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1 Introduction

This paper is concerned with the following Cahn–Hilliard system with convection:

∂tρ + ∇ρ · u − �μ = 0 and τ�∂tρ − �ρ + f ′(ρ) = μ in Q := � × (0, T ), (1.1)

where � denotes a bounded three-dimensional domain and T > 0 is a fixed final time.
The unknowns are ρ, the order parameter, and μ, the chemical potential; f ′ stands for the
derivative of a double-well potential f, u is a given velocity field and τ� is a nonnegative
constant. According to whether τ� is positive or zero, we speak of viscous Cahn–Hilliard or
pure Cahn–Hilliard system, respectively.

The equations in (1.1) provide a description of the evolution phenomena related to solid–
solid phase separations with convection led by the term∇ρ ·u, for some fixed velocity vector
u. Let us refer to [1,5,21,22,39] for some pioneering contributions on the class of Cahn–
Hilliard problems. In general, an evolution process goes on with diffusion; however, for the
process of phase separation there is a structural difference since each phase concentrates and
the so-called spinodal decomposition occurs. A discussion on the modeling approach for
phase separation, spinodal decomposition and mobility of atoms between cells can be found
in [8,16,23,33,40].

Typical and important examples of f are the so–called classical regular potential and the
logarithmic double-well potential. They are given by

freg(r) := 1

4
(r2 − 1)2, r ∈ R, (1.2)

flog(r) := ((1 + r) ln(1 + r) + (1 − r) ln(1 − r)) − cr2, r ∈ (−1, 1), (1.3)

where c > 1 is such that flog is nonconvex. Another example is the following double obstacle
potential:

f2obs(r) := −cr2 if |r | ≤ 1 and f2obs(r) := +∞ if |r | > 1, (1.4)
where c > 0. In cases like (1.4), one has to split f into a non-differentiable convex part
(the indicator function of [−1, 1] in the present example) and a smooth perturbation. Accord-
ingly, one has to replace the derivative of the convex part by the subdifferential and interpret
the second identity in (1.1) as a differential inclusion. In order to incorporate cases like (1.4)
in our analysis, we allow f ′ to be expressed by the sum β +π , where β is the subdifferential
of a convex and lower semicontinuous function ̂β : R → [0,+∞] such that ̂β(0) = 0, and
π is the Lipschitz continuous derivative of the concave perturbation π̂ : R → R. Thus, we
have that f = ̂β + π̂ represents a possibly nonsmooth double-well potential.

In order to set an initial–boundary value problem for (1.1), we have to specify initial and
boundary conditions.As far as the latter are concerned, the classical ones are the homogeneous
Neumann boundary conditions, namely

∂νμ = 0, ∂νρ = 0 on 
 := � × (0, T ), (1.5)

where � stands for the smooth boundary of � and ∂ν denotes the outward normal derivative.
In the present work, on the contrary we tackle two dynamic boundary conditions for μ and ρ

so to obtain a system of Cahn–Hilliard type also on the boundary. Namely, we complement
(1.1) with

∂tρ� + ∂νμ − ��μ� = 0 and τ�∂tρ� + ∂νρ − ��ρ� + f ′
�(ρ�) = μ� on 
, (1.6)

whereμ� and ρ� are the traces ofμ and ρ, respectively,�� is the Laplace–Beltrami operator
on the boundary, τ� is a nonnegative constant, and f ′

� = β� + π� comes out from another
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potential f� = ̂β� + π̂� with the same behavior as f , the two potentials being not completely
independent but related by a suitable growth condition. Then, it turns out that initial conditions
should be prescribed both in the bulk and on the boundary.

Therefore, by considering everything, the resulting initial and boundary value prob-
lem reads

∂tρ + ∇ρ · u − �μ = 0 in Q, (1.7)

τ�∂tρ − �ρ + β(ρ) + π(ρ) � μ in Q, (1.8)

ρ� = ρ|
 , μ� = μ|
 and ∂tρ� + ∂νμ − ��μ� = 0 on 
, (1.9)

τ�∂tρ� + ∂νρ − ��ρ� + β�(ρ�) + π�(ρ�) � μ� on
, (1.10)

ρ(0) = ρ0 in � and ρ�(0) = ρ0|� on�. (1.11)

Up to our knowledge, in the case of a pure Cahn–Hilliard system, that is, with τ� = τ� = 0,
and without convective term (u = 0), the problem (1.7)–(1.11) has been formulated by
Gal [25] and analyzed from various viewpoints in other contributions (see [7–9,26–28,31,
32]). To be honest and precise, in the problem considered by Gal [25] the Laplace–Beltrami
term was missing in the third condition in (1.9), whereas the presence of the term −��μ�

actually enhances the dissipation mechanism in (1.1) and is helpful in order to recover a
better regularity on the solution. On the other hand, we include the convective term ∇ρ · u,
here, which gives rise to further complications in the analysis.

In the case of general potentials, the problem (1.7)–(1.11) has been deeply investigated
in [15] from the point of view of existence, uniqueness and regularity of the weak solution
(see also [24] for an optimal control problem) by using an abstract approach. Here, instead,
following a standard approximation argument (cf. [25–28] as well), we face with the full
system (1.7)–(1.11) by a complete approximation, which involves not only a regularization
of graphs but the setting of a Faedo–Galerkin scheme.Moreover, in the viscous casewith both
τ� and τ� positive, we can prove the uniform boundedness of both the chemical potential and
the order parameter, up to the boundary, and we are even able to show the strict separation
property in the case of logarithmic potentials like flog in (1.3). In addition to this, we did
our best to try to keep minimal assumptions on the velocity field u, concerning summability
and time derivation (see the later (2.21) and (2.47)). So, we think that our contribution could
be a useful tool for studying other problems, which possibly involve other equations with
coupled terms, and, in particular, for investigating optimal control problems.

Let us now review some related literature. It turns out that some class of Cahn–Hilliard
system, possibly including dynamic boundary conditions, has collected a noteworthy interest
in recent years: we can quote [10,36,38,41,42,47] among other contributions. In case of no
convective term in (1.7), and assuming the homogeneous boundary condition ∂νμ = 0 (i.e.,
the first condition in (1.5)) and the condition (1.10) with τ� > 0 and μ� as a given datum,
the problem has been first addressed in [29]: the well-posedness and the large time behavior
of solutions have been studied for regular potentials f and f� , as well as for various singular
potentials like the ones in (1.3) and (1.4). One can see [29,30]: in these two papers the authors
were able to overcome the difficulties due to singularities using a set of assumptions for β, π

and β�, π� that gives the role of the dominating potential to f and entails some technical
difficulties. The subsequent papers [17–19] follow a different approach (firstly considered
in [6] to investigate the Allen–Cahn equation with dynamic boundary conditions), which
consists in letting f� be the leading potential with respect to f : by this, the analysis turns
out to be simpler. The paper [17] contains many results about existence, uniqueness and
regularity of solutions for general potentials that include (1.2)–(1.3), and are valid for both
the viscous and pure cases, i.e., by assuming just τ� ≥ 0. Moreover, the optimal boundary
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control problems for the viscous and pure Cahn–Hilliard equation are discussed in [19] and
[18], respectively, in analogy with the corresponding contributions [13,20] for the Allen–
Cahn equation. The paper [14] deals with the well-posedness of the same system, but in
which also an additional mass constraint on the boundary is imposed. In addition, we aim to
emphasize that Cahn–Hilliard systems have been rather investigated from the viewpoint of
optimal control. In this connection, we point out the contributions [48,49] dealing with the
convective Cahn–Hilliard equation; the case with a nonlocal potential is studied in [43]. We
also refer to [11,34,46,50] and quote the paper [12] investigating the second-order optimality
conditions for the state system considered in [19]. There also exist articles addressing some
discretized versions of general Cahn–Hilliard systems, cf. [35,45].

The present paper is organized as follows. In the next two sections, we list our assumptions
and notations, state our results and give the relations between weak solutions and the above
boundary value problem. Section 4 is devoted to continuous dependence and uniqueness,
while the existence of a solution is shown in Sect. 6 by taking the limit of suitable approxi-
mating problems studied in Sect. 5. Finally, Sect. 7 is devoted to our regularity results.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. First of all,
the set� ⊂ R

3 is assumed to be bounded, connected and smooth. As in the Introduction, ν is
the outward unit normal vector field on � := ∂�, and ∂ν and �� stand for the corresponding
normal derivative and the Laplace–Beltrami operator, respectively. Furthermore, we denote
by ∇� the surface gradient and write |�| and |�| for the volume of � and the area of �,
respectively.

If X is a Banach space, ‖ · ‖X denotes both its norm and the norm of X3. Moreover, X∗ is
the dual space of X , and 〈 · , · 〉X is the dual pairing between X∗ and X . The only exception
from the convention for the norms is given by the spaces L p constructed on �, �, Q and 
,
for 1 ≤ p ≤ ∞, whose norms are denoted by ‖ · ‖p . Furthermore, we put

H := L2(�), V := H1(�) and W := H2(�), (2.1)

H� := L2(�), V� := H1(�) and W� := H2(�), (2.2)

H := H × H�, V := {(v, v�) ∈ V × V� : v� = v|�}
and W := (

W × W�

) ∩ V. (2.3)

In the sequel, we work in the framework of the Hilbert triplet (V,H,V ∗). Thus, we have
〈(g, g�), (v, v�)〉V = ∫

�
gv + ∫

�
g�v� for every (g, g�) ∈ H and (v, v�) ∈ V. Next, we

introduce the generalized mean value, the related spaces and the operator N we widely use
throughout the paper. The former is defined by

mean g∗ := 〈g∗, (1, 1)〉V
|�| + |�| for g∗ ∈ V ∗ (2.4)

and reduces to

mean g∗ =
∫

�
v + ∫

�
v�

|�| + |�| if g∗ = (v, v�) ∈ H. (2.5)

Of course, the components of the pair (1, 1) in (2.4) are the constant functions 1 on � and �,
respectively. We stress that the function

V � (v, v�) �→ ‖∇v‖2H + ‖∇�v�‖2H�
+ |mean(v, v�)|2
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yields the square of a Hilbert norm on V that is equivalent to the natural one. In particular,
we have, for every (v, v�) ∈ V,

‖(v, v�)‖V ≤ C�

(‖∇v‖H + ‖∇�v�‖H� + |mean(v, v�)|), (2.6)

where C� depends only on �. Now, we set

V∗0 := {g∗ ∈ V ∗ : mean g∗ = 0}, H0 := H ∩ V∗0 and V0 := V ∩ V∗0. (2.7)

Notice the difference between V∗0 and the dual space V ∗
0 = (V0)

∗. At this point, it is clear
that the function

V0 � (v, v�) �→ ‖(v, v�)‖V0 := (‖∇v‖2H + ‖∇�v�‖2H�

)1/2 (2.8)

is a Hilbert norm on V0 which is equivalent to the usual one. This has the following conse-
quence: for every g∗ ∈ V∗0, there exists a unique pair (ξ, ξ�) ∈ V0 such that

∫

�

∇ξ · ∇v +
∫

�

∇�ξ� · ∇�v� = 〈g∗, (v, v�)〉V for every(v, v�) ∈ V. (2.9)

Indeed, the right-hand side of (2.9), restricted to the pairs (v, v�) ∈ V0, defines a continuous
linear functional on V0 with respect to its natural norm (V0 is a subspace of V ⊂ V × V�),
and thus also with respect to the norm (2.8). Therefore, by the Riesz representation theorem,
there exists a unique pair (ξ, ξ�) ∈ V0 such that

∫

�

∇ξ · ∇v +
∫

�

∇�ξ� · ∇�v� = 〈g∗, (v, v�)〉V for every (v, v�) ∈ V0.

On the other hand, the same relation holds true for (v, v�) = (1, 1), since mean g∗ = 0. As
V = V0 ⊕ span{(1, 1)}, we obtain (2.9). This allows us to define N : V∗0 → V0 by setting:

for g∗ ∈ V∗0, Ng∗ is the unique pair (ξ, ξ�) ∈ V0 satisfying (2.9). (2.10)

We notice that N is linear, symmetric, and bijective. Therefore, if we set

‖g∗‖∗ := ‖Ng∗‖V0 , for g∗ ∈ V∗0, (2.11)

then we obtain a Hilbert norm on V∗0, which turns out to be equivalent to the norm induced
by the norm of V ∗. For a future use, we collect some properties of N. By just applying the
definition, we have that

〈g∗,Ng∗〉V = ‖g∗‖2∗ if g∗ ∈ V∗0, (2.12)
∫

�

∇w · ∇ξ +
∫

�

∇�w� · ∇�ξ� = ‖(w,w�)‖2H
if (w,w�) ∈ V0 and (ξ, ξ�) = N(w,w�). (2.13)

By accounting for the symmetry of N, we also have (where, here and in the sequel, N is
applied to V∗0-valued functions as well)

〈∂t g
∗,Ng∗〉V = 1

2

d

dt
‖g∗‖2∗ if g∗ ∈ H1(0, T ;V∗0), (2.14)

∫

�

∇w · ∇ξ +
∫

�

∇�w� · ∇�ξ� = 1

2

d

dt
‖(w,w�)‖2H

if (w,w�) ∈ L2(0, T ;V), ∂t (w,w�) ∈ L2(0, T ;V∗0), (ξ, ξ�) = N(∂t (w,w�)).

(2.15)
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1450 P. Colli et al.

Now, we list our assumptions. For the structure of our system, we postulate:

τ� and τ� are nonnegative real numbers; (2.16)

̂β, ̂β� : R → [0,+∞] are convex, proper and l.s.c. with ̂β(0) = ̂β�(0) = 0;
(2.17)

π̂ , π̂� : R → R are of class C2 with Lipschitz continuous first derivatives . (2.18)

We set, for convenience,

β := ∂̂β, β� := ∂̂β�, π := π̂ ′ and π� := π̂ ′
�, (2.19)

and assume that, with some positive constants C and η,

D(β�) ⊆ D(β) and |β◦(r)| ≤ η|β◦
�(r)| + C for every r ∈ D(β�). (2.20)

In (2.20), the symbols D(β) and D(β�) denote the domains of β and β� , respectively. More
generally, we use the notation D(G) for everymaximal monotone graphG inR×R, as well as
for the maximal monotone operators induced on L2 spaces. Moreover, for r ∈ D(G), G◦(r)

stands for the element of G(r) having minimum modulus.
For the data, we make the following assumptions:

u ∈ L2(0, T ; L3(�))3, div u = 0 in Q and u · ν = 0 on 
; (2.21)

(ρ0, ρ0|�) ∈ V, ̂β(ρ0) ∈ L1(�) and ̂β�(ρ0|�) ∈ L1(�); (2.22)

m0 := mean (ρ0, ρ0|�) ∈ int D(β�). (2.23)

Let us come to our notion of solution. It is a triple of pairs, ((μ,μ�), (ρ, ρ�), (ζ, ζ�)),
that satisfies a rather low level of regularity, in principle. Indeed, we just require that

(μ,μ�) ∈ L2(0, T ;V), (2.24)

(ρ, ρ�) ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V), (2.25)

(ζ, ζ�) ∈ L2(0, T ;H), (2.26)

τ�∂tρ ∈ L2(0, T ; H) and τ�∂tρ� ∈ L2(0, T ; H�). (2.27)

We have written, e.g., τ�∂tρ in (2.27) instead of ∂t (τ�ρ). We similarly proceed throughout
the paper, in particular in the forthcoming (2.29), in order to avoid a heavy notation. The
problem to be solved is stated in a weak form, owing to the assumptions (2.21) on u. Namely,
we require that

〈∂t (ρ, ρ�), (v, v�)〉V −
∫

�

ρu · ∇v +
∫

�

∇μ · ∇v +
∫

�

∇�μ� · ∇�v� = 0

a.e. in (0, T) and for every (v, v�) ∈ V, (2.28)

τ�

∫

�

∂tρ v + τ�

∫

�

∂tρ� v� +
∫

�

∇ρ · ∇v +
∫

�

∇�ρ� · ∇�v�

+
∫

�

(

ζ + π(ρ)
)

v +
∫

�

(

ζ� + π�(ρ�)
)

v� =
∫

�

μv +
∫

�

μ�v�

a.e. in (0, T) and for every (v, v�) ∈ V, (2.29)

ζ ∈ β(ρ) a.e. in Q and ζ� ∈ β�(ρ�) a.e. on 
, (2.30)

ρ(0) = ρ0 a.e. in� and ρ�(0) = ρ0|� a.e. on�. (2.31)

We observe that any weak solution to problem (2.28)–(2.31) satisfies

∂tmean(ρ, ρ�) = 0, whence mean(ρ, ρ�)(t) = m0 for every t ∈ [0, T ]. (2.32)
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Indeed, it suffices to take (v, v�) = (|�| + |�|)−1(1, 1) in (2.28).
However, one can wonder whether the solution enjoys the better regularity

∂t (ρ, ρ�) = (∂tρ, ∂tρ�) ∈ L2(0, T ;H) and (μ,μ�) ∈ L2(0, T ;W), (2.33)

(ρ, ρ�) ∈ L2(0, T ;W), (2.34)

and actually satisfies the boundary value problems presented in the Introduction, i.e.,

∂tρ + ∇ρ · u − �μ = 0 a.e. in Q, (2.35)

∂tρ� + ∂νμ − ��μ� = 0 a.e. on
, (2.36)

τ�∂tρ − �ρ + ζ + π(ρ) = μ a.e. in Q, (2.37)

τ�∂tρ� + ∂νρ − ��ρ� + ζ� + π�(ρ�) = μ� a.e. on
. (2.38)

This is not obvious. For instance, it is not clear whether the derivative ∂t (ρ, ρ�) can be
replaced by (∂tρ, ∂tρ�), since the components of the test functions (v, v�) ∈ V used in
(2.28) are not independent. In the first result we present, we answer the above questions.
However, for future use, it is convenient to prepare a more general tool.

Theorem 2.1 Assume (2.16)–(2.20) for the structure, (2.21) for the velocity field and

((μ,μ�), (ρ, ρ�), (ζ, ζ�)) ∈ L2(0, T ;V × V × H) with (τ�∂tρ, τ�∂tρ�) ∈ L2(0, T ;H).

Then, we have the following statements:
(i) if ρ ∈ L2(0, T ; W ), ∂t (ρ, ρ�) ∈ L2(0, T ;H) and (2.28) is fulfilled, then

(μ,μ�) ∈ L1(0, T ;W) with

‖(μ,μ�)‖L1(0,T ;W) ≤ C1
(‖(μ,μ�)‖L2(0,T ;V) + ‖∂t (ρ, ρ�)‖L2(0,T ;H)

+‖ρ‖L2(0,T ;W )‖u‖L2(0,T ;H)

)

, (2.39)

where C1 depends only on �, and (2.35)–(2.36) hold true as well;
(ii) if (2.29) is satisfied, then

(ρ, ρ�) ∈ L2(0, T ;W) with

‖(ρ, ρ�)‖L2(0,T ;W) ≤ C2
(‖(ρ, ρ�)‖L2(0,T ;V)

+ ‖((μ,μ�), (ζ, ζ�), (τ�∂tρ, τ�∂tρ�))‖L2(0,T ;H×H×H)

)

, (2.40)

where C2 depends only on �, and (2.37)–(2.38) hold as well;
(iii) if γ : R → R is monotone and Lipschitz continuous, and if (2.29) holds true with

ζ� ∈ γ (ρ�) a.e. on 
, then

‖ζ�‖L2(0,T ;H�) ≤ C3
(‖(ρ, ρ�)‖L2(0,T ;V)

+‖((μ,μ�), ζ, (τ�∂tρ, τ�∂tρ�))‖L2(0,T ;H×H×H)

)

, (2.41)

where C3 depends only on �.
Assume, in addition, that u belongs to L∞(0, T ; L3(�)) and that

((μ,μ�), (ρ, ρ�), (ζ, ζ�)) ∈ L∞(0, T ;V×V×H) and (τ�∂tρ, τ�∂tρ�) ∈ L∞(0, T ;H).

Then, we have the following statements:
(iv) if ρ ∈ L∞(0, T ; W ), ∂t (ρ, ρ�) ∈ L∞(0, T ;H) and (2.28) is fulfilled, then

(μ,μ�) ∈ L∞(0, T ;W) with

‖(μ,μ�)‖L∞(0,T ;W) ≤ C4
(‖(μ,μ�)‖L∞(0,T ;V) + ‖∂t (ρ, ρ�)‖L∞(0,T ;H)

+‖ρ‖L∞(0,T ;W )‖u‖L∞(0,T ;H)

)

, (2.42)
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where C4 depends only on �;
(v) if (2.29) is satisfied, then

(ρ, ρ�) ∈ L∞(0, T ;W) with

‖(ρ, ρ�)‖L∞(0,T ;W) ≤ C5
(‖(ρ, ρ�)‖L∞(0,T ;V)

+ ‖((μ,μ�), (ζ, ζ�), (τ�∂tρ, τ�∂tρ�))‖L∞(0,T ;H×H×H)

)

, (2.43)

where C5 depends only on �;
(vi) if γ : R → R is monotone and Lipschitz continuous, and if (2.29) holds true with

ζ� ∈ γ (ρ�) a.e. on 
, then

‖ζ�‖L∞(0,T ;H�) ≤ C6
(‖(ρ, ρ�)‖L∞(0,T ;V)

+ ‖((μ,μ�), ζ, (τ�∂tρ, τ�∂tρ�))‖L∞(0,T ;H×H×H)

)

, (2.44)

where C6 depends only on �.
As a particular case of i) and ii), every solution to problem (2.28)–(2.31) satisfying (2.24)–
(2.27) also fulfills (2.34) and (2.37)–(2.38), and, if τ� and τ� are strictly positive, (2.33) and
(2.35)–(2.36) hold true as well.

Remark 2.2 Westress that all of the constants appearing in the estimates (2.39)–(2.44) depend
only on �. In particular, the constants C3 and C6 do not depend on γ .

Our next results regard the well-posedness and the continuous dependence of the solution
on the velocity field. They are as follows:

Theorem 2.3 Assume (2.16)–(2.20) for the structure and (2.21)–(2.23) for the data. Then,
problem (2.28)–(2.31) has at least one solution ((μ,μ�), (ρ, ρ�), (ζ, ζ�)) satisfying the
regularity properties (2.24)–(2.27), (2.34) and the inequality

‖(μ,μ�)‖L2(0,T ;V) + ‖(ρ, ρ�)‖H1(0,T ;V ∗)∩L∞(0,T ;V)∩L2(0,T ;W)

+ ‖(ζ, ζ�)‖L2(0,T ;H) + τ
1/2
� ‖∂tρ‖L2(0,T ;H) + τ

1/2
� ‖∂tρ�‖L2(0,T ;H�) ≤ K1, (2.45)

for some constant K1 that depends only on the structure of the system, �, T , the initial
data and the norm of u in L2(0, T ; L3(�))3. Furthermore, the components ρ and ρ� of
any solution are uniquely determined, and the whole solution is unique if at least one of the
operators β and β� is single-valued.

Remark 2.4 By combining the statements of Theorems 2.1 and 2.3, it is clear that estimates
also hold for the norms of (μ,μ�) and (ρ, ρ�) in L2(0, T ;W) with a constant K ′

1 similar
to K1.

Theorem 2.5 Under the assumptions (2.16)–(2.20) on the structure and (2.21)–(2.23) on
the data, let ui , i = 1, 2, be two choices of u, and let ((μ,μ�), (ρ, ρ�), (ζ, ζ�)) be the
difference of two corresponding solutions. Then the inequality

‖(ρ, ρ�)‖L∞(0,T ;V ∗
0 )∩L2(0,T ;V) + τ

1/2
� ‖∂tρ‖L∞(0,T ;H) + τ

1/2
� ‖∂tρ�‖L∞(0,T ;H�)

≤ K2‖u1 − u2‖L2(0,T ;L3(�)) (2.46)

holds true for some constant K2 that depends only on the structure of the system, �, T , the
initial data and the norms of ui , i = 1, 2, in L2(0, T ; L3(�))3.

Under additional assumptions on the initial data and on the velocity u, we can ensure
further regularity for the solution. Namely, we have the following result:
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Theorem 2.6 In addition to the assumptions (2.16)–(2.20) for the structure and (2.21)–
(2.23) for the data, suppose that τ� and τ� are strictly positive and that

u ∈ H1(0, T ; L3/2(�)) ∩ L∞(0, T ; L3(�)), (2.47)

ρ0 ∈ H2(�), ρ0|� ∈ H2(�), β◦(ρ0) ∈ L2(�) and β◦
�(ρ0|�) ∈ L2(�). (2.48)

Then, problem (2.28)–(2.31) has at least one solution ((μ,μ�), (ρ, ρ�), (ζ, ζ�)) that also
satisfies

(μ,μ�) ∈ L∞(0, T ;W), (ρ, ρ�) ∈ W 1,∞(0, T ;H) ∩ H1(0, T ;V) ∩ L∞(0, T ;W)

and (ζ, ζ�) ∈ L∞(0, T ;H), (2.49)

‖(μ,μ�)‖L∞(0,T ;W) + ‖(ρ, ρ�)‖W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;W)

+ ‖(ζ, ζ�)‖L∞(0,T ;H) ≤ K3, (2.50)

with a constant K3 that depends only on the structure of the system, �, T , the initial data
and the norm of u in H1(0, T ; L3/2(�)) ∩ L∞(0, T ; L3(�)). In particular, the components
(μ,μ�) and (ρ, ρ�) are bounded.

Remark 2.7 As � ⊂ R
3 and W ⊂ C0(�) × C0(�) due to the Sobolev inequalities, from

standard embedding results (cf., e.g., [44, Sect. 8, Cor. 4]) and (2.49) it follows that even
ρ ∈ C0(Q) and ρ� ∈ C0(
). Moreover, a part of the result of Theorem 2.6 still holds true
without assuming that τ� and τ� are strictly positive, provided that the initial data satisfy the
additional condition

(−�ρ0 + (βε + π)(ρ0),−��ρ0|� + ∂νρ0 + (β�, ε + π�)(ρ0|�)
)

belongs to a bounded subset of V for every ε ∈ (0, 1). (2.51)

With respect to the previous statement, wemiss the conditions ∂t (ρ, ρ�) ∈ L∞(0, T ;H) and
(μ,μ�) ∈ L∞(0, T ;W) (see the forthcoming Remark 7.1 for details). If the double-well
potentials in the bulk and on the boundary are the same potential of logarithmic type as in
the next (2.52)–(2.53), then it is easy to find sufficient conditions on ρ0 for (2.51) to hold.
Indeed, one can assume that ‖ρ0‖∞ < 1 and (�ρ0,��ρ0|� − ∂νρ0) ∈ V.

Our last result requires potentials of logarithmic type (see (1.3)) with the same domain.
Namely, we require that

β, β� : (−1, 1) → R areC2 functions with (2.52)

lim
r↘−1

β(r) = lim
r↘−1

β�(r) = −∞ and lim
r↗1

β(r) = lim
r↗1

β�(r) = +∞. (2.53)

Theorem 2.8 In addition to the assumptions (2.16)–(2.20) on the structure, assume that τ�

and τ� are strictly positive and that β and β� satisfy (2.52)–(2.53). Moreover, assume that
u and ρ0 satisfy (2.21), (2.47) and

ρ0 ∈ W, ρ0|� ∈ W�, inf ρ0 > −1 and sup ρ0 < 1. (2.54)

Then the unique solution ((μ,μ�), (ρ, ρ�), (ζ, ζ�)) satisfies

ρ∗ ≤ ρ(x, t) ≤ ρ∗ for all (x, t) ∈ Q, (2.55)

for some constants ρ∗, ρ∗ ∈ (−1, 1) that depend only on the structure of the system, �, T ,
the initial data and the norm of u in H1(0, T ; L3/2(�)) ∩ L∞(0, T ; L3(�)).
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Theorem 2.9 In addition to (2.16)–(2.20), assume that τ� and τ� are strictly positive, that
β and β� satisfy (2.52)–(2.53), and that β, π , β� and π� are of class C2. Moreover, assume
that ρ0 satisfies (2.54). Finally, let ui ∈ H1(0, T ; L3(�)), i = 1, 2, be two choices of u
satisfying (2.21), and let ((μ,μ�), (ρ, ρ�), (ζ, ζ�)) be the difference of the corresponding
solutions. Then the inequality

‖(μ,μ�)‖L∞(0,T ;W) + ‖(ρ, ρ�)‖W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;W)

≤ K4‖u1 − u2‖H1(0,T ;L3(�)) (2.56)

holds true for some constant K4 that depends only on the structure of the system, �, T , the
initial data and the norms of ui , i = 1, 2, in H1(0, T ; L3(�)).

Throughout the paper, we will repeatedly use Young’s inequality

a b ≤ δ a2 + 1

4δ
b2 for all a, b ∈ R and δ > 0, (2.57)

Hölder’s inequality, and the Sobolev inequality related to the continuous embedding V ⊂
L p(�) with p ∈ [1, 6] (since � is three dimensional, bounded and smooth). Besides, this
embedding is compact for p < 6, and the same holds for the analogous spaces on the
boundary. It follows that the embeddings V ⊂ H and H ⊂ V ∗ are compact as well. In
particular, we have the compactness inequality

‖(v, v�)‖H ≤ δ
(‖∇v‖H + ‖∇�v�‖H�

) + Cδ ‖(v, v�)‖V ∗

for every (v, v�) ∈ V and δ > 0, (2.58)

where Cδ depends only on � and δ. Finally, we set, for brevity,

Qt := � × (0, t) and 
t := � × (0, t) for 0 < t ≤ T, (2.59)

and simply write Q and 
 if t = T .
We conclude this section by stating a general rule concerning the constants that appear

in the estimates to be performed in the sequel. The small-case symbol c stands for a generic
constant whose values might change from line to line (and even within the same line) and
depend only on �, on the shape of the nonlinearities, and on the constants and the norms of
the functions involved in the assumptions of our statements. In particular, the values of c do
not depend on ε if this parameter is considered. A small-case symbol with a subscript like
cδ (in particular, with δ = ε) indicates that the constant might depend on the parameter δ, in
addition. On the contrary, we mark precise constants that we can refer to by using different
symbols, like in (2.20) and in (2.45).

3 Strong solutions

This section is devoted to the proof of Theorem 2.1. Our argument relies on a result on an
elliptic problem. Thus, we prove the following lemma:

Lemma 3.1 Let γ : R → R be monotone and Lipschitz continuous, and assume that
(w,w�) ∈ V and (g, g�) ∈ H satisfy
∫

�

∇w · ∇v +
∫

�

∇�w� · ∇�v� +
∫

�

γ (w�)v� =
∫

�

gv +
∫

�

g�v� for every (v, v�) ∈ V.

(3.1)
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Then we have that

(w,w�) ∈ W and ‖(w,w�)‖W+‖γ (w�)‖H� ≤ C�

(‖(w,w�)‖V+‖(g, g�)‖H
)

, (3.2)

where C� depends only on �. Moreover, (w,w�) solves the boundary value problem

− �w = g a.e. in �, and ∂νw − ��w� + γ (w�) = g� a.e. on �. (3.3)

Proof We use well-known estimates from the theory of traces and elliptic equations. The
values of c will depend only on �. We set, for brevity, M := ‖(w,w�)‖V + ‖(g, g�)‖H.
By taking any v ∈ H1

0 (�) and testing (3.1) by (v, 0), we obtain the first identity in (3.3) in
the sense of distributions. In particular, we have �w = − g ∈ H . By combining this with
w|� = w� ∈ V� , we deduce that

w ∈ H3/2(�) and ‖w‖H3/2(�) ≤ c
(‖�w‖H + ‖w�‖V�

) ≤ c M.

It follows that

∂νw ∈ H� and ‖∂νw‖H� ≤ c
(‖w‖H3/2(�) + ‖�w‖H

) ≤ c M,

as well as the validity of the formula
∫

�

∇w · ∇v = −
∫

�

�w v +
∫

�

∂νw v|� for every v ∈ V .

By replacing −�w by g, comparing with (3.1), and noticing that for every v� ∈ V� there
exists some v ∈ V such that (v, v�) ∈ V, we deduce that

∫

�

∇�w� · ∇�v� +
∫

�

γ (w�)v� =
∫

�

(g� − ∂νw)v� for every v� ∈ V�. (3.4)

In particular, by choosing v� = γ (w�), we obtain that
∫

�

γ ′(w�)|∇�w�|2 +
∫

�

|γ (w�)|2 =
∫

�

(g� − ∂νw)γ (w�),

whence immediately
‖γ (w�)‖H� ≤ ‖g� − ∂νw‖H� ≤ c M,

which is a part of (3.2). Then, we can rewrite (3.4) in the form
∫

�

∇�w� · ∇�v� =
∫

�

(g� − ∂νw − γ (w�))v� for every, v� ∈ V�.

This implies the second identity in (3.3) (at least in a generalized sense), as well as

��w� ∈ H� and ‖��w�‖H� ≤ ‖g� − ∂νw − γ (w�)‖H� ≤ c M.

Therefore, we also have that

w� ∈ W� and ‖w�‖W� ≤ c
(‖w�‖V� + ‖��w�‖H�

) ≤ c M.

We conclude that

w ∈ W and ‖w‖W ≤ c
(‖�w‖H + ‖w�‖W�

) ≤ c M.

Therefore, both the regularity and the estimate of (3.2) are completely proved, and the
equations (3.3) hold almost everywhere. ��
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Proof of Theorem 2.1 In order to prove (i) and (iv), we account for (2.21), which implies that
− ∫

�
ρ u · ∇v = ∫

�
∇ρ · u v a.e. in (0,T) for every v ∈ V , and rewrite (2.28) a.e. in (0,T)

with this substitution. Then, for a.a. t ∈ (0, T ), we apply Lemma 3.1 with

γ = 0, (w,w�) = (μ,μ�)(t), g = −(∂tρ + ∇ρ · u)(t) and g� = −∂tρ�(t),

byobserving that‖∇ρ(t)·u(t)‖2 ≤ ‖∇ρ(t)‖6‖u(t)‖3 ≤ c‖ρ(t)‖W ‖u(t)‖3 ,where c depends
only on �. Then, we take the norms of both sides of (3.2) in L1(0, T ) or in L∞(0, T ) to
deduce (2.39) and (2.42), respectively, and notice that (3.3) coincides with (2.35)–(2.36). To
prove i i) and v), we apply Lemma 3.1 for a.a. t ∈ (0, T ) with

γ = 0, (w,w�) = (ρ, ρ�)(t), g = (

μ − τ�∂tρ − ζ − π(ρ)
)

(t)

and g� = (

μ� − τ�∂tρ� − ζ� − π�(ρ�)
)

(t),

and argue as before. Finally, to prove i i i) and vi), we apply Lemma 3.1 for a.a. t ∈ (0, T )

with γ as in the statement, (w,w�) and g as in the previous step, and

g� = (

μ� − τ�∂tρ� − π�(ρ�)
)

(t).

Then, we write the estimate for ζ� of (3.1) and take the norms of both sides in L2(0, T ) or
in L∞(0, T ). ��

4 Continuous dependence and uniqueness

In this section, we give the proof of Theorem 2.5 concerning continuous dependence on the
velocity field u and derive the uniqueness part of Theorem 2.3.

Proof of Theorem 2.5 We take two choices ui , i = 1, 2, of u and consider two corresponding
solutions ((μi , μi�), (ρi , ρi�), (ζi , ζi�)). We set ρ := ρ1 −ρ2 and similarly define the other
differences, according to the notation of the statement. We observe that mean(ρ, ρ�) = 0
by the conservation property (2.32), applied to (ρi , ρi�) for i = 1, 2, whence (ξ, ξ�)(s) :=
N((ρ, ρ�)(s)) is well defined for every s ∈ [0, T ]. Thus, we write equation (2.28) at the
time s for both solutions, test the difference by (ξ, ξ�)(s) and integrate with respect to s
over (0, t), where t ∈ (0, T ). Owing to (2.14), we obtain the identity

1

2
‖(ρ, ρ�)(t)‖2∗ +

∫

Qt

∇μ · ∇ξ +
∫


t

∇�μ� · ∇�ξ� =
∫

Qt

(ρ1u1 − ρ2u2) · ∇ξ. (4.1)

At the same time, we write equation (2.29) at the time s for both solutions, test the difference
by (ρ, ρ�)(s), integrate over (0, t) and add the same term

∫ t
0‖(ρ, ρ�)(s)‖2H ds to both sides,

for convenience. We obtain that

τ�

2

∫

�

|ρ(t)|2+τ�

2

∫

�

|ρ�(t)|2+
∫ t

0
‖ρ(s)‖2V ds +

∫ t

0
‖ρ�(s)‖2V�

ds +
∫

Qt

ζρ +
∫


t

ζ�ρ�

=
∫

Qt

{

ρ2 − (

π(ρ1) − π(ρ2)
)

ρ
} +

∫


t

{

ρ2
� − (

π�(ρ1�) − π�(ρ2�)
)

ρ�

}

+
∫

Qt

μρ +
∫


t

μ�ρ�. (4.2)

At this point, we add these equalities to each other. By the definition of N, the last two
integrals of (4.2) and the ones on the left-hand side of (4.1) cancel each other. Moreover, the
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terms involving ζ and ζ� are nonnegative by monotonicity. Thus, by owing to the Lipschitz
continuity of π and π� , we deduce that

1

2
‖(ρ, ρ�)(t)‖2∗ + τ�

2

∫

�

|ρ(t)|2 + τ�

2

∫

�

|ρ�(t)|2 +
∫ t

0
‖(ρ, ρ�)(s)‖2V ds

≤
∫

Qt

|ρu1 + ρ2u| |∇ξ | + c
∫ t

0
‖(ρ, ρ�)(s)‖2H ds =: I1 + I2,

and we now treat the contributions I1 and I2 on the right-hand side separately.We account for
the Hölder, Sobolev and Young inequalities and use the definitions (2.8) and (2.11). We have
that

I1 ≤
∫ t

0

(‖ρ(s)‖6 ‖u1(s)‖3 + ‖ρ2(s)‖6 ‖u(s)‖3
)‖∇ξ(s)‖2 ds

≤ 1

4

∫ t

0
‖(ρ, ρ�)(s)‖2V ds + c

∫ t

0
‖u1(s)‖23 ‖(ρ, ρ�)(s)‖2∗ ds

+ c ‖ρ2‖2L∞(0,T ;V )

∫ t

0
‖u(s)‖23 ds +

∫ t

0
‖(ρ, ρ�)(s)‖2∗ ds.

We deal with I2 as follows, invoking the compactness inequality (2.58):

I2 ≤ 1

4

∫ t

0
‖(ρ, ρ�)(s)‖2V ds + c

∫ t

0
‖(ρ, ρ�)(s)‖2∗ ds.

At this point, we collect all of these inequalities, observe that the function s �→ ‖u1(s)‖23
belongs to L1(0, T ) by (2.21), and apply theGronwall lemma.We immediately deduce (2.46)
with a constant whose dependence agrees with that asserted in the statement of Theorem 2.5.
With this, the proof is complete. ��

Partial uniqueness and uniqueness. Next, we derive the uniqueness part of Theorem 2.3.
Uniqueness for (ρ, ρ�) clearly follows by taking u1 = u2 in (2.46). Assume now that
β is single-valued. This implies that ζ = β(ρ) is uniquely determined as well. Next, by
Theorem 2.1, (2.37)–(2.38) hold true. From (2.37), we deduce uniqueness for the component
μ of the solution. This also implies uniqueness for μ� = μ|
 , and (2.38) yields uniqueness
for ζ� . Assume now that β� is single-valued. In this case, we first derive uniqueness for
ζ� = β�(ρ�), then for μ� by owing to (2.38). On the other hand, the first equation (2.28)
with (ρ, ρ�) completely known implies that the difference of the components (μ,μ�) of two
solutions is space independent,whence it has the form t �→ ϕ(t)(1, 1) for someϕ ∈ L2(0, T ),
since the second component is the trace of the first one. But ϕ must vanish sinceμ� is unique.
This implies that μ is unique as well. Finally, (2.37) yields uniqueness for ζ . ��

5 Approximation

In this section, we construct and solve an approximating problem depending on the small
parameter ε ∈ (0, 1), which is understood to be fixed throughout the whole section. This
problem is simply obtained by modifying (2.28)–(2.31) as follows: instead of τ� and τ� , we
take the strictly positive constants

τ ε
� := max{τ�, ε} and τ ε

� := max{τ�, ε}, (5.1)
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and replace the functionals ̂β and ̂β� and the operators β and β� by the following Moreau
and Yosida regularizations ̂βε, ̂β�, ε, βε, β�, ε (see, e.g., [4, pp. 28 and 39]):

̂βε(r) := inf
s∈R

{

1

2ε
|r − s|2 + ̂β(s)

}

=
∫ r

0
βε(s)ds,

̂β�,ε(r) := inf
s∈R

{

1

2εη
|r − s|2 + ̂β�(s)

}

=
∫ r

0
β�,ε(s)ds,

βε(r) := 1

ε

(

r − (I + εβ)−1(r)
)

,

β�,ε(r) := 1

εη

(

r − (I + εηβ�)−1(r)
)

for all r ∈ R, where η > 0 is the same constant as in the assumption (2.20). We point out
that (2.17) and (2.19) hold also for the approximations. Moreover, we have that

0 ≤ ̂βε(r) ≤ ̂β(r), 0 ≤ ̂β�,ε(r) ≤ ̂β�(r) for every r ∈ R, (5.2)

|βε(r)| ≤ |β◦(r)|, ∣

∣β�,ε(r)
∣

∣ ≤ ∣

∣β◦
�(r)

∣

∣ for every r ∈ D(β). (5.3)

Furthermore, (2.20) also holds true for βε and β�, ε with the same constants (see [6,
Lemma 4.4]). We thus write

|βε(r)| ≤ η|β�, ε(r)| + C for every r ∈ R. (5.4)

Since βε and β�, ε have the same sign, we see that (5.4) and the Young inequality yield

β�, ε(r)βε(r) ≥ 1

2η
|βε(r)|2 − Cη for every r ∈ R, (5.5)

with a similar constant Cη. We also notice that the inclusion D(β�) ⊆ D(β) (see (2.20)) and
(2.23) imply that

βε(r)(r − m0) ≥ δ0|βε(r)| − C0 and β�, ε(r)(r − m0) ≥ δ0|β�, ε(r)| − C0 (5.6)

for every r ∈ R and every ε ∈ (0, 1), where δ0 and C0 are some positive constants that
depend only on β, β� and on the position of m0 in the interior of D(β�) and of D(β) (see,
e.g., [29, p. 908]).

The sought solution is a quadruple (με, με
�, ρε, ρε

�) having the regularity properties

(με, με
�) ∈ L2(0, T ;V) ∩ L1(0, T ;W), (5.7)

(ρε, ρε
�) ∈ H1(0, T ;H) ∩ L∞(0, T ;V) ∩ L2(0, T ;W) (5.8)

and such that the 6-tuple (με, με
�, ρε, ρε

�, ζ ε, ζ ε
�) obtained by setting

ζ ε := βε(ρ
ε) and ζ ε

� := β�, ε(ρ
ε
�) (5.9)
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solves the following problem:
∫

�

∂tρ
ε v +

∫

�

∂tρ
ε
� v� −

∫

�

ρεu · ∇v +
∫

�

∇με · ∇v +
∫

�

∇με
� · ∇v� = 0

a.e. in (0, T) and for every (v, v�) ∈ V, (5.10)

τ ε
�

∫

�

∂tρ
ε v + τ ε

�

∫

�

∂tρ
ε
� v� +

∫

�

∇ρε · ∇v +
∫

�

∇�ρε
� · ∇�v�

+
∫

�

(

ζ ε + π(ρε)
)

v +
∫

�

(

ζ ε
� + π�(ρε

�)
)

v� =
∫

�

μεv +
∫

�

με
�v�

a.e. in (0, T) and for every (v, v�) ∈ V, (5.11)

ρε(0) = ρ0 a.e. in� and ρε
�(0) = ρ0|� a.e. on�. (5.12)

We have written the sum of two integrals instead of a duality in (5.10), in accordance with
the requirement (5.8) on (ρ, ρ�).

The aim of this section is to solve the approximating problem (5.9)–(5.12). In this respect,
we have the following result.

Theorem 5.1 Assume (2.16)–(2.20) and (5.1) for the structure and (2.21)–(2.23) for the
data. Then the problem (5.9)–(5.12)has a unique solution (με, με

�, ρε, ρε
�)with the regularity

properties (5.7)–(5.8).

The rest of the section is devoted to the proof of Theorem 5.1. Since the approximating
problem (5.9)–(5.12) is a particular case of problem (2.28)–(2.31) and the operators βε and
β�, ε are single-valued, uniqueness has been already established in the previous section. As
for existence, we use a slightly modified Faedo–Galerkin scheme with a proper choice of the
Hilbert basis. We introduce the operator A ∈ L(V;V ∗) by setting

〈A(w,w�), (v, v�)〉V :=
∫

�

∇w·∇v+
∫

�

∇�w� ·∇�v� for (w,w�), (v, v�) ∈ V, (5.13)

and notice that A is nonnegative and weakly coercive. Indeed, we have that

〈A(v, v�), (v, v�)〉V + ‖(v, v�)‖2H = ‖(v, v�)‖2V for every (v, v�) ∈ V. (5.14)

Moreover, as the embedding V ⊂ H is compact, the resolvent of A is compact as well, and
the spectrum of A reduces to a discrete set of eigenvalues, the eigenvalue problem being

(e, e�) ∈ V \ {(0, 0)} and A(e, e�) = λ(e, e�). (5.15)

More precisely, we can rearrange the eigenvalues and choose the eigenvectors in order that

0 = λ1 < λ2 ≤ λ3 ≤ . . . and lim
j→∞ λ j = +∞, (5.16)

A(e j , e j
�) = λ j (e

j , e j
�) and

∫

�

ei e j +
∫

�

ei
�e j

� = δi j for i, j = 1, 2, . . . , (5.17)

and {(e j , e j
�)} generates a dense subspace of both V and H. We notice that

∫

�

∇ei · ∇e j +
∫

�

∇�ei
� · ∇�e j

� = λi

(

∫

�

ei e j +
∫

�

ei
�e j

�

)

= λiδi j for i, j = 1, 2, . . . .

We also observe that every element (w,w�) ∈ H can be written as

(w,w�) =
∞
∑

j=1

w j (e
j , e j

�) with
∞
∑

j=1

|w j |2 = ‖(w,w�)‖2H < +∞,
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and that (on account of (5.14))

(w,w�) ∈ V if and only if
∞
∑

j=1

(1 + λ j )|w j |2 < +∞.

Namely, the last sum yields the square of a norm onV that is equivalent to ‖ · ‖V. In particular,
we have the following property (the finite sum is theH-projection on the subspaceVn defined
below):

‖(wn, wn
�)‖V ≤ C�‖(w,w�)‖V if (wn, wn

�) =
n

∑

j=1

w j (e
j , e j

�), (5.18)

where C� depends only on �. At this point, we set

Vn := span
{

(e j , e j
�) : 1 ≤ j ≤ n

}

and V∞ :=
∞
⋃

j=1

Vn = span
{

(e j , e j
�) : j ≥ 1

}

,

(5.19)
and, for every n ≥ 1, we look for a quadruple (μn, μn

�, ρn, ρn
�) satisfying

(μn, μn
�) ∈ L2(0, T ;Vn) and (ρn, ρn

�) ∈ H1(0, T ;Vn), (5.20)
∫

�

∂tρ
n v +

∫

�

∂tρ
n
� v� −

∫

�

ρnu · ∇v +
∫

�

∇μn · ∇v +
∫

�

∇�μn
� · ∇�v�

+ 1

n

∫

�

μnv + 1

n

∫

�

μn
�v� = 0

a.e. in (0, T) and for every (v, v�) ∈ Vn, (5.21)

τ ε
�

∫

�

∂tρ
n v + τ ε

�

∫

�

∂tρ
n
� v� +

∫

�

∇ρn · ∇v +
∫

�

∇�ρn
� · ∇�v�

+
∫

�

(

βε(ρ
n) + π(ρn)

)

v +
∫

�

(

β�, ε(ρ
n
�) + π�(ρn

�)
)

v� =
∫

�

μnv +
∫

�

μn
�v�

a.e. in (0, T) and for every (v, v�) ∈ Vn, (5.22)

ρn(0) = ρn
0 a.e. in�, (5.23)

where ρn
0 is defined by the conditions (ρn

0 , ρn
0 |�) ∈ Vn and

∫

�

ρn
0 v +

∫

�

ρn
0 |�v� =

∫

�

ρ0v +
∫

�

ρ0|�v� for every (v, v�) ∈ Vn . (5.24)

Thus, ρn
0 is the first component of the orthogonal projection of (ρ0, ρ0|�) on Vn . We have

‖ρn
0‖H ≤ ‖(ρn

0 , ρn
0 |�)‖H ≤ ‖(ρ0, ρ0|�)‖H and ‖(ρn

0 , ρn
0 |�)‖V ≤ C�‖(ρ0, ρ0|�)‖V,

(5.25)
the second one on account of (5.18).

The discrete problem. By (5.20), we have to look for (μn, μn
�) and (ρn, ρn

�) given by

(μn, μn
�)(t) =

n
∑

j=1

μ j (t)(e
j , e j

�) and (ρn, ρn
�)(t) =

n
∑

j=1

ρ j (t)(e
j , e j

�)

for some μ j ∈ L2(0, T ) and ρ j ∈ H1(0, T ). Let us introduce the n-vectors μ := (μ j )

and ρ := (ρ j ). Then, by rewriting the system (5.21)–(5.22) just with (v, v�) = (ei , ei
�) for

i = 1, . . . , n, we see that it takes the form
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ρ ′(t) − U (t) ρ(t) + Dn μ(t) = 0 and B ρ ′(t) + D ρ(t) + F(ρ(t)) = μ(t), (5.26)

where Dn := diag(λ1 + 1
n , . . . , λn + 1

n ), D := diag(λ1, . . . , λn), F : Rn → R
n is Lipschitz

continuous, and the matrices U = (ui j ) ∈ L2(0, T ;Rn×n) and B = (bi j ) ∈ R
n×n are

given by

ui j (t) :=
∫

�

e j u(t) · ∇ei for a.a. t ∈ (0, T ) and bi j := τ ε
�

∫

�

e j ei + τ ε
�

∫

�

e j
�ei

�,

for i, j = 1, . . . , n. By adding the second identity in (5.26) to the first onemultiplied by D−1
n ,

we obtain the equivalent system

(D−1
n + B) ρ ′(t) + V (t) ρ(t) + F(ρ(t)) = 0 and μ(t) = B ρ ′(t) + D ρ(t) + F(ρ(t)),

where V := D − D−1
n U belongs to L2(0, T ;Rn×n) and D−1

n + B is invertible, as we verify.
To this end, we show that B is positive definite. Indeed, for any vector y = (y1, . . . , yn) ∈ R

n ,
by setting (v, v�) := ∑n

j=1 y j (e j , e j
�), we have that

(By) · y =
n

∑

i, j=1

bi j y j yi = τ ε
�

∫

�

n
∑

i=1

yi e
i

n
∑

j=1

y j e
j + τ ε

�

∫

�

n
∑

i=1

yi e
i
�

n
∑

j=1

y j e
j
�

= τ ε
�

∫

�

|v|2 + τ ε
�

∫

�

|v�|2 ≥ ε‖(v, v�)‖2H = ε‖y‖2
Rn .

Hence, D−1
n + B is positive definite as well, thus invertible. On the other hand, (5.23) is

equivalent to an initial condition for ρ. Therefore, the discrete problem (5.20)–(5.23) has a
unique solution.

At this point, our aim is to show that the solutions to the discrete problem converge to
a solution to the approximating problem (5.9)–(5.12) as n tends to infinity, at least for a
subsequence. To this end, we start estimating and find bounds that do not depend on n. On
the contrary, they can depend on ε.

An a priori estimate. We test (5.21), written at the time s, by (μn, μn
�)(s) and integrate

over (0, t) with respect to s to find that
∫

Qt

∂tρ
n μn +

∫


t

∂tρ
n
� μn

� +
∫

Qt

|∇μn |2 +
∫


t

|∇�μn
�|2

+ 1

n

∫

Qt

|μn |2 + 1

n

∫


t

|μn
�|2 =

∫

Qt

ρnu · ∇μn .

Next, we test (5.22) by ∂t (ρ
n, ρn

�)(s), integrate over (0, t) with respect to s and add the same
terms

∫

Qt
ρn∂tρ

n and
∫


t
ρn

�∂tρ
n
� to both sides for convenience. We obtain that

τ ε
�

∫

Qt

|∂tρ
n |2 + τ ε

�

∫


t

|∂tρ
n
�|2 + 1

2
‖(ρn, ρn

�)(t)‖2V +
∫

�

̂βε(ρ
n(t)) +

∫

�

̂β�, ε(ρ
n
�(t))

= 1

2
‖(ρn, ρn

�)(0)‖2V +
∫

�

̂βε(ρ
n(0)) +

∫

�

̂β�, ε(ρ
n
�(0)) +

∫

Qt

μn∂tρ
n +

∫


t

μn
�∂tρ

n
�

+
∫

Qt

(

ρn − π(ρn)
)

∂tρ
n +

∫


t

(

ρn
� − π�(ρn

�)
)

∂tρ
n
�.

At this point, we add these equalities and notice that four terms cancel. Then, the remaining
terms on the left-hand side are nonnegative, so that we can forget about four of them. More-
over, we use (5.1) and start estimating the right-hand side (also accounting for (5.18), (5.2)
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and (2.22)). We then arrive at the estimate
∫

Qt

|∇μn |2 +
∫


t

|∇�μn
�|2 + ε

∫

Qt

|∂tρ
n |2 + ε

∫


t

|∂tρ
n
�|2 + 1

2
‖(ρn, ρn

�)(t)‖2V

≤
∫

Qt

|ρn | |u| |∇μn | + c + ε

2

∫

Qt

|∂tρ
n |2 + ε

2

∫


t

|∂tρ
n
�|2 + cε

∫

Qt

|ρn |2

+ cε

∫


t

|ρn
�|2 + cε.

On the other hand, the Hölder, Sobolev and Young inequalities yield that
∫

Qt

|ρn | |u| |∇μn | ≤
∫ t

0
‖ρn(s)‖6 ‖u(s)‖3 ‖∇μn(s)‖2 ds

≤ 1

2

∫

Qt

|∇μn |2 + c
∫ t

0
‖u(s)‖23 ‖ρn(s)‖2V ds,

and we notice that the function s �→ ‖u(s)‖23 belongs to L1(0, T ), by (2.21). Therefore, by
rearranging and applying the Gronwall lemma, we can infer that

‖∇μn‖L2(0,T ;H) + ‖∇�μn
�‖L2(0,T ;H�) + ‖(ρn, ρn

�)‖H1(0,T ;H)∩L∞(0,T ;V) ≤ cε. (5.27)

Consequence. Just by Lipschitz continuity, we also have that

‖(βε + π)(ρn)‖L∞(0,T ;H) + ‖(β�, ε + π�)(ρn
�)‖L∞(0,T ;H�) ≤ cε.

On the other hand, if we test (5.22) by (|�|+|�|)−1(1, 1), then we obtain, for a.a. t ∈ (0, T ),

|mean(μn, μn
�)(t)|

≤ c
{‖∂tρ

n(t)‖H + ‖∂tρ
n
�(t)‖H� + ‖(βε + π)(ρn(t))‖H + ‖(β�, ε + π�)(ρn

�(t))‖H�

}

.

Therefore, we have shown that mean(μn, μn
�) is bounded in L2(0, T ), so that (5.27) and

(2.6) allow us to conclude that

‖(μn, μn
�)‖L2(0,T ;V) ≤ cε. (5.28)

Conclusion. We account for (5.27)–(5.28) and use standard weak and weak star compact-
ness results, as well as the Aubin–Lions lemma (see, e.g., [37, Thm. 5.1, p. 58]). It follows
that

(μn, μn
�) → (με, με

�) weakly in L2(0, T ;V), (5.29)

(ρn, ρn
�) → (ρε, ρε

�) weakly star in H1(0, T ;H) ∩ L∞(0, T ;V)

and strongly in L2(0, T ;H), (5.30)

as n tends to infinity, at least for a subsequence. By Lipschitz continuity, we also deduce that
(βε + π)(ρn) and (β�, ε + π�)(ρn

�) converge to (βε + π)(ρε) and (β�, ε + π�)(ρε
�) strongly

in L2(0, T ; H) and in L2(0, T ; H�), respectively. Moreover, ρnu converges to ρεu weakly
in L2(0, T ; L2(�)), since u ∈ L2(0, T ; L3(�)) and ρn is bounded in L∞(0, T ; L6(�)), by
the Sobolev inequality. Finally, (ρn, ρn

�)(0) converges to (ρε, ρε
�)(0) at least weakly in H,

so that (5.12) is satisfied.
Now, we recall (5.19) for the definition of V∞, and take an arbitrary V∞-valued step

function (v, v�). Since the range of (v, v�) is finite dimensional, there exists some m such
that (v, v�)(t) ∈ Vm for a.a. t ∈ (0, T ). It follows that (v, v�)(t) ∈ Vn for a.a. t ∈ (0, T ) and
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every n ≥ m, so that we can test (5.21) and (5.22), written at the time t , by (v, v�)(t) and
integrate over (0, T ). At this point, it is straightforward to deduce that (με, με

�), (ρε, ρε
�)

and the functions ζ ε and ζ ε
� given by (5.9) satisfy the integrated version of (5.10)–(5.11) for

every such step functions, namely we have that
∫

Q
∂tρ

ε v +
∫




∂tρ
ε
� v� −

∫

Q
ρεu · ∇v +

∫

Q
∇με · ∇v +

∫




∇με
� · ∇v� = 0,

τ ε
�

∫

Q
∂tρ

ε v + τ ε
�

∫




∂tρ
ε
� v� +

∫

Q
∇ρε · ∇v +

∫




∇�ρε
� · ∇�v�

+
∫

Q

(

ζ ε + π(ρε)
)

v +
∫




(

ζ ε
� + π�(ρε

�)
)

v� =
∫

Q
μεv +

∫




με
�v�.

By density, the same equations hold true for every (v, v�) ∈ L2(0, T ;V). This implies that
(5.10)–(5.11) hold a.e. in (0,T) and for every (v, v�) ∈ V, as desired. We notice that (5.10)
and (5.11) are formally equal to (2.28) and (2.29), respectively. Moreover, by accounting
for (2.21), we can replace the term − ∫

�
ρεu · ∇v by the expression

∫

�
∇ρε · u v in (5.10)

and notice that ∇ρε · u belongs to L2(0, T ; H), since ρε ∈ L∞(0, T ; L6(�)) and u ∈
L2(0, T ; L3(�)). This, and what we already know for the other terms, allow us to apply i)
and i i) of Theorem 2.1. We then deduce the full regularity (5.7)–(5.8), by starting from the
lower regularity already established. ��

6 Existence

This section is devoted to the conclusion of the proof of Theorem 2.3. Namely, we show that
the solutions to the approximating problems converge to a solution to problem (2.28)–(2.31)
satisfying (2.45). We recall that the constant mean value property (2.32) is also satisfied by
the solutions to the ε-approximating problems. In performing our estimates, we avoid the
superscript ε in the notation of the solution, for simplicity, writing it only at the end of each
step.

First a priori estimate. We test (5.10) and (5.11), written at the time s, by (μ,μ�)(s) and
∂t (ρ, ρ�)(s), respectively. Then, we integrate over (0, t) and sum up. Moreover, we add the
same terms

∫

Qt
ρ∂tρ and

∫


t
ρ�∂tρ� to both sides. Since some terms cancel each other, we

obtain the identity
∫

Qt

|∇μ|2 +
∫


t

|∇�μ�|2 + τ ε
�

∫

Qt

|∂tρ|2 + τ ε
�

∫


t

|∂tρ�|2

+ 1

2
‖(ρ, ρ�)(t)‖2V +

∫

�

̂βε(ρ(t)) +
∫

�

̂β�, ε(ρ�(t))

= 1

2
‖(ρ0, ρ0|�)‖2V +

∫

�

̂βε(ρ0) +
∫

�

̂β�, ε(ρ0|�)

+
∫

Qt

(

ρ − π(ρ)
)

∂tρ +
∫


t

(

ρ� − π�(ρ�)
)

∂tρ� +
∫

Qt

ρu · ∇μ.

Now, we observe that
∫

Qt

ρu·∇μ ≤
∫ t

0
‖ρ(s)‖6 ‖u(s)‖3 ‖∇μ(s)‖2 ds ≤ 1

2

∫

Qt

|∇μ|2+c
∫ t

0
‖u(s)‖23 ‖ρ(s)‖2V ds,
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and that the function s �→ ‖u(s)‖23 belongs to L1(0, T ), by (2.21). Therefore, also on account
of (5.2) and (2.22), we easily conclude from Gronwall’s lemma that

‖∇με‖L2(0,T ;H) + ‖∇�με
�‖L2(0,T ;H�) + ‖(ρε, ρε

�)‖L∞(0,T ;V)

+ ‖̂βε(ρ
ε)‖L∞(0,T ;L1(�)) + ‖̂β�, ε(ρ

ε
�)‖L∞(0,T ;L1(�))

+ (τ ε
�)1/2‖∂tρ

ε‖L2(0,T ;H) + (τ ε
�)1/2‖∂tρ

ε
�‖L2(0,T ;H�) ≤ c. (6.1)

Consequence. By testing (5.10) with an arbitrary (v, v�) ∈ L2(0, T ;V), and owing to the
assumptions (2.21) on u, we have that

〈∂t (ρ, ρ�), (v, v�)〉V
≤ ‖∇μ‖L2(0,T ;H)‖v‖L2(0,T ;V ) + ‖∇�μ�‖L2(0,T ;H�)‖v�‖L2(0,T ;V�)

+ ‖ρ‖L∞(0,T ;L6(�)) ‖u‖L2(0,T ;L3(�)) ‖∇v‖L2(0,T ;L2(�)).

Then, the continuous embedding V ⊂ L6(�) and (6.1) imply that

‖∂t (ρ
ε, ρε

�)‖L2(0,T ;V ∗) ≤ c. (6.2)

Second a priori estimate. We account for (2.23) and test (5.11) by the V0-valued function
(ρ − m0, ρ� − m0) a.e. in (0,T) without integrating with respect to time. Setting α :=
mean(μ,μ�) a.e. in (0,T) for a while, we obtain

∫

�

βε(ρ)(ρ − m0) +
∫

�

β�, ε(ρ�)(ρ� − m0)

= − τ ε
�

∫

�

∂tρ(ρ − m0) − τ ε
�

∫

�

∂tρ�(ρ� − m0) −
∫

�

|∇ρ|2 −
∫

�

|∇�ρ�|2

−
∫

�

π(ρ)(ρ − m0) −
∫

�

π�(ρ�)(ρ� − m0)

+
∫

�

(μ − α)(ρ − m0) +
∫

�

(μ� − α)(ρ� − m0) (6.3)

a.e. in (0,T). Observe that in the right-hand side of (6.3) the integrals involving the gra-
dients are bounded in L∞(0, T ), due to (6.1). Then, by using the inner product in H, the
corresponding Schwarz inequality, and the Lipschitz continuity of π and π� , we deduce that

∫

�

βε(ρ)(ρ − m0) +
∫

�

β�, ε(ρ�)(ρ� − m0)

≤ ∣

∣

(

(τ ε
�∂tρ, τ ε

�∂tρ�), (ρ − m0, ρ� − m0)
)

H

∣

∣ + c

+ ∣

∣

(

(π(ρ), π�(ρ�)), (ρ − m0, ρ� − m0)
)

H

∣

∣

+ ∣

∣

(

(μ − α,μ� − α), (ρ − m0, ρ� − m0)H
)∣

∣

≤ {‖(τ ε
�∂tρ, τ ε

�∂tρ�)‖H + c ‖(ρ, ρ�)‖H + c + ‖(μ − α,μ� − α)‖H
} ×

× ‖(ρ − m0, ρ� − m0)‖H + c.

Hence, in view of (6.1) and (5.6), we deduce that
∫

�

|βε(ρ)| +
∫

�

|β�, ε(ρ�)| ≤ c‖(μ − α,μ� − α)‖H + ψε, (6.4)

where ψε is bounded in L2(0, T ) uniformly with respect to ε. On the other hand, owing to
the definition (2.8) and recalling that ‖ · ‖V0 is a norm on V0 that is equivalent to the standard
one, we have that
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‖(μ − α,μ� − α)‖H ≤ c ‖(μ − α,μ� − α)‖V0 = c ‖(∇μ,∇�μ�)‖H.

Since the last term is bounded in L2(0, T ) by (6.1), the inequality (6.4) implies that

‖βε(ρ)‖L2(0,T ;L1(�)) + ‖β�, ε(ρ�)‖L2(0,T ;L1(�)) ≤ c.

At this point, we can test (5.11) by (1, 1) and find a bound for mean(μ,μ�) in L2(0, T ).
Combining it with (6.1), we conclude that

‖(με, με
�)‖L2(0,T ;V) ≤ c. (6.5)

Third a priori estimate. We test (5.11), written at the time s, with (βε(ρ), βε(ρ�))(s) and
integrate over (0, t) with respect to s, obtaining the identity

τ ε
�

∫

�

̂βε(ρ(t)) + τ ε
�

∫

�

̂βε(ρ�(t)) +
∫

Qt

β ′
ε(ρ)|∇ρ|2 +

∫




β ′
�, ε(ρ�)|∇�ρ�|2

+
∫

Qt

|βε(ρ)|2 +
∫


t

β�, ε(ρ�) βε(ρ�)

= τ ε
�

∫

�

̂βε(ρ0) + τ ε
�

∫

�

̂βε(ρ0|�) +
∫

Qt

(

μ − π(ρ)
)

βε(ρ) +
∫


t

(

μ� − π�(ρ�)
)

βε(ρ�).

All of the terms on the left-hand side are nonnegative but the last one, for which we have,
thanks to (5.5),

∫


t

β�, ε(ρ�) βε(ρ�) ≥ 1

2η

∫


t

|βε(ρ�)|2 − c.

Since the right-hand side can be easily handled by using the Young inequality, (5.2), (2.22),
and the estimates (6.1) and (6.5), we conclude that

‖ζ ε‖L2(0,T ;H) + ‖βε(ρ
ε
�)‖L2(0,T ;H�) ≤ c. (6.6)

Fourth a priori estimate. We apply the part i i i) of Theorem 2.1 to the solution to the
approximating problem with the choice γ = β�, ε . As the constant C3 does not depend on ε,
inequality (2.41) yields a bound for ζ� in terms of quantities that have already been estimated.
Hence, we conclude that

‖ζ ε
�‖L2(0,T ;H�) ≤ c. (6.7)

At this point, we can apply the part i i) of Theorem 2.1. We thus have

‖(ρε, ρε
�)‖L2(0,T ;W) ≤ c. (6.8)

Conclusion. We account for (6.1)–(6.8) and use standard weak and weak star compactness
results as well as the Aubin–Lions lemma (see, e.g., [37, Thm. 5.1, p. 58]). We have

(με, με
�) → (μ,μ�) weakly in L2(0, T ;V),

(ρε, ρε
�) → (ρ, ρ�) weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V) ∩ L2(0, T ;W)

and strongly in L2(0, T ;H),

τ ε
�∂tρ

ε → τ�∂tρ weakly in L2(0, T ; H),

τ ε
�∂tρ

ε
� → τ�∂tρ� weakly in L2(0, T ; H�),

(ζ ε, ζ ε
�) → (ζ, ζ�) weakly inL2(0, T ;H),
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as ε tends to zero, at least for a subsequence. Moreover, ρεu converges to ρu weakly in
L2(0, T ; L2(�)), since u ∈ L2(0, T ; L3(�)) and ρε converges to ρ at least weakly star in
L∞(0, T ; L6(�)).At this point, it is straightforward todeduce that ((μ,μ�), (ρ, ρ�), (ζ, ζ�))

satisfies the integrated version of (2.28)–(2.29) with time-dependent test function (v, v�) ∈
L2(0, T ;V), and this is equivalent to our formulation. Furthermore, thanks to the strong con-
vergence of (ρε, ρε

�) to (ρ, ρ�) and to well-known results on maximal monotone operators
(see, e.g., [2, Proposition 2.2, p. 38]), we derive (2.30), i.e., ζ ∈ β(ρ) and ζ� ∈ β�(ρ�).
Besides, (ρε, ρε

�)(0) converges to (ρ, ρ�)(0) at least weakly in V ∗, so that (2.31) holds true
as well. Finally, the estimate (2.45) follows from lower semicontinuity. ��

7 Complements

This section is devoted to the proof of Theorems 2.6, 2.8 and 2.9. Our proofs rely on further
a priori estimates on the solutions to the ε-approximating problems. However, in performing
them, we proceed formally, for brevity. Also in this section, we write the superscript ε in
the notation for the solution only at the end of each step. From now on, we assume that
τ� > 0, τ� > 0 and that (2.47)–(2.48) hold true. We can also take ε ≤ min{τ�, τ�}, so that
τ ε
� = τ� and τ ε

� = τ� (see (5.1)).

Fifth a priori estimate. We differentiate both (5.10) and (5.11) with respect to time. By
noting that mean(∂t (ρ, ρ�)) = 0 by (2.32), we test the obtained equations by (ξ, ξ�) :=
N(∂t (ρ, ρ�)) and ∂t (ρ, ρ�), respectively. We obtain the identities

∫

Qt

∂2t ρ ξ +
∫


t

∂2t ρ� ξ� +
∫

Qt

∇∂tμ · ∇ξ +
∫


t

∇�∂tμ� · ∇�ξ�

=
∫

Qt

∂tρ u · ∇ξ +
∫

Qt

ρ ∂t u · ∇ξ,

τ�

2

∫

�

|∂tρ(t)|2 + τ�

2

∫

�

|∂tρ�(t)|2 +
∫

Qt

|∇∂tρ|2 +
∫


t

|∇�∂tρ�|2

+
∫

Qt

β ′
ε(ρ)|∂tρ|2 +

∫


t

β ′
�, ε(ρ�)|∂tρ�|2

= τ�

2

∫

�

|∂tρ(0)|2 + τ�

2

∫

�

|∂tρ�(0)|2

−
∫

Qt

π ′(ρ)|∂tρ|2 −
∫


t

π ′
�(ρ�)|∂tρ�|2 +

∫

Qt

∂tμ∂tρ +
∫


t

∂tμ�∂tρ�.

Now, we add these equalities to each other and treat the sum of the first two integrals by
accounting for (2.14). Moreover, we can cancel four terms in the sum due to the definition
of N (see (2.9)–(2.10)). Finally, we recall that β ′

ε and β ′
�, ε are nonnegative, and integrate by

parts the integrals involving u by using (2.21). We then obtain that

1

2
‖∂t (ρ, ρ�)(t)‖2∗+

τ�

2

∫

�

|∂tρ(t)|2 + τ�

2

∫

�

|∂tρ�(t)|2+
∫

Qt

|∇∂tρ|2 +
∫


t

|∇�∂tρ�|2

≤ I0 −
∫

Qt

∇∂tρ · u ξ −
∫

Qt

∇ρ · ∂t u ξ−
∫

Qt

π ′(ρ)|∂tρ|2−
∫


t

π ′
�(ρ�)|∂tρ�|2, (7.1)

where

I0 := 1

2
‖∂t (ρ, ρ�)(0)‖2∗ + τ�

2

∫

�

|∂tρ(0)|2 + τ�

2

∫

�

|∂tρ�(0)|2. (7.2)
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Now, we estimate the integrals involving u by using the Hölder inequality, the continuous
embedding V ⊂ L6(�), the equivalence on V0 of the norms ‖ · ‖V and ‖ · ‖V0 , and the
definition (2.11) of ‖ · ‖∗. We have

−
∫

Qt

∇∂tρ · u ξ ≤
∫ t

0
‖∇∂tρ(s)‖2 ‖u(s)‖3 ‖ξ(s)‖6 ds

≤ 1

2

∫

Qt

|∇∂tρ|2 + c
∫ t

0
‖u(s)‖23 ‖ξ(s)‖2V ds

≤ 1

2

∫

Qt

|∇∂tρ|2 + c
∫ t

0
‖u(s)‖23 ‖(ξ, ξ�)(s)‖2V0

ds

≤ 1

2

∫

Qt

|∇∂tρ|2 + c
∫ t

0
‖u(s)‖23 ‖∂t (ρ, ρ�)(s)‖2∗ ds,

as well as

−
∫

Qt

∇ρ · ∂t u ξ ≤
∫ t

0
‖∇ρ(s)‖6 ‖∂t u(s)‖3/2 ‖ξ(s)‖6 ds

≤ c
∫ t

0
‖∇ρ(s)‖2V ds + c

∫ t

0
‖∂t u(s)‖23/2 ‖∂t (ρ, ρ�)(s)‖2∗ ds,

and we notice that the first term on the right-hand side is already bounded due to (6.8). In
addition, the functions s �→ ‖u(s)‖23 and s �→ ‖∂t u(s)‖23/2 belong to L1(0, T ), by (2.21)
and (2.47). The last two terms on the right-hand side of (7.1) can easily be dealt with, by
using the boundedness of π ′ and π ′

� and the compactness inequality (2.58) in the following
way:

−
∫

Qt

π ′(ρ)|∂tρ|2 −
∫


t

π ′
�(ρ�)|∂tρ�|2

≤ 1

2

∫

Qt

|∇∂tρ|2 + 1

2

∫


t

|∇�∂tρ�|2 + c
∫ t

0
‖∂t (ρ, ρ�)(s)‖2∗ ds.

It remains to estimate the terms appearing in (7.2). To do that, we write (5.10)–(5.11) at time
t = 0 and account for the initial condition (5.12). We have

∫

�

∂tρ(0)v +
∫

�

∂tρ�(0)v� +
∫

�

∇μ(0) · ∇v +
∫

�

∇�μ�(0) · ∇�v� =
∫

�

ρ0 u(0) · ∇v,

τ�

∫

�

∂tρ(0) v + τ�

∫

�

∂tρ�(0) v� +
∫

�

∇ρ0 · ∇v +
∫

�

∇�ρ0|� · ∇�v�

+
∫

�

(βε + π)(ρ0)v +
∫

�

(β�, ε + π�)(ρ0|�)v� =
∫

�

μ(0)v +
∫

�

μ�(0)v�,

for every (v, v�) ∈ V. Now, we choose (v, v�) = (ξ, ξ�) := N(∂t (ρ, ρ�)(0)) in the first
equality, (v, v�) = ∂t (ρ, ρ�)(0) in the second, and add. The terms involvingμ(0) andμ�(0)
cancel out by the definition of N (see (2.9)–(2.10)). Moreover, invoking (2.12), we obtain
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that

‖∂t (ρ, ρ�)(0)‖2∗ + τ�

∫

�

|∂tρ(0)|2 + τ�

∫

�

|∂tρ�(0)|2

=
∫

�

ρ0 u(0) · ∇ξ −
∫

�

∇ρ0 · ∇∂tρ(0) −
∫

�

∇�ρ0|� · ∇�∂tρ�(0)

−
∫

�

(βε + π)(ρ0) ∂tρ(0) −
∫

�

(β�, ε + π�)(ρ0|�) ∂tρ�(0),

and we start estimating the right-hand side. For the first term, we account for the equiva-
lence on V0 of the norms ‖ · ‖V and ‖ · ‖V0 , and the definition (2.11) of ‖ · ‖∗ once more.
Furthermore, we use the continuous embedding W = H2(�) ⊂ C0(�) and the interpolation
property, where p, p0, p1 ∈ [1,+∞] and θ ∈ (0, 1) satisfy p0 �= p1 and 1

p = 1−θ
p0

+ θ
p1

(see [3, p. 8 and Thm. 5.3.1 p. 113]),

(L p0(�), L p1(�))θ,p = (L p0 p0(�), L p1 p1(�))θ,p = L pp(�) = L p(�)

which gives in particular (L3(�), L3/2(�))1/2,2 = L2(�) and thus the inequality

‖u(0)‖2 ≤ c ‖u‖H1(0,T ;L3/2(�))∩L2(0,T ;L3(�)) ≤ c.

Hence, we can do the following computation:

−
∫

�

ρ0 u(0) · ∇ξ ≤ ‖ρ0‖∞ ‖u(0)‖2 ‖∇ξ‖2

≤ c‖ρ0‖W ‖(ξ, ξ�)‖V0 ≤ c ‖∂t (ρ, ρ�)(0)‖∗ ≤ 1

2
‖∂t (ρ, ρ�)(0)‖2∗ + c.

We deal with the next two integrals by integrating by parts and using some of the assump-
tions (2.48):

−
∫

�

∇ρ0 · ∇∂tρ(0) −
∫

�

∇�ρ0|� · ∇�∂tρ�(0)

=
∫

�

�ρ0 ∂tρ(0) +
∫

�

(��ρ0|� − ∂νρ0)∂tρ�(0) ≤ δ

∫

�

|∂tρ(0)|2 + δ

∫

�

|∂tρ�(0)|2 + cδ,

where δ > 0 is arbitrary. By invoking (5.3) for βε and β�, ε, and the assumptions (2.48),
which also imply boundedness for ρ0 and ρ0|� , we find that

−
∫

�

(βε + π)(ρ0) ∂tρ(0) −
∫

�

(β�, ε + π�)(ρ0|�) ∂tρ�(0)

≤ (‖β◦(ρ0)‖2 + c
)‖∂tρ(0)‖2 + (‖β◦

�(ρ0|�)‖2 + c
)‖∂tρ�(0)‖2

≤ δ‖∂tρ(0)‖22 + δ‖∂tρ�(0)‖22 + cδ.

Recalling all of the above estimates, and choosing δ > 0 small enough, we see that I0 ≤ c.
At this point, we come back to (7.1) and apply the Gronwall lemma. We then conclude that

‖∂t (ρ
ε, ρε

�)‖L∞(0,T ;H)∩L2(0,T ;V) ≤ c, whence ‖(ρε, ρε
�)‖W 1,∞(0,T ;H)∩H1(0,T ;V) ≤ c.

(7.3)

123



On a Cahn–Hilliard system with convection... 1469

Remark 7.1 In connection with Remark 2.7, if τ� and τ� are not supposed to be positive and
(2.51) holds, one modifies the last estimates on the initial values as follows: we have

−
∫

�

∇ρ0 · ∇∂tρ(0) −
∫

�

∇�ρ0|� · ∇�∂tρ�(0)

−
∫

�

(βε + π)(ρ0) ∂tρ(0) −
∫

�

(β�, ε + π�)(ρ0|�) ∂tρ�(0)

= −
∫

�

(−�ρ0 + (βε + π)(ρ0)
)

∂tρ(0)

−
∫

�

(

��ρ0|� − ∂νρ0 + (β�, ε + π�)(ρ0|�)
)

∂tρ�(0)

≤ ‖(−�ρ0 + (βε + π)(ρ0),��ρ0|� − ∂νρ0 + (β�, ε + π�)(ρ0|�))‖V ‖∂t (ρ, ρ�)(0)‖V ∗

≤ δ‖∂t (ρ, ρ�)(0)‖2V ∗ + cδ.

This leads to an estimate that is somewhat weaker than (7.3) and yields a weaker result at
the end of the procedure, as announced in the quoted remark.

Sixth a priori estimate. We set α := mean(μ,μ�) for a while and test (5.10) by the
V0-valued function (μ,μ�) − α(1, 1). We obtain, for a.e. t ∈ (0, T ),

∫

�

|∇μ|2 +
∫

�

|∇�μ�|2 = −
∫

�

∂tρ(μ − α) −
∫

�

∂tρ�(μ� − α) +
∫

�

ρ u ∇μ.

Now, we recall that the norm (2.8) is equivalent on V0 to the natural norm. Thus, by also
accounting for (2.47) and for (7.3), combined with the continuous embedding V ⊂ L6(�),
we may estimate the right-hand side a.e. in (0,T) as follows:

−
∫

�

∂tρ(μ − α) −
∫

�

∂tρ�(μ� − α) +
∫

�

ρ u ∇μ

≤ c ‖∂t (ρ, ρ�)‖V∗‖(μ,μ�) − α(1, 1)‖V0 + ‖ρ‖6 ‖u‖3 ‖∇μ‖2
≤ c

(‖∇μ‖2 + ‖∇�μ�‖2
)

.

At this point, the Young inequality immediately yields that

‖∇με‖L∞(0,T ;H) + ‖∇�με
�‖L∞(0,T ;H�) ≤ c, i.e.,

‖(με, με
�) − mean(με, με

�)(1, 1)‖L∞(0,T ;V) ≤ c. (7.4)

Seventh a priori estimate. We recall the estimate (6.4) already obtained, which holds a.e.
in (0,T) and also involves α := mean(μ,μ�). From (7.3) and (7.4), we infer that

‖βε(ρ)‖L∞(0,T ;L1(�)) + ‖β�, ε(ρ�)‖L∞(0,T ;L1(�)) ≤ c.

We use this bound and (7.3) in the next estimate: we test (5.11) by (1, 1)/(|�| + |�|) and
obtain, for a.a. t ∈ (0, T ),

|mean(μ,μ�)(t)| ≤ c ‖∂t (ρ, ρ�)‖L∞(0,T ;V∗)
+ c‖(βε + π)(ρ)‖L∞(0,T ;L1(�)) + c‖(β�, ε + π�)(ρ�)‖L∞(0,T ;L1(�)) ≤ c.

Combining this with (7.4), we conclude that

‖(με, με
�)‖L∞(0,T ;V) ≤ c, whence ‖(με, με

�)‖L∞(0,T ;H) ≤ c. (7.5)
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Eighth estimate. At this point, we can test (5.11) by (βε(ρ), βε(ρ�)) a.e. in (0,T). By
taking advantage of the above estimates and of (5.5), we immediately deduce that

‖βε(ρ
ε)‖L∞(0,T ;H) + ‖βε(ρ

ε
�)‖L∞(0,T ;H�) ≤ c. (7.6)

Ninth a priori estimate. We apply the part vi) of Theorem 2.1 to the solution to the
approximating problem with the choice γ = β�, ε . As the constant C6 does not depend on ε,
inequality (2.44) yields a bound for ζ� in terms of quantities that have already been estimated.
Hence, we conclude that

‖ζ ε
�‖L∞(0,T ;H�) ≤ c. (7.7)

At this point, we can apply the part v) of Theorem 2.1. We thus have

‖(ρε, ρε
�)‖L∞(0,T ;W) ≤ c. (7.8)

Proof of Theorem 2.6 We come back to the argument used for the existence part of proof
of Theorem 2.3, recalling that the solution to the approximating problem converges to a
solution to problem (2.28)–(2.31) in a proper topology, at least for a subsequence. In view of
the estimates (7.3)–(7.8), the limiting solution also satisfies the further regularity specified
by (2.49), and estimate (2.50) follows from semicontinuity. ��
Proof of Theorem 2.8 We recall that μ and μ� are bounded by Theorem 2.6. Thus, account-
ing for (2.53) and (2.54), we may choose ρ∗, ρ∗ ∈ (−1, 1) with ρ∗ ≤ ρ0 ≤ ρ∗ such that

(β + π)(r) + ‖μ‖∞ ≤ 0 and (β� + π�)(r) + ‖μ�‖∞ ≤ 0 for every r ∈ (−1, ρ∗),
(β + π)(r) − ‖μ‖∞ ≥ 0 and (β� + π�)(r) − ‖μ�‖∞ ≥ 0 for every r ∈ (ρ∗, 1).

Then, we test (2.29) by ((ρ − ρ∗)+, (ρ� − ρ∗)+), where ( · )+ stands for the positive part,
and integrate with respect to time. We obtain the identity

τ�

∫

�

|(ρ(t) − ρ∗)+|2 + τ�

∫

�

|(ρ�(t) − ρ∗)+|2

+
∫

Qt

|∇(ρ − ρ∗)+|2 +
∫


t

|∇�(ρ� − ρ∗)+|2

=
∫

Qt

(

μ − (β + π)(ρ)
)

(ρ − ρ∗)+

+
∫


t

(

μ� − (β� + π�)(ρ�)
)

(ρ� − ρ∗)+.

Since the right-hand side is non-positive, we conclude that (ρ − ρ∗)+ = 0, i.e., ρ ≤ ρ∗. In
the same way, one proves that (ρ∗ − ρ)+ = 0, i.e., ρ ≥ ρ∗. ��

Now, we start the proof of Theorem 2.9. Also in this case, we proceed formally. Moreover,
in order to simplify the notation, we perform our estimates on the solutions to problem
(2.28)–(2.31), directly, and avoid the approximating problem. For i = 1, 2, we denote, by
μi , μi� , etc., the components of the solutions corresponding to ui , while μ, μ� , etc., are the
differences, e.g., μ = μ1 − μ2, according to the notation of the statement. For brevity, we
also set u := u1 − u2, as well as

f := ̂β + π̂ , f� := ̂β� + π̂�, whence f ′ = β + π and f ′
� = β� + π�.

Moreover, since the result given by Theorem 2.8 holds for both solutions, we can assume
that f ′, f ′′, f ′

� and f ′′
� are bounded and Lipschitz continuous, the corresponding constants
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depending only on the previous assumptions on the structure, the norms of the velocity fields
ui related to (2.47) and the assumptions (2.48) on the initial datum.

First auxiliary estimate. We write (2.28) for both solutions, take the difference and differ-
entiate with respect to time. Then, we test the obtained equality by (ξ, ξ�) := N(∂t (ρ, ρ�))

a.e. in (0,T) and integrate over (0, t). With the help of (2.14) and (2.11), we infer that

1

2
‖∂t (ρ, ρ�)(t)‖2∗ +

∫

Qt

∇∂tμ · ∇ξ +
∫


t

∇�∂tμ� · ∇�ξ� =
∫

Qt

∂t
(

ρ1u1 − ρ2u2
) · ∇ξ.

At the same time, we write (2.29) for both solutions, take the difference and differentiate it
with respect to time; then, we test by ∂t (ρ, ρ�) and integrate over (0, t). Finally, we add the
same integrals

∫

Qt
(ρ ∂tρ + ∇ρ · ∇∂tρ) and

∫


t
(ρ�∂tρ� + ∇�ρ� · ∇�∂tρ�) to both sides,

for convenience. We obtain that

τ�

2

∫

�

|∂tρ(t)|2 + τ�

2

∫

�

|∂tρ�(t)|2 +
∫

Qt

|∇∂tρ|2 +
∫


t

|∇�∂tρ�|2

+ 1

2
‖ρ(t)‖2V + 1

2
‖ρ�(t)‖2V�

= −
∫

Qt

(

f ′′(ρ1)∂tρ1 − f ′′(ρ2)∂tρ2
)

∂tρ −
∫


t

(

f ′′
� (ρ1�)∂tρ1� − f ′′

� (ρ2�)∂tρ2�
)

∂tρ�

+
∫

Qt

∂tμ∂tρ +
∫


t

∂tμ� ∂tρ�

+
∫

Qt

(

ρ ∂tρ + ∇ρ · ∇∂tρ
) +

∫


t

(

ρ�∂tρ� + ∇�ρ� · ∇�∂tρ�

)

.

At this point, we add these equalities to each other and employ the definition ofN (see (2.9)–
(2.10)) in order to cancel four terms in the sum. Moreover, we rearrange the right-hand side,
account for (2.11) and the equivalence of (2.8) to the norm in V on the subspace V0, and use
the boundedness and the Lipschitz continuity of both f ′′ and f ′′

� . We then obtain that

∫

�

|∇ξ(t)|2 +
∫

�

|∇�ξ�(t)|2 +
∫

�

|∂tρ(t)|2 +
∫

�

|∂tρ�(t)|2

+
∫

Qt

|∇∂tρ|2 +
∫


t

|∇�∂tρ�|2 + ‖ρ(t)‖2V + ‖ρ�(t)‖2V�

≤ c
∫

Qt

|∂tρ| |u1| |∇ξ |+c
∫

Qt

|∂tρ2| |u| |∇ξ |+c
∫

Qt

|ρ| |∂t u1| |∇ξ | + c
∫

Qt

|ρ2| |∂t u| |∇ξ |

+ c
∫

Qt

|ρ| |∂tρ1| |∂tρ| + c
∫


t

|ρ�| |∂tρ1�| |∂tρ�|

+ c
∫

Qt

(|ρ2| + 1) |∂tρ|2 + c
∫


t

(|ρ2�| + 1) |∂tρ�|2

+ c
∫ t

0
‖ρ(s)‖V ‖∂tρ(s)‖V ds + c

∫ t

0
‖ρ�(s)‖V� ‖∂tρ�(s)‖V� ds ≤ c

10
∑

j=1

I j ,
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with obvious definitions of I1, . . . , I10. We now estimate each of these integrals by using the
Hölder, Sobolev and Young inequalities as follows. We have, for every δ > 0,

I1 ≤
∫ t

0
‖∂tρ(s)‖6 ‖u1(s)‖3 ‖∇ξ(s)‖2 ds

≤ δ

∫ t

0
‖∂tρ(s)‖2V ds + cδ

∫ t

0
‖u1(s)‖23 ‖∇ξ(s)‖22 ds,

I2 ≤
∫ t

0
‖∂tρ2(s)‖6 ‖u(s)‖3 ‖∇ξ(s)‖2 ds

≤ δ

∫ t

0
‖u(s)‖23 ds + cδ

∫ t

0
‖∂tρ2(s)‖2V ‖∇ξ(s)‖22 ds,

I3 ≤
∫ t

0
‖ρ(s)‖6 ‖∂t u1(s)‖3 ‖∇ξ(s)‖2 ds

≤ c
∫ t

0
‖ρ(s)‖2V ds +

∫ t

0
‖∂t u1(s)‖23 ‖∇ξ(s)‖22 ds,

I4 ≤
∫

Qt

|∇ξ(s)|2 + c ‖ρ2‖2∞
∫

Qt

|∂t u|2,

I5 ≤
∫ t

0
‖ρ(s)‖3 ‖∂tρ1(s)‖3 ‖∂tρ(s)‖3 ds

≤ δ

∫ t

0
‖∂tρ(s)‖2V ds + cδ

∫ t

0
‖∂tρ1(s)‖2V ‖ρ(s)‖2V ds

= δ

∫

Qt

|∇∂tρ|2 + δ

∫

Qt

|∂tρ|2 + cδ

∫ t

0
‖∂tρ1(s)‖2V ‖ρ(s)‖2V ds.

Moreover, an analogous estimate holds for I6. On the other hand, it is easy to see that

I7 ≤ c (1 + ‖ρ2‖∞)

∫

Qt

|∂tρ|2 , I8 ≤ c (1 + ‖ρ2�‖∞)

∫


t

|∂tρ�|2.

Finally, I9 and I10 can be treated just with the Young inequality. Now, we observe that the
functions

s �→ ‖u1(s)‖23, s �→ ‖∂tρi (s)‖2V , i = 1, 2 , s �→ ‖∂t u1(s)‖23, s �→ ‖∂tρ1�(s)‖2V�
,

all belong to L1(0, T ). Hence, we collect all the inequalities we have obtained, choose δ

small enough and apply the Gronwall lemma. We conclude that

‖(∇ξ,∇�ξ�)‖L∞(0,T ;H) + ‖(ρ, ρ�)‖W 1,∞(0,T ;H)∩H1(0,T ;V) ≤ c ‖u‖H1(0,T ;L3(�)), (7.9)

where we recall that (ξ, ξ�) := N(∂t (ρ, ρ�)). Notice that (7.9) implies a part of (2.56).

Second auxiliary estimate. We write the equation (2.28) for both solutions and test the
difference a.e. in (0,T) by (μ,μ�). The same we do with (2.29) and test the difference
by −(μ,μ�). Then, we sum up and have, a.e. in (0,T),
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‖μ‖2V + ‖μ�‖2V�

= (τ� − 1)
∫

�

∂tρ μ + (τ� − 1)
∫

�

∂tρ� μ� +
∫

�

(

ρ1u1 − ρ2u2
) · ∇μ

+
∫

�

∇ρ · ∇μ +
∫

�

∇�ρ� · ∇�μ�

+
∫

�

(

f ′(ρ1) − f ′(ρ2)
)

μ +
∫

�

(

f ′
�(ρ1�) − f ′

�(ρ2�)
)

μ�.

Now, we rearrange the right-hand side and use the boundedness and the Lipschitz continuity
of f ′ and f ′

� , as well as the Hölder and Young inequalities. We obtain a.e. in (0,T) that

‖μ‖2V + ‖μ�‖2V�

≤ δ ‖μ‖2H + cδ‖∂tρ‖2H +δ ‖μ�‖2H�
+cδ‖∂tρ�‖2H�

+ (‖ρ‖6 ‖u1‖3 + ‖ρ2‖6 ‖u‖3
)‖∇μ‖2

+ δ ‖∇μ‖2H + cδ‖∇ρ‖2H + δ ‖∇�μ�‖2H�
+ cδ‖∇�ρ�‖2H�

+ δ ‖μ‖2H + cδ‖ρ‖2H + δ ‖μ�‖2H�
+ cδ‖ρ�‖2H�

,

where δ > 0 is arbitrary. By choosing δ small enough, using the Sobolev inequality, and
recalling that u1 ∈ L∞(0, T ; L3(�)) and ρ2 ∈ L∞(0, T ; V ), we deduce that

‖μ‖2V + ‖μ�‖2V�
≤ c

(‖∂tρ‖2H + ‖∂tρ�‖2H�
+‖ρ‖2V + ‖ρ�‖2V�

+ ‖u‖23
)

a.e. in (0, T).

At this point, by accounting for (7.9), we conclude that

‖(μ,μ�)‖L∞(0,T ;V) ≤ c ‖u‖H1(0,T ;L3(�)). (7.10)

Proof of Theorem 2.9 We recall that (2.21) holds true for both u1 and u2 and rewrite the
transport terms in (2.28) in the form

∫

�
∇ρi · ui v. Then we take the difference of the

equations, written for both solutions, and apply Lemma 3.1 for a.a. t ∈ (0, T ) with γ = 0
and the following choice of g and g�:

g = (−∂tρ−∇ρ1 ·u1+∇ρ2 ·u2
)

(t) = (−∂tρ−∇ρ1 ·u+∇ρ ·u2
)

(t) and g� = −∂tρ�(t).

We then obtain that

‖(μ,μ�)(t)‖W ≤ c
(‖(μ,μ�)(t)‖V + ‖∂tρ(t)‖2 + ‖u(t)‖3 + ‖∇ρ(t)‖6 + ‖∂tρ�(t)‖2

)

,

where c depends only on � and the norms of ∇ρ1 and u2 in the spaces L∞(0, T ; L6(�))

and L∞(0, T ; L3(�)), respectively. By combining this with (7.9)–(7.10), we deduce that

‖(μ,μ�)‖L∞(0,T ;W) ≤ c ‖u‖H1(0,T ;L3(�)),

which is a part of (2.56). In order to prove the remaining part of the estimate, we write (2.29)
for both solutions, take the difference and apply Lemma 3.1 for a.a. t ∈ (0, T ) with γ = 0
and the choice

g = (−τ�∂tρ − f ′(ρ1) + f ′(ρ2) + μ
)

(t) and

g� = (−τ�∂tρ�− f ′
�(ρ1�) + f ′

�(ρ2�) + μ�

)

(t).

We then obtain that

‖(ρ, ρ�)‖L∞(0,T ;W) ≤ c
(‖(ρ, ρ�)‖L∞(0,T ;V) +‖(g, g�)‖L∞(0,T ;H)

) ≤ c ‖u‖H1(0,T ;L3(�)),

where the last inequality follows from (7.9) and (7.10).With this, (2.56) is completely proved.
��
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