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Abstract Let p > 5be a prime number. We find all the possible subgroups G of GL,(Z/ pZ)
such that there exist a number field £ and an elliptic curve £ defined over k such that the
Gal(k(E[p])/ k)-module £[ p] is isomorphic to the G-module (Z/ pZ)2 and there existsn € N
such that the local-global divisibility by p” does not hold over £ (k).
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1 Introduction

Let k be a number field, and let A be a commutative algebraic group defined over k. Several
papers have been written on the following classical question, known as the Local-Global
Divisibility Problem.

PROBLEM: Let P € A(k). Assume that for all but finitely many valuations v of k, there
exists D, € A(k,) suchthat P = g D,, where g is a positive integer. Is it possible to conclude
that there exists D € A(k) such that P = ¢ D?

By Bézout’s identity, to get answers for a general integer it is sufficient to solve it for
powers p” of a prime. In the classical case of A = G,,, the answer is positive for p odd, and
negative for instance for ¢ = 8 (and P = 16) (see for example [1,19]).

For general commutative algebraic groups, Dvornicich and Zannier gave a cohomological
interpretation of the problem (see [5] and [7]) that we shall explain. Let " be a group and
let M be a I'-module. We say that a cocycle Z: I' — M satisfies the local conditions if for
every y € I', there exists m,, € M such that Z, = y(m, ) — m,,. The set of the classes of
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cocycles in H'(I", M) that satisfy the local conditions is a subgroup of H!(I", M). We call
it the first local cohomology group HILC(F, M). Dvornicich and Zannier [5, Proposition 2.1]
proved the following result.

Proposition 1 Let p be a prime number, let n be a positive integer, let k be a number field and
let A be a commutative algebraic group defined over k. Ilel)C (Gal(k(A[p"D/k), A[p"]) =
0, then the local-global divisibility by p" over A(k) holds.

The converse of Proposition 1 is not true, but if the group Hl})C (Gal(k(A[p"D/k), Alp"]D
is not trivial, we can find an extension L of k such that LNk(A[p"]) = k, and the local-global
divisibility by p” over A(L) does not hold (see [7, Theorem 3] for the details).

Several mathematicians got criterions for the validity of the local—global divisibility prin-
ciple for various commutative algebraic groups, as algebraic tori [5] and [12], elliptic curves
[3-8,14—17], and very recently polarized abelian surfaces [9] and GL;-type varieties [10].

In this paper, we focus on elliptic curves. Let p be a prime number, let X be a number
field, and let £ be an elliptic curve defined over k. Dvornicich and Zannier [7, Theorem 1]
found a very interesting criterion for the validity of the local-global divisibility by a power
of p over £(k), in the case when k N Q(Z,) = Q.

In a joint work with Paladino and Viada (see [16], and Sect. 2), we refined this criterion,
by proving that if k does not contain Q(¢,, + E) and £ (k) does not admit a point of order
p, then for every positive integer n, the local-global divisibility by p" holds over £ (k). In
another joint work with Paladino and Viada [17], we improved our previous criterion and the
new criterion allowed us to show that if k = Q and p > 5, for every positive integer n the
local-global divisibility by p” holds for £(Q).

Very recently, Lawson and Wutrich [13] found a very strong criterion for the triviality of
HY(Gal(k(E[p"])/ k), E[p™]) (then for the validity of the local-global principle by p™ over
£(k), see Proposition 1), but still in the case when k N Q(¢,) = Q.

Finally, Dvornicich and Zannier [6] and Paladino [14] studied the case when p = 2 and
Paladino [15] and Creutz [3] studied the case when p = 3.

Thus we have a fairly good understanding of the local-global divisibility by a power of p
over &(k) either when p € {2, 3} or k does not contain Q(¢,, + E) and £(k) does not admit
a point of order p. In this paper we prove the following result:

Theorem 2 Let p > 5 be a prime number, let k be a number field and let £ be an elliptic
curve defined over k. Suppose that there exists a positive integer n such that the local-global
divisibility by p" does not hold over E(k). Let G| be Gal(k(E[p])/k). Then one of the
following holds:

1. p =2 mod (3) and G is isomorphic to a subgroup of S3 of order divisible by 3;

2. Gy is cyclic of order dividing p — 1, and it is generated by an element that has an
eigenvalue equal to 1;

3. G is contained in a Borel subgroup, and it is generated by an element o of order p and
an element g of order dividing 2 such that o and g have one common eigenvector for the
eigenvalue 1.

Moreover, for every case i € {1, 2, 3} there exist a number field L; and an elliptic curve
&; defined over L;, such that the Gal(L; (&;[p])/L;)-module &;[p] is isomorphic to the G-
module E[p] of the case i and the local-global divisibility by p* does not hold over £(L;).

Proof By Proposition 4 and Lemma 15, we are in one of the three cases of the statement.
The elliptic curves exist in case 1 by Remark 6 and Corollary 9, in case 2 by Remark 6 and
Lemma 10, in case 3 by Remark 6 and Lemma 11. O
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Clearly the case 2 of Theorem 2 corresponds to the case when £ (k) has a point of order p
defined over k. The cases 1 and 3 of Theorem 2 correspond to the case when Q(¢, +¢,) C k.
By the main result of [16] and Theorem 2, we have the following corollary:

Corollary 3 Let p > 5 be a prime number, let k be a number field and let £ be an elliptic
curve defined over k. If p =1 mod (3) and £ does not admit any point of order p over k,
then for every positive integer n, the local-global divisibility by p" holds over E(k). If p = 2
mod (3), € does not admit any point of order p over k and [k(E[p]) : k] is not 3 or 6, then
for every positive integer n the local-global divisibility by p" holds over & (k).

Proof 1f k does not contain Q(¢, +§), just apply the main result of [16]. If p =1 mod (3)
and k contains Q(¢, + ¢p), and if there exists n € N such that the local-global divisibility
by p" does not hold over £(k), then either case 2 or case 3 of Theorem 2 applies. Thus &
admits a point of order p defined over k.

If p =2 mod (3), £ does not admit any point of order p over k, and there exists a positive
integer n such that the local-global divisibility by p” does not hold over £(k), then case 1
of Theorem 2 applies. Hence k(E[p])/ k is either an extension of degree 3 or an extension of
degree 6. O

2 Known results

In the following proposition, we combine the main results of [16] and [17] with results of

[9].

Proposition 4 Let k be a number field and let £ be an elliptic curve defined over k. Let p
be a prime number and, for everym € N, let G, be Gal(k(E[p™])/ k). Suppose that there
exists n € N such that HlOC(G,,, E[P"]) # 0. Then one of the following cases holds:

1. If p does not divide |G 1|, then either G is cyclic of order dividing p — 1, generated by an
element fixing a point of order p of €, or p =2 mod (3) and G is a group isomorphic
either to S3 or to a cyclic group of order 3;

2. If p divides |G| then G is contained in a Borel subgroup, and it is either cyclic of order
p, or it is generated by an element of order p and an element of order 2 distinct from
—1d.

Proof Suppose first that p does not divide |G |. By the argument in [7, p. 29], we have that
G is isomorphic to its projective image. By [18, Proposition 16], then G is either cyclic,
or dihedral or isomorphic to one of the following groups: A4, S4, As.

Suppose that the last case holds. Then G| should contain a subgroup isomorphic to Z /27 x
7./27., and so it contains — I d. This contradicts the fact that G is isomorphic to its projective
image.

Suppose that G is dihedral. Then G| is generated by 7 and o with o of order 2 and
ot = v~ o, In particular all the elements of G| have determinant either 1 or —1. Suppose
that there exists i € N such that 7/ has order dividing p — 1, and distinct from 1. Observe
that since p does not divide |G|, we have H! (G1,€lp)) = 0. Then by [9, Theorem 2],
we get that t/ has at least an eigenvalue equal to 1. Thus, since 7' is not the 1dent1ty, it
has determmant —1. Then 7! has order 2. Since o7 = =1 “lo,wegetot! = t7 0 = tlo,
because ' has order 2. Then, since G is not cyclic, t* and o are two distinct elements of
order 2 which commute. Thus, like in the previous case, G| contains a subgroup isomorphic
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to Z/27Z x Z/2Z, and so it contains —Id. This contradicts the fact that G is isomorphic to
its projective image. Then t has odd order dividing p 4 1. In particular it has two eigenvalues
over ' 2: A and A”. By [9, Proposition 17, Lemma 18] (or see [2, Sect. 3]), if there exists
n € N such that H(G,, E[p"]) # 0, then the intersection between the sets {1, AP=1 a1-p)
and {X, AP} is not trivial. It follows that T has order 3. Then 3 divides p + 1 and G is
isomorphic to S3.

Finally suppose that G is cyclic. If G is generated by an element of order dividing p — 1,
by [9, Theorem 2] we have that such an element has an eigenvalue equal to 1. On the other
hand if the generator of G has order not dividing p — 1, again by [9, Proposition 17, Lemma
18] (see the dihedral case) we get that such an element has order 3 and 3 divides p + 1.

Suppose now that p divides |G]. Since p divides the order of G, by [18, Proposition
15] and the fact that G is isomorphic to its projective image, we have that G is contained
in a Borel subgroup. In particular the p-Sylow subgroup N of G is normal. Suppose that
G1/N is not cyclic. Then G is not isomorphic to its projective image. Thus G is generated
by an element o of order p, which generates N, and an element g of order dividing p — 1.
Suppose that 1 is not an eigenvalue for g. Then by [9, Theorem 2] (in particular notice
that, by [9, Remark 16], the hypothesis H LGy, € [p]) = O is not necessary), we have
HILC(G,,,, E[p™]) = 0 for every m € N and so we get a contradiction. Then g has an
eigenvalue equal to 1. Suppose that g has order > 3. Then its determinant has order > 3 and
so, since the determinant is the pth cyclotomic character, k does not contain Q(¢, +§)- Then
if g and o do not fix the same point of order p, by [16, Theorem 1] we get a contradiction.
On the other hand, since p divides the order of G, we have k(E[p]) # k(¢p). Then by [17,
Theorem 3], we get a contradiction.

We conclude that G is either cyclic of order p, or it is generated by an element g of order
2 distinct from —/d and an element of order p (which generates a normal subgroup of G1).

O

We now recall some properties of the Galois action over the torsion points on an ellip-
tic curve over a number field. In [8] we proved the following Lemma, which is a direct
consequence of very interesting results of Greicius [11] and Zywina [20].

Lemma 5 Given a prime number p, a positive integer n and a subgroup G of GLy(Z/p"Z),
there exists a number field k and an elliptic curve £ defined over k such that there are an
isomorphism ¢: Gal(k(E[p"])/ k) — G and a 7/ p" Z-linear homomorphism t: E[p"] —
(Z) p"Z)? such that, for all o € Gal(k(E[p"])/k) and v € E[p"], we have ¢ (o)1 (v) =
(o (V).

Proof See [8, Lemma 11]. O

Remark 6 Given a prime number p, a positive integer n and a subgroup G of GL,(Z/p"7Z),
if we suppose HILC(G, (Z/p”Z)z) # 0, then by Lemma 5, there exist a number field k& and
an elliptic curve £ defined over k such that HILC(G,,, E[p"]) # 0. Hence, by [7, Theorem
3], there exists a finite extension L of k such that L N k(E[p"]) = k and the local-global
divisibility by p" does not hold over £(L).

3 Auxiliary results in the prime to p case

Let p = 2 mod (3) be a prime number. In [9, Sect. 5] we already found a subgroup G
of GLy(Z/ p*Z) such that HILC(G, (Z)p*7)?) # 0 and the quotient of G by the subgroup
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H of the elements congruent to the identity modulo p is a cyclic group of order 3. We use
the following remark and the following proposition to extend the example to a group G’
containing G such that G’/ H is isomorphic to S3.

Remark 7 Let p be a prime number, let m be a positive integer, let V be (Z/ pZZ)z’”, let G
be a subgroup of GLo,,(Z/p*Z) and let H be the subgroup of G of the elements congruent
to the identity modulo p. Then we have the following inflation—restriction exact sequence:

0— H'(G/H,VIpl) - H' (G, VIp]) — H'(H, VIp)°'" — H*(G/H, VIp)).
3.1)

Moreover, the exact sequence
0—V[pl>V—>V[p]—0

(the first map is the inclusion and the second map the multiplication by p) induces the
following exact sequence:

HYG, V[pl) = H'(G, VIp]) - H' (G, V) = H' (G, V[p)). (3.2)

Proposition 8 Ler p be a prime number, let m be a positive integer, let V be (2] p>*Z)*™, let
G be a subgroup of GLa,y, (Z] p*7), and let H be the subgroup of G of the elements congruent
to the identity modulo p. Suppose that:

1. G has an element § not fixing any element of V ;

2. H is isomorphic, as an G/ H-module, to a non-trivial G/ H -submodule of V[ p];

3. For every h € H distinct from the identity, the endomorphism h — Id: V/V[p] —
V/VIpl is an isomorphism;

4. G/H has order not divisible by p.

Then H\ (G, V) # 0.

Proof By Hypothesis 4, we know that the groups H'(G/H, A[p]) and H*(G/H, A[p]) in
(3.1) are trivial, and hence the restriction map is an isomorphism. Since the action of H over
V[p] is trivial and H is an abelian group of exponent p, we have that H'(H, V[p]) ¢/ is
isomorphic to Homy, ,ziG,m1(H, V[p]). By Hypothesis 2, there exists ¢: H — V[p] an
injective homomorphism of Z/pZ[G / H]-modules. Let [Z] be in H(G, V[p]) such that its
image in H\(H, V[p])G/H is the class of ¢. In particular, we have [Z] # 0 because ¢ is
injective and the restriction map is an isomorphism.

Now observe that H(G, V[ pl) = 0 by Hypothesis 1. Then, by Remark 7, we have the
following exact sequence of G-modules

0—> HYG,V[pl) > HY(G, V) - H' (G, V[p)).

Letuscall [W] € H! (G, V) theimage of [Z] € H! (G, V[p]) defined above by the injective
map HY(G, VipD) — HY(G, V). Since [Z] # 0, the same holds for [W]. Moreover, since
G/H is not divisible by p, the restriction H'(G, V) — H'(H, V) is injective. We conclude
because by Hypothesis 3, the image of [W] under this map is in HILC(H, V). O

Corollary 9 Let p be an odd prime such that p = 2 mod (3). Let G be the subgroup of
GLo(Z/ p*Z) generated by
(1 =3
=1 22
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1

(which has order 3), by an element o of order 2 such that cto~" = ©> and by

_ 1+ pla—-2b) 3pb—a) ,

Then H,\ (G, (Z/p*Z)*) # O.

Proof 1t suffices to show that the conditions of Proposition 8 hold for G. Conditions 1 and
4 are clear and condition 3 holds by [9, Sect. 5]. Observe that G/H is isomorphic to S3
and recall that S3 has a unique irreducible representation of dimension 2 over I,. To prove
condition 2 we equivalently prove that H is stable by the conjugation by 7 and ¢. In [9, Sect.
5] we proved that the conjugation by 7 sends H to H.

Let us show that o Ho ~! = H. A straightforward computation shows that if & has order
2in G/H and 570! = T2, then there exists o, B € F), such that

_ (a=28 3(B—-a)
o= 8 W-a )

Let

_ 14+ pc pd 2
W-{( e 1= pe ,c,d,e€l/ply.

It is a subgroup of GL,(Z/p*Z) and a IF ,-vector space of dimension 3. Observe that W is
the subgroup of the group of the matrices congruent to the identity modulo p and having
trace 2. Since the trace is invariant under conjugation, we have that o Wo =1 = W. Let ¢, be
the automorphism of W such that, for every w € W, ¢, (w) = owo ~!. Observe that since
o has order 2, and it is distinct from /d and —Id, ¢, has an eigenspace W; of dimension
1 for the eigenvalue 1, which is generated by the element i € H witha = «, b = B, and
an eigenspace W» of dimension 2 for the eigenvalue —1. Let 2 be in H and h ¢ W;. Then
h € W and, since W = W @ W, there exist r € Z and hy € W, distinct from the identity
such that & = A hy. Thus hy = hhl_’ € H. Since hp and h, are linearly indipendent, they
generate H. Moreover, ¢, (h2) = h;l € H.Then ¢, (H) =cHo ™' = H. O

Lemma 10 Let p be a prime number and let V be (Z/ p*Z)?. Let ). € (Z/ p*7)* be of order
dividing p — 1 and let G be the following subgroup of GL2(V):

G=<g=<8 ?),h(1,0)=<1'gp 18p>,h(0,1)=<(1) ’]’>>

Then H! (G, V) #0.

loc

Proof Observe that the subgroup H of G of the elements congruent to the identity modulo
p is the group generated by A (1, 0) and A(0, 1). Since G/H has order not divisible by p,
H'(G/H, V[p]) = 0 and Hz(G/H, VIp]) = 0. Then, from the exact sequence (3.1) in
Remark 7, we get an isomorphism from H! (G/H, V][p]to H'(H, V[p])G/H. Since H acts
like the identity over V[ p] and since the groups V[p] and H are abelian with exponent p, we
have H'(H, V[p))¢/H = Homy,,ziG/n1(H, V[p]). Observe that gh(0, Dg~! = h(0, DH*
and g(p,0) = A(p,0). Then we can define a non-trivial Z/pZ[G/H] homomorphism ¢
from H to V[p] by sending #(0, 1) to (p,0) and h(1,0) to (0,0) and extending it by
linearity. Let Z be a cocycle representing the class [Z] in HY(G, V[p]) corresponding to
¢. By (3.2) of Remark 7, we have an homomorphism from HY(G, V[p]) to H' (G, V). Let
[W] be the image of [Z] for such homomorphism. Let us show that [W] € HILC(G’ V)
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and [W] # 0. Since G/H has order not divisible by p, it is sufficient to prove that the
image of [ W] under the restriction to H Y(H, V)isin Hlloc(H , V). For all integers a, b define
h(a,b) := ah(1,0) 4+ bh(0, 1). Then, by the definition of [Z], we have that & (a, b) is sent
to (bp, 0). An easy calculation shows that for every a, b, there exist x, y in Z/ p*>Z such that
(h — 1d)(x, y) = (bp, 0). This proves that [W] € HILC(G, V).

Finally observe that for every x, y in Z/pzZ such that (h(1,0) — Id)(x, y) = (0, 0), we
havex =0 mod (p)and y =0 mod (p). On the other hand, for every x, y in Z/ p>Z such
that (h(1,0) — Id)(x,y) = (p,0), wehave y =1 mod (p). Thus [W] # 0. O

4 Auxiliary results in the p-dividing case

In this section we first prove the following result.

Lemma 11 Let V be (Z/ p*Z)? and let G be the following subgroup of GLy(Z/ p*Z.):

/(1 0 _(1l+p 1 _(l+p O
ool lo 2 (57 )= (5705))

Then H! (G, V) #0.

loc

Proof Let H be the subgroup of G of the elements congruent to 1 modulo p. Let'g and & be
the classes of g and o modulo H. We have that H'(G/H, V[p]) # 0. In fact we can define
acocycle Z: G/H — V[p], which is not a coboundary, by sending, for every integer i, i2,
Zgil i 0 (piz(iz—1)/2, (— 1)%1 pis). Since H is normal, we have an injective homomorphism
(the inflation) from H'(G/H, V[p]) to H'(G, V[p]). By abuse of notation we still call Z
a cocycle representing the image of the class of Z in H'(G, V[p]). Moreover, see Remark
7 and in particular the sequence (3.2), we have a homomorphism from H LG, VIip) to
H'(G, V). It maps the class of Z in H'(G, V[p]) to some class [W] € H'(G, V). We shall
prove that [W] € Hlloc(G, V) and [W] # 0.
First of all let us observe that for every a, b, ¢, d € Z/pzZ, we have

l4+ap 1+bp\’ (1 p
ecp 1+dp) ~\O0 1)
To verify this write
IL+ap 1+bp\ (10 4 (P 1+bp
ecp 1+dp)  \0 1 cp dp
and observe that

2 4
ap 1+bp\~_(0 0 ap 1+bp\ (0 O
(cp dp ) _<0 0 mod (p), cp dp —\0 0/
Thus the subgroup H of G of the elements congruent to the identity modulo p is

(3005 )

Now observe that, since H and (o, H) are n_ormal in G, for every T € G there exist integers
i1,io,izand h € H su_ch that T = g''o2h'3. If W is a representant for [W], we have
W = (p(io — 1), (=D pir). If i = 0 mod (p), then clearly W, = (0, 0) and so W; =
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1222 G. Ranieri

(r — 1d)((0, 0)). Then we can suppose i» = 0 mod (p). It is simple to prove by induction
on iy that

O,iz_ 1+“P 12+bp
"\ 2ip l+cp

holds for some a, b, ¢ € Z/p>7Z. Moreover ¢2h" has again the top right entry congruent to
i» modulo p and the bottom left entry equal to 2i» p. From these remarks is an easy exercise
to prove that there exist « and 8 € 7/ p*7Z such that W, = (v — Id)((r, pB)). Then [W] is
in H! (G, V).

Finally let us observe that W is not a coboundary. Let a, 8 € Z/p>Z be such that
Wy = (0, p) = (0 — Id)((a, B)). Then e £ 0 mod (p). On the other hand, let » € H be

such that
_(1+p 0
h_< 0 1—p>'

Then W;, = (0, 0) and so for every «, B € Z/pZZ such that (h — id)((«, B)) = (0, 0), we
have « =0 mod (p). Hence W is not a coboundary. ]

Remark 12 Foreverya, b, c,d € Z/pzz, we have
l4+ap 1+bp\’ (1 p
cp l+dp) ~—\0O 1)°

In a similar way, for every integer m > 2, and every a,,, by, ¢, dy € 7/ p™7Z, we have

m—1
l4+anp 1+byup P (1 p"
cmp 1 +dup —\o 1)
Corollary 13 Let V be (Z/ p*7)* and let G be the following subgroup of GL2(Z/ p*7.):

~ | (1+p 1 _(1+p O
G_<G_<2p 1—|—p>’h_< 0 1-p)/
Then H} (G, V) # 0

Proof Observe that Gisa subgroup of index 2 of the group G of Lemma 11. Since p # 2,
the restriction HILC(G, V) — HILC(G, V) is injective and the result follows. ]

Before proving the last result of this section, we need a result of linear algebra.

Lemma 14 Let n € N and let G be a subgroup of GLy(Z/p"Z). Let H be the subgroup of
G of the elements congruent to the identity modulo p. Suppose that G/ H is contained in a
Borel subgroup, and it is generated by an element g of order 2 and an element o of order p
such that o and g do not fix the same element of order p. Let T be in H and let 6,, € G be
such that o, is sent to o by the projection of G over G/ H. Then there existty, 11 € H, A € N,
such that t, is diagonal, t; is lower unitriangular and T = o) * In other words H is
generated by its subgroups of the diagonal matrices, its subgroup of the lower unitriangular
matrices and o} .

Proof Fix abasis of (Z/ p"7Z)?* such that

oy = <(1) 1) mod (p).
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Then, since g has order 2 and p is odd, there exists an element g, of G such that

(=10
am=(4 1)

We remark that o,/ € H.In fact o) = Id mod (p).
We first show that every T € H can be written as a product of a lower triangular matrix
77 € H and a power of ;. Since T € H, T = Id mod (p) and so there exist e, g, m, r €

7./ p"7Z such that
;- (1tre ps
pm 14+ pr)-°

We prove by induction that for every integer i > 1, there exists A; € Z/p"Z such that

pri _ (1+pei pla
T = s 4.1
o= (o 1) @
for some ¢;, gi, mj,r; € Z/p"Z.If i = 1 then for A; = 0 the relation (4.1) is satisfied.
Suppose that (4.1) is satisfied for an integer i > 1. Then there exists A; € Z/p"Z such that
pri _ (1+pei pgi
T = ,
for some e¢;, gi, mj, ri € Z/p"Z. Choose an element A; 1 of Z/p"Z such that pAj, =
pii — p'gi. Observe that this element exists because i > 1. By Remark 12 we have

ore (1 +'Pi+1ai+1 P+ Ri+1bi+1 e
n pl+lci+1 1+ pl+ld[+1
_ <1 +ptlal,, —pig +pi+]b§+1>

i+1 . i+1 g/
PTG I+ p™d;

for some a; |, b; |, ¢, ,dj | € Z/p"Z. By a short computation
tonpkurl _ ‘L’a,fj)”’lon_plg"
_ <1 + pei p'+ Pigi) (1 +AP"+1“;+1 —p'ai + Pi+1b§+1>
pmi 14 pri ptle,, 1+ pitlal

= <1 + peivt +p g )
pmit1 1+ prig
for some €41, gi+1, Mi+1,riv1 € Z/p"Z. Then (4.1) is verified for A;4; that satisfies
PAit1 = pri — p'g;. In particular for i = n we have

pra _ (14 pen 0
o _( prmn l+prn>'

Then, setting t;, = o) M oand A = —An, we have shown that t can be written as a product
of a lower triangular matrix 7, € H and the power o,/" of o,/

Observe that, to conclude the proof, it is sufficient to show that 77 can be written as the
product of a diagonal matrix t; € H and a lower unitriangular matrix 7; € H. Since H is
normal in G, g,7.8, '€ H.Then g1, &n lrL_ e H. Moreover, by a simple computation,
we have

—-1_—-1 _ 1 0
8nTLEy T = —2pmy/(pen +1) 1)~
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Thus

—1 =1y =(peu+1)/2(prat1) _ 1 0\ cn
(gnTL8y T ) (Pmn/(Pr;1+1) 1) .

Call such a matrix 7; and observe that

S 1+ pe, 0 1 0
L= 0 L+ pry pmp/(pra+1) 1)°

Call the diagonal matrix t;. Since 77, 77 € H, also t; € H, proving the statement. O

Lemma 15 Under the assumptions and with the notation of Lemma 14, let V,, be (Z] p"7)>.
Then H! (G, V,) = 0.

loc

Proof By replacing V with V,,, by observing that H%(G, V,[p"~']) = 0 because the group
generated by g and o do not fix any element of V,[p"~'], and by using the Remark 7, we
get the following exact sequence

0— H'(G, Vulp) = H'(G, V,) = H'(G, V,[p"' D). 4.2)

Suppose that HILC(G, V) # 0. Then HILC(G, Vu)lp] # 0 and so let Z be a cocycle repre-
senting a non-trivial class [Z] € HILC(G, V) [p]. Let us observe that [Z] is in the kernel of
the map HY(G,V,) > HY(G,V, [p”_l]) (here we generalize the proof of [9, Lemma 13]).
Since [Z] has order p, then pZ is a coboundary and so there exists v € V, such that, for
every T € G, pZ; = t(v) — v. Let us observe that v € Vn[p”’l]. Since for every T we have
T(v) — v € V,[p"~ '], and we get that v € Ny ker(p" ! (r — Id)). Since G does not fix
any element of order p, the unique possibility is that v € V,,[p"~']. Then (see the sequence
(4.2)) [Z] is in the image of H'(G, V,[p]) = H'(G, V,)). By abuse of notation we call [Z]
the class in H' (G, V,,[p]) sent to [Z].
Consider now the inflation—restriction sequence

0— HY(G/H, V,[pl) - H'(G, V,[p]) — H'(H, V,[pD)°'". (4.3)

Let us observe that H'(G/H, V,[p]) =0.Let W: G/H — V,[p]bea cocycle. Since o and
g are contained in a Borel subgroup, g has order 2, and g and o do not fix any nonzero element
of V,,[p"~!1, we can choose a basis of V,, such that (p"~!, 0) is fixed by o', g((p"~ !, 0)) =
(—p"1,0) and (0, p" 1y is sent to (p" ', p"~ 1) by o and fixed by g. Observe that, since
summing a coboundary to W does not change its class, we can suppose that W, = (0, p"~1).
Then, for every integer i, we have W, = (p"'i(i —1)/2, p"~'i). Observe that since g has
order 2, we have W,> = W, + gW, = (0, 0). In particular there exists a € Z/ p"Z such that
W, = (p"'a, 0), and which is fixed by o. Thus Weog-1 = gWo = (p"~ ', —p"~1). On the
other hand, gog~! = 0! and so Wyt = (=p" 1, —p"1). We then get a contradiction.
Thus, by the sequence (4.3), to every class of H LG, v, [p]) we can associate a class in
H'(H, V,,[p])G/H. Since H acts as the identity over V,[p], we have that H(H, V,,[p])G/H
is a subgroup of Hom(H, V,[p]). In particular, we can associate with [Z] € HY(G, VipD
defined above a homomorphism from H to V,[p]. By Lemma 14, for every t € H there
exist ; € H a lower unitriangular matrix, tp € H a diagonal matrix and A € Z such
that T = T[TDU,'ZW . Consider the homorphism associated with [Z] € H LG, v, [p]). Since
the cocycle Z has values in V,[p], in particular Z,, € V,[p] and, by the cocycle property,
Zg,f = (0, 0). On the other hand, since g, th;1 = 1p, there exists b € Z/p"7Z such that
Z., = (0, p"b). If p"~'b is distinct from 0, then (0, p"~'b) generates V[p] as an G/H-
module. Since g, rlgn_l = 1'171, there existsa € Z/p"Z such that Z;, = (p"~'a, 0). Observe
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that for every (o, B) € V,, we have that (t; — Id)(«, B) = (p"'a,0) only if p"la =0.
Then if the image of Z satisfies the local conditions over V,,, the homomorphism associated

with Z is trivial, and so Z is a coboundary. O
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