)+
u(s) + ϕ(y) ≥ 0, for each s ∈ [0, 1], as demonstrated in Lemma 2.5. We have, in addition,
used the fact that since condition (H1) holds, we must have that

∫ 1
0 G(t, s) dα(t) > 0, a.e.

s ∈ [0, 1]. Note also that

H∗(ϕ(y − ϕ(wy)
)) = H∗(ϕ(y) − ϕ(wy)

) = H∗(ρ1 − ϕ(wy)
)

= H
(
ρ1 − ϕ(wy)

)

since from the proof of Lemma 2.6 we know that ϕ(y − wy) = ρ1 − ϕ(wy) ≥ 0, whence
the above equality holds by the definition of the map z �→ H∗(z). But then by condition
(3.1) in the statement of the theorem we obtain from inequality (3.3) that ρ1 > ρ1, which is
a contradiction. Thus,

iK
(
T, V̂ρ1

) = 0. (3.4)

Importantly, by the lower bound imposed on the number ρ1 we note that

K\V̂ρ∗ ⊇ K\V̂ρ1 .

Conversely, suppose for contradiction the existence of y ∈ ∂ V̂ρ2 such that μy = T y
for some μ ≥ 1. Again applying ϕ to both sides of the operator equation and using that
ϕ(y) = ρ2 we obtain that
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ρ2 ≤ ϕ(γ )H∗(ρ2 − ϕ(wy)
)+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ2
]
dα(t) ds

= ϕ(γ )H

(
ρ2

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ2
]
dα(t) ds,

which can thus be recast as

1 ≤ ϕ(γ )

ρ2
H

(
ρ2

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)
ρ2

+ u(s)

ρ2
+ 1

]
dα(t) ds,

(3.5)
using that f

(
s, y∗(s)

)+ u(s) + ρ2 ≥ 0, for each s ∈ [0, 1], and that
∫ 1
0 G(t, s) dα(t) > 0,

a.e. s ∈ [0, 1]. Now, recall that by Lemma 2.7 and the lower bound imposed on ρ1, we have
that y∗ ≡ y −wy . As such, y(t) ≥ y(t)−wy(t) = y∗(t) ≥ 0, for each t ∈ [0, 1]. Moreover,
since y ∈ ∂ V̂ρ2 , it follows that ‖y∗‖ ≤ ‖y‖ ≤ ρ2

C0
. Putting all of this together, we see that

from (3.5) follows the estimate

1 ≤ ϕ(γ )

ρ2
H

(
ρ2

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

⎡
⎢⎣

| f |M

[0,1]×
[
0, ρ2

C0

]

ρ2
+ u(s)

ρ2
+ 1

⎤
⎥⎦ dα(t) ds,

(3.6)
where we again use that

∫ 1

0
G(t, s) dα(t) > 0, a.e. s ∈ [0, 1].

But then by condition (3.2) we obtain from (3.6) that 1 < 1, and so,

iK
(
T, V̂ρ2

) = 1. (3.7)

Finally, by (3.4) and (3.7) we deduce the existence of y0 ∈ V̂ρ2\V̂ ρ1 such that T y0 = y0.

Note that Lemma 2.3 ensures that V̂ρ2\V̂ ρ1 �= ∅. Since wemust have ϕ(y0) > ρ1 > ρ∗ > 0,
it follows from Lemma 2.9 that y0 is, in fact, a solution of the original integral Eq. (1.1) and
is, in fact, a nontrivial positive solution. And this completes the proof. 
�

Remark 3.2 Obviously, we can swap the roles of the numbers ρ1 and ρ2 in the statement and
proof of Theorem 3.1 and thereby obtain an obvious corollary, whose precise statement we
omit. In particular, we can assume that ρ1 > ρ2 > ρ∗ instead.

If we are willing to strengthen the conditions on H somewhat, then we can recast Theo-
rem 3.1 in the following manner. In particular, Corollary 3.3 indicates how Theorem 3.1 can
be simplified somewhat if we assume that the map z �→ H(z) is increasing.
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Corollary 3.3 Assume that conditions (H1)–(H5) are satisfied. In addition, assume that the
map z �→ H(z) is increasing. Let λ0 be defined by

λ0 := min

{(∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

,
1

C1

}
.

Suppose that for fixed λ ∈ (
0, λ0

)
that there exist numbers ρ2 > ρ1 > ρ∗, where ρ∗ is the

number from Lemma 2.9, such that each of

H

(
ρ1

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)
>

ρ1

ϕ(γ )
(3.8)

and

ϕ(γ )

ρ2
H (ρ2) + λ

∫ 1

0

∫ 1

0
G(t, s)

⎡
⎢⎣

| f |M[
0, ρ2

C0

]

ρ2
+ u(s)

ρ2
+ 1

⎤
⎥⎦ dα(t) ds < 1 (3.9)

is true. Then problem (1.1) has at least one positive solution.

Proof The proof that iK
(
T, V̂ρ1

) = 0 does not change at all. On the other hand, the only
change in the proof that iK

(
T, V̂ρ2

) = 1 is that since

ρ2

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds < ρ2

and H is an increasing map, we deduce that

ρ2 ≤ ϕ(γ )H∗(ρ2 − ϕ(wy)
)+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ2
]
dα(t) ds

= ϕ(γ )H

(
ρ2

[
1 − λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ2
]
dα(t) ds

≤ ϕ(γ )H (ρ2) + λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ2
]
dα(t) ds.

And from this the proof of the corollary follows at once. 
�

We now provide an example in the context of radially symmetric solutions to elliptic
PDEs.

Example 3.4 We consider the problem

�w = √
w + 1, |x| ∈ [1, e]

w(x)

∣∣∣
x∈∂B1

= 0

w(x)

∣∣∣
x∈∂Be

= H

(
1

2
w
(
xe

1
2

)
− 1

6
w
(
xe

2
3

)) ∣∣∣∣
x∈∂B1

,
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where in (1.2) we have defined the maps w �→ f (w), ξ �→ h(ξ), and z �→ H(z) as follows.

h(ξ) ≡ 1

H(z) :=
{

1
10 z, 0 ≤ z ≤ 20

10z − 198, z ≥ 20

f (w) := −√
w − 1

Note that
lim

w→∞ f (w) = −∞
and f (w) < 0, for all w ≥ 0. Thus, this problem is not semipositone. Moreover, since
limw→∞ f (w)

w
= 0, we can select κ0 = 1 here.

Note that since we are considering Dirichlet-type nonlocal boundary conditions in the
above PDE, here we shall select the kernel (t, s) �→ G(t, s) of our integral Eq. (1.1) to be

G(t, s) :=
{

t (1 − s), 0 ≤ t ≤ s ≤ 1

s(1 − t), 0 ≤ s ≤ t ≤ 1
.

In addition, we put γ (t) := 1 − t in (1.1). Then, preceding PDE can be related to the ODE

w′′(t) + φ(t) f
(
w(t)

) = 0, a.e. t ∈ [0, 1]
w(0) = H

(
1

2
w

(
1

2

)
− 1

6
w

(
1

3

))

w(1) = 0,

where φ(t) = (
e1−t

)2
for t ∈ [0, 1]. A description of the process of deriving of the above

ODE from the original elliptic PDE can be found, among other places, in [47,52,53]. So we
consider the ODE

w′′(t) + e2(1−t)(−√
w(t) − 1

) = 0, a.e. t ∈ [0, 1]
w(0) = H

(
1

2
w

(
1

2

)
− 1

6
w

(
1

3

))

w(1) = 0.

Routine calculations demonstrate that in this case we have both that∫ 1

0

∫ 1

0
G(t, s) dα(t) ds = 19

432

and that

C0 := inf
s∈(0,1)

1

s(1 − s)

∫ 1

0
G(t, s) dα(t) ds = 5

36
.

Moreover, we find that C1 := 2
3 . In addition, due to the form of G above, we put q(t) :=

min{t, 1 − t}, and then notice that γ (t) ≥ q(t)‖γ ‖, for t ∈ [0, 1]. Finally, note that

ϕ(γ ) =
∫ 1

0
(1 − t) dα(t) = 5

36
≥ C0‖γ ‖.

With the preceding constants in hand and using the notation introduced earlier in this and
the preceding section, we calculate that

R0 = inf

{
R∗ ∈ (0,+∞): − √

w − 1 ≥ − 5

36
w, for all w ∈ [R∗,+∞)} ≈ 65.448,
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and so, we may put u(t) ≡ 9.09 here. With this choice of the map t �→ u(t), we calculate

λ0 = min

{
3

2
,
432

19

}
= 3

2
.

This means that

ρ∗ := max

{
19 · 9.09λ
432 − 19λ

,
2λ

3 − 2λ
· 9.09

}
.

Since we have chosen λ = 1 in the above PDE, we conclude that we may set ρ∗ := 18.18.
With the preliminary calculations completed, we now will use Corollary 3.3 to show that

the PDE has at least one positive (radially symmetric) solution. Notice that Corollary 3.3 is
applicable since H is an increasing function. In addition, we will swap the roles of ρ1 and
ρ2 in the statement of the corollary—i.e., we will take ρ1 > ρ2 > ρ∗, which, as remarked in
Remark 3.2, is permissible and does not affect the application of the existence result. So, to
see that the corollary is applicable, we simply notice that if we put ρ2 := 50, then

5

36ρ2
(10ρ2 − 198) + 19

432

⎛
⎝1 + 9.09

ρ2
+

1 +
√

36
5 ρ2

ρ2

⎞
⎠ < 1,

which verifies condition (3.9), whereas if we put ρ1 := 100, then

10

432

(
413ρ1 − 9.09 · 19

432

)
− 198 >

36

5
ρ1,

which verifies condition (3.8). Thus, Corollary 3.3 may be applied to the PDE to deduce the
existence of at least one positive solution, w0, satisfying the localization

w0 ∈ V̂100\V̂ 50.

Remark 3.5 Observe that the boundary condition appearing in Example 3.4 is nonlocal and
piecewise linear and affine since

H

(
1

2
w

(
1

2

)
− 1

6
w

(
1

3

))

=
{ 1

10

[ 1
2w

( 1
2

)− 1
6w

( 1
3

)]
, 1

2w
( 1
2

)− 1
6w

( 1
3

) ∈ [0, 20]
10
[ 1
2w

( 1
2

)− 1
6w

( 1
3

)]− 198, 1
2w

( 1
2

)− 1
6w

( 1
3

) ∈ [20,+∞)

=
{ 1

20w
( 1
2

)− 1
60w

( 1
3

)
, 1

2w
( 1
2

)− 1
6w

( 1
3

) ∈ [0, 20]
5w

( 1
2

)− 5
3w

( 1
3

)− 198, 1
2w

( 1
2

)− 1
6w

( 1
3

) ∈ [20,+∞)
.

Thus, strictly speaking, our nonlocal boundary conditions do not have to be nonlinear. Both
piecewise linear and affine boundary conditions, for example, can be accommodated by the
existence results presented in this section.

Remark 3.6 A comparison of the application of Corollary 3.3 to [24, Theorem 3.1] reveals
that our methodology here is much simpler and more elegant. For example, to apply [24,
Theorem 3.1] we would need to assume

• that γ satisfies a technical condition [24, Condition (H2.1)];
• that H is sublinear at infinity [24, Condition (H2.2)];
• that λ0 satisfies a very technical condition [24, Condition (H7)] that while able to be

checked is computationally complicated;
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• a condition on the number R0 of condition (H3) that is much more complicated [24,
Condition (H6)]; and

• an additional auxiliary condition on the map (t, s) �→ G(t, s) [24, Statement of Theo-
rem 3.1].

All in all, our methodology here is significantly simpler. In addition and as pointed out in
Sect. 1, because of this significant simplification, the methodology here should be able to
applied to a much wider variety of problems than merely (1.1).

We conclude with a brief mention of the specialization of the preceding results to the
special setting in which

f (t, y) := a(t)g(y),

whichwasmentioned toward the beginning of Sect. 1. In this case, we note that (H3.1)–(H3.2)
become, respectively:

• a(t)
(
limy→∞ g(y)

y

)
= 0; and

• a(t)g(y) ≥ −u(t).

This allows, in, say, Theorem 3.1, for the map t �→ a(t) to satisfy a(t) < 0 for all t ∈
[0, 1] with no restriction on the size of

∣∣a(t)
∣∣. While this is not directly comparable to, say,

Feltrin and Zanolin [13] (e.g., there local boundary conditions are considered, multiplicity of
solutions are considered, and the weight changes sign); nonetheless, our results here provide
a complementation to some of the known results in the nonpositive weight setting.

4 Results for more general polynomial growth

In this section, we demonstrate that if we arewilling to let the admissible range of λ be defined
in a more complicated manner, then we can accommodate more general polynomial growth
at +∞. In particular, we replace assumption (H3.1) with the new assumption (H3′.1) below;
note that we still assume in condition (H3′) the other assumptions imposed in condition (H3).

H3′ : The function f : [0, 1] × [0,+∞) → R is continuous and satisfies the following two
growth conditions.

(1) There exists a number κ0 ∈ (1,+∞) such that

lim
y→∞

f (t, y)

yκ0
= 0,

uniformly for t ∈ [0, 1].
(2) There exists a map u ∈ L1

([0, 1]; [0,+∞)
)
such that

f (t, y) ≥ −u(t)

for each t ∈ [0, 1] and y ∈ [0, R′
0

]
, where

R′
0 := inf

{
R∗ ∈ (0,+∞): f (t, y) ≥ −Cκ0

0 yκ0 , for all y ≥ R∗}.
In addition, instead of the operator T , which we utilized in Sect. 3, we will need in this

context the slightly modified operator Tκ0 : K → K defined by

(
Tκ0 y

)
(t) := γ (t)H∗(ϕ(y − wy)

)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + [
ϕ(y)

]κ0] ds.

(4.1)

123



1602 C. S. Goodrich

Of course, this means that we will also need to modify the map wy : [0, 1] → R to

wy(t) := λ

∫ 1

0
G(t, s)

[
u(s) + [

ϕ(y)
]κ0] ds.

Note that the assumptions in Sect. 3 dealt with the case κ0 = 1, whereas condition (H3′.1)
generalizes this to allow for κ0 > 1. Let us recall, as explained in Sect. 1, that the case in
which κ0 > 2 is particularly interesting, for many density-dependent ecological models fall
into this category since their forcing terms possess quadratic polynomial growth at +∞.

Since most of the calculations carry over to this more general case with only minor to
moderate modification, we will not provide so many details but rather just highlight the
relevant changes. Therefore, we next present the analogues of Lemmata 2.5–2.7 and 2.9,
suitably modified for the case in which κ0 > 1.

Lemma 4.1 Assume that conditions (H1)–(H2), (H3 ′), and (H4)–(H5) are satisfied. Then,
with the operator Tκ0 defined as in (4.1) it holds that Tκ0(K) ⊆ K.

Proof That y ∈ K implies that
(
Tκ0 y

)
(t) ≥ q(t)‖Tκ0 y‖ for each t ∈ [0, 1] only changes

slightly and only in the case when y∗(s) ∈ (
R′
0,+∞)

for some s ∈ [0, 1]. In particular, if
y∗(s) ∈ (R′

0,+∞)
, then

f
(
s, y∗(s)

)+ u(s) + [
ϕ(y)

]κ0 ≥ f
(
s, y∗(s)

)+ [
ϕ(y)

]κ0 ≥ −Cκ0
0

[
y∗(s)

]κ0 + Cκ0
0 ‖y‖κ0

≥ −Cκ0
0

[
y(s)

]κ0 + Cκ0
0 ‖y‖κ0

≥ −Cκ0
0 ‖y‖κ0 + Cκ0

0 ‖y‖κ0

= 0.

On the other hand, there is no change to the part of the proof that ϕ
(
Tκ0 y

) ≥ C0
∥∥Tκ0 y

∥∥
whenever y ∈ K. So, we conclude that Tκ0(K) ⊆ K, and this completes the proof. 
�
Lemma 4.2 Assume that conditions (H1)–(H2), (H3 ′), and (H4)–(H5) are satisfied. Let
ρ > 0 be given and assume that y ∈ ∂ V̂ρ . If λ := λ(ρ) satisfies

0 < λ < ρ

(∫ 1

0

∫ 1

0
G(t, s)

[
ρκ0 + u(s)

]
dα(t) ds

)−1

,

then ϕ(y − wy) > 0.

Proof Let y ∈ ∂ V̂ρ . Then, using the restriction on λ given in the statement of the lemma we
calculate

ϕ(y − wy) = ϕ(y) − ϕ(wy)

= ρ − λ

∫ 1

0

∫ 1

0
G(t, s)

[
u(s) + [

ϕ(y)
]κ0] dα(t) ds

= ρ − λ

∫ 1

0

∫ 1

0
G(t, s)

[
u(s) + ρκ0

]
dα(t) ds

> 0,

(4.2)

which proves the claim and completes the proof. 
�
Remark 4.3 Unlike in Sects. 2 and 3, in which the choice of λ was entirely in terms of
initial data, in this case the choice of λ will depend upon the selection of the number ρ.
Nonetheless, the range of admissible values of λ remains computable as the examples in the
sequel demonstrate.
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Lemma 4.4 Assume that conditions (H1)–(H2), (H3 ′), and (H4)–(H5) are satisfied. Let
ρ > 0 be given and assume that y ∈ ∂ V̂ρ . If λ := λ(ρ) satisfies

0 < λ <
ρ

C1

(
ρκ0 +

∫ 1

0
u(s) ds

)−1

,

then it follows that y∗ ≡ y − wy .

Proof Similar to inequality (2.5) from earlier, we observe that

y(t) − wy(t) ≥ q(t)‖y‖ − λ

∫ 1

0
q(t)

[
u(s) + [

ϕ(y)
]κ0] ds

≥ q(t)

[
ρ

C1
− λ

∫ 1

0

[
u(s) + ρκ0

]
ds

]

≥ 0,

(4.3)

where the final inequality in (4.3) follows from the upper bound imposed on λ in the statement
of the lemma. And this completes the proof. 
�
Remark 4.5 Just as with Remark 2.8 earlier, from inequality (4.3) we see that because of the
strict upper bound on λ in the statement of Lemma 4.4, it actually holds that

(
y −wy

)
(t) > 0

for each t such that q(t) �= 0.

Lemma 4.6 Assume that conditions (H1)–(H2), (H3 ′), and (H4)–(H5) are satisfied. Suppose
that there are numbers +∞ > ρ2 > ρ1 > 0 such that y0 is a positive solution of the modified

integral Eq. (4.1) satisfying y0 ∈ V̂ρ2\V̂ ρ1 . If the number λ := λ (ρ) satisfies

0 < λ < min
ρ1≤ρ≤ρ2

{
ρ

C1

(
ρκ0 +

∫ 1

0
u(s) ds

)−1

,

ρ

(∫ 1

0

∫ 1

0
G(t, s)

[
ρκ0 + u(s)

]
dα(t) ds

)−1
}

,

then the function z: [0, 1] → [0,+∞) defined by z(t) := (
y0 − wy0

)
(t) is a solution of the

original integral Eq. (1.1).

Proof Since y0 solves the modified problem (4.1), we know that

y0(t) = γ (t)H∗(ϕ(y0 − wy0)
)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗

0 (s)
)+ u(s) + [

ϕ(y0)
]κ0] ds.

Consequently, we may write

z(t) = (
y0 − wy0

)
(t)

= γ (t)H∗(ϕ(z)
)+ λ

∫ 1

0
G(t, s)

[
f
(
s, y∗

0 (s)
)+ u(s) + [

ϕ(y0)
]κ0] ds

− λ

∫ 1

0
G(t, s)

[
u(s) + [

ϕ (y0)
]κ0] ds

︸ ︷︷ ︸
=wy0 (t)

= γ (t)H
(
ϕ(z)

)+ λ

∫ 1

0
G(t, s) f

(
s, y∗

0 (s)
)
ds.

(4.4)
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Similar to the proof of Lemma 2.9, since y0 ∈ V̂ρ2\V̂ ρ1 and given the restrictions on λ, we
see that Lemma 4.4 implies that y∗

0 ≡ y0 − wy0 ≡ z. At the same time, by Lemma 4.2, the
fact that

V̂ρ2\V̂ ρ1 =
⋃

ρ1<ρ̂<ρ2

∂ V̂ρ̂ ,

and the condition imposed onλ in the statement of this lemma,we know thatϕ
(
y0−wy0

) ≥ 0.
Consequently, from the preceding discussion and estimate (4.4) we deduce that z solves the
original integral Eq. (1.1). Finally, just as in the proof of Lemma 2.9 again, we know from
the preceding lemmata and remarks that, in fact, ‖z‖ > 0 so that z is a nontrivial, positive
solution of (1.1). And this completes the proof. 
�

We next present the following corollary to Lemma 4.6. The corollary formalizes the
observation that under certain conditions, the upper bound on λ given in the statement of
Lemma 4.6 can be simplified.

Corollary 4.7 Suppose that the number ρ2 in the statement of Lemma 4.6 satisfies

ρ
κ0
2 < min

{
1

κ0 − 1

∫ 1

0
u(s) ds,

(∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)(
(κ0 − 1)

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1
}

.

Then the restriction on λ as given in Lemma 4.6 can be simplified to

0<λ<min

{
ρ1

C1

(
ρ

κ0
1 +

∫ 1

0
u(s) ds

)−1

, ρ1

(∫ 1

0

∫ 1

0
G(t, s)

[
ρ

κ0
1 + u(s)

]
dα(t) ds

)−1
}

.

Proof Consider the map G: [0,+∞) → [0,+∞) defined by

G(ρ) := ρ

α1
(
ρκ0 + α2

) ,
where α1 and α2 are positive constants. A simple calculation demonstrates that

G ′(ρ) = α1
(
ρκ0 + α2

)− ρα1κ0ρ
κ0−1

α2
1

(
ρκ0 + α2

)2 = α1
(
ρκ0 + α2 − κ0ρ

κ0
)

α2
1

(
ρκ0 + α2

)2 .

Evidently, G ′(ρ) > 0 if and only if (1− κ0)ρ
κ0 > −α2. Since 1− κ0 < 0, we conclude that

G ′(ρ) > 0 if and only if

ρκ0 <
α2

κ0 − 1
.

Thus, if this inequality holds for each ρ ∈ [ρ1, ρ2], then

min
ρ1≤ρ≤ρ2

G(ρ) = ρ1

α1
(
ρ

κ0
1 + α2

) .
On the other hand, consider the map H : [0,+∞) → [0,+∞) defined by

H(ρ) := ρ

α3ρκ0 + α4
.

Then we calculate

H ′(ρ) = α3ρ
κ0 + α4 − κ0α3ρ

κ0

(α3ρκ0 + α4)
2 .
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Clearly, then, H ′(ρ) > 0 if and only if

ρκ0α3 (1 − κ0) + α4 > 0.

Thus, the condition ρκ0 < α4
α3(κ0−1) ensures that H ′(ρ) > 0. And this implies that

min
ρ1≤ρ≤ρ2

H(ρ) = ρ1

α3ρ
κ0
1 + α4

whenever ρκ0 < α4
α3(κ0−1) for each ρ ∈ [ρ1, ρ2].

Finally, define αi , 1 ≤ i ≤ 4, as follows.

α1 := C1

α2 :=
∫ 1

0
u(s) ds

α3 :=
∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

α4 :=
∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

Notice that αi > 0, for each i . Then, the conclusion of the corollary follows immediately
from the observation that ρκ0

1 < ρ
κ0
2 . 
�

Finally, we present an existence theorem, which is the analogy of Theorem 3.1.

Theorem 4.8 Assume that conditions (H1)–(H2), (H3 ′), and (H4)–(H5) are satisfied. Sup-
pose that there exist numbers ρ2 > ρ1 > 0 and a number λ := λ (ρ1, ρ2) > 0 such that each
of

H

(
ρ1

[
1 − ρ

κ0−1
1 λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)
>

ρ1

ϕ(γ )
(4.5)

and

ϕ(γ )

ρ2
H

(
ρ2

[
1 − ρ

κ0−1
2 λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

⎡
⎢⎣

| f |M

[0,1]×
[
0, ρ2

C0

]

ρ2
+ u(s)

ρ2
+ ρ

κ0−1
2

⎤
⎥⎦ dα(t) ds < 1

and

0 < λ < min
ρ1≤ρ≤ρ2

{
ρ

C1

(
ρκ0 +

∫ 1

0
u(s) ds

)−1

,

ρ

(∫ 1

0

∫ 1

0
G(t, s)

[
ρκ0 + u(s)

]
dα(t) ds

)−1
}

is true. Then problem (1.1) has at least one positive solution.
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Proof Similar to the first part of the proof of Theorem 3.1, for y ∈ ∂ V̂ρ1 and using (4.2) we
find that

ρ1≥ϕ(γ )H

(
ρ1

[
1−ρ

κ0−1
1 λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
−λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)

+ λ

∫ 1

0

∫ 1

0
G(t, s)

[
f
(
s, y∗(s)

)+ u(s) + ρ
κ0
1

]
︸ ︷︷ ︸

≥0

dα(t) ds

︸ ︷︷ ︸
≥0

≥ϕ(γ )H

(
ρ1

[
1−ρ

κ0−1
1 λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
−λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)
.

(4.6)
Then, combining condition (4.5) with inequality (4.6) leads to a contradiction. Conversely,
the calculation for y ∈ ∂ V̂ρ2 changes in the obvious way, and so, we skip the details of that
calculation. 
�

Of course, we can provide an analogy of Corollary 3.3 in this more general setting. We do
so next. Since the proof of Corollary 4.9 is very similar to that of Corollary 3.3, we omit the
proof. Furthermore, in light of Corollary 4.7 we can provide additional corollaries beyond
Corollary 4.9. But we omit their statements.

Corollary 4.9 Assume that conditions (H1)–(H2), (H3 ′), and (H4)–(H5) are satisfied. In
addition, assume that the map z �→ H(z) is increasing. Suppose that there exist numbers
ρ2 > ρ1 > 0 and a number λ := λ (ρ1, ρ2) > 0 such that each of

H

(
ρ1

[
1 − ρ

κ0−1
1 λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

]
− λ

∫ 1

0

∫ 1

0
G(t, s)u(s) dα(t) ds

)
>

ρ1

ϕ(γ )

and

ϕ(γ )

ρ2
H (ρ2) + λ

∫ 1

0

∫ 1

0
G(t, s)

⎡
⎢⎣

| f |M

[0,1]×
[
0, ρ2

C0

]

ρ2
+ u(s)

ρ2
+ ρ

κ0−1
2

⎤
⎥⎦ dα(t) ds < 1

and

0 < λ < min
ρ1≤ρ≤ρ2

{
ρ

C1

(
ρκ0 +

∫ 1

0
u(s) ds

)−1

,

ρ

(∫ 1

0

∫ 1

0
G(t, s)

[
ρκ0 + u(s)

]
dα(t) ds

)−1
}

is true. Then problem (1.1) has at least one positive solution.

We conclude with a couple examples to illustrate the use of the preceding existence
theorem.

Example 4.10 For λ > 0 to be selected later, we consider the problem

�w + λh
(|x|) f (w) = 0, |x| ∈ [1, e]

w(x)

∣∣∣
x∈∂B1

= 0

w(x)

∣∣∣
x∈∂Be

= H

(
1

2
w
(
xe

1
2

)
− 1

6
w
(
xe

2
3

)) ∣∣∣∣
x∈∂B1
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where we define the maps w �→ f (w), ξ �→ h(ξ), and z �→ H(z) as follows.

h(ξ) ≡ 1

H(z) :=
{

1
10 z, 0 ≤ z ≤ 20

10z − 198, z ≥ 20

f (w) := −w3 − 1

Note that
lim

w→∞ f (w) = −∞

and f (w) < 0, for all w ≥ 0. Thus, this problem is not semipositone. Moreover, since
limw→∞ f (w)

w4 = 0, we can select κ0 = 4 here. Note that we are using the same nonlocal
element as we did in Example 3.4.

In a manner similar to that utilized in Example 3.4, we consider here the ODE

w′′(t) + λe2(1−t)(− w3 − 1
) = 0, a.e. t ∈ [0, 1]

w(0) = H

(
1

2
w

(
1

2

)
− 1

6
w

(
1

3

))

w(1) = 0.

Since the nonlocal element in this problem is the same as in Example 3.4 and, furthermore,
the kernel (t, s) �→ G(t, s) is identical as well, we once again obtain the following.

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds = 19

432

C0 := inf
s∈(0,1)

1

s(1 − s)

∫ 1

0
G(t, s) dα(t) ds = 5

36

C1 := 2

3

ϕ(γ ) := 5

36

Moreover, we have that

R′
0 := inf

{
R∗ ∈ (0,+∞): − w3 − 1 ≥ −

(
5

36

)4

w4, for all w ∈ [R∗,+∞)}

≈ 2687.3856,

from which it follows that here we may select u(t) ≡ 1.942 × 1010. So, in this case, we
calculate that

0 < λ < min
ρ1≤ρ≤ρ2

{
3

2
ρ
(
ρ4 + 1.942 × 1010

)−1
, ρ

(
19

432

(
ρ4 + 1.942 × 1010

))−1
}

,

where ρ1 and ρ2 will be selected momentarily.
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So, using the conditions imposed by Corollary 4.9 we obtain the following inequalities.

H

(
ρ1

(
1 − λρ3

1
19

432

)
− λ

19

432
· 1.942 × 1010

)
>

36

5
ρ1

5

36ρ2
H (ρ2) + λ

19

432

⎡
⎣
(( 36

5 ρ2
)3 + 1

)

ρ2
+ 1.942 × 1010

ρ2
+ ρ3

2

⎤
⎦ < 1

Routine computations show that these inequalities are satisfied for, respectively, ρ1 = 90
and ρ2 = 50. (Note that as in Example 3.4 here we swap the roles of ρ1 and ρ2 as stated in
Theorem 4.8 in the sense that ρ1 > ρ2 > 0.) Moreover, for these choices of ρ1 and ρ2 we
may select, for example, λ ∈ (0, 3.861 × 10−9

)
. In particular, this means that we deduce the

existence of at least one positive solution, say w0, to the PDE

�w + λh
(|x|) f (w) = 0, |x| ∈ [1, e]

w(x)

∣∣∣
x∈∂B1

= 0

w(x)

∣∣∣
x∈∂Be

= H

(
1

2
w
(
xe

1
2

)
− 1

6
w
(
xe

2
3

)) ∣∣∣∣
x∈∂B1

whenever 0 < λ < 3.861 × 10−9. Notice that w0 satisfies the localization w0 ∈ V̂90\V̂ 50.

Our next example, Example 4.11 demonstrates that the upper bound on λ can change by
several orders ofmagnitude depending upon, for example, themap (t, y) �→ f (t, y) selected.

Example 4.11 For λ > 0 to be selected later, we consider the problem

�w + λh
(|x|) f (w) = 0, |x| ∈ [1, e]

w(x)

∣∣∣
x∈∂B1

= 0

w(x)

∣∣∣
x∈∂Be

= H

(
1

2
w
(
xe

1
2

)
− 1

6
w
(
xe

2
3

)) ∣∣∣∣
x∈∂B1

where we define the maps w �→ f (w), ξ �→ h(ξ), and z �→ H(z) as follows.

h(ξ) ≡ 1

H(z) :=
{

1
10 z, 0 ≤ z ≤ 20

10z − 198, z ≥ 20

f (w) := −w2 − 1

So, here we can select κ0 = 3. Note that we are using the same nonlocal element as we did
in the previous examples.

In this example, we have that

R′
0 := inf

{
R∗ ∈ (0,+∞): − w2 − 1 ≥ −

(
5

36

)3

w3, for all w ∈ [R∗,+∞)}

≈ 373.2507,

from which it follows that here we may select u(t) ≡ 139, 325. In can then be shown that
the conditions of Corollary 4.9 are satisfied if we put ρ2 := 50 and ρ1 := 200 here. With
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these choices of ρ1 and ρ2, straightforward computations allow us to conclude that the PDE

has a positive solution, say, w0 ∈ V̂200\V̂ 50, for each λ satisfying 0 < λ < 3.686 × 10−5.

Remark 4.12 With H as in Example 4.11 consider the problem

�w + λw(1 − w) = 0, |x| ∈ [1, e]

w(x)

∣∣∣
x∈∂B1

= 0

w(x)

∣∣∣
x∈∂Be

= H

(
1

2
w
(
xe

1
2

)
− 1

6
w
(
xe

2
3

)) ∣∣∣∣
x∈∂B1

.

This is precisely the problem considered in Example 4.11 with the exception that the forcing
term f is now f (w) := w(1−w), which is a logistic-type forcing term. It can be shown that
the results of Example 4.11 apply to this forcing term as well.
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