Counterexamples to the local-global divisibility over elliptic curves

Gabriele Ranieri ${ }^{1}$ (1)

Received: 3 May 2017 / Accepted: 6 December 2017 / Published online: 12 December 2017
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract

Let $p \geq 5$ be a prime number. We find all the possible subgroups G of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ such that there exist a number field k and an elliptic curve \mathcal{E} defined over k such that the $\operatorname{Gal}(k(\mathcal{E}[p]) / k)$-module $\mathcal{E}[p]$ is isomorphic to the G-module $(\mathbb{Z} / p \mathbb{Z})^{2}$ and there exists $n \in \mathbb{N}$ such that the local-global divisibility by p^{n} does not hold over $\mathcal{E}(k)$.

Keywords Elliptic curves • Local-global • Galois cohomology
Mathematics Subject Classification 11R34 - 11G05

1 Introduction

Let k be a number field, and let \mathcal{A} be a commutative algebraic group defined over k. Several papers have been written on the following classical question, known as the Local-Global Divisibility Problem.

PROBLEM: Let $P \in \mathcal{A}(k)$. Assume that for all but finitely many valuations v of k, there exists $D_{v} \in \mathcal{A}\left(k_{v}\right)$ such that $P=q D_{v}$, where q is a positive integer. Is it possible to conclude that there exists $D \in \mathcal{A}(k)$ such that $P=q D$?

By Bézout's identity, to get answers for a general integer it is sufficient to solve it for powers p^{n} of a prime. In the classical case of $\mathcal{A}=\mathbb{G}_{m}$, the answer is positive for p odd, and negative for instance for $q=8$ (and $P=16$) (see for example [1,19]).

For general commutative algebraic groups, Dvornicich and Zannier gave a cohomological interpretation of the problem (see [5] and [7]) that we shall explain. Let Γ be a group and let M be a Γ-module. We say that a cocycle $Z: \Gamma \rightarrow M$ satisfies the local conditions if for every $\gamma \in \Gamma$, there exists $m_{\gamma} \in M$ such that $Z_{\gamma}=\gamma\left(m_{\gamma}\right)-m_{\gamma}$. The set of the classes of

[^0]cocycles in $H^{1}(\Gamma, M)$ that satisfy the local conditions is a subgroup of $H^{1}(\Gamma, M)$. We call it the first local cohomology group $H_{\text {loc }}^{1}(\Gamma, M)$. Dvornicich and Zannier [5, Proposition 2.1] proved the following result.

Proposition 1 Let p be a prime number, let n be a positive integer, let k be a number field and let \mathcal{A} be a commutative algebraic group defined over k. If $H_{\text {loc }}^{1}\left(\operatorname{Gal}\left(k\left(\mathcal{A}\left[p^{n}\right]\right) / k\right), \mathcal{A}\left[p^{n}\right]\right)=$ 0 , then the local-global divisibility by p^{n} over $\mathcal{A}(k)$ holds.

The converse of Proposition 1 is not true, but if the group $H_{\text {loc }}^{1}\left(\operatorname{Gal}\left(k\left(\mathcal{A}\left[p^{n}\right]\right) / k\right), \mathcal{A}\left[p^{n}\right]\right)$ is not trivial, we can find an extension L of k such that $L \cap k\left(\mathcal{A}\left[p^{n}\right]\right)=k$, and the local-global divisibility by p^{n} over $\mathcal{A}(L)$ does not hold (see [7, Theorem 3] for the details).

Several mathematicians got criterions for the validity of the local-global divisibility principle for various commutative algebraic groups, as algebraic tori [5] and [12], elliptic curves [3-8, 14-17], and very recently polarized abelian surfaces [9] and GL 2 -type varieties [10].

In this paper, we focus on elliptic curves. Let p be a prime number, let k be a number field, and let \mathcal{E} be an elliptic curve defined over k. Dvornicich and Zannier [7, Theorem 1] found a very interesting criterion for the validity of the local-global divisibility by a power of p over $\mathcal{E}(k)$, in the case when $k \cap \mathbb{Q}\left(\zeta_{p}\right)=\mathbb{Q}$.

In a joint work with Paladino and Viada (see [16], and Sect. 2), we refined this criterion, by proving that if k does not contain $\mathbb{Q}\left(\zeta_{p}+\overline{\zeta_{p}}\right)$ and $\mathcal{E}(k)$ does not admit a point of order p, then for every positive integer n, the local-global divisibility by p^{n} holds over $\mathcal{E}(k)$. In another joint work with Paladino and Viada [17], we improved our previous criterion and the new criterion allowed us to show that if $k=\mathbb{Q}$ and $p \geq 5$, for every positive integer n the local-global divisibility by p^{n} holds for $\mathcal{E}(\mathbb{Q})$.

Very recently, Lawson and Wutrich [13] found a very strong criterion for the triviality of $H^{1}\left(\operatorname{Gal}\left(k\left(\mathcal{E}\left[p^{n}\right]\right) / k\right), \mathcal{E}\left[p^{n}\right]\right)$ (then for the validity of the local-global principle by p^{n} over $\mathcal{E}(k)$, see Proposition 1), but still in the case when $k \cap \mathbb{Q}\left(\zeta_{p}\right)=\mathbb{Q}$.

Finally, Dvornicich and Zannier [6] and Paladino [14] studied the case when $p=2$ and Paladino [15] and Creutz [3] studied the case when $p=3$.

Thus we have a fairly good understanding of the local-global divisibility by a power of p over $\mathcal{E}(k)$ either when $p \in\{2,3\}$ or k does not contain $\mathbb{Q}\left(\zeta_{p}+\overline{\zeta_{p}}\right)$ and $\mathcal{E}(k)$ does not admit a point of order p. In this paper we prove the following result:

Theorem 2 Let $p \geq 5$ be a prime number, let k be a number field and let \mathcal{E} be an elliptic curve defined over k. Suppose that there exists a positive integer n such that the local-global divisibility by p^{n} does not hold over $\mathcal{E}(k)$. Let G_{1} be $\operatorname{Gal}(k(\mathcal{E}[p]) / k)$. Then one of the following holds:

1. $p \equiv 2 \bmod (3)$ and G_{1} is isomorphic to a subgroup of S_{3} of order divisible by 3;
2. G_{1} is cyclic of order dividing $p-1$, and it is generated by an element that has an eigenvalue equal to 1 ;
3. G_{1} is contained in a Borel subgroup, and it is generated by an element σ of order p and an element g of order dividing 2 such that σ and g have one common eigenvector for the eigenvalue 1 .
Moreover, for every case $i \in\{1,2,3\}$ there exist a number field L_{i} and an elliptic curve \mathcal{E}_{i} defined over L_{i}, such that the $\operatorname{Gal}\left(L_{i}\left(\mathcal{E}_{i}[p]\right) / L_{i}\right)$-module $\mathcal{E}_{i}[p]$ is isomorphic to the G_{1-} module $\mathcal{E}[p]$ of the case i and the local-global divisibility by p^{2} does not hold over $\mathcal{E}\left(L_{i}\right)$.

Proof By Proposition 4 and Lemma 15, we are in one of the three cases of the statement. The elliptic curves exist in case 1 by Remark 6 and Corollary 9, in case 2 by Remark 6 and Lemma 10, in case 3 by Remark 6 and Lemma 11.

Clearly the case 2 of Theorem 2 corresponds to the case when $\mathcal{E}(k)$ has a point of order p defined over k. The cases 1 and 3 of Theorem 2 correspond to the case when $\mathbb{Q}\left(\zeta_{p}+\overline{\zeta_{p}}\right) \subseteq k$.

By the main result of [16] and Theorem 2, we have the following corollary:
Corollary 3 Let $p \geq 5$ be a prime number, let k be a number field and let \mathcal{E} be an elliptic curve defined over k. If $p \equiv 1 \bmod (3)$ and \mathcal{E} does not admit any point of order p over k, then for every positive integer n, the local-global divisibility by p^{n} holds over $\mathcal{E}(k)$. If $p \equiv 2$ $\bmod (3), \mathcal{E}$ does not admit any point of order p over k and $[k(\mathcal{E}[p]): k]$ is not 3 or 6 , then for every positive integer n the local-global divisibility by p^{n} holds over $\mathcal{E}(k)$.

Proof If k does not contain $\mathbb{Q}\left(\zeta_{p}+\overline{\zeta_{p}}\right)$, just apply the main result of [16]. If $p \equiv 1 \bmod$ (3) and k contains $\mathbb{Q}\left(\zeta_{p}+\overline{\zeta_{p}}\right)$, and if there exists $n \in \mathbb{N}$ such that the local-global divisibility by p^{n} does not hold over $\mathcal{E}(k)$, then either case 2 or case 3 of Theorem 2 applies. Thus \mathcal{E} admits a point of order p defined over k.

If $p \equiv 2 \bmod (3), \mathcal{E}$ does not admit any point of order p over k, and there exists a positive integer n such that the local-global divisibility by p^{n} does not hold over $\mathcal{E}(k)$, then case 1 of Theorem 2 applies. Hence $k(\mathcal{E}[p]) / k$ is either an extension of degree 3 or an extension of degree 6 .

2 Known results

In the following proposition, we combine the main results of [16] and [17] with results of [9].

Proposition 4 Let k be a number field and let \mathcal{E} be an elliptic curve defined over k. Let p be a prime number and, for every $m \in \mathbb{N}$, let G_{m} be $\operatorname{Gal}\left(k\left(\mathcal{E}\left[p^{m}\right]\right) / k\right)$. Suppose that there exists $n \in \mathbb{N}$ such that $H_{\text {loc }}^{1}\left(G_{n}, \mathcal{E}\left[p^{n}\right]\right) \neq 0$. Then one of the following cases holds:

1. If p does not divide $\left|G_{1}\right|$, then either G_{1} is cyclic of order dividing $p-1$, generated by an element fixing a point of order p of \mathcal{E}, or $p \equiv 2 \bmod (3)$ and G_{1} is a group isomorphic either to S_{3} or to a cyclic group of order 3;
2. If p divides $\left|G_{1}\right|$ then G_{1} is contained in a Borel subgroup, and it is either cyclic of order p, or it is generated by an element of order p and an element of order 2 distinct from $-I d$.

Proof Suppose first that p does not divide $\left|G_{1}\right|$. By the argument in [7, p. 29], we have that G_{1} is isomorphic to its projective image. By [18, Proposition 16], then G_{1} is either cyclic, or dihedral or isomorphic to one of the following groups: A_{4}, S_{4}, A_{5}.

Suppose that the last case holds. Then G_{1} should contain a subgroup isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times$ $\mathbb{Z} / 2 \mathbb{Z}$, and so it contains -Id. This contradicts the fact that G_{1} is isomorphic to its projective image.

Suppose that G_{1} is dihedral. Then G_{1} is generated by τ and σ with σ of order 2 and $\sigma \tau=\tau^{-1} \sigma$. In particular all the elements of G_{1} have determinant either 1 or -1 . Suppose that there exists $i \in \mathbb{N}$ such that τ^{i} has order dividing $p-1$, and distinct from 1. Observe that since p does not divide $\left|G_{1}\right|$, we have $H^{1}\left(G_{1}, \mathcal{E}[p]\right)=0$. Then, by [9, Theorem 2], we get that τ^{i} has at least an eigenvalue equal to 1 . Thus, since τ^{i} is not the identity, it has determinant -1 . Then τ^{i} has order 2. Since $\sigma \tau=\tau^{-1} \sigma$, we get $\sigma \tau^{i}=\tau^{-i} \sigma=\tau^{i} \sigma$, because τ^{i} has order 2. Then, since G_{1} is not cyclic, τ^{i} and σ are two distinct elements of order 2 which commute. Thus, like in the previous case, G_{1} contains a subgroup isomorphic
to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and so it contains $-I d$. This contradicts the fact that G_{1} is isomorphic to its projective image. Then τ has odd order dividing $p+1$. In particular it has two eigenvalues over $\mathbb{F}_{p^{2}}: \lambda$ and λ^{p}. By [9, Proposition 17, Lemma 18] (or see [2, Sect. 3]), if there exists $n \in \mathbb{N}$ such that $H^{1}\left(G_{n}, \mathcal{E}\left[p^{n}\right]\right) \neq 0$, then the intersection between the sets $\left\{1, \lambda^{p-1}, \lambda^{1-p}\right\}$ and $\left\{\lambda, \lambda^{p}\right\}$ is not trivial. It follows that τ has order 3. Then 3 divides $p+1$ and G_{1} is isomorphic to S_{3}.

Finally suppose that G_{1} is cyclic. If G_{1} is generated by an element of order dividing $p-1$, by [9, Theorem 2] we have that such an element has an eigenvalue equal to 1 . On the other hand if the generator of G_{1} has order not dividing $p-1$, again by [9 , Proposition 17, Lemma 18] (see the dihedral case) we get that such an element has order 3 and 3 divides $p+1$.

Suppose now that p divides $\left|G_{1}\right|$. Since p divides the order of G_{1}, by [18, Proposition 15] and the fact that G_{1} is isomorphic to its projective image, we have that G_{1} is contained in a Borel subgroup. In particular the p-Sylow subgroup N of G_{1} is normal. Suppose that G_{1} / N is not cyclic. Then G_{1} is not isomorphic to its projective image. Thus G_{1} is generated by an element σ of order p, which generates N, and an element g of order dividing $p-1$. Suppose that 1 is not an eigenvalue for g. Then by [9, Theorem 2] (in particular notice that, by [9, Remark 16], the hypothesis $H^{1}\left(G_{1}, \mathcal{E}[p]\right)=0$ is not necessary), we have $H_{\mathrm{loc}}^{1}\left(G_{m}, \mathcal{E}\left[p^{m}\right]\right)=0$ for every $m \in \mathbb{N}$ and so we get a contradiction. Then g has an eigenvalue equal to 1 . Suppose that g has order ≥ 3. Then its determinant has order ≥ 3 and so, since the determinant is the p th cyclotomic character, k does not contain $\mathbb{Q}\left(\zeta_{p}+\overline{\zeta_{p}}\right)$. Then if g and σ do not fix the same point of order p, by $[16$, Theorem 1] we get a contradiction. On the other hand, since p divides the order of G_{1}, we have $k(\mathcal{E}[p]) \neq k\left(\zeta_{p}\right)$. Then by [17, Theorem 3], we get a contradiction.

We conclude that G_{1} is either cyclic of order p, or it is generated by an element g of order 2 distinct from $-I d$ and an element of order p (which generates a normal subgroup of G_{1}).

We now recall some properties of the Galois action over the torsion points on an elliptic curve over a number field. In [8] we proved the following Lemma, which is a direct consequence of very interesting results of Greicius [11] and Zywina [20].

Lemma 5 Given a prime number p, a positive integer n and a subgroup G of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$, there exists a number field k and an elliptic curve \mathcal{E} defined over k such that there are an isomorphism $\phi: \operatorname{Gal}\left(k\left(\mathcal{E}\left[p^{n}\right]\right) / k\right) \rightarrow G$ and $a \mathbb{Z} / p^{n} \mathbb{Z}$-linear homomorphism $\tau: \mathcal{E}\left[p^{n}\right] \rightarrow$ $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}$ such that, for all $\sigma \in \operatorname{Gal}\left(k\left(\mathcal{E}\left[p^{n}\right]\right) / k\right)$ and $v \in \mathcal{E}\left[p^{n}\right]$, we have $\phi(\sigma) \tau(v)=$ $\tau(\sigma(v))$.

Proof See [8, Lemma 11].
Remark 6 Given a prime number p, a positive integer n and a subgroup G of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$, if we suppose $H_{\text {loc }}^{1}\left(G,\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}\right) \neq 0$, then by Lemma 5 , there exist a number field k and an elliptic curve \mathcal{E} defined over k such that $H_{\text {loc }}^{1}\left(G_{n}, \mathcal{E}\left[p^{n}\right]\right) \neq 0$. Hence, by [7, Theorem 3], there exists a finite extension L of k such that $L \cap k\left(\mathcal{E}\left[p^{n}\right]\right)=k$ and the local-global divisibility by p^{n} does not hold over $\mathcal{E}(L)$.

3 Auxiliary results in the prime to p case

Let $p \equiv 2 \bmod$ (3) be a prime number. In [9, Sect. 5] we already found a subgroup G of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$ such that $H_{\text {loc }}^{1}\left(G,\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2}\right) \neq 0$ and the quotient of G by the subgroup
H of the elements congruent to the identity modulo p is a cyclic group of order 3 . We use the following remark and the following proposition to extend the example to a group G^{\prime} containing G such that G^{\prime} / H is isomorphic to S_{3}.

Remark 7 Let p be a prime number, let m be a positive integer, let V be $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2 m}$, let G be a subgroup of $\mathrm{GL}_{2 m}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$ and let H be the subgroup of G of the elements congruent to the identity modulo p. Then we have the following inflation-restriction exact sequence:

$$
\begin{equation*}
0 \rightarrow H^{1}(G / H, V[p]) \rightarrow H^{1}(G, V[p]) \rightarrow H^{1}(H, V[p])^{G / H} \rightarrow H^{2}(G / H, V[p]) . \tag{3.1}
\end{equation*}
$$

Moreover, the exact sequence

$$
0 \rightarrow V[p] \rightarrow V \rightarrow V[p] \rightarrow 0
$$

(the first map is the inclusion and the second map the multiplication by p) induces the following exact sequence:

$$
\begin{equation*}
H^{0}(G, V[p]) \rightarrow H^{1}(G, V[p]) \rightarrow H^{1}(G, V) \rightarrow H^{1}(G, V[p]) . \tag{3.2}
\end{equation*}
$$

Proposition 8 Let p be a prime number, let m be a positive integer, let V be $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2 m}$, let G be a subgroup of $\mathrm{GL}_{2 m}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$, and let H be the subgroup of G of the elements congruent to the identity modulo p. Suppose that:

1. G has an element δ not fixing any element of V;
2. H is isomorphic, as an G / H-module, to a non-trivial G / H-submodule of $V[p]$;
3. For every $h \in H$ distinct from the identity, the endomorphism $h-I d: V / V[p] \rightarrow$ $V / V[p]$ is an isomorphism;
4. G / H has order not divisible by p.

Then $H_{\mathrm{loc}}^{1}(G, V) \neq 0$.
Proof By Hypothesis 4, we know that the groups $H^{1}(G / H, \mathcal{A}[p])$ and $H^{2}(G / H, \mathcal{A}[p])$ in (3.1) are trivial, and hence the restriction map is an isomorphism. Since the action of H over $V[p]$ is trivial and H is an abelian group of exponent p, we have that $H^{1}(H, V[p])^{G / H}$ is isomorphic to $\operatorname{Hom}_{\mathbb{Z} / p \mathbb{Z}[G / H]}(H, V[p])$. By Hypothesis 2, there exists $\phi: H \rightarrow V[p]$ an injective homomorphism of $\mathbb{Z} / p \mathbb{Z}[G / H]$-modules. Let $[Z]$ be in $H^{1}(G, V[p])$ such that its image in $H^{1}(H, V[p])^{G / H}$ is the class of ϕ. In particular, we have $[Z] \neq 0$ because ϕ is injective and the restriction map is an isomorphism.

Now observe that $H^{0}(G, V[p])=0$ by Hypothesis 1 . Then, by Remark 7, we have the following exact sequence of G-modules

$$
0 \rightarrow H^{1}(G, V[p]) \rightarrow H^{1}(G, V) \rightarrow H^{1}(G, V[p]) .
$$

Let us call $[W] \in H^{1}(G, V)$ the image of $[Z] \in H^{1}(G, V[p])$ defined above by the injective map $H^{1}(G, V[p]) \rightarrow H^{1}(G, V)$. Since $[Z] \neq 0$, the same holds for [W]. Moreover, since G / H is not divisible by p, the restriction $H^{1}(G, V) \rightarrow H^{1}(H, V)$ is injective. We conclude because by Hypothesis 3 , the image of [W] under this map is in $H_{\mathrm{loc}}^{1}(H, V)$.

Corollary 9 Let p be an odd prime such that $p \equiv 2 \bmod (3)$. Let G be the subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$ generated by

$$
\tau=\left(\begin{array}{ll}
1 & -3 \\
1 & -2
\end{array}\right)
$$

(which has order 3), by an element σ of order 2 such that $\sigma \tau \sigma^{-1}=\tau^{2}$ and by

$$
H=\left\{\left(\begin{array}{cc}
1+p(a-2 b) & 3 p(b-a) \\
-p b & 1-p(a-2 b)
\end{array}\right), a, b \in \mathbb{Z} / p^{2} \mathbb{Z}\right\} .
$$

Then $H_{\mathrm{loc}}^{1}\left(G,\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2}\right) \neq 0$.
Proof It suffices to show that the conditions of Proposition 8 hold for G. Conditions 1 and 4 are clear and condition 3 holds by [9 , Sect. 5]. Observe that G / H is isomorphic to S_{3} and recall that S_{3} has a unique irreducible representation of dimension 2 over \mathbb{F}_{p}. To prove condition 2 we equivalently prove that H is stable by the conjugation by τ and σ. In [9, Sect. 5] we proved that the conjugation by τ sends H to H.

Let us show that $\sigma H \sigma^{-1}=H$. A straightforward computation shows that if $\bar{\sigma}$ has order 2 in G / H and $\overline{\sigma \tau \sigma}{ }^{-1}=\bar{\tau}^{2}$, then there exists $\alpha, \beta \in \mathbb{F}_{p}$ such that

$$
\bar{\sigma}=\left(\begin{array}{cc}
\alpha-2 \beta & 3(\beta-\alpha) \\
\beta & 2 \beta-\alpha
\end{array}\right) .
$$

Let

$$
W=\left\{\left(\begin{array}{cc}
1+p c & p d \\
p e & 1-p c
\end{array}\right), c, d, e \in \mathbb{Z} / p^{2} \mathbb{Z}\right\}
$$

It is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$ and a \mathbb{F}_{p}-vector space of dimension 3 . Observe that W is the subgroup of the group of the matrices congruent to the identity modulo p and having trace 2. Since the trace is invariant under conjugation, we have that $\sigma W \sigma^{-1}=W$. Let ϕ_{σ} be the automorphism of W such that, for every $w \in W, \phi_{\sigma}(w)=\sigma w \sigma^{-1}$. Observe that since σ has order 2 , and it is distinct from $I d$ and $-I d, \phi_{\sigma}$ has an eigenspace W_{1} of dimension 1 for the eigenvalue 1 , which is generated by the element $h_{1} \in H$ with $a=\alpha, b=\beta$, and an eigenspace W_{2} of dimension 2 for the eigenvalue -1 . Let h be in H and $h \notin W_{1}$. Then $h \in W$ and, since $W=W_{1} \bigoplus W_{2}$, there exist $r \in \mathbb{Z}$ and $h_{2} \in W_{2}$ distinct from the identity such that $h=h_{1}^{r} h_{2}$. Thus $h_{2}=h h_{1}^{-r} \in H$. Since h_{1} and h_{2} are linearly indipendent, they generate H. Moreover, $\phi_{\sigma}\left(h_{2}\right)=h_{2}^{-1} \in H$. Then $\phi_{\sigma}(H)=\sigma H \sigma^{-1}=H$.

Lemma 10 Let p be a prime number and let V be $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2}$. Let $\lambda \in\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{*}$ be of order dividing $p-1$ and let G be the following subgroup of $\mathrm{GL}_{2}(V)$:

$$
G=\left\langle g=\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right), h(1,0)=\left(\begin{array}{cc}
1+p & 0 \\
0 & 1-p
\end{array}\right), h(0,1)=\left(\begin{array}{ll}
1 & p \\
0 & 1
\end{array}\right)\right\rangle .
$$

Then $H_{\text {loc }}^{1}(G, V) \neq 0$.
Proof Observe that the subgroup H of G of the elements congruent to the identity modulo p is the group generated by $h(1,0)$ and $h(0,1)$. Since G / H has order not divisible by p, $H^{1}(G / H, V[p])=0$ and $H^{2}(G / H, V[p])=0$. Then, from the exact sequence (3.1) in Remark 7, we get an isomorphism from $H^{1}(G / H, V[p])$ to $H^{1}(H, V[p])^{G / H}$. Since H acts like the identity over $V[p]$ and since the groups $V[p]$ and H are abelian with exponent p, we have $H^{1}(H, V[p])^{G / H}=\operatorname{Hom}_{\mathbb{Z} / p \mathbb{Z}[G / H]}(H, V[p])$. Observe that $g h(0,1) g^{-1}=h(0,1)^{\lambda}$ and $g(p, 0)=\lambda(p, 0)$. Then we can define a non-trivial $\mathbb{Z} / p \mathbb{Z}[G / H]$ homomorphism ϕ from H to $V[p]$ by sending $h(0,1)$ to $(p, 0)$ and $h(1,0)$ to $(0,0)$ and extending it by linearity. Let Z be a cocycle representing the class $[Z]$ in $H^{1}(G, V[p])$ corresponding to ϕ. By (3.2) of Remark 7, we have an homomorphism from $H^{1}(G, V[p])$ to $H^{1}(G, V)$. Let [W] be the image of $[Z]$ for such homomorphism. Let us show that $[W] \in H_{\mathrm{loc}}^{1}(G, V)$
and $[W] \neq 0$. Since G / H has order not divisible by p, it is sufficient to prove that the image of [W] under the restriction to $H^{1}(H, V)$ is in $H_{\text {loc }}^{1}(H, V)$. For all integers a, b define $h(a, b):=a h(1,0)+b h(0,1)$. Then, by the definition of $[Z]$, we have that $h(a, b)$ is sent to $(b p, 0)$. An easy calculation shows that for every a, b, there exist x, y in $\mathbb{Z} / p^{2} \mathbb{Z}$ such that $(h-I d)(x, y)=(b p, 0)$. This proves that $[W] \in H_{\mathrm{loc}}^{1}(G, V)$.

Finally observe that for every x, y in $\mathbb{Z} / p^{2} \mathbb{Z}$ such that $(h(1,0)-I d)(x, y)=(0,0)$, we have $x \equiv 0 \bmod (p)$ and $y \equiv 0 \bmod (p)$. On the other hand, for every x, y in $\mathbb{Z} / p^{2} \mathbb{Z}$ such that $(h(1,0)-I d)(x, y)=(p, 0)$, we have $y \equiv 1 \bmod (p)$. Thus $[W] \neq 0$.

4 Auxiliary results in the \boldsymbol{p}-dividing case

In this section we first prove the following result.
Lemma 11 Let V be $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2}$ and let G be the following subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$:

$$
G=\left\langle g=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \sigma=\left(\begin{array}{cc}
1+p & 1 \\
2 p & 1+p
\end{array}\right), h=\left(\begin{array}{cc}
1+p & 0 \\
0 & 1-p
\end{array}\right)\right\rangle .
$$

Then $H_{\text {loc }}^{1}(G, V) \neq 0$.
Proof Let H be the subgroup of G of the elements congruent to 1 modulo p. Let \bar{g} and $\bar{\sigma}$ be the classes of g and σ modulo H. We have that $H^{1}(G / H, V[p]) \neq 0$. In fact we can define a cocycle $Z: G / H \rightarrow V[p]$, which is not a coboundary, by sending, for every integer i_{1}, i_{2}, $Z_{\bar{g}_{1} \bar{\sigma}^{i^{2}}}$ to $\left(p i_{2}\left(i_{2}-1\right) / 2,(-1)^{i_{1}} p i_{2}\right)$. Since H is normal, we have an injective homomorphism (the inflation) from $H^{1}(G / H, V[p])$ to $H^{1}(G, V[p])$. By abuse of notation we still call Z a cocycle representing the image of the class of Z in $H^{1}(G, V[p])$. Moreover, see Remark 7 and in particular the sequence (3.2), we have a homomorphism from $H^{1}(G, V[p])$ to $H^{1}(G, V)$. It maps the class of Z in $H^{1}(G, V[p])$ to some class $[W] \in H^{1}(G, V)$. We shall prove that $[W] \in H_{\text {loc }}^{1}(G, V)$ and $[W] \neq 0$.

First of all let us observe that for every $a, b, c, d \in \mathbb{Z} / p^{2} \mathbb{Z}$, we have

$$
\left(\begin{array}{cc}
1+a p & 1+b p \\
c p & 1+d p
\end{array}\right)^{p}=\left(\begin{array}{cc}
1 & p \\
0 & 1
\end{array}\right) .
$$

To verify this write

$$
\left(\begin{array}{cc}
1+a p & 1+b p \\
c p & 1+d p
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
a p & 1+b p \\
c p & d p
\end{array}\right)
$$

and observe that

$$
\left(\begin{array}{cc}
a p & 1+b p \\
c p & d p
\end{array}\right)^{2} \equiv\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) \quad \bmod (p),\left(\begin{array}{cc}
a p & 1+b p \\
c p & d p
\end{array}\right)^{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Thus the subgroup H of G of the elements congruent to the identity modulo p is

$$
H=\left\langle\left(\begin{array}{ll}
1 & p \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1+p & 0 \\
0 & 1-p
\end{array}\right)\right\rangle .
$$

Now observe that, since H and $\langle\sigma, H\rangle$ are normal in G, for every $\tau \in G$ there exist integers i_{1}, i_{2}, i_{3} and $h \in H$ such that $\tau=g^{i_{1}} \sigma^{i_{2}} h^{i_{3}}$. If W is a representant for [W], we have $W_{\tau}=\left(p\left(i_{2}-1\right),(-1)^{i_{1}} p i_{2}\right)$. If $i_{2} \equiv 0 \bmod (p)$, then clearly $W_{\tau}=(0,0)$ and so $W_{\tau}=$
$(\tau-I d)((0,0))$. Then we can suppose $i_{2} \not \equiv 0 \bmod (p)$. It is simple to prove by induction on i_{2} that

$$
\sigma^{i_{2}}=\left(\begin{array}{cc}
1+a p & i_{2}+b p \\
2 i_{2} p & 1+c p
\end{array}\right)
$$

holds for some $a, b, c \in \mathbb{Z} / p^{2} \mathbb{Z}$. Moreover $\sigma^{i_{2}} h^{i_{3}}$ has again the top right entry congruent to i_{2} modulo p and the bottom left entry equal to $2 i_{2} p$. From these remarks is an easy exercise to prove that there exist α and $\beta \in \mathbb{Z} / p^{2} \mathbb{Z}$ such that $W_{\tau}=(\tau-I d)((\alpha, p \beta))$. Then [W] is in $H_{\mathrm{loc}}^{1}(G, V)$.

Finally let us observe that W is not a coboundary. Let $\alpha, \beta \in \mathbb{Z} / p^{2} \mathbb{Z}$ be such that $W_{\sigma}=(0, p)=(\sigma-I d)((\alpha, \beta))$. Then $\alpha \not \equiv 0 \bmod (p)$. On the other hand, let $h \in H$ be such that

$$
h=\left(\begin{array}{cc}
1+p & 0 \\
0 & 1-p
\end{array}\right)
$$

Then $W_{h}=(0,0)$ and so for every $\alpha, \beta \in \mathbb{Z} / p^{2} \mathbb{Z}$ such that $(h-i d)((\alpha, \beta))=(0,0)$, we have $\alpha \equiv 0 \bmod (p)$. Hence W is not a coboundary.

Remark 12 For every $a, b, c, d \in \mathbb{Z} / p^{2} \mathbb{Z}$, we have

$$
\left(\begin{array}{cc}
1+a p & 1+b p \\
c p & 1+d p
\end{array}\right)^{p}=\left(\begin{array}{cc}
1 & p \\
0 & 1
\end{array}\right)
$$

In a similar way, for every integer $m \geq 2$, and every $a_{m}, b_{m}, c_{m}, d_{m} \in \mathbb{Z} / p^{m} \mathbb{Z}$, we have

$$
\left(\begin{array}{cc}
1+a_{m} p & 1+b_{m} p \\
c_{m} p & 1+d_{m} p
\end{array}\right)^{p^{m-1}}=\left(\begin{array}{cc}
1 & p^{m} \\
0 & 1
\end{array}\right)
$$

Corollary 13 Let V be $\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{2}$ and let G be the following subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$:

$$
\widetilde{G}=\left\langle\sigma=\left(\begin{array}{cc}
1+p & 1 \\
2 p & 1+p
\end{array}\right), h=\left(\begin{array}{cc}
1+p & 0 \\
0 & 1-p
\end{array}\right)\right\rangle
$$

Then $H_{\mathrm{loc}}^{1}(\widetilde{G}, V) \neq 0$
Proof Observe that \widetilde{G} is a subgroup of index 2 of the group G of Lemma 11. Since $p \neq 2$, the restriction $H_{\mathrm{loc}}^{1}(G, V) \rightarrow H_{\mathrm{loc}}^{1}(\widetilde{G}, V)$ is injective and the result follows.

Before proving the last result of this section, we need a result of linear algebra.
Lemma 14 Let $n \in \mathbb{N}$ and let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$. Let H be the subgroup of G of the elements congruent to the identity modulo p. Suppose that G / H is contained in a Borel subgroup, and it is generated by an element g of order 2 and an element σ of order p such that σ and g do not fix the same element of order p. Let τ be in H and let $\sigma_{n} \in G$ be such that σ_{n} is sent to σ by the projection of G over G / H. Then there exist $\tau_{d}, \tau_{l} \in H, \lambda \in \mathbb{N}$, such that τ_{d} is diagonal, τ_{l} is lower unitriangular and $\tau=\tau_{d} \tau_{l} \sigma_{n}^{p \lambda}$. In other words H is generated by its subgroups of the diagonal matrices, its subgroup of the lower unitriangular matrices and σ_{n}^{p}.

Proof Fix a basis of $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}$ such that

$$
\sigma_{n} \equiv\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \bmod (p)
$$

Then, since g has order 2 and p is odd, there exists an element g_{n} of G such that

$$
g_{n}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

We remark that $\sigma_{n}^{p} \in H$. In fact $\sigma_{n}^{p} \equiv I d \bmod (p)$.
We first show that every $\tau \in H$ can be written as a product of a lower triangular matrix $\tau_{L} \in H$ and a power of σ_{n}^{p}. Since $\tau \in H, \tau \equiv I d \bmod (p)$ and so there exist $e, g, m, r \in$ $\mathbb{Z} / p^{n} \mathbb{Z}$ such that

$$
\tau=\left(\begin{array}{cc}
1+p e & p g \\
p m & 1+p r
\end{array}\right) .
$$

We prove by induction that for every integer $i \geq 1$, there exists $\lambda_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$ such that

$$
\tau \sigma_{n}^{p \lambda_{i}}=\left(\begin{array}{cc}
1+p e_{i} & p^{i} g_{i} \tag{4.1}\\
p m_{i} & 1+p r_{i}
\end{array}\right)
$$

for some $e_{i}, g_{i}, m_{i}, r_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$. If $i=1$ then for $\lambda_{1}=0$ the relation (4.1) is satisfied. Suppose that (4.1) is satisfied for an integer $i \geq 1$. Then there exists $\lambda_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$ such that

$$
\tau \sigma_{n}^{p \lambda_{i}}=\left(\begin{array}{cc}
1+p e_{i} & p^{i} g_{i} \\
p m_{i} & 1+p r_{i}
\end{array}\right)
$$

for some $e_{i}, g_{i}, m_{i}, r_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$. Choose an element λ_{i+1} of $\mathbb{Z} / p^{n} \mathbb{Z}$ such that $p \lambda_{i+1}=$ $p \lambda_{i}-p^{i} g_{i}$. Observe that this element exists because $i \geq 1$. By Remark 12 we have

$$
\begin{aligned}
\sigma_{n}^{-p^{i} g_{i}} & =\left(\begin{array}{cc}
1+p^{i+1} a_{i+1} & p^{i}+p^{i+1} b_{i+1} \\
p^{i+1} c_{i+1} & 1+p^{i+1} d_{i+1}
\end{array}\right)^{-g_{i}} \\
& =\left(\begin{array}{cc}
1+p^{i+1} a_{i+1}^{\prime} & -p^{i} g_{i}+p^{i+1} b_{i+1}^{\prime} \\
p^{i+1} c_{i+1}^{\prime} & 1+p^{i+1} d_{i+1}^{\prime}
\end{array}\right),
\end{aligned}
$$

for some $a_{i+1}^{\prime}, b_{i+1}^{\prime}, c_{i+1}^{\prime}, d_{i+1}^{\prime} \in \mathbb{Z} / p^{n} \mathbb{Z}$. By a short computation

$$
\begin{aligned}
\tau \sigma_{n}^{p \lambda_{i+1}} & =\tau \sigma_{n}^{p \lambda_{i}} \sigma_{n}^{-p^{i} g_{i}} \\
& =\left(\begin{array}{cc}
1+p e_{i} & p^{i}+p^{i} g_{i} \\
p m_{i} & 1+p r_{i}
\end{array}\right)\left(\begin{array}{cc}
1+p^{i+1} a_{i+1}^{\prime} & -p^{i} g_{i}+p^{i+1} b_{i+1}^{\prime} \\
p^{i+1} c_{i+1}^{\prime} & 1+p^{i+1} d_{i+1}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+p e_{i+1} & +p^{i+1} g_{i+1} \\
p m_{i+1} & 1+p r_{i+1}
\end{array}\right),
\end{aligned}
$$

for some $e_{i+1}, g_{i+1}, m_{i+1}, r_{i+1} \in \mathbb{Z} / p^{n} \mathbb{Z}$. Then (4.1) is verified for λ_{i+1} that satisfies $p \lambda_{i+1}=p \lambda_{i}-p^{i} g_{i}$. In particular for $i=n$ we have

$$
\tau \sigma_{n}^{p \lambda_{n}}=\left(\begin{array}{cc}
1+p e_{n} & 0 \\
p m_{n} & 1+p r_{n}
\end{array}\right)
$$

Then, setting $\tau_{L}=\tau \sigma_{n}^{p \lambda_{n}}$ and $\lambda=-\lambda_{n}$, we have shown that τ can be written as a product of a lower triangular matrix $\tau_{L} \in H$ and the power $\sigma_{n}^{p \lambda}$ of σ_{n}^{p}.

Observe that, to conclude the proof, it is sufficient to show that τ_{L} can be written as the product of a diagonal matrix $\tau_{d} \in H$ and a lower unitriangular matrix $\tau_{l} \in H$. Since H is normal in $G, g_{n} \tau_{L} g_{n}^{-1} \in H$. Then $g_{n} \tau_{L} g_{n}^{-1} \tau_{L}^{-1} \in H$. Moreover, by a simple computation, we have

$$
g_{n} \tau_{L} g_{n}^{-1} \tau_{L}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-2 p m_{n} /\left(p e_{n}+1\right) & 1
\end{array}\right)
$$

Thus

$$
\left(g_{n} \tau_{L} g_{n}^{-1} \tau_{L}^{-1}\right)^{-\left(p e_{n}+1\right) / 2\left(p r_{n}+1\right)}=\left(\begin{array}{cc}
1 & 0 \\
p m_{n} /\left(p r_{n}+1\right) & 1
\end{array}\right) \in H .
$$

Call such a matrix τ_{l} and observe that

$$
\tau_{L}=\left(\begin{array}{cc}
1+p e_{n} & 0 \\
0 & 1+p r_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
p m_{n} /\left(p r_{n}+1\right) & 1
\end{array}\right) .
$$

Call the diagonal matrix τ_{d}. Since $\tau_{L}, \tau_{l} \in H$, also $\tau_{d} \in H$, proving the statement.
Lemma 15 Under the assumptions and with the notation of Lemma 14 , let V_{n} be $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}$. Then $H_{\mathrm{loc}}^{1}\left(G, V_{n}\right)=0$.

Proof By replacing V with V_{n}, by observing that $H^{0}\left(G, V_{n}\left[p^{n-1}\right]\right)=0$ because the group generated by g and σ do not fix any element of $V_{n}\left[p^{n-1}\right]$, and by using the Remark 7, we get the following exact sequence

$$
\begin{equation*}
0 \rightarrow H^{1}\left(G, V_{n}[p]\right) \rightarrow H^{1}\left(G, V_{n}\right) \rightarrow H^{1}\left(G, V_{n}\left[p^{n-1}\right]\right) \tag{4.2}
\end{equation*}
$$

Suppose that $H_{\mathrm{loc}}^{1}\left(G, V_{n}\right) \neq 0$. Then $H_{\mathrm{loc}}^{1}\left(G, V_{n}\right)[p] \neq 0$ and so let Z be a cocycle representing a non-trivial class $[Z] \in H_{\text {loc }}^{1}\left(G, V_{n}\right)[p]$. Let us observe that $[Z]$ is in the kernel of the map $H^{1}\left(G, V_{n}\right) \rightarrow H^{1}\left(G, V_{n}\left[p^{n-1}\right]\right)$ (here we generalize the proof of [9, Lemma 13]). Since $[Z]$ has order p, then $p Z$ is a coboundary and so there exists $v \in V_{n}$ such that, for every $\tau \in G, p Z_{\tau}=\tau(v)-v$. Let us observe that $v \in V_{n}\left[p^{n-1}\right]$. Since for every τ we have $\tau(v)-v \in V_{n}\left[p^{n-1}\right]$, and we get that $v \in \cap_{\tau \in G} \operatorname{ker}\left(p^{n-1}(\tau-I d)\right)$. Since G does not fix any element of order p, the unique possibility is that $v \in V_{n}\left[p^{n-1}\right]$. Then (see the sequence (4.2)) [Z] is in the image of $H^{1}\left(G, V_{n}[p]\right) \rightarrow H^{1}\left(G, V_{n}\right)$. By abuse of notation we call [Z] the class in $H^{1}\left(G, V_{n}[p]\right)$ sent to $[Z]$.

Consider now the inflation-restriction sequence

$$
\begin{equation*}
0 \rightarrow H^{1}\left(G / H, V_{n}[p]\right) \rightarrow H^{1}\left(G, V_{n}[p]\right) \rightarrow H^{1}\left(H, V_{n}[p]\right)^{G / H} . \tag{4.3}
\end{equation*}
$$

Let us observe that $H^{1}\left(G / H, V_{n}[p]\right)=0$. Let $W: G / H \rightarrow V_{n}[p]$ be a cocycle. Since σ and g are contained in a Borel subgroup, g has order 2 , and g and σ do not fix any nonzero element of $V_{n}\left[p^{n-1}\right]$, we can choose a basis of V_{n} such that $\left(p^{n-1}, 0\right)$ is fixed by $\sigma, g\left(\left(p^{n-1}, 0\right)\right)=$ $\left(-p^{n-1}, 0\right)$ and $\left(0, p^{n-1}\right)$ is sent to $\left(p^{n-1}, p^{n-1}\right)$ by σ and fixed by g. Observe that, since summing a coboundary to W does not change its class, we can suppose that $W_{\sigma}=\left(0, p^{n-1}\right)$. Then, for every integer i, we have $W_{\sigma^{i}}=\left(p^{n-1} i(i-1) / 2, p^{n-1} i\right)$. Observe that since g has order 2, we have $W_{g^{2}}=W_{g}+g W_{g}=(0,0)$. In particular there exists $a \in \mathbb{Z} / p^{n} \mathbb{Z}$ such that $W_{g}=\left(p^{n-1} a, 0\right)$, and which is fixed by σ. Thus $W_{g \sigma g^{-1}}=g W_{\sigma}=\left(p^{n-1},-p^{n-1}\right)$. On the other hand, $g \sigma g^{-1}=\sigma^{-1}$ and so $W_{\sigma^{-1}}=\left(-p^{n-1},-p^{n-1}\right)$. We then get a contradiction. Thus, by the sequence (4.3), to every class of $H^{1}\left(G, V_{n}[p]\right)$ we can associate a class in $H^{1}\left(H, V_{n}[p]\right)^{G / H}$. Since H acts as the identity over $V_{n}[p]$, we have that $H^{1}\left(H, V_{n}[p]\right)^{G / H}$ is a subgroup of $\operatorname{Hom}\left(H, V_{n}[p]\right)$. In particular, we can associate with $[Z] \in H^{1}(G, V[p])$ defined above a homomorphism from H to $V_{n}[p]$. By Lemma 14, for every $\tau \in H$ there exist $\tau_{l} \in H$ a lower unitriangular matrix, $\tau_{D} \in H$ a diagonal matrix and $\lambda \in \mathbb{Z}$ such that $\tau=\tau_{l} \tau_{D} \sigma_{n}^{\lambda p}$. Consider the homorphism associated with $[Z] \in H^{1}\left(G, V_{n}[p]\right)$. Since the cocycle Z has values in $V_{n}[p]$, in particular $Z_{\sigma_{n}} \in V_{n}[p]$ and, by the cocycle property, $Z_{\sigma_{n}^{p}}=(0,0)$. On the other hand, since $g_{n} \tau_{D} g_{n}^{-1}=\tau_{D}$, there exists $b \in \mathbb{Z} / p^{n} \mathbb{Z}$ such that $Z_{\tau_{D}}=\left(0, p^{n-1} b\right)$. If $p^{n-1} b$ is distinct from 0 , then $\left(0, p^{n-1} b\right)$ generates $V[p]$ as an $G / H-$ module. Since $g_{n} \tau_{l} g_{n}^{-1}=\tau_{l}^{-1}$, there exists $a \in \mathbb{Z} / p^{n} \mathbb{Z}$ such that $Z_{\tau_{l}}=\left(p^{n-1} a, 0\right)$. Observe
that for every $(\alpha, \beta) \in V_{n}$, we have that $\left(\tau_{l}-I d\right)(\alpha, \beta)=\left(p^{n-1} a, 0\right)$ only if $p^{n-1} a=0$. Then if the image of Z satisfies the local conditions over V_{n}, the homomorphism associated with Z is trivial, and so Z is a coboundary.

References

1. Artin, E., Tate, J.: Class Field Theory. Benjamin, Reading (1967)
2. Ciperiani, M., Stix, J.: Weil-Châtelet divisible elements in Tate-Shafarevich groups II: on a question of Cassels. J. Für Die Reine und Angew. Math. 700, 175-207 (2015)
3. Creutz, B.: Locally trivial torsors that are not Weil-Châtelet divisible. Bull. Lond. Math. Soc. 45, 935-941 (2013)
4. Creutz, B.: On the local-global principle for divisibility in the cohomology of elliptic curves. Math. Res. Lett. 23(2), 377-387 (2016)
5. Dvornicich, R., Zannier, U.: Local-global divisibility of rational points in some commutative algebraic groups. Bull. Soc. Math. France 129, 317-338 (2001)
6. Dvornicich, R., Zannier, U.: An analogue for elliptic curves of the Grunwald-Wang example. C. R. Acad. Sci. 338, 47-50 (2004)
7. Dvornicich, R., Zannier, U.: On local-global principle for the divisibility of a rational point by a positive integer. Bull. Lond. Math. Soc. 39, 27-34 (2007)
8. Gillibert, F., Ranieri, G.: On the local-global divisibility of torsion points on elliptic curves and GL ${ }_{2}$-type varieties. J. Number Theory 174, 202-220 (2017)
9. Gillibert, F., Ranieri, G.: On the local-global divisibility over abelian varieties, arXiv:1612.00058, to appear in the Ann. Institut Fourier
10. Gillibert, F., Ranieri, G.: On the local-global divisibility over GL 2 -type varieties, arXiv:1703.06235, submitted
11. Greicius, A.: Elliptic curve with surjective adelic Galois representation. Exp. Math. 19(4), 495-507 (2010)
12. Illengo, M.: Cohomology of integer matrices and local-global divisibility on the torus. Le J. de Théorie des Nombres de Bordeaux 20(2), 327-334 (2008)
13. Lawson, T., Wuthrich, C.: Vanishing of Some Galois Cohomology Groups of Elliptic Curves, Preprint, arXiv:1505.02940v1
14. Paladino, L.: Local-global divisibility by 4 in elliptic curves defined over \mathbb{Q}. Annali di Matematica Pura e Appl. 189(1), 17-23 (2010)
15. Paladino, L.: Elliptic curves with $\mathbb{Q}(\mathcal{E}[3])=\mathbb{Q}\left(\zeta_{3}\right)$ and counterexamples to local-global divisibility by 9. Le J. de Théorie des Nombres de Bordx. 22(1), 138-160 (2010)
16. Paladino, L., Ranieri, G., Viada, E.: Local-global divisibility by p^{n} in elliptic curves, arXiv: 1104.4762 v 2
17. Paladino, L., Ranieri, G., Viada, E.: On the minimal set for counterexamples to the local-global divisibility principle. J. Algebra 415, 290-304 (2014)
18. Serre, J.-P.: Proprietés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15, 259-331 (1972)
19. Trost, E.: Zur theorie des Potenzreste. Nieuw Archief voor Wiskunde 18(2), 58-61 (1948)
20. Zywina, D.: Elliptic curves with maximal Galois action on their torsion points. Bull. Lond. Math. Soc. 42(5), 811-826 (2010)

[^0]: Supported by Fondecyt Regular Project No. 1140946.
 Gabriele Ranieri
 gabriele.ranieri@pucv.cl
 1 Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile

