

Counterexamples to the local–global divisibility over elliptic curves

Gabriele Ranieri¹

Received: 3 May 2017 / Accepted: 6 December 2017 / Published online: 12 December 2017 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract Let $p \ge 5$ be a prime number. We find all the possible subgroups G of $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ such that there exist a number field k and an elliptic curve \mathcal{E} defined over k such that the $\operatorname{Gal}(k(\mathcal{E}[p])/k)$ -module $\mathcal{E}[p]$ is isomorphic to the G-module $(\mathbb{Z}/p\mathbb{Z})^2$ and there exists $n \in \mathbb{N}$ such that the local–global divisibility by p^n does not hold over $\mathcal{E}(k)$.

Keywords Elliptic curves · Local–global · Galois cohomology

Mathematics Subject Classification 11R34 · 11G05

1 Introduction

Let *k* be a number field, and let A be a commutative algebraic group defined over *k*. Several papers have been written on the following classical question, known as the *Local–Global Divisibility Problem*.

PROBLEM: Let $P \in \mathcal{A}(k)$. Assume that for all but finitely many valuations v of k, there exists $D_v \in \mathcal{A}(k_v)$ such that $P = q D_v$, where q is a positive integer. Is it possible to conclude that there exists $D \in \mathcal{A}(k)$ such that P = q D?

By Bézout's identity, to get answers for a general integer it is sufficient to solve it for powers p^n of a prime. In the classical case of $\mathcal{A} = \mathbb{G}_m$, the answer is positive for p odd, and negative for instance for q = 8 (and P = 16) (see for example [1,19]).

For general commutative algebraic groups, Dvornicich and Zannier gave a cohomological interpretation of the problem (see [5] and [7]) that we shall explain. Let Γ be a group and let M be a Γ -module. We say that a cocycle $Z : \Gamma \to M$ satisfies the local conditions if for every $\gamma \in \Gamma$, there exists $m_{\gamma} \in M$ such that $Z_{\gamma} = \gamma(m_{\gamma}) - m_{\gamma}$. The set of the classes of

Gabriele Ranieri gabriele.ranieri@pucv.cl

Supported by Fondecyt Regular Project No. 1140946.

¹ Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile

cocycles in $H^1(\Gamma, M)$ that satisfy the local conditions is a subgroup of $H^1(\Gamma, M)$. We call it the first local cohomology group $H^1_{loc}(\Gamma, M)$. Dvornicich and Zannier [5, Proposition 2.1] proved the following result.

Proposition 1 Let p be a prime number, let n be a positive integer, let k be a number field and let A be a commutative algebraic group defined over k. If $H^1_{loc}(Gal(k(A[p^n])/k), A[p^n]) = 0$, then the local–global divisibility by p^n over A(k) holds.

The converse of Proposition 1 is not true, but if the group $H^1_{loc}(\text{Gal}(k(\mathcal{A}[p^n])/k), \mathcal{A}[p^n])$ is not trivial, we can find an extension *L* of *k* such that $L \cap k(\mathcal{A}[p^n]) = k$, and the local–global divisibility by p^n over $\mathcal{A}(L)$ does not hold (see [7, Theorem 3] for the details).

Several mathematicians got criterions for the validity of the local–global divisibility principle for various commutative algebraic groups, as algebraic tori [5] and [12], elliptic curves [3–8, 14–17], and very recently polarized abelian surfaces [9] and GL₂-type varieties [10].

In this paper, we focus on elliptic curves. Let p be a prime number, let k be a number field, and let \mathcal{E} be an elliptic curve defined over k. Dvornicich and Zannier [7, Theorem 1] found a very interesting criterion for the validity of the local–global divisibility by a power of p over $\mathcal{E}(k)$, in the case when $k \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$.

In a joint work with Paladino and Viada (see [16], and Sect. 2), we refined this criterion, by proving that if k does not contain $\mathbb{Q}(\zeta_p + \overline{\zeta_p})$ and $\mathcal{E}(k)$ does not admit a point of order p, then for every positive integer n, the local–global divisibility by p^n holds over $\mathcal{E}(k)$. In another joint work with Paladino and Viada [17], we improved our previous criterion and the new criterion allowed us to show that if $k = \mathbb{Q}$ and $p \ge 5$, for every positive integer n the local–global divisibility by p^n holds for $\mathcal{E}(\mathbb{Q})$.

Very recently, Lawson and Wutrich [13] found a very strong criterion for the triviality of $H^1(\text{Gal}(k(\mathcal{E}[p^n])/k), \mathcal{E}[p^n])$ (then for the validity of the local–global principle by p^n over $\mathcal{E}(k)$, see Proposition 1), but still in the case when $k \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$.

Finally, Dvornicich and Zannier [6] and Paladino [14] studied the case when p = 2 and Paladino [15] and Creutz [3] studied the case when p = 3.

Thus we have a fairly good understanding of the local–global divisibility by a power of p over $\mathcal{E}(k)$ either when $p \in \{2, 3\}$ or k does not contain $\mathbb{Q}(\zeta_p + \overline{\zeta_p})$ and $\mathcal{E}(k)$ does not admit a point of order p. In this paper we prove the following result:

Theorem 2 Let $p \ge 5$ be a prime number, let k be a number field and let \mathcal{E} be an elliptic curve defined over k. Suppose that there exists a positive integer n such that the local–global divisibility by p^n does not hold over $\mathcal{E}(k)$. Let G_1 be $\operatorname{Gal}(k(\mathcal{E}[p])/k)$. Then one of the following holds:

- 1. $p \equiv 2 \mod (3)$ and G_1 is isomorphic to a subgroup of S_3 of order divisible by 3;
- 2. G_1 is cyclic of order dividing p 1, and it is generated by an element that has an eigenvalue equal to 1;
- 3. G_1 is contained in a Borel subgroup, and it is generated by an element σ of order p and an element g of order dividing 2 such that σ and g have one common eigenvector for the eigenvalue 1.

Moreover, for every case $i \in \{1, 2, 3\}$ there exist a number field L_i and an elliptic curve \mathcal{E}_i defined over L_i , such that the $\operatorname{Gal}(L_i(\mathcal{E}_i[p])/L_i)$ -module $\mathcal{E}_i[p]$ is isomorphic to the G_1 -module $\mathcal{E}[p]$ of the case i and the local–global divisibility by p^2 does not hold over $\mathcal{E}(L_i)$.

Proof By Proposition 4 and Lemma 15, we are in one of the three cases of the statement. The elliptic curves exist in case 1 by Remark 6 and Corollary 9, in case 2 by Remark 6 and Lemma 10, in case 3 by Remark 6 and Lemma 11.

Clearly the case 2 of Theorem 2 corresponds to the case when $\mathcal{E}(k)$ has a point of order p defined over k. The cases 1 and 3 of Theorem 2 correspond to the case when $\mathbb{Q}(\zeta_p + \overline{\zeta_p}) \subseteq k$. By the main result of [16] and Theorem 2, we have the following corollary:

Corollary 3 Let $p \ge 5$ be a prime number, let k be a number field and let \mathcal{E} be an elliptic curve defined over k. If $p \equiv 1 \mod (3)$ and \mathcal{E} does not admit any point of order p over k, then for every positive integer n, the local–global divisibility by p^n holds over $\mathcal{E}(k)$. If $p \equiv 2 \mod (3)$, \mathcal{E} does not admit any point of order p over k and $[k(\mathcal{E}[p]) : k]$ is not 3 or 6, then for every positive integer n the local–global divisibility by p^n holds over $\mathcal{E}(k)$.

Proof If k does not contain $\mathbb{Q}(\zeta_p + \overline{\zeta_p})$, just apply the main result of [16]. If $p \equiv 1 \mod (3)$ and k contains $\mathbb{Q}(\zeta_p + \overline{\zeta_p})$, and if there exists $n \in \mathbb{N}$ such that the local–global divisibility by p^n does not hold over $\mathcal{E}(k)$, then either case 2 or case 3 of Theorem 2 applies. Thus \mathcal{E} admits a point of order p defined over k.

If $p \equiv 2 \mod (3)$, \mathcal{E} does not admit any point of order p over k, and there exists a positive integer n such that the local–global divisibility by p^n does not hold over $\mathcal{E}(k)$, then case 1 of Theorem 2 applies. Hence $k(\mathcal{E}[p])/k$ is either an extension of degree 3 or an extension of degree 6.

2 Known results

In the following proposition, we combine the main results of [16] and [17] with results of [9].

Proposition 4 Let k be a number field and let \mathcal{E} be an elliptic curve defined over k. Let p be a prime number and, for every $m \in \mathbb{N}$, let G_m be $\operatorname{Gal}(k(\mathcal{E}[p^m])/k)$. Suppose that there exists $n \in \mathbb{N}$ such that $H^1_{\operatorname{loc}}(G_n, \mathcal{E}[p^n]) \neq 0$. Then one of the following cases holds:

- 1. If p does not divide $|G_1|$, then either G_1 is cyclic of order dividing p-1, generated by an element fixing a point of order p of \mathcal{E} , or $p \equiv 2 \mod (3)$ and G_1 is a group isomorphic either to S_3 or to a cyclic group of order 3;
- 2. If p divides $|G_1|$ then G_1 is contained in a Borel subgroup, and it is either cyclic of order p, or it is generated by an element of order p and an element of order 2 distinct from -Id.

Proof Suppose first that p does not divide $|G_1|$. By the argument in [7, p. 29], we have that G_1 is isomorphic to its projective image. By [18, Proposition 16], then G_1 is either cyclic, or dihedral or isomorphic to one of the following groups: A_4 , S_4 , A_5 .

Suppose that the last case holds. Then G_1 should contain a subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and so it contains -Id. This contradicts the fact that G_1 is isomorphic to its projective image.

Suppose that G_1 is dihedral. Then G_1 is generated by τ and σ with σ of order 2 and $\sigma \tau = \tau^{-1}\sigma$. In particular all the elements of G_1 have determinant either 1 or -1. Suppose that there exists $i \in \mathbb{N}$ such that τ^i has order dividing p - 1, and distinct from 1. Observe that since p does not divide $|G_1|$, we have $H^1(G_1, \mathcal{E}[p]) = 0$. Then, by [9, Theorem 2], we get that τ^i has at least an eigenvalue equal to 1. Thus, since τ^i is not the identity, it has determinant -1. Then τ^i has order 2. Since $\sigma \tau = \tau^{-1}\sigma$, we get $\sigma \tau^i = \tau^{-i}\sigma = \tau^i\sigma$, because τ^i has order 2. Then, since G_1 is not cyclic, τ^i and σ are two distinct elements of order 2 which commute. Thus, like in the previous case, G_1 contains a subgroup isomorphic

to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and so it contains -Id. This contradicts the fact that G_1 is isomorphic to its projective image. Then τ has odd order dividing p + 1. In particular it has two eigenvalues over \mathbb{F}_{p^2} : λ and λ^p . By [9, Proposition 17, Lemma 18] (or see [2, Sect. 3]), if there exists $n \in \mathbb{N}$ such that $H^1(G_n, \mathcal{E}[p^n]) \neq 0$, then the intersection between the sets $\{1, \lambda^{p-1}, \lambda^{1-p}\}$ and $\{\lambda, \lambda^p\}$ is not trivial. It follows that τ has order 3. Then 3 divides p + 1 and G_1 is isomorphic to S_3 .

Finally suppose that G_1 is cyclic. If G_1 is generated by an element of order dividing p-1, by [9, Theorem 2] we have that such an element has an eigenvalue equal to 1. On the other hand if the generator of G_1 has order not dividing p-1, again by [9, Proposition 17, Lemma 18] (see the dihedral case) we get that such an element has order 3 and 3 divides p+1.

Suppose now that p divides $|G_1|$. Since p divides the order of G_1 , by [18, Proposition 15] and the fact that G_1 is isomorphic to its projective image, we have that G_1 is contained in a Borel subgroup. In particular the p-Sylow subgroup N of G_1 is normal. Suppose that G_1/N is not cyclic. Then G_1 is not isomorphic to its projective image. Thus G_1 is generated by an element σ of order p, which generates N, and an element g of order dividing p - 1. Suppose that 1 is not an eigenvalue for g. Then by [9, Theorem 2] (in particular notice that, by [9, Remark 16], the hypothesis $H^1(G_1, \mathcal{E}[p]) = 0$ is not necessary), we have $H^1_{\text{loc}}(G_m, \mathcal{E}[p^m]) = 0$ for every $m \in \mathbb{N}$ and so we get a contradiction. Then g has an eigenvalue equal to 1. Suppose that g has order ≥ 3 . Then its determinant has order ≥ 3 and so, since the determinant is the pth cyclotomic character, k does not contain $\mathbb{Q}(\zeta_p + \overline{\zeta_p})$. Then if g and σ do not fix the same point of order p, by [16, Theorem 1] we get a contradiction. On the other hand, since p divides the order of G_1 , we have $k(\mathcal{E}[p]) \neq k(\zeta_p)$. Then by [17, Theorem 3], we get a contradiction.

We conclude that G_1 is either cyclic of order p, or it is generated by an element g of order 2 distinct from -Id and an element of order p (which generates a normal subgroup of G_1).

We now recall some properties of the Galois action over the torsion points on an elliptic curve over a number field. In [8] we proved the following Lemma, which is a direct consequence of very interesting results of Greicius [11] and Zywina [20].

Lemma 5 Given a prime number p, a positive integer n and a subgroup G of $GL_2(\mathbb{Z}/p^n\mathbb{Z})$, there exists a number field k and an elliptic curve \mathcal{E} defined over k such that there are an isomorphism ϕ : $Gal(k(\mathcal{E}[p^n])/k) \rightarrow G$ and a $\mathbb{Z}/p^n\mathbb{Z}$ -linear homomorphism $\tau : \mathcal{E}[p^n] \rightarrow$ $(\mathbb{Z}/p^n\mathbb{Z})^2$ such that, for all $\sigma \in Gal(k(\mathcal{E}[p^n])/k)$ and $v \in \mathcal{E}[p^n]$, we have $\phi(\sigma)\tau(v) =$ $\tau(\sigma(v))$.

Proof See [8, Lemma 11].

Remark 6 Given a prime number p, a positive integer n and a subgroup G of $GL_2(\mathbb{Z}/p^n\mathbb{Z})$, if we suppose $H^1_{loc}(G, (\mathbb{Z}/p^n\mathbb{Z})^2) \neq 0$, then by Lemma 5, there exist a number field k and an elliptic curve \mathcal{E} defined over k such that $H^1_{loc}(G_n, \mathcal{E}[p^n]) \neq 0$. Hence, by [7, Theorem 3], there exists a finite extension L of k such that $L \cap k(\mathcal{E}[p^n]) = k$ and the local–global divisibility by p^n does not hold over $\mathcal{E}(L)$.

3 Auxiliary results in the prime to *p* case

Let $p \equiv 2 \mod (3)$ be a prime number. In [9, Sect. 5] we already found a subgroup G of $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$ such that $H^1_{\operatorname{loc}}(G, (\mathbb{Z}/p^2\mathbb{Z})^2) \neq 0$ and the quotient of G by the subgroup

H of the elements congruent to the identity modulo *p* is a cyclic group of order 3. We use the following remark and the following proposition to extend the example to a group G' containing *G* such that G'/H is isomorphic to S_3 .

Remark 7 Let *p* be a prime number, let *m* be a positive integer, let *V* be $(\mathbb{Z}/p^2\mathbb{Z})^{2m}$, let *G* be a subgroup of $GL_{2m}(\mathbb{Z}/p^2\mathbb{Z})$ and let *H* be the subgroup of *G* of the elements congruent to the identity modulo *p*. Then we have the following inflation–restriction exact sequence:

$$0 \to H^{1}(G/H, V[p]) \to H^{1}(G, V[p]) \to H^{1}(H, V[p])^{G/H} \to H^{2}(G/H, V[p]).$$
(3.1)

Moreover, the exact sequence

$$0 \to V[p] \to V \to V[p] \to 0$$

(the first map is the inclusion and the second map the multiplication by p) induces the following exact sequence:

$$H^{0}(G, V[p]) \to H^{1}(G, V[p]) \to H^{1}(G, V) \to H^{1}(G, V[p]).$$
 (3.2)

Proposition 8 Let p be a prime number, let m be a positive integer, let V be $(\mathbb{Z}/p^2\mathbb{Z})^{2m}$, let G be a subgroup of $\operatorname{GL}_{2m}(\mathbb{Z}/p^2\mathbb{Z})$, and let H be the subgroup of G of the elements congruent to the identity modulo p. Suppose that:

- 1. *G* has an element δ not fixing any element of *V*;
- 2. *H* is isomorphic, as an G/H-module, to a non-trivial G/H-submodule of V[p];
- 3. For every $h \in H$ distinct from the identity, the endomorphism $h Id: V/V[p] \rightarrow V/V[p]$ is an isomorphism;
- 4. G/H has order not divisible by p.

Then $H^1_{\text{loc}}(G, V) \neq 0$.

Proof By Hypothesis 4, we know that the groups $H^1(G/H, \mathcal{A}[p])$ and $H^2(G/H, \mathcal{A}[p])$ in (3.1) are trivial, and hence the restriction map is an isomorphism. Since the action of H over V[p] is trivial and H is an abelian group of exponent p, we have that $H^1(H, V[p])^{G/H}$ is isomorphic to $\operatorname{Hom}_{\mathbb{Z}/p\mathbb{Z}[G/H]}(H, V[p])$. By Hypothesis 2, there exists $\phi: H \to V[p]$ an injective homomorphism of $\mathbb{Z}/p\mathbb{Z}[G/H]$ -modules. Let [Z] be in $H^1(G, V[p])$ such that its image in $H^1(H, V[p])^{G/H}$ is the class of ϕ . In particular, we have $[Z] \neq 0$ because ϕ is injective and the restriction map is an isomorphism.

Now observe that $H^0(G, V[p]) = 0$ by Hypothesis 1. Then, by Remark 7, we have the following exact sequence of *G*-modules

$$0 \to H^1(G, V[p]) \to H^1(G, V) \to H^1(G, V[p]).$$

Let us call $[W] \in H^1(G, V)$ the image of $[Z] \in H^1(G, V[p])$ defined above by the injective map $H^1(G, V[p]) \to H^1(G, V)$. Since $[Z] \neq 0$, the same holds for [W]. Moreover, since G/H is not divisible by p, the restriction $H^1(G, V) \to H^1(H, V)$ is injective. We conclude because by Hypothesis 3, the image of [W] under this map is in $H^1_{loc}(H, V)$.

Corollary 9 Let p be an odd prime such that $p \equiv 2 \mod (3)$. Let G be the subgroup of $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$ generated by

$$\tau = \begin{pmatrix} 1 & -3 \\ 1 & -2 \end{pmatrix}$$

Deringer

(which has order 3), by an element σ of order 2 such that $\sigma \tau \sigma^{-1} = \tau^2$ and by

$$H = \left\{ \begin{pmatrix} 1 + p(a-2b) & 3p(b-a) \\ -pb & 1 - p(a-2b) \end{pmatrix}, \ a, b \in \mathbb{Z}/p^2\mathbb{Z} \right\}.$$

$$F_{1}\left(\mathbb{Z}/p^2\mathbb{Z}\right)^{2} \neq 0.$$

Then $H^1_{\text{loc}}(G, (\mathbb{Z}/p^2\mathbb{Z})^2) \neq 0.$

Proof It suffices to show that the conditions of Proposition 8 hold for G. Conditions 1 and 4 are clear and condition 3 holds by [9, Sect. 5]. Observe that G/H is isomorphic to S_3 and recall that S_3 has a unique irreducible representation of dimension 2 over \mathbb{F}_p . To prove condition 2 we equivalently prove that H is stable by the conjugation by τ and σ . In [9, Sect. 5] we proved that the conjugation by τ sends H to H.

Let us show that $\sigma H \sigma^{-1} = H$. A straightforward computation shows that if $\overline{\sigma}$ has order 2 in G/H and $\overline{\sigma \tau \sigma}^{-1} = \overline{\tau}^2$, then there exists $\alpha, \beta \in \mathbb{F}_p$ such that

$$\overline{\sigma} = \begin{pmatrix} \alpha - 2\beta & 3(\beta - \alpha) \\ \beta & 2\beta - \alpha \end{pmatrix}.$$

Let

$$W = \left\{ \begin{pmatrix} 1+pc & pd \\ pe & 1-pc \end{pmatrix}, \ c, d, e \in \mathbb{Z}/p^2\mathbb{Z} \right\}.$$

It is a subgroup of $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$ and a \mathbb{F}_p -vector space of dimension 3. Observe that W is the subgroup of the group of the matrices congruent to the identity modulo p and having trace 2. Since the trace is invariant under conjugation, we have that $\sigma W \sigma^{-1} = W$. Let ϕ_σ be the automorphism of W such that, for every $w \in W$, $\phi_\sigma(w) = \sigma w \sigma^{-1}$. Observe that since σ has order 2, and it is distinct from Id and -Id, ϕ_σ has an eigenspace W_1 of dimension 1 for the eigenvalue 1, which is generated by the element $h_1 \in H$ with $a = \alpha$, $b = \beta$, and an eigenspace W_2 of dimension 2 for the eigenvalue -1. Let h be in H and $h \notin W_1$. Then $h \in W$ and, since $W = W_1 \bigoplus W_2$, there exist $r \in \mathbb{Z}$ and $h_2 \in W_2$ distinct from the identity such that $h = h_1^r h_2$. Thus $h_2 = h h_1^{-r} \in H$. Since h_1 and h_2 are linearly indipendent, they generate H. Moreover, $\phi_\sigma(h_2) = h_2^{-1} \in H$. Then $\phi_\sigma(H) = \sigma H \sigma^{-1} = H$.

Lemma 10 Let p be a prime number and let V be $(\mathbb{Z}/p^2\mathbb{Z})^2$. Let $\lambda \in (\mathbb{Z}/p^2\mathbb{Z})^*$ be of order dividing p - 1 and let G be the following subgroup of $\operatorname{GL}_2(V)$:

$$G = \left\langle g = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}, h(1,0) = \begin{pmatrix} 1+p & 0 \\ 0 & 1-p \end{pmatrix}, h(0,1) = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} \right\rangle$$

Then $H^1_{\text{loc}}(G, V) \neq 0$.

Proof Observe that the subgroup *H* of *G* of the elements congruent to the identity modulo *p* is the group generated by h(1, 0) and h(0, 1). Since G/H has order not divisible by *p*, $H^1(G/H, V[p]) = 0$ and $H^2(G/H, V[p]) = 0$. Then, from the exact sequence (3.1) in Remark 7, we get an isomorphism from $H^1(G/H, V[p])$ to $H^1(H, V[p])^{G/H}$. Since *H* acts like the identity over V[p] and since the groups V[p] and *H* are abelian with exponent *p*, we have $H^1(H, V[p])^{G/H} = \text{Hom}_{\mathbb{Z}/p\mathbb{Z}[G/H]}(H, V[p])$. Observe that $gh(0, 1)g^{-1} = h(0, 1)^{\lambda}$ and $g(p, 0) = \lambda(p, 0)$. Then we can define a non-trivial $\mathbb{Z}/p\mathbb{Z}[G/H]$ homomorphism ϕ from *H* to V[p] by sending h(0, 1) to (p, 0) and h(1, 0) to (0, 0) and extending it by linearity. Let *Z* be a cocycle representing the class [Z] in $H^1(G, V[p])$ corresponding to ϕ . By (3.2) of Remark 7, we have an homomorphism. Let us show that $[W] \in H^1_{loc}(G, V)$

and $[W] \neq 0$. Since G/H has order not divisible by p, it is sufficient to prove that the image of [W] under the restriction to $H^1(H, V)$ is in $H^1_{loc}(H, V)$. For all integers a, b define h(a, b) := ah(1, 0) + bh(0, 1). Then, by the definition of [Z], we have that h(a, b) is sent to (bp, 0). An easy calculation shows that for every a, b, there exist x, y in $\mathbb{Z}/p^2\mathbb{Z}$ such that (h - Id)(x, y) = (bp, 0). This proves that $[W] \in H^1_{loc}(G, V)$. Finally observe that for every x, y in $\mathbb{Z}/p^2\mathbb{Z}$ such that (h(1, 0) - Id)(x, y) = (0, 0), we

Finally observe that for every x, y in $\mathbb{Z}/p^2\mathbb{Z}$ such that (h(1, 0) - Id)(x, y) = (0, 0), we have $x \equiv 0 \mod (p)$ and $y \equiv 0 \mod (p)$. On the other hand, for every x, y in $\mathbb{Z}/p^2\mathbb{Z}$ such that (h(1, 0) - Id)(x, y) = (p, 0), we have $y \equiv 1 \mod (p)$. Thus $[W] \neq 0$.

4 Auxiliary results in the *p*-dividing case

In this section we first prove the following result.

Lemma 11 Let V be $(\mathbb{Z}/p^2\mathbb{Z})^2$ and let G be the following subgroup of $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$:

$$G = \left\langle g = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma = \begin{pmatrix} 1+p & 1 \\ 2p & 1+p \end{pmatrix}, h = \begin{pmatrix} 1+p & 0 \\ 0 & 1-p \end{pmatrix} \right\rangle$$

Then $H^1_{\text{loc}}(G, V) \neq 0$.

Proof Let *H* be the subgroup of *G* of the elements congruent to 1 modulo *p*. Let \overline{g} and $\overline{\sigma}$ be the classes of *g* and σ modulo *H*. We have that $H^1(G/H, V[p]) \neq 0$. In fact we can define a cocycle $Z: G/H \to V[p]$, which is not a coboundary, by sending, for every integer i_1, i_2 , $Z_{\overline{g}^{i_1}\overline{\sigma}^{i_2}}$ to $(pi_2(i_2-1)/2, (-1)^{i_1}pi_2)$. Since *H* is normal, we have an injective homomorphism (the inflation) from $H^1(G/H, V[p])$ to $H^1(G, V[p])$. By abuse of notation we still call *Z* a cocycle representing the image of the class of *Z* in $H^1(G, V[p])$. Moreover, see Remark 7 and in particular the sequence (3.2), we have a homomorphism from $H^1(G, V[p])$ to $H^1(G, V[p])$ to some class $[W] \in H^1(G, V)$. We shall prove that $[W] \in H^1_{loc}(G, V)$ and $[W] \neq 0$.

First of all let us observe that for every $a, b, c, d \in \mathbb{Z}/p^2\mathbb{Z}$, we have

$$\begin{pmatrix} 1+ap & 1+bp \\ cp & 1+dp \end{pmatrix}^p = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}.$$

To verify this write

$$\begin{pmatrix} 1+ap & 1+bp \\ cp & 1+dp \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} ap & 1+bp \\ cp & dp \end{pmatrix}$$

and observe that

$$\begin{pmatrix} ap & 1+bp \\ cp & dp \end{pmatrix}^2 \equiv \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mod (p), \ \begin{pmatrix} ap & 1+bp \\ cp & dp \end{pmatrix}^4 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus the subgroup H of G of the elements congruent to the identity modulo p is

$$H = \left\langle \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1+p & 0 \\ 0 & 1-p \end{pmatrix} \right\rangle.$$

Now observe that, since H and $\langle \sigma, H \rangle$ are normal in G, for every $\tau \in G$ there exist integers i_1, i_2, i_3 and $h \in H$ such that $\tau = g^{i_1} \sigma^{i_2} h^{i_3}$. If W is a representant for [W], we have $W_{\tau} = (p(i_2 - 1), (-1)^{i_1} p_{i_2})$. If $i_2 \equiv 0 \mod (p)$, then clearly $W_{\tau} = (0, 0)$ and so $W_{\tau} =$

Deringer

 $(\tau - Id)((0, 0))$. Then we can suppose $i_2 \neq 0 \mod (p)$. It is simple to prove by induction on i_2 that

$$\sigma^{i_2} = \begin{pmatrix} 1+ap & i_2+bp \\ 2i_2p & 1+cp \end{pmatrix}$$

holds for some $a, b, c \in \mathbb{Z}/p^2\mathbb{Z}$. Moreover $\sigma^{i_2}h^{i_3}$ has again the top right entry congruent to i_2 modulo p and the bottom left entry equal to $2i_2p$. From these remarks is an easy exercise to prove that there exist α and $\beta \in \mathbb{Z}/p^2\mathbb{Z}$ such that $W_{\tau} = (\tau - Id)((\alpha, p\beta))$. Then [W] is in $H^1_{loc}(G, V)$.

Finally let us observe that W is not a coboundary. Let α , $\beta \in \mathbb{Z}/p^2\mathbb{Z}$ be such that $W_{\sigma} = (0, p) = (\sigma - Id)((\alpha, \beta))$. Then $\alpha \neq 0 \mod (p)$. On the other hand, let $h \in H$ be such that

$$h = \begin{pmatrix} 1+p & 0\\ 0 & 1-p \end{pmatrix}.$$

Then $W_h = (0, 0)$ and so for every $\alpha, \beta \in \mathbb{Z}/p^2\mathbb{Z}$ such that $(h - id)((\alpha, \beta)) = (0, 0)$, we have $\alpha \equiv 0 \mod (p)$. Hence W is not a coboundary.

Remark 12 For every $a, b, c, d \in \mathbb{Z}/p^2\mathbb{Z}$, we have

$$\begin{pmatrix} 1+ap & 1+bp \\ cp & 1+dp \end{pmatrix}^p = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}.$$

In a similar way, for every integer $m \ge 2$, and every $a_m, b_m, c_m, d_m \in \mathbb{Z}/p^m\mathbb{Z}$, we have

$$\begin{pmatrix} 1+a_mp & 1+b_mp\\ c_mp & 1+d_mp \end{pmatrix}^{p^{m-1}} = \begin{pmatrix} 1 & p^m\\ 0 & 1 \end{pmatrix}.$$

Corollary 13 Let V be $(\mathbb{Z}/p^2\mathbb{Z})^2$ and let G be the following subgroup of $\operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z})$:

$$\widetilde{G} = \left\langle \sigma = \begin{pmatrix} 1+p & 1\\ 2p & 1+p \end{pmatrix}, h = \begin{pmatrix} 1+p & 0\\ 0 & 1-p \end{pmatrix} \right\rangle.$$

Then $H^1_{\text{loc}}(\widetilde{G}, V) \neq 0$

Proof Observe that \widetilde{G} is a subgroup of index 2 of the group G of Lemma 11. Since $p \neq 2$, the restriction $H^1_{\text{loc}}(G, V) \to H^1_{\text{loc}}(\widetilde{G}, V)$ is injective and the result follows.

Before proving the last result of this section, we need a result of linear algebra.

Lemma 14 Let $n \in \mathbb{N}$ and let G be a subgroup of $\operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$. Let H be the subgroup of G of the elements congruent to the identity modulo p. Suppose that G/H is contained in a Borel subgroup, and it is generated by an element g of order 2 and an element σ of order p such that σ and g do not fix the same element of order p. Let τ be in H and let $\sigma_n \in G$ be such that σ_n is sent to σ by the projection of G over G/H. Then there exist τ_d , $\tau_l \in H$, $\lambda \in \mathbb{N}$, such that τ_d is diagonal, τ_l is lower unitriangular and $\tau = \tau_d \tau_l \sigma_n^{p\lambda}$. In other words H is generated by its subgroups of the diagonal matrices, its subgroup of the lower unitriangular matrices and σ_n^p .

Proof Fix a basis of $(\mathbb{Z}/p^n\mathbb{Z})^2$ such that

$$\sigma_n \equiv \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mod (p).$$

🖉 Springer

Then, since g has order 2 and p is odd, there exists an element g_n of G such that

$$g_n = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

We remark that $\sigma_n^p \in H$. In fact $\sigma_n^p \equiv Id \mod (p)$.

We first show that every $\tau \in H$ can be written as a product of a lower triangular matrix $\tau_L \in H$ and a power of σ_n^p . Since $\tau \in H$, $\tau \equiv Id \mod (p)$ and so there exist $e, g, m, r \in \mathbb{Z}/p^n\mathbb{Z}$ such that

$$\tau = \begin{pmatrix} 1 + pe & pg \\ pm & 1 + pr \end{pmatrix}.$$

We prove by induction that for every integer $i \ge 1$, there exists $\lambda_i \in \mathbb{Z}/p^n\mathbb{Z}$ such that

$$\tau \sigma_n^{p\lambda_i} = \begin{pmatrix} 1 + pe_i & p^i g_i \\ pm_i & 1 + pr_i \end{pmatrix},\tag{4.1}$$

for some $e_i, g_i, m_i, r_i \in \mathbb{Z}/p^n\mathbb{Z}$. If i = 1 then for $\lambda_1 = 0$ the relation (4.1) is satisfied. Suppose that (4.1) is satisfied for an integer $i \ge 1$. Then there exists $\lambda_i \in \mathbb{Z}/p^n\mathbb{Z}$ such that

$$\tau \sigma_n^{p\lambda_i} = \begin{pmatrix} 1 + pe_i & p^i g_i \\ pm_i & 1 + pr_i \end{pmatrix},$$

for some $e_i, g_i, m_i, r_i \in \mathbb{Z}/p^n\mathbb{Z}$. Choose an element λ_{i+1} of $\mathbb{Z}/p^n\mathbb{Z}$ such that $p\lambda_{i+1} = p\lambda_i - p^i g_i$. Observe that this element exists because $i \ge 1$. By Remark 12 we have

$$\sigma_n^{-p^i g_i} = \begin{pmatrix} 1 + p^{i+1} a_{i+1} & p^i + p^{i+1} b_{i+1} \\ p^{i+1} c_{i+1} & 1 + p^{i+1} d_{i+1} \end{pmatrix}^{-g_i} \\ = \begin{pmatrix} 1 + p^{i+1} a'_{i+1} & -p^i g_i + p^{i+1} b'_{i+1} \\ p^{i+1} c'_{i+1} & 1 + p^{i+1} d'_{i+1} \end{pmatrix},$$

for some $a'_{i+1}, b'_{i+1}, c'_{i+1}, d'_{i+1} \in \mathbb{Z}/p^n\mathbb{Z}$. By a short computation

$$\begin{aligned} \tau \sigma_n^{p\lambda_{i+1}} &= \tau \sigma_n^{p\lambda_i} \sigma_n^{-p^* g_i} \\ &= \begin{pmatrix} 1 + pe_i & p^i + p^i g_i \\ pm_i & 1 + pr_i \end{pmatrix} \begin{pmatrix} 1 + p^{i+1}a'_{i+1} & -p^i g_i + p^{i+1}b'_{i+1} \\ p^{i+1}c'_{i+1} & 1 + p^{i+1}d'_{i+1} \end{pmatrix} \\ &= \begin{pmatrix} 1 + pe_{i+1} & +p^{i+1}g_{i+1} \\ pm_{i+1} & 1 + pr_{i+1} \end{pmatrix}, \end{aligned}$$

for some $e_{i+1}, g_{i+1}, m_{i+1}, r_{i+1} \in \mathbb{Z}/p^n\mathbb{Z}$. Then (4.1) is verified for λ_{i+1} that satisfies $p\lambda_{i+1} = p\lambda_i - p^i g_i$. In particular for i = n we have

$$\tau \sigma_n^{p\lambda_n} = \begin{pmatrix} 1 + pe_n & 0\\ pm_n & 1 + pr_n \end{pmatrix}.$$

Then, setting $\tau_L = \tau \sigma_n^{p\lambda_n}$ and $\lambda = -\lambda_n$, we have shown that τ can be written as a product of a lower triangular matrix $\tau_L \in H$ and the power $\sigma_n^{p\lambda}$ of σ_n^p .

Observe that, to conclude the proof, it is sufficient to show that τ_L can be written as the product of a diagonal matrix $\tau_d \in H$ and a lower unitriangular matrix $\tau_l \in H$. Since H is normal in G, $g_n \tau_L g_n^{-1} \in H$. Then $g_n \tau_L g_n^{-1} \tau_L^{-1} \in H$. Moreover, by a simple computation, we have

$$g_n \tau_L g_n^{-1} \tau_L^{-1} = \begin{pmatrix} 1 & 0 \\ -2pm_n/(pe_n+1) & 1 \end{pmatrix}.$$

Deringer

Thus

$$(g_n\tau_L g_n^{-1}\tau_L^{-1})^{-(pe_n+1)/2(pr_n+1)} = \begin{pmatrix} 1 & 0\\ pm_n/(pr_n+1) & 1 \end{pmatrix} \in H.$$

Call such a matrix τ_l and observe that

$$\tau_L = \begin{pmatrix} 1 + pe_n & 0 \\ 0 & 1 + pr_n \end{pmatrix} \begin{pmatrix} 1 & 0 \\ pm_n/(pr_n + 1) & 1 \end{pmatrix}.$$

Call the diagonal matrix τ_d . Since τ_L , $\tau_l \in H$, also $\tau_d \in H$, proving the statement.

Lemma 15 Under the assumptions and with the notation of Lemma 14, let V_n be $(\mathbb{Z}/p^n\mathbb{Z})^2$. Then $H^1_{loc}(G, V_n) = 0$.

Proof By replacing V with V_n , by observing that $H^0(G, V_n[p^{n-1}]) = 0$ because the group generated by g and σ do not fix any element of $V_n[p^{n-1}]$, and by using the Remark 7, we get the following exact sequence

$$0 \to H^{1}(G, V_{n}[p]) \to H^{1}(G, V_{n}) \to H^{1}(G, V_{n}[p^{n-1}]).$$
(4.2)

Suppose that $H_{\text{loc}}^1(G, V_n) \neq 0$. Then $H_{\text{loc}}^1(G, V_n)[p] \neq 0$ and so let Z be a cocycle representing a non-trivial class $[Z] \in H_{\text{loc}}^1(G, V_n)[p]$. Let us observe that [Z] is in the kernel of the map $H^1(G, V_n) \to H^1(G, V_n[p^{n-1}])$ (here we generalize the proof of [9, Lemma 13]). Since [Z] has order p, then pZ is a coboundary and so there exists $v \in V_n$ such that, for every $\tau \in G$, $pZ_{\tau} = \tau(v) - v$. Let us observe that $v \in V_n[p^{n-1}]$. Since for every τ we have $\tau(v) - v \in V_n[p^{n-1}]$, and we get that $v \in \cap_{\tau \in G} \ker(p^{n-1}(\tau - Id))$. Since G does not fix any element of order p, the unique possibility is that $v \in V_n[p^{n-1}]$. Then (see the sequence (4.2)) [Z] is in the image of $H^1(G, V_n[p]) \to H^1(G, V_n)$. By abuse of notation we call [Z] the class in $H^1(G, V_n[p])$ sent to [Z].

Consider now the inflation-restriction sequence

$$0 \to H^{1}(G/H, V_{n}[p]) \to H^{1}(G, V_{n}[p]) \to H^{1}(H, V_{n}[p])^{G/H}.$$
(4.3)

Let us observe that $H^1(G/H, V_n[p]) = 0$. Let $W: G/H \to V_n[p]$ be a cocycle. Since σ and g are contained in a Borel subgroup, g has order 2, and g and σ do not fix any nonzero element of $V_n[p^{n-1}]$, we can choose a basis of V_n such that $(p^{n-1}, 0)$ is fixed by σ , $g((p^{n-1}, 0)) =$ $(-p^{n-1}, 0)$ and $(0, p^{n-1})$ is sent to (p^{n-1}, p^{n-1}) by σ and fixed by g. Observe that, since summing a coboundary to W does not change its class, we can suppose that $W_{\sigma} = (0, p^{n-1})$. Then, for every integer *i*, we have $W_{\sigma^i} = (p^{n-1}i(i-1)/2, p^{n-1}i)$. Observe that since *g* has order 2, we have $W_{g^2} = W_g + gW_g = (0, 0)$. In particular there exists $a \in \mathbb{Z}/p^n\mathbb{Z}$ such that $W_g = (p^{n-1}a, 0)$, and which is fixed by σ . Thus $W_{g\sigma g^{-1}} = g W_{\sigma} = (p^{n-1}, -p^{n-1})$. On the other hand, $g\sigma g^{-1} = \sigma^{-1}$ and so $W_{\sigma^{-1}} = (-p^{n-1}, -p^{n-1})$. We then get a contradiction. Thus, by the sequence (4.3), to every class of $H^1(G, V_n[p])$ we can associate a class in $H^{1}(H, V_{n}[p])^{G/H}$. Since H acts as the identity over $V_{n}[p]$, we have that $H^{1}(H, V_{n}[p])^{G/H}$ is a subgroup of Hom $(H, V_n[p])$. In particular, we can associate with $[Z] \in H^1(G, V[p])$ defined above a homomorphism from H to $V_n[p]$. By Lemma 14, for every $\tau \in H$ there exist $\tau_l \in H$ a lower unitriangular matrix, $\tau_D \in H$ a diagonal matrix and $\lambda \in \mathbb{Z}$ such that $\tau = \tau_l \tau_D \sigma_n^{\lambda p}$. Consider the homorphism associated with $[Z] \in H^1(G, V_n[p])$. Since the cocycle Z has values in $V_n[p]$, in particular $Z_{\sigma_n} \in V_n[p]$ and, by the cocycle property, $Z_{\sigma_n^p} = (0, 0)$. On the other hand, since $g_n \tau_D g_n^{-1} = \tau_D$, there exists $b \in \mathbb{Z}/p^n \mathbb{Z}$ such that $Z_{\tau_D} = (0, p^{n-1}b)$. If $p^{n-1}b$ is distinct from 0, then $(0, p^{n-1}b)$ generates V[p] as an G/Hmodule. Since $g_n \tau_l g_n^{-1} = \tau_l^{-1}$, there exists $a \in \mathbb{Z}/p^n\mathbb{Z}$ such that $Z_{\tau_l} = (p^{n-1}a, 0)$. Observe

☑ Springer

that for every $(\alpha, \beta) \in V_n$, we have that $(\tau_l - Id)(\alpha, \beta) = (p^{n-1}a, 0)$ only if $p^{n-1}a = 0$. Then if the image of Z satisfies the local conditions over V_n , the homomorphism associated with Z is trivial, and so Z is a coboundary.

References

- 1. Artin, E., Tate, J.: Class Field Theory. Benjamin, Reading (1967)
- Ciperiani, M., Stix, J.: Weil–Châtelet divisible elements in Tate–Shafarevich groups II: on a question of Cassels. J. Für Die Reine und Angew. Math. 700, 175–207 (2015)
- Creutz, B.: Locally trivial torsors that are not Weil–Châtelet divisible. Bull. Lond. Math. Soc. 45, 935–941 (2013)
- 4. Creutz, B.: On the local-global principle for divisibility in the cohomology of elliptic curves. Math. Res. Lett. **23**(2), 377–387 (2016)
- Dvornicich, R., Zannier, U.: Local-global divisibility of rational points in some commutative algebraic groups. Bull. Soc. Math. France 129, 317–338 (2001)
- Dvornicich, R., Zannier, U.: An analogue for elliptic curves of the Grunwald–Wang example. C. R. Acad. Sci. 338, 47–50 (2004)
- Dvornicich, R., Zannier, U.: On local-global principle for the divisibility of a rational point by a positive integer. Bull. Lond. Math. Soc. 39, 27–34 (2007)
- Gillibert, F., Ranieri, G.: On the local-global divisibility of torsion points on elliptic curves and GL₂-type varieties. J. Number Theory 174, 202–220 (2017)
- Gillibert, F., Ranieri, G.: On the local-global divisibility over abelian varieties, arXiv:1612.00058, to appear in the Ann. Institut Fourier
- Gillibert, F., Ranieri, G.: On the local-global divisibility over GL₂-type varieties, arXiv:1703.06235, submitted
- 11. Greicius, A.: Elliptic curve with surjective adelic Galois representation. Exp. Math. 19(4), 495–507 (2010)
- Illengo, M.: Cohomology of integer matrices and local-global divisibility on the torus. Le J. de Théorie des Nombres de Bordeaux 20(2), 327–334 (2008)
- Lawson, T., Wuthrich, C.: Vanishing of Some Galois Cohomology Groups of Elliptic Curves, Preprint, arXiv:1505.02940v1
- Paladino, L.: Local-global divisibility by 4 in elliptic curves defined over Q. Annali di Matematica Pura e Appl. 189(1), 17–23 (2010)
- 15. Paladino, L.: Elliptic curves with $\mathbb{Q}(\mathcal{E}[3]) = \mathbb{Q}(\zeta_3)$ and counterexamples to local-global divisibility by 9. Le J. de Théorie des Nombres de Bordx. **22**(1), 138–160 (2010)
- 16. Paladino, L., Ranieri, G., Viada, E.: Local-global divisibility by p^n in elliptic curves, arXiv:1104.4762v2
- Paladino, L., Ranieri, G., Viada, E.: On the minimal set for counterexamples to the local-global divisibility principle. J. Algebra 415, 290–304 (2014)
- Serre, J.-P.: Proprietés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15, 259–331 (1972)
- 19. Trost, E.: Zur theorie des Potenzreste. Nieuw Archief voor Wiskunde 18(2), 58-61 (1948)
- Zywina, D.: Elliptic curves with maximal Galois action on their torsion points. Bull. Lond. Math. Soc. 42(5), 811–826 (2010)