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Abstract Let p ≥ 5 be a prime number.We find all the possible subgroups G of GL2(Z/pZ)

such that there exist a number field k and an elliptic curve E defined over k such that the
Gal(k(E[p])/k)-module E[p] is isomorphic to theG-module (Z/pZ)2 and there exists n ∈ N

such that the local–global divisibility by pn does not hold over E(k).
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1 Introduction

Let k be a number field, and let A be a commutative algebraic group defined over k. Several
papers have been written on the following classical question, known as the Local–Global
Divisibility Problem.

PROBLEM: Let P ∈ A(k). Assume that for all but finitely many valuations v of k, there
exists Dv ∈ A(kv) such that P = q Dv , where q is a positive integer. Is it possible to conclude
that there exists D ∈ A(k) such that P = q D?

By Bézout’s identity, to get answers for a general integer it is sufficient to solve it for
powers pn of a prime. In the classical case ofA = Gm , the answer is positive for p odd, and
negative for instance for q = 8 (and P = 16) (see for example [1,19]).

For general commutative algebraic groups, Dvornicich and Zannier gave a cohomological
interpretation of the problem (see [5] and [7]) that we shall explain. Let � be a group and
let M be a �-module. We say that a cocycle Z : � → M satisfies the local conditions if for
every γ ∈ �, there exists mγ ∈ M such that Zγ = γ (mγ ) − mγ . The set of the classes of
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cocycles in H1(�, M) that satisfy the local conditions is a subgroup of H1(�, M). We call
it the first local cohomology group H1

loc(�, M). Dvornicich and Zannier [5, Proposition 2.1]
proved the following result.

Proposition 1 Let p be a prime number, let n be a positive integer, let k be a number field and
let A be a commutative algebraic group defined over k. If H1

loc(Gal(k(A[pn])/k),A[pn]) =
0, then the local–global divisibility by pn over A(k) holds.

The converse of Proposition 1 is not true, but if the group H1
loc(Gal(k(A[pn])/k),A[pn])

is not trivial, we can find an extension L of k such that L∩k(A[pn]) = k, and the local–global
divisibility by pn over A(L) does not hold (see [7, Theorem 3] for the details).

Several mathematicians got criterions for the validity of the local–global divisibility prin-
ciple for various commutative algebraic groups, as algebraic tori [5] and [12], elliptic curves
[3–8,14–17], and very recently polarized abelian surfaces [9] and GL2-type varieties [10].

In this paper, we focus on elliptic curves. Let p be a prime number, let k be a number
field, and let E be an elliptic curve defined over k. Dvornicich and Zannier [7, Theorem 1]
found a very interesting criterion for the validity of the local–global divisibility by a power
of p over E(k), in the case when k ∩ Q(ζp) = Q.

In a joint work with Paladino and Viada (see [16], and Sect. 2), we refined this criterion,
by proving that if k does not contain Q(ζp + ζp) and E(k) does not admit a point of order
p, then for every positive integer n, the local–global divisibility by pn holds over E(k). In
another joint work with Paladino and Viada [17], we improved our previous criterion and the
new criterion allowed us to show that if k = Q and p ≥ 5, for every positive integer n the
local–global divisibility by pn holds for E(Q).

Very recently, Lawson and Wutrich [13] found a very strong criterion for the triviality of
H1(Gal(k(E[pn])/k), E[pn]) (then for the validity of the local–global principle by pn over
E(k), see Proposition 1), but still in the case when k ∩ Q(ζp) = Q.

Finally, Dvornicich and Zannier [6] and Paladino [14] studied the case when p = 2 and
Paladino [15] and Creutz [3] studied the case when p = 3.

Thus we have a fairly good understanding of the local–global divisibility by a power of p
over E(k) either when p ∈ {2, 3} or k does not contain Q(ζp + ζp) and E(k) does not admit
a point of order p. In this paper we prove the following result:

Theorem 2 Let p ≥ 5 be a prime number, let k be a number field and let E be an elliptic
curve defined over k. Suppose that there exists a positive integer n such that the local–global
divisibility by pn does not hold over E(k). Let G1 be Gal(k(E[p])/k). Then one of the
following holds:

1. p ≡ 2 mod (3) and G1 is isomorphic to a subgroup of S3 of order divisible by 3;
2. G1 is cyclic of order dividing p − 1, and it is generated by an element that has an

eigenvalue equal to 1;
3. G1 is contained in a Borel subgroup, and it is generated by an element σ of order p and

an element g of order dividing 2 such that σ and g have one common eigenvector for the
eigenvalue 1.

Moreover, for every case i ∈ {1, 2, 3} there exist a number field Li and an elliptic curve
Ei defined over Li , such that the Gal(Li (Ei [p])/Li )-module Ei [p] is isomorphic to the G1-
module E[p] of the case i and the local–global divisibility by p2 does not hold over E(Li ).

Proof By Proposition 4 and Lemma 15, we are in one of the three cases of the statement.
The elliptic curves exist in case 1 by Remark 6 and Corollary 9, in case 2 by Remark 6 and
Lemma 10, in case 3 by Remark 6 and Lemma 11. ��
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Counterexamples to the local–global divisibility over… 1217

Clearly the case 2 of Theorem 2 corresponds to the case when E(k) has a point of order p
defined over k. The cases 1 and 3 of Theorem 2 correspond to the case whenQ(ζp +ζp) ⊆ k.

By the main result of [16] and Theorem 2, we have the following corollary:

Corollary 3 Let p ≥ 5 be a prime number, let k be a number field and let E be an elliptic
curve defined over k. If p ≡ 1 mod (3) and E does not admit any point of order p over k,
then for every positive integer n, the local–global divisibility by pn holds over E(k). If p ≡ 2
mod (3), E does not admit any point of order p over k and [k(E[p]) : k] is not 3 or 6, then
for every positive integer n the local–global divisibility by pn holds over E(k).

Proof If k does not containQ(ζp +ζp), just apply the main result of [16]. If p ≡ 1 mod (3)
and k contains Q(ζp + ζp), and if there exists n ∈ N such that the local–global divisibility
by pn does not hold over E(k), then either case 2 or case 3 of Theorem 2 applies. Thus E
admits a point of order p defined over k.

If p ≡ 2 mod (3), E does not admit any point of order p over k, and there exists a positive
integer n such that the local–global divisibility by pn does not hold over E(k), then case 1
of Theorem 2 applies. Hence k(E[p])/k is either an extension of degree 3 or an extension of
degree 6. ��

2 Known results

In the following proposition, we combine the main results of [16] and [17] with results of
[9].

Proposition 4 Let k be a number field and let E be an elliptic curve defined over k. Let p
be a prime number and, for every m ∈ N, let Gm be Gal(k(E[pm])/k). Suppose that there
exists n ∈ N such that H1

loc(Gn, E[pn]) 
= 0. Then one of the following cases holds:

1. If p does not divide |G1|, then either G1 is cyclic of order dividing p−1, generated by an
element fixing a point of order p of E , or p ≡ 2 mod (3) and G1 is a group isomorphic
either to S3 or to a cyclic group of order 3;

2. If p divides |G1| then G1 is contained in a Borel subgroup, and it is either cyclic of order
p, or it is generated by an element of order p and an element of order 2 distinct from
−I d.

Proof Suppose first that p does not divide |G1|. By the argument in [7, p. 29], we have that
G1 is isomorphic to its projective image. By [18, Proposition 16], then G1 is either cyclic,
or dihedral or isomorphic to one of the following groups: A4, S4, A5.

Suppose that the last case holds. ThenG1 should contain a subgroup isomorphic toZ/2Z×
Z/2Z, and so it contains−I d . This contradicts the fact that G1 is isomorphic to its projective
image.

Suppose that G1 is dihedral. Then G1 is generated by τ and σ with σ of order 2 and
στ = τ−1σ . In particular all the elements of G1 have determinant either 1 or −1. Suppose
that there exists i ∈ N such that τ i has order dividing p − 1, and distinct from 1. Observe
that since p does not divide |G1|, we have H1(G1, E[p]) = 0. Then, by [9, Theorem 2],
we get that τ i has at least an eigenvalue equal to 1. Thus, since τ i is not the identity, it
has determinant −1. Then τ i has order 2. Since στ = τ−1σ , we get στ i = τ−iσ = τ iσ ,
because τ i has order 2. Then, since G1 is not cyclic, τ i and σ are two distinct elements of
order 2 which commute. Thus, like in the previous case, G1 contains a subgroup isomorphic
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1218 G. Ranieri

to Z/2Z × Z/2Z, and so it contains −I d . This contradicts the fact that G1 is isomorphic to
its projective image. Then τ has odd order dividing p +1. In particular it has two eigenvalues
over Fp2 : λ and λp . By [9, Proposition 17, Lemma 18] (or see [2, Sect. 3]), if there exists
n ∈ N such that H1(Gn, E[pn]) 
= 0, then the intersection between the sets {1, λp−1, λ1−p}
and {λ, λp} is not trivial. It follows that τ has order 3. Then 3 divides p + 1 and G1 is
isomorphic to S3.

Finally suppose that G1 is cyclic. If G1 is generated by an element of order dividing p−1,
by [9, Theorem 2] we have that such an element has an eigenvalue equal to 1. On the other
hand if the generator of G1 has order not dividing p −1, again by [9, Proposition 17, Lemma
18] (see the dihedral case) we get that such an element has order 3 and 3 divides p + 1.

Suppose now that p divides |G1|. Since p divides the order of G1, by [18, Proposition
15] and the fact that G1 is isomorphic to its projective image, we have that G1 is contained
in a Borel subgroup. In particular the p-Sylow subgroup N of G1 is normal. Suppose that
G1/N is not cyclic. Then G1 is not isomorphic to its projective image. Thus G1 is generated
by an element σ of order p, which generates N , and an element g of order dividing p − 1.
Suppose that 1 is not an eigenvalue for g. Then by [9, Theorem 2] (in particular notice
that, by [9, Remark 16], the hypothesis H1(G1, E[p]) = 0 is not necessary), we have
H1
loc(Gm, E[pm]) = 0 for every m ∈ N and so we get a contradiction. Then g has an

eigenvalue equal to 1. Suppose that g has order ≥ 3. Then its determinant has order ≥ 3 and
so, since the determinant is the pth cyclotomic character, k does not containQ(ζp +ζp). Then
if g and σ do not fix the same point of order p, by [16, Theorem 1] we get a contradiction.
On the other hand, since p divides the order of G1, we have k(E[p]) 
= k(ζp). Then by [17,
Theorem 3], we get a contradiction.

We conclude that G1 is either cyclic of order p, or it is generated by an element g of order
2 distinct from −I d and an element of order p (which generates a normal subgroup of G1).

��
We now recall some properties of the Galois action over the torsion points on an ellip-

tic curve over a number field. In [8] we proved the following Lemma, which is a direct
consequence of very interesting results of Greicius [11] and Zywina [20].

Lemma 5 Given a prime number p, a positive integer n and a subgroup G of GL2(Z/pn
Z),

there exists a number field k and an elliptic curve E defined over k such that there are an
isomorphism φ : Gal(k(E[pn])/k) → G and a Z/pn

Z-linear homomorphism τ : E[pn] →
(Z/pn

Z)2 such that, for all σ ∈ Gal(k(E[pn])/k) and v ∈ E[pn], we have φ(σ)τ(v) =
τ(σ (v)).

Proof See [8, Lemma 11]. ��
Remark 6 Given a prime number p, a positive integer n and a subgroup G of GL2(Z/pn

Z),
if we suppose H1

loc(G, (Z/pn
Z)2) 
= 0, then by Lemma 5, there exist a number field k and

an elliptic curve E defined over k such that H1
loc(Gn, E[pn]) 
= 0. Hence, by [7, Theorem

3], there exists a finite extension L of k such that L ∩ k(E[pn]) = k and the local–global
divisibility by pn does not hold over E(L).

3 Auxiliary results in the prime to p case

Let p ≡ 2 mod (3) be a prime number. In [9, Sect. 5] we already found a subgroup G
of GL2(Z/p2Z) such that H1

loc(G, (Z/p2Z)2) 
= 0 and the quotient of G by the subgroup
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Counterexamples to the local–global divisibility over… 1219

H of the elements congruent to the identity modulo p is a cyclic group of order 3. We use
the following remark and the following proposition to extend the example to a group G ′
containing G such that G ′/H is isomorphic to S3.

Remark 7 Let p be a prime number, let m be a positive integer, let V be (Z/p2Z)2m , let G
be a subgroup of GL2m(Z/p2Z) and let H be the subgroup of G of the elements congruent
to the identity modulo p. Then we have the following inflation–restriction exact sequence:

0 → H1(G/H, V [p]) → H1(G, V [p]) → H1(H, V [p])G/H → H2(G/H, V [p]).
(3.1)

Moreover, the exact sequence

0 → V [p] → V → V [p] → 0

(the first map is the inclusion and the second map the multiplication by p) induces the
following exact sequence:

H0(G, V [p]) → H1(G, V [p]) → H1(G, V ) → H1(G, V [p]). (3.2)

Proposition 8 Let p be a prime number, let m be a positive integer, let V be (Z/p2Z)2m, let
G be a subgroup ofGL2m(Z/p2Z), and let H be the subgroup of G of the elements congruent
to the identity modulo p. Suppose that:

1. G has an element δ not fixing any element of V ;
2. H is isomorphic, as an G/H-module, to a non-trivial G/H-submodule of V [p];
3. For every h ∈ H distinct from the identity, the endomorphism h − I d : V/V [p] →

V/V [p] is an isomorphism;
4. G/H has order not divisible by p.

Then H1
loc(G, V ) 
= 0.

Proof By Hypothesis 4, we know that the groups H1(G/H,A[p]) and H2(G/H,A[p]) in
(3.1) are trivial, and hence the restriction map is an isomorphism. Since the action of H over
V [p] is trivial and H is an abelian group of exponent p, we have that H1(H, V [p])G/H is
isomorphic to HomZ/pZ[G/H ](H, V [p]). By Hypothesis 2, there exists φ : H → V [p] an
injective homomorphism of Z/pZ[G/H ]-modules. Let [Z ] be in H1(G, V [p]) such that its
image in H1(H, V [p])G/H is the class of φ. In particular, we have [Z ] 
= 0 because φ is
injective and the restriction map is an isomorphism.

Now observe that H0(G, V [p]) = 0 by Hypothesis 1. Then, by Remark 7, we have the
following exact sequence of G-modules

0 → H1(G, V [p]) → H1(G, V ) → H1(G, V [p]).
Let us call [W ] ∈ H1(G, V ) the image of [Z ] ∈ H1(G, V [p]) defined above by the injective
map H1(G, V [p]) → H1(G, V ). Since [Z ] 
= 0, the same holds for [W ]. Moreover, since
G/H is not divisible by p, the restriction H1(G, V ) → H1(H, V ) is injective. We conclude
because by Hypothesis 3, the image of [W ] under this map is in H1

loc(H, V ). ��
Corollary 9 Let p be an odd prime such that p ≡ 2 mod (3). Let G be the subgroup of
GL2(Z/p2Z) generated by

τ =
(
1 −3
1 −2

)
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1220 G. Ranieri

(which has order 3), by an element σ of order 2 such that στσ−1 = τ 2 and by

H =
{(

1 + p(a − 2b) 3p(b − a)

−pb 1 − p(a − 2b)

)
, a, b ∈ Z/p2Z

}
.

Then H1
loc(G, (Z/p2Z)2) 
= 0.

Proof It suffices to show that the conditions of Proposition 8 hold for G. Conditions 1 and
4 are clear and condition 3 holds by [9, Sect. 5]. Observe that G/H is isomorphic to S3
and recall that S3 has a unique irreducible representation of dimension 2 over Fp . To prove
condition 2 we equivalently prove that H is stable by the conjugation by τ and σ . In [9, Sect.
5] we proved that the conjugation by τ sends H to H .

Let us show that σ Hσ−1 = H . A straightforward computation shows that if σ has order
2 in G/H and στσ−1 = τ 2, then there exists α, β ∈ Fp such that

σ =
(

α − 2β 3(β − α)

β 2β − α

)
.

Let

W =
{(

1 + pc pd
pe 1 − pc

)
, c, d, e ∈ Z/p2Z

}
.

It is a subgroup of GL2(Z/p2Z) and a Fp-vector space of dimension 3. Observe that W is
the subgroup of the group of the matrices congruent to the identity modulo p and having
trace 2. Since the trace is invariant under conjugation, we have that σ Wσ−1 = W . Let φσ be
the automorphism of W such that, for every w ∈ W , φσ (w) = σwσ−1. Observe that since
σ has order 2, and it is distinct from I d and −I d , φσ has an eigenspace W1 of dimension
1 for the eigenvalue 1, which is generated by the element h1 ∈ H with a = α, b = β, and
an eigenspace W2 of dimension 2 for the eigenvalue −1. Let h be in H and h /∈ W1. Then
h ∈ W and, since W = W1

⊕
W2, there exist r ∈ Z and h2 ∈ W2 distinct from the identity

such that h = hr
1h2. Thus h2 = hh−r

1 ∈ H . Since h1 and h2 are linearly indipendent, they
generate H . Moreover, φσ (h2) = h−1

2 ∈ H . Then φσ (H) = σ Hσ−1 = H . ��
Lemma 10 Let p be a prime number and let V be (Z/p2Z)2. Let λ ∈ (Z/p2Z)∗ be of order
dividing p − 1 and let G be the following subgroup of GL2(V ):

G =
〈
g =

(
λ 0
0 1

)
, h(1, 0) =

(
1 + p 0
0 1 − p

)
, h(0, 1) =

(
1 p
0 1

) 〉
.

Then H1
loc(G, V ) 
= 0.

Proof Observe that the subgroup H of G of the elements congruent to the identity modulo
p is the group generated by h(1, 0) and h(0, 1). Since G/H has order not divisible by p,
H1(G/H, V [p]) = 0 and H2(G/H, V [p]) = 0. Then, from the exact sequence (3.1) in
Remark 7, we get an isomorphism from H1(G/H, V [p]) to H1(H, V [p])G/H . Since H acts
like the identity over V [p] and since the groups V [p] and H are abelian with exponent p, we
have H1(H, V [p])G/H = HomZ/pZ[G/H ](H, V [p]). Observe that gh(0, 1)g−1 = h(0, 1)λ

and g(p, 0) = λ(p, 0). Then we can define a non-trivial Z/pZ[G/H ] homomorphism φ

from H to V [p] by sending h(0, 1) to (p, 0) and h(1, 0) to (0, 0) and extending it by
linearity. Let Z be a cocycle representing the class [Z ] in H1(G, V [p]) corresponding to
φ. By (3.2) of Remark 7, we have an homomorphism from H1(G, V [p]) to H1(G, V ). Let
[W ] be the image of [Z ] for such homomorphism. Let us show that [W ] ∈ H1

loc(G, V )
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Counterexamples to the local–global divisibility over… 1221

and [W ] 
= 0. Since G/H has order not divisible by p, it is sufficient to prove that the
image of [W ] under the restriction to H1(H, V ) is in H1

loc(H, V ). For all integers a, b define
h(a, b) := ah(1, 0) + bh(0, 1). Then, by the definition of [Z ], we have that h(a, b) is sent
to (bp, 0). An easy calculation shows that for every a, b, there exist x , y in Z/p2Z such that
(h − I d)(x, y) = (bp, 0). This proves that [W ] ∈ H1

loc(G, V ).
Finally observe that for every x , y in Z/p2Z such that (h(1, 0) − I d)(x, y) = (0, 0), we

have x ≡ 0 mod (p) and y ≡ 0 mod (p). On the other hand, for every x , y in Z/p2Z such
that (h(1, 0) − I d)(x, y) = (p, 0), we have y ≡ 1 mod (p). Thus [W ] 
= 0. ��

4 Auxiliary results in the p-dividing case

In this section we first prove the following result.

Lemma 11 Let V be (Z/p2Z)2 and let G be the following subgroup of GL2(Z/p2Z):

G =
〈
g =

(
1 0
0 −1

)
, σ =

(
1 + p 1
2p 1 + p

)
, h =

(
1 + p 0
0 1 − p

) 〉
.

Then H1
loc(G, V ) 
= 0.

Proof Let H be the subgroup of G of the elements congruent to 1 modulo p. Let g and σ be
the classes of g and σ modulo H . We have that H1(G/H, V [p]) 
= 0. In fact we can define
a cocycle Z : G/H → V [p], which is not a coboundary, by sending, for every integer i1, i2,
Zgi1σ i2 to (pi2(i2−1)/2, (−1)i1 pi2). Since H is normal,wehave an injective homomorphism

(the inflation) from H1(G/H, V [p]) to H1(G, V [p]). By abuse of notation we still call Z
a cocycle representing the image of the class of Z in H1(G, V [p]). Moreover, see Remark
7 and in particular the sequence (3.2), we have a homomorphism from H1(G, V [p]) to
H1(G, V ). It maps the class of Z in H1(G, V [p]) to some class [W ] ∈ H1(G, V ). We shall
prove that [W ] ∈ H1

loc(G, V ) and [W ] 
= 0.
First of all let us observe that for every a, b, c, d ∈ Z/p2Z, we have(

1 + ap 1 + bp
cp 1 + dp

)p

=
(
1 p
0 1

)
.

To verify this write(
1 + ap 1 + bp

cp 1 + dp

)
=

(
1 0
0 1

)
+

(
ap 1 + bp
cp dp

)

and observe that(
ap 1 + bp
cp dp

)2

≡
(
0 0
0 0

)
mod (p),

(
ap 1 + bp
cp dp

)4

=
(
0 0
0 0

)
.

Thus the subgroup H of G of the elements congruent to the identity modulo p is

H =
〈 (

1 p
0 1

)
,

(
1 + p 0
0 1 − p

) 〉
.

Now observe that, since H and 〈σ, H〉 are normal in G, for every τ ∈ G there exist integers
i1, i2, i3 and h ∈ H such that τ = gi1σ i2hi3 . If W is a representant for [W ], we have
Wτ = (p(i2 − 1), (−1)i1 pi2). If i2 ≡ 0 mod (p), then clearly Wτ = (0, 0) and so Wτ =
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1222 G. Ranieri

(τ − I d)((0, 0)). Then we can suppose i2 
≡ 0 mod (p). It is simple to prove by induction
on i2 that

σ i2 =
(
1 + ap i2 + bp
2i2 p 1 + cp

)

holds for some a, b, c ∈ Z/p2Z. Moreover σ i2hi3 has again the top right entry congruent to
i2 modulo p and the bottom left entry equal to 2i2 p. From these remarks is an easy exercise
to prove that there exist α and β ∈ Z/p2Z such that Wτ = (τ − I d)((α, pβ)). Then [W ] is
in H1

loc(G, V ).
Finally let us observe that W is not a coboundary. Let α, β ∈ Z/p2Z be such that

Wσ = (0, p) = (σ − I d)((α, β)). Then α 
≡ 0 mod (p). On the other hand, let h ∈ H be
such that

h =
(
1 + p 0
0 1 − p

)
.

Then Wh = (0, 0) and so for every α, β ∈ Z/p2Z such that (h − id)((α, β)) = (0, 0), we
have α ≡ 0 mod (p). Hence W is not a coboundary. ��
Remark 12 For every a, b, c, d ∈ Z/p2Z, we have(

1 + ap 1 + bp
cp 1 + dp

)p

=
(
1 p
0 1

)
.

In a similar way, for every integer m ≥ 2, and every am, bm, cm, dm ∈ Z/pm
Z, we have

(
1 + am p 1 + bm p

cm p 1 + dm p

)pm−1

=
(
1 pm

0 1

)
.

Corollary 13 Let V be (Z/p2Z)2 and let G be the following subgroup of GL2(Z/p2Z):

G̃ =
〈
σ =

(
1 + p 1
2p 1 + p

)
, h =

(
1 + p 0
0 1 − p

) 〉
.

Then H1
loc(G̃, V ) 
= 0

Proof Observe that G̃ is a subgroup of index 2 of the group G of Lemma 11. Since p 
= 2,
the restriction H1

loc(G, V ) → H1
loc(G̃, V ) is injective and the result follows. ��

Before proving the last result of this section, we need a result of linear algebra.

Lemma 14 Let n ∈ N and let G be a subgroup of GL2(Z/pn
Z). Let H be the subgroup of

G of the elements congruent to the identity modulo p. Suppose that G/H is contained in a
Borel subgroup, and it is generated by an element g of order 2 and an element σ of order p
such that σ and g do not fix the same element of order p. Let τ be in H and let σn ∈ G be
such that σn is sent to σ by the projection of G over G/H. Then there exist τd , τl ∈ H, λ ∈ N,
such that τd is diagonal, τl is lower unitriangular and τ = τdτlσ

pλ
n . In other words H is

generated by its subgroups of the diagonal matrices, its subgroup of the lower unitriangular
matrices and σ

p
n .

Proof Fix a basis of (Z/pn
Z)2 such that

σn ≡
(
1 1
0 1

)
mod (p).
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Then, since g has order 2 and p is odd, there exists an element gn of G such that

gn =
(−1 0

0 1

)
.

We remark that σ p
n ∈ H . In fact σ p

n ≡ I d mod (p).
We first show that every τ ∈ H can be written as a product of a lower triangular matrix

τL ∈ H and a power of σ
p

n . Since τ ∈ H , τ ≡ I d mod (p) and so there exist e, g, m, r ∈
Z/pn

Z such that

τ =
(
1 + pe pg

pm 1 + pr

)
.

We prove by induction that for every integer i ≥ 1, there exists λi ∈ Z/pn
Z such that

τσ
pλi

n =
(
1 + pei pi gi

pmi 1 + pri

)
, (4.1)

for some ei , gi , mi , ri ∈ Z/pn
Z. If i = 1 then for λ1 = 0 the relation (4.1) is satisfied.

Suppose that (4.1) is satisfied for an integer i ≥ 1. Then there exists λi ∈ Z/pn
Z such that

τσ
pλi

n =
(
1 + pei pi gi

pmi 1 + pri

)
,

for some ei , gi , mi , ri ∈ Z/pn
Z. Choose an element λi+1 of Z/pn

Z such that pλi+1 =
pλi − pi gi . Observe that this element exists because i ≥ 1. By Remark 12 we have

σ
−pi gi
n =

(
1 + pi+1ai+1 pi + pi+1bi+1

pi+1ci+1 1 + pi+1di+1

)−gi

=
(
1 + pi+1a′

i+1 −pi gi + pi+1b′
i+1

pi+1c′
i+1 1 + pi+1d ′

i+1

)
,

for some a′
i+1, b′

i+1, c′
i+1, d ′

i+1 ∈ Z/pn
Z. By a short computation

τσ
pλi+1

n = τσ
pλi

n σ
−pi gi
n

=
(
1 + pei pi + pi gi

pmi 1 + pri

) (
1 + pi+1a′

i+1 −pi gi + pi+1b′
i+1

pi+1c′
i+1 1 + pi+1d ′

i+1

)

=
(
1 + pei+1 +pi+1gi+1

pmi+1 1 + pri+1

)
,

for some ei+1, gi+1, mi+1, ri+1 ∈ Z/pn
Z. Then (4.1) is verified for λi+1 that satisfies

pλi+1 = pλi − pi gi . In particular for i = n we have

τσ
pλn

n =
(
1 + pen 0

pmn 1 + prn

)
.

Then, setting τL = τσ
pλn

n and λ = −λn , we have shown that τ can be written as a product
of a lower triangular matrix τL ∈ H and the power σ

pλ
n of σ

p
n .

Observe that, to conclude the proof, it is sufficient to show that τL can be written as the
product of a diagonal matrix τd ∈ H and a lower unitriangular matrix τl ∈ H . Since H is
normal in G, gnτL g−1

n ∈ H . Then gnτL g−1
n τ−1

L ∈ H . Moreover, by a simple computation,
we have

gnτL g−1
n τ−1

L =
(

1 0
−2pmn/(pen + 1) 1

)
.
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Thus

(gnτL g−1
n τ−1

L )−(pen+1)/2(prn+1) =
(

1 0
pmn/(prn + 1) 1

)
∈ H.

Call such a matrix τl and observe that

τL =
(
1 + pen 0

0 1 + prn

)(
1 0

pmn/(prn + 1) 1

)
.

Call the diagonal matrix τd . Since τL , τl ∈ H , also τd ∈ H , proving the statement. ��
Lemma 15 Under the assumptions and with the notation of Lemma 14, let Vn be (Z/pn

Z)2.
Then H1

loc(G, Vn) = 0.

Proof By replacing V with Vn , by observing that H0(G, Vn[pn−1]) = 0 because the group
generated by g and σ do not fix any element of Vn[pn−1], and by using the Remark 7, we
get the following exact sequence

0 → H1(G, Vn[p]) → H1(G, Vn) → H1(G, Vn[pn−1]). (4.2)

Suppose that H1
loc(G, Vn) 
= 0. Then H1

loc(G, Vn)[p] 
= 0 and so let Z be a cocycle repre-
senting a non-trivial class [Z ] ∈ H1

loc(G, Vn)[p]. Let us observe that [Z ] is in the kernel of
the map H1(G, Vn) → H1(G, Vn[pn−1]) (here we generalize the proof of [9, Lemma 13]).
Since [Z ] has order p, then pZ is a coboundary and so there exists v ∈ Vn such that, for
every τ ∈ G, pZτ = τ(v) − v. Let us observe that v ∈ Vn[pn−1]. Since for every τ we have
τ(v) − v ∈ Vn[pn−1], and we get that v ∈ ∩τ∈G ker(pn−1(τ − I d)). Since G does not fix
any element of order p, the unique possibility is that v ∈ Vn[pn−1]. Then (see the sequence
(4.2)) [Z ] is in the image of H1(G, Vn[p]) → H1(G, Vn). By abuse of notation we call [Z ]
the class in H1(G, Vn[p]) sent to [Z ].

Consider now the inflation–restriction sequence

0 → H1(G/H, Vn[p]) → H1(G, Vn[p]) → H1(H, Vn[p])G/H . (4.3)

Let us observe that H1(G/H, Vn[p]) = 0. Let W : G/H → Vn[p] be a cocycle. Since σ and
g are contained in a Borel subgroup, g has order 2, and g and σ do not fix any nonzero element
of Vn[pn−1], we can choose a basis of Vn such that (pn−1, 0) is fixed by σ , g((pn−1, 0)) =
(−pn−1, 0) and (0, pn−1) is sent to (pn−1, pn−1) by σ and fixed by g. Observe that, since
summing a coboundary to W does not change its class, we can suppose that Wσ = (0, pn−1).
Then, for every integer i , we have Wσ i = (pn−1i(i − 1)/2, pn−1i). Observe that since g has
order 2, we have Wg2 = Wg + gWg = (0, 0). In particular there exists a ∈ Z/pn

Z such that
Wg = (pn−1a, 0), and which is fixed by σ . Thus Wgσg−1 = gWσ = (pn−1,−pn−1). On the
other hand, gσg−1 = σ−1 and so Wσ−1 = (−pn−1,−pn−1). We then get a contradiction.
Thus, by the sequence (4.3), to every class of H1(G, Vn[p]) we can associate a class in
H1(H, Vn[p])G/H . Since H acts as the identity over Vn[p], we have that H1(H, Vn[p])G/H

is a subgroup of Hom(H, Vn[p]). In particular, we can associate with [Z ] ∈ H1(G, V [p])
defined above a homomorphism from H to Vn[p]. By Lemma 14, for every τ ∈ H there
exist τl ∈ H a lower unitriangular matrix, τD ∈ H a diagonal matrix and λ ∈ Z such
that τ = τlτDσ

λp
n . Consider the homorphism associated with [Z ] ∈ H1(G, Vn[p]). Since

the cocycle Z has values in Vn[p], in particular Zσn ∈ Vn[p] and, by the cocycle property,
Zσ

p
n

= (0, 0). On the other hand, since gnτDg−1
n = τD , there exists b ∈ Z/pn

Z such that

ZτD = (0, pn−1b). If pn−1b is distinct from 0, then (0, pn−1b) generates V [p] as an G/H -
module. Since gnτl g−1

n = τ−1
l , there exists a ∈ Z/pn

Z such that Zτl = (pn−1a, 0). Observe
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that for every (α, β) ∈ Vn , we have that (τl − I d)(α, β) = (pn−1a, 0) only if pn−1a = 0.
Then if the image of Z satisfies the local conditions over Vn , the homomorphism associated
with Z is trivial, and so Z is a coboundary. ��
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