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1 Introduction

The present work studies the existence of multiple solutions for the following class of dis-
continuous problems {

−�u = f p,δ(u(x)), a.e in �,

u ∈ W 2, p
p−1 (�) ∩ H1

0 (�),
(Pp,δ)

where � ⊂ R
N (N ≥ 3) is a smooth bounded domain, f p,δ : R → R is the odd function

given by

f p,δ(t) =
{
t |t |p−2, t ∈ [0, a],
(1 + δ)t |t |p−2, t > a.

with a, δ > 0 and p ∈ (2, 2∗).
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In [14], Benci and Cerami have considered the existence of multiple positive solutions for
the case δ = 0, that is, for the problem{

−�u = |u|p−2u, x ∈ �,

u ∈ H1
0 (�).

(Pp,0)

By using variational methods combined with the Lusternik–Schnirelmann category, Benci
and Cerami proved that if p is close to 2∗ = 2N

N−2 , then problem (Pp,0) has at least cat (�) of
positive solutions. Here, we recall that if X is a topological space and A ⊂ X a closed
subspace, we denote by catX (A) the Lusternik–Schnirelmann category of A in X . The
Lusternik–Schnirelmann category, catX (A), is the least number of closed and contractible
sets in X which cover A. If X = A, we use the short notation cat (X). Later, Benci and
Cerami [15] generalized their previous result by working with a more general nonlinearity
and Morse theory.

The reader can find in the literature a lot of papers where the existence and multiplicity of
solutions for related problems to (Pp,0) are directly associatedwith the topological richness of
�, see Alves and Ding [9], Bahri and Coron [13], Rey [29], Struwe [31] and their references.

For the case δ > 0, the function f p,δ is discontinuous and the study of existence of solution
for (Pp,δ) is totally different of the case δ = 0, because we cannot use directly the results for
C1-functionals, then the existence and multiplicity of solution for (Pp,δ) associated with the
topological richness of � is an open and interesting problem. Motivated by this fact, in the
present paper we prove a result of multiplicity of solutions in the same spirit of [14]; more
precisely, we prove that if δ is small enough and p is close to 2∗, the problem (Pp,δ) has at
least cat (�) of positive solutions, see Theorem 1.1.

The interest in the study of nonlinear partial differential equations with discontinuous
nonlinearities has increased because many free boundary problems arising in mathematical
physics may be stated in this form. Among these problems, we have the obstacle problem,
the seepage surface problem, and the Elenbaas equation; see, for example, [18–20].

A rich literature is available by now on problems with discontinuous nonlinearities, and
we refer the reader to Ambrosetti and Turner [2], Ambrosetti et al. [5], Alves et al. [6], Alves
and Bertone [7], Alves et al. [8], Badiale and Tarantelo [12], Carl et al. [16], Clarke [17],
Chang [18], Carl and Dietrich [21], Carl and Heikkila [22,23], Cerami [24], Hu et al. [25],
Montreanu and Vargas [27], Radulescu [28] and their references. Several techniques have
been developed or applied in their study, such as variational methods for nondifferentiable
functionals, lower and upper solutions, global branching, fixed point theorem, and the theory
of multivalued mappings.

Our main result is the following:

Theorem 1.1 There are δ∗ > 0 and p∗ ∈ (2, 2∗) such that for each δ ∈ (0, δ∗) and
p ∈ (p∗, 2∗), (Pp,δ) has at least cat(�) nontrivial solutions.

In the proof of the above result, we will adapt for our case an approach explored by
Ambrosetti and Badiale [4]. The main idea consists in setting a suitable single function and
then considering a dual functional, which is C1 and their critical points produce solutions for
(Pp,δ). For more details, see Sect. 2.
Notations In this paper, we use the following notations:

• For q ∈ (2, 2∗), we define q ′ as the conjugate exponent of q , that is, q ′ = q
q−1 .

• We denote by 2+ the conjugate exponent of 2∗ = 2N
N−2 , that is, 2

+ = 2N
N+2 .• The usual norm of the Lebesgue spaces Lt (�) for t ∈ [1,∞] will be denoted by |.|t and

the norm of the Sobolev space H1
0 (�), by ‖.‖;
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• C denotes (possibly different) any positive constant.
• If A ⊂ R

N is a measurable set, we denote by meas(A) its Lebesgue measure.
• If X and Y are topological spaces, we say that X and Y are homotopically equivalent if

there exist continuous functions h : X → Y and q : Y → X such that q ◦ h = idX and
h ◦ q = idY .

2 An auxiliary problem

In the sequel, we consider the energy functional Ip,δ : H1
0 (�) → R associated with (Pp,δ)

given by

Ip,δ(u) = 1

2

∫
�

|∇u|2dx −
∫

�

Fp,δ(u)dx,

where

Fp,δ(t) =
∫ t

0
f p,δ(r)dr.

Notice that Ip,δ is not a differentiable functional, because Fp,δ is only a continuous function.
This fact does not allow to use the traditional methods to get multiplicity of solutions by using
Lusternik–Schnirelmann category. To avoid this difficulty, we will adapt for our problem an
approach explored in Ambrosetti and Badiale [4].

In what follows, we denote by gp′,δ : R → R the odd function given by

gp′,δ(s) =

⎧⎪⎨
⎪⎩
s|s|p′−2, s ∈ [0, a p−1],
a, s ∈ [a p−1, (1 + δ)a p−1],
(1 + δ)

− 1
p−1 s|s|p′−2, s ∈ [(1 + δ)a p−1,+∞).

The functions f p,δ and gp′,δ are related in the following way:

(a)

f p,δ(gp′,δ(s)) =
{
s, s /∈ [a p−1, (1 + δ)a p−1],
a p−1, s ∈ [a p−1, (1 + δ)a p−1];

(b) gp′,δ( f p,δ(t)) = t,∀t ∈ R.

In the sequel, Gp′,δ denotes the primitive of gp′,δ , that is,

Gp′,δ(s) :=
∫ s

0
gp′,δ(r)dr.

From definition of gp′,δ , Gp′,δ is an even function with

Gp′,δ(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

p′ s
p′

, s ∈ [0, a p−1],

as − a p

p
, s ∈ [a p−1, (1 + δ)a p−1],

γδ

p′ s
p′ + δ

a p

p
, s ∈ [(1 + δ)a p−1,+∞),

(2.1)

for γδ = (1 + δ)
− 1

p−1 . Thus,

γδ|s|
1

p−1 ≤ |gp′,δ(s)| ≤ |s| 1
p−1 , ∀s ∈ R, (2.2)
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and
γδ

p′ |s|p
′ ≤ Gp′,δ(s) ≤ 1

p′ |s|p
′
, ∀s ∈ R. (2.3)

To simplify the notation, we denote by gp′ andGp′ the functions gp′,0 andGp′,0, respectively.
The next step is to define the dual functional associated with Ip,δ . By [26, Theorem 11.3],

we know that for each u ∈ L p′
(�) there is an unique solution w ∈ W 1,p′

0 (�) ∩ W 2,p′
(�)

for the problem {
−�w = u, x ∈ �,

w = 0, x ∈ ∂�.
(2.4)

Moreover, there is a positive constant C independent of w such that

‖w‖W 2,p′ (�)
≤ C |u|p′ .

The above information permits to define a linear operator Kp′,� : L p′
(�) → W 2,p′

(�),
such that for u ∈ L p′

(�), Kp′,�(u) is the unique solution of (2.4). Hence,

‖Kp′,�(u)‖W 2,p′ (�)
≤ C |u|p′ , ∀u ∈ L p′

(�),

from where it follows that Kp′,� is continuous. On the other hand, since the embeddings
below

W 2,p′
(�) ↪→ Ls(�), ∀s ∈ [

1, (p′)∗
)
,

are compact for

(p′)∗ =
{

Np′
N−2p′ , N > 2p′,
+∞, 1 ≤ N ≤ 2p′,

we can ensure that Kp′,� : L p′
(�) → L p(�) is a linear compact operator, because

p ∈ (2, 2∗) if, and only p ∈ (
2, (p′)∗

)
. Moreover, it is easy to check that∫

�

Kp′,�(u)vdx =
∫

�

Kp′,�(v)udx, ∀u, v ∈ L p′
(�). (2.5)

Using the above notations, we set the functional Jp′,δ : L p′
(�) → R given by

Jp′,δ(u) =
∫

�

Gp′,δ(u)dx − 1

2

∫
�

Kp′,�(u)udx .

The functional Jp′,δ is called the Dual functional associated with Ip,δ . Observe that, differ-
ently of Ip,δ , Jp′,δ ∈ C1(L p′

(�),R) and

J ′
p′,δ(u)v =

∫
�

(
gp′,δ(u)dx − Kp′,�(u)

)
v dx,∀u, v ∈ L p′

(�).

Thus, u ∈ L p′
(�) is a critical point of Jp′,δ if, and only if,

gp′,δ(u) = Kp′,�(u) a.e. in �.

The above equality permits to prove the following proposition:

Proposition 2.1 If u is a critical point of Jp′,δ , then v := gp′,δ(u) is a solution of the problem
(Pp,δ).
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Proof If u is a critical point for Jp′,δ , then

v(x) = Kp′,�(u(x)) a.e. in �,

from where it follows that

−�v(x) = u(x) a.e. in �.

Thereby, if |v(x)| �= a,

−�v(x) = u(x) = f p,δ(gp′,δ(u(x))) = f p,δ(v(x)).

If |v(x)| = a, we have that

− �v(x) = 0, a.e. in A = {x ∈ � : |v(x)| = a}. (2.6)

On the other hand, v(x) = gp′,δ(u(x)) and if |v(x)| = a then necessarily u(x) �= 0, by
definition of gp′,δ . Then,

− �v(x) = u(x) �= 0 a.e. in A. (2.7)

From (2.6)–(2.7), it follows that A has measure zero. Therefore,

−�v(x) = f p,δ(v(x)), a.e in � and v ∈ H1
0 (�).

Now, the elliptic regularity gives v ∈ W 2, p
p−1 (�), showing that v is a solution of (Pp,δ). ��

Motivated by the last proposition, we will look for critical points of Jp′,δ . The result below
establishes that Jp′,δ satisfies the mountain pass geometry.

Proposition 2.2 The functional Jp′,δ has the mountain pass geometry, that is,

(i) Jp′,δ(0) = 0 and there is ρ > 0 such that

inf|u|p′=ρ
Jp′,δ(u) > 0 and Jp′,δ(u) ≥ 0, ∀u ∈ L p′

(�) with |u|p′ ≤ ρ.

(i i) There is ψ ∈ L p′
(�) such that

|ψ |p′ > ρ and Jp′,δ(ψ) < 0.

Proof We begin by showing (i). The equality Jp′,δ(0) = 0 is immediate. From (2.3),∫
�

Gp′,δ(u)dx ≥ γδ

p′ |u|p′
p′ , ∀u ∈ L p′

(�), (2.8)

and by Hölder’s inequality and continuity of Kp′,�, there is C > 0 such that∫
�

Kp′,�(u)u dx ≤ C |u|2p′ , ∀u ∈ L p′
(�). (2.9)

Thus, (2.8) and (2.9) combine to give

Jp′,δ(u) ≥ γδ

p′ |u|p′
p′ − C

2
|u|2p′

= |u|p′
p′

(
γδ

p′ − C

2
|u|2−p′

p′

)
.
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Since p′ < 2, there is ρ > 0 as in (i). For (i i), notice that for each ψ̃ ∈ C0(�)\{0},
lim
t→∞ Jp′,δ(tψ̃) = −∞.

Therefore, for t0 > 0 large enough, ψ := t0ψ̃ is as required in (i i). ��
The next proposition is crucial in our argument, because it proves that Jp′,δ verifies the (PS)

condition for δ small enough.

Proposition 2.3 There is δ0 > 0 such that for all δ ∈ [0, δ0], the functional Jp′,δ satisfies

the (PS) condition, that is, if (un) ⊂ L p′
(�) is such that

sup
n∈N

|Jp′,δ(un)| < ∞ and J ′
p′,δ(un) → 0 as n → ∞,

then there is u ∈ L p′
(�) such that, up to a subsequence, un → u in L p′

(�).

Proof Let (un) ⊂ L p′
(�) be a sequence with

sup
n∈N

|Jp′,δ(un)| < ∞ and J ′
p′,δ(un) → 0.

Taking a subsequence if necessary, we can assume that Jp′,δ(un) → d as n → ∞, and so
(un) is a bounded sequence in L p′

(�). Indeed, for n large enough,

d + 1+ |un |p′ ≥ Jp′,δ(un) − 1

2
J ′
p′,δ(un)un =

∫
�

(Gp′,δ(un) − 1

2
gp′,δ(un)un)dx . (2.10)

As gp′,δ and Gp′,δ are odd and even functions, respectively, (2.2) and (2.3) ensure that

Gp′,δ(t) − 1

2
tgp′,δ(t) ≥

(
γδ

p′ − 1

2

)
|t |p′

, ∀t ∈ R.

Once p′ < 2 and γδ = (1 + δ)
− 1

p−1 , there is δ0 > 0 such that(
γδ

p′ − 1

2

)
> 0, ∀δ ∈ [0, δ0].

Thereby, by (2.10),

d + 1 + |un |p′ ≥
(

γδ

p′ − 1

2

)
|un |p

′
p′ ,

from where it follows that (un) is a bounded sequence. As L p′
(�) is a reflexive space, there

is u ∈ L p′
(�) such that un ⇀ u weakly in L p′

(�). Then, by compactness of Kp′,�,

Kp′,�(un) → Kp′,�(u) in L p(�) as n → ∞. (2.11)

On the other hand, the limit J ′
p′,δ(un) → 0 in (L p′

(�))′ = L p(�) yields

gp′,δ(un) − Kp′,�(un) → 0 in L p(�).

So, by (2.11),
gp′,δ(un) → Kp′,�(u) =: w in L p(�) as n → ∞. (2.12)

Then there is h ∈ L p(�) such that

|gp′,δ(un(x))| ≤ h(x), ∀n ∈ N, (2.13)
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gp′,δ(un(x)) → w(x) a.e. in �. (2.14)

Let

� := {x ∈ �; |w(x)| = a} and �̃ := �\�.

We claim that un → f p,δ(w) in L p′
(�̃). If x ∈ �̃, we have

( f p,δ ◦ gp′,δ)(un(x)) → f p,δ(w(x)),

and also |un(x)| /∈ [a p−1, (1 + δ)a p−1] for n large enough, hence
( f p,δ ◦ gp′,δ)(un(x)) = un(x), so un(x) → f p,δ(w(x)). Combining (2.13) and the fact
that f p,δ is odd and increasing, one easily derives a uniform estimate in L p′

(�̃) for sequence
(un), so by Dominated Convergence Theorem the conclusion follows.

On the other hand, by using the same type of arguments found [4, Theorem 1], it is possible
to show that meas(�) = 0. Then, the above analysis leads to

un → u in L p′
(�),

and the proposition is proved. ��
We finish this section by proving that Jp′,δ has a nontrivial critical point

Theorem 2.4 The mountain pass level of Jp′,δ , denoted by cp′,δ , is a critical level.

Proof Propositions 2.2 and 2.3 permit to apply the Mountain Pass Theorem found in [1].
Then, there is a critical u p′,δ ∈ L p′

(�) whose the energy is equal to mountain pass level of
Jp′,δ , that is,

J ′
p′,δ(u p′,δ) = 0 and Jp′,δ(u p′,δ) = cp′,δ.

��

3 Nehari manifold associated with Jp′,δ

In this section, we will make a careful study of the Nehari manifold Np′,δ associated with
Jp′,δ given by

Np′,δ := {u ∈ L p′
(�)\{0}; J ′

p′,δ(u)u = 0}
= {u ∈ L p′

(�)\{0};
∫

�

gp′,δ(u)udx =
∫

�

Kp′,�(u)udx}.

It is worth pointing out that since gp′,δ is not a C1 function, we cannot assert that Np′,δ is a
differentiable manifold. This fact brings for us some difficulties to apply LagrangeMultiplier
onNp′,δ . However, we overcome this difficulty by adapting for our problem some arguments
found in Szulkin and Weth [30].

Our first lemma follows by using the continuity of Kp′,� together with the inequality
Gp′,δ(t) − 1

2 tgp′,δ(t) ≥ C |t |p′
for some constant C > 0, and it has the following statement

Lemma 3.1 There is η = η(p) > 0 such that

|u|p′ , Jp′,δ(u) > η, ∀u ∈ Np′,δ.
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The second result can be obtained by using the same arguments found [32,Chapter 4], because

the function gp′,δ is odd,
gp′,δ(t)

t is decreasing for t > 0 and Kp′,� is a linear operator.

Lemma 3.2 For each v ∈ L p′
(�)\{0}, there is an unique tv > 0 such that

J ′
p′,δ(tvv)(tvv) = 0. (3.1)

Moreover,

cp′,δ = inf
u∈Np′,δ

Jp′,δ(u).

As an immediate consequence of the last lemma is the following corollary

Corollary 3.3 If u is a critical point of Jp′,δ with u± �= 0, then Jp′,δ(u) ≥ 2cp′,δ .

Proof The proof follows with the same type of arguments found in [10, Section 4] or [11,
Theorem 2.4]. ��
The next lemma is crucial in our approach, because it guarantees the continuity of the function
v �→ tv in L p′

(�)\{0}.
Lemma 3.4 For (un) ⊂ L p′

(�) and u ∈ L p′
(�)\{0}, let tun , tu > 0 be as in (3.1). If

un → u in L p′
(�), then tun → tu .

Proof For simplicity, set tn := tun . First of all, note that tn �→ 0. Indeed, taking v = un in
(3.1) and using (2.2) and (2.9), we get

γδ|un |p
′

p′ t
p′
n ≤

∫
�

gp′,δ(tnun)tnundx =
∫

�

Kp′,�(tnun)(tnun)dx ≤ Ct2n |un |2p′ ,

for some C > 0. So, for some c > 0,

c|un |p
′−2

p′ ≤ t2−p′
n ,

and the desired property follows from the fact that p′ ∈ (1, 2) and (un) are a bounded
sequence in L p′

(�).
Moreover, (tn) is bounded. In fact, the continuity of Kp′,�, (2.2) and (3.1) leads to

t p
′−2

n C |un |p
′

p′ ≥ 1

t2n

∫
�

gp′,δ(tnun)tnundx =
∫

�

Kp′,�(un)(un)dx →
∫

�

Kp′,�(u)udx > 0,

which implies the boundedness of (tn).
Finally, up to a subsequence, we have tn → t0. Then, by Lebesgue’s Theorem,∫

�

gp′,δ(t0u)t0udx = lim
n

∫
�

gp′,δ(tnun)tnundx

= lim
n

∫
�

Kp′,�(tnun)tnundx =
∫

�

Kp′,�(t0u)t0udx .

Now, the uniqueness of tu ensures that tu = t0 = lim
n→+∞ tn . ��

In the sequel, without loss of generality we assume that 0 ∈ � and denote by wp,r ∈
H1
0 (Br (0)) be a positive ground-state solution of the problem{

−�w = |w|p−2w, x ∈ Br (0),

w = 0, x ∈ ∂Br (0),

123



Multiple solutions for a problem with discontinuous… 891

where r > 0 is such that the sets

�+ := {x ∈ R
N ; dist(x,�) ≤ r}, �− := {x ∈ �; dist(x, ∂�) ≥ r}

and � are homotopically equivalent. Hence,

Ip,Br (0)(wp,r ) = bp,Br (0) and I ′
p,Br (0)(wp,r ) = 0,

where

Ip,Br (0)(u) = 1

2

∫
Br (0)

|∇u|2dx − 1

p

∫
Br (0)

|u|pdx, ∀u ∈ H1
0 (Br (0))

and bp,Br (0) denotes the mountain pass level associated with Ip,Br (0). It is well known that

wp,r is radially symmetric and of class C2. Therefore, u p′,r := w
p−1
p,r is positive, radially

symmetric and a critical point of the functional Jp′,Br (0) : L p′
(Br (0)) → R given by

Jp′,Br (0)(u) =
∫
Br (0)

Gp′(u)dx − 1

2

∫
Br (0)

Kp′,Br (0)(u)udx

= 1

p′

∫
Br (0)

|u|p′
dx − 1

2

∫
Br (0)

Kp′,Br (0)(u)udx .

Moreover,

Jp′,Br (0)(u p′,r ) = 1

p′

∫
Br (0)

|u p′,r |p′
dx − 1

2

∫
Br (0)

Kp′,Br (0)(u p′,r )u p′,rdx

= 1

p′

∫
Br (0)

|u p′,r |p′
dx − 1

2

∫
Br (0)

|u p′,r |p′
dx

=
(

1

p′ − 1

2

) ∫
Br (0)

|u p′,r |p′
dx =

(
1

2
− 1

p

) ∫
Br (0)

|u p′,r |p′
dx

=
(
1

2
− 1

p

) ∫
Br (0)

|wp,r |pdx = Ip,Br (0)(wp,r ) = bp,Br (0). (3.2)

Arguing as in [3], it is possible to prove that bp,Br (0) = cp′,Br (0), where cp′,Br (0) denotes the
mountain pass level of Jp′,Br (0).

In the sequel, let 
p′,δ : �− → Np′,δ be the map defined by


p′,δ(y)(x) =
{
tp′,yu p′,r (|x − y|), x ∈ Br (y),

0, x ∈ �\Br (y),
where tp′,y > 0 is such that tp′,yu p′,r (|. − y|) ∈ Np′,δ , for each y ∈ �−. Using the function

p′,δ(y), we are able to prove that

cp′,δ ≤ cp′,Br (0). (3.3)

Indeed, firstly it is very important to observe that from definition of �− and r , we have that
Br (y) ⊂ � for all y ∈ �−, consequently supp(
p′,δ(y)) = Br (y) ⊂ �. Then,

cp′,δ ≤ Jp′,δ(
p′,δ(y)) = Jp′,δ(tp′,yu p′,r )

=
∫

�

Gp′,δ(tp′,yu p′,r )dx − t2p′,y
2

∫
�

Kp′,�(u p′,r )u p′,rdx .
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By the maximum principle,

Kp′,�(u p′,r ) > Kp′,Br (0)(u p′,r ) on Br (0),

and so,

cp′,δ ≤ Jp′,δ(
p′,δ(y)) ≤
∫

�

Gp′,δ(tp′,yu p′,r )dx − 1

2

∫
�

Kp′,�(tp′,yu p′,r )tp′,yu p′,rdx

≤
∫
Br (0)

Gp′(tp′,yu p′,r )dx − 1

2

∫
Br (0)

Kp′,Br (0)(tp′,yu p′,r )tp′,yu p′,rdx

= Jp′,Br (0)(tp′,yu p′,r ) ≤ Jp′,Br (0)(u p′,r ) = cp′,Br (0),

which proves (3.3).
Our next result shows the behavior of the levels cp′,δ and cp′,Br (0) with respect to the

numbers p and δ.

Proposition 3.5 The following limits hold:

lim
p→2∗,δ→0

cp′,δ = lim
p→2∗ cp′,Br (0) = c∗ := 1

N
SN/2,

where S is the best constant for the embedding H1
0 (�) ↪→ L2∗

(�).

Proof We begin by showing the second limit. Let us denote by Ip and Jp′ the functionals
Ip,0 and Jp′,0, respectively. If bp,,Br (0) denotes the mountain pass level of Ip,,Br (0), adapting
the arguments found in [3], it follows bp,Br (0) = cp′,Br (0). Moreover, in [14] it was proved
that

bp,Br (0) =
(
1

2
− 1

p

)
m

p
p−2
p,r ,

with

mp,r := inf
w∈H1

0 (Br (0))\{0}

∫
Br (0)

|∇w|2dx(∫
Br (0)

|w|pdx
)2/p and lim

p→2∗ mp,r = S.

Therefore,

lim
p→2∗ cp′,Br (0) = lim

p→2∗ bp,Br (0) = lim
p→2∗

(
1

2
− 1

p

)
m

p
p−2
p,r = c∗. (3.4)

Here, we would like to point out that the above arguments could be made with Br (0) replaced
by �, because the result found in [14] still holds for �. Then, if cp′ = cp′,0, we also have

lim
p→2∗ cp′ = c∗. (3.5)

Now, we deal with the first limit in the statement, that is,

lim
p→2∗,δ→0

cp′,δ = c∗. (3.6)

Let (δn), (pn) be sequences satisfy δn → 0 and pn → 2∗ as n → ∞. By Theorem 2.4, for
each n ∈ N there is un ∈ L p′

n (�) such that

Jp′
n ,δn

(un) = cp′
n ,δn

and J ′
p′
n ,δn

(un) = 0.
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Setting tn > 0 be such that tnun ∈ Np′
n

:= Np′
n ,0, we find

cp′
n

≤ Jp′
n
(tnun) = Jp′

n ,δn
(tnun) +

∫
�

[
Gp′

n
(tnun) − Gp′

n ,δn
(tnun)

]
dx . (3.7)

Claim 3.6 ∫
�

[
Gp′

n
(tnun) − Gp′

n ,δn
(tnun)

]
dx = on(1). (3.8)

Indeed, by the definitions of Gp′,δ and Gp′ ,

0 ≤ Gp′(s) − Gp′,δ(s) ≤ (1 − γδ)
1

p′ |s|p
′
, ∀s ∈ R,

and so,

0 ≤
∫

�

[
Gp′

n
(tnun) − Gp′

n ,δn
(tnun)

]
dx ≤ (1 − γδn )

1

p′
n
t
p′
n

n

∫
�

|un |p′
n dx . (3.9)

From this, we will get the desired conclusion by showing that (|tnun |p′
n
) is bounded, since

γδn → 1 as n → ∞. Firstly, from inequality

Gp′,0(t) ≥ Gp′,δ(t), ∀t ∈ R,

we have that

Jp′,0(u) ≥ Jp′,δ(u) ∀u ∈ L p′
(�),

implying that cp′
n

≥ cp′
n ,δn

for all n ∈ N. From this, (|un |p′
n
) is bounded, because (cp′

n
) is a

bounded sequence and

cp′
n

≥ cp′
n ,δn

= Jp′
n ,δn

(un) = Jp′
n ,δn

(un) − 1

2
J ′
p′
n ,δn

(un)(un)

=
∫

�

[
Gp′

n ,δn
(un) − 1

2
gp′

n ,δn
(un)un

]
dx ≥

(
γδn

p′
n

− 1

2

) ∫
�

|un |p′
dx .

Next, we will work to show that (tn) is also a bounded sequence. To this end, we need to
prove that

lim inf
n→∞ |un |p′

n
> 0. (3.10)

As p′
n > 2+ and |�| < ∞, it follows that

Kp′
n ,�

(un) = K2+,�(un), ∀n ∈ N.

As un ∈ Np′
n ,δn

, the above equality combined with Hölder inequality gives

γδ|un |p
′
n

p′
n

≤
∫

�

gp′
n ,δn

(un)un dx =
∫

�

K2+,�(un)un dx ≤ C |un |22+ ≤ C |�| 2
θn |un |2p′

n
,

where
1

2+ = 1

p′
n

+ 1

θn
. Then,

1 ≤ C |�| 2
θn |un |2−p′

n
p′
n

.

Once θn → ∞ and p′
n → 2+ as pn → 2∗, the last inequality implies that there is κ > 0

such that |un |p′
n

> κ for n large enough, which proves (3.10).
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Now, by using the fact un ∈ Np′
n ,δn

together with (2.2) and (3.10), we obtain∫
�

Kp′
n ,�

(un)undx =
∫

�

gp′
n ,δn

(un)undx ≥ γδn

∫
�

|un |p′
n dx > κ, (3.11)

for n large enough. Hence,

c∗
2

≤ cp′
n

≤ Jp′
n
(tnun) = t

p′
n

n

p′
n

∫
�

|un |p′
n dx − t2n

2

∫
�

Kp′
n ,�

(un)undx,

for n large enough. Gathering the boundedness of (|un |p′
n
) with (3.11), we derive

c∗
2

≤ ct
p′
n

n − τ t2n , ∀n ∈ N,

from where it follows that (tn) is bounded. From this, (|tnun |p′
n
) is bounded, which finishes

the proof of Claim 3.6. Therefore from (3.3) and (3.7)

cp′
n

≤ cp′
n ,δn

+ on(1) ≤ cp′
n
+ on(1).

As (pn) and (δn) are arbitrary sequences, (3.5) gives

lim
p→2∗,δ→0

cp′,δ = c∗.

��
The next step would be to determine whether or not the restriction of Jp′,δ toNp′,δ satisfies

the (PS)-condition. The standard approachwould lead us to the study of the second derivative
of Jp′,δ , which we cannot compute, since this functional is not twice differentiable. With this
in mind, we will adapt for our case some ideas explored in [30].

Consider the application

m̂ p′,δ : L p′
(�)\{0} → Np′,δ

given by

m̂ p′,δ(u) = tuu,

where tu is defined by (3.1). Using the above notations, it is possible to prove that

(a) m̂ p′,δ is a continuous application.
(b) There is τ > 0 such that tu > τ , ∀u ∈ Sp′ = {u ∈ L p′

(�) : |u|p′ = 1};
Indeed, if (un) ⊂ L p′

(�) is such that tun → 0 as n → ∞, then tun un → 0 as n → ∞.
This contradicts Lemma 3.1, since tun un ∈ Np′,δ .

(c) Given W ⊂ Sp′ compact, there is CW > 0 such that CW > tu , ∀u ∈ W;
In fact, this is a consequence of the continuity of the application v �→ tv , as shown in
Lemma 3.4.

In the sequel, we consider the application mp′,δ : Sp′ → Np′,δ , the restriction of m̂ p′,δ to
the sphere Sp′ . Observe that mp′,δ is a homeomorphism, with inverse given by

m−1
p′,δ(u) = u

|u|p′
, ∀u ∈ Np′,δ.

Let us also consider the application �̂p′,δ : L p′
(�)\{0} → R given by

�̂p′,δ(u) := Jp′,δ(m̂ p′,δ(u)),
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and its restriction to the sphere, �p′,δ : Sp′ → R. Note that both �̂p′,δ and �p′,δ are
continuous. The following result is crucial in our approach and its proof can be found in [30,
Chapter 3].

Lemma 3.7 The applications defined above satisfy:

(i) �̂p′,δ ∈ C1(L p′
(�)\{0},R) and, for u ∈ L p′

(�)\{0},

�̂ ′
p′,δ(u)v = |m̂ p′,δ(u)|p′

|u|p′
J ′
p′,δ(m̂ p′,δ(u))v,

= tu J
′
p′,δ(m̂ p′,δ(u))v, ∀v ∈ L p′

(�);
(i i) �p′,δ ∈ C1(Sp′ ,R) and, for u ∈ Sp′ ,

� ′
p′,δ(u)v = |mp′,δ(u)|p′ J ′

p′,δ(mp′,δ(u))v, ∀v ∈ TuSp′ ,

where TuSp′ denotes the tangent space of Sp′ at u;
(i i i) If (un) ⊂ Sp′ is a (PS) sequence for �p′,δ , then (mp′,δ(un)) is a (PS) sequence for

Jp′,δ; if (un) ⊂ Np′,δ is a (bounded) (PS) sequence for Jp′,δ , then (m−1
p′,δ(un)) is a

(PS) sequence for �p′,δ;
(iv) u ∈ Sp′ is a critical point of �p′,δ if, and only if, m p′,δ(u) is a (nonzero) critical point

of Jp′,δ . Moreover,

inf
Sp′

�p′,δ = inf
Np′,δ

Jp′,δ.

Corollary 3.8 �p′,δ is bounded from below and satisfies the (PS) condition.

Proof The boundedness follows by a combination of the previous result and Lemma 3.1. On
the (PS) condition, let (un) ⊂ Sp′ be a (PS) sequence for �p′,δ . Thus, by Lemma 3.7-(i i i),(
mp′,δ(un)

)
is a (PS) sequence for Jp′,δ . By Proposition 2.3,

(
mp′,δ(un)

)
has a strongly

convergent subsequence. Since mp′,δ is a homeomorphism, (un) has a strongly convergent
subsequence, that is, �p′,δ satisfies the (PS) condition. ��
Before concluding this section, we will show that Palais–Smale sequence of J2+ produces a
Palais–Smale sequence for I2∗ : H1

0 (�) → R given by

I2∗(u) = 1

2

∫
�

|∇u|2 dx − 1

2∗

∫
�

|u|2∗
dx .

Lemma 3.9 If (un) ⊂ N2+ is a (PS)d sequence of J2+ , then there is tn > 0 such that
vn = tn |un |2+−2un ∈ M2∗ , whereM2∗ is theNeharimanifold associatedwith I2∗ .Moreover,
the sequence (vn) is a (PS)d sequence of I2∗ .

Proof Let (un) ⊂ N2+ be a (PS)d sequence for J2+ , that is, (un) satisfies

J ′
2+(un)un = 0, J2+(un) = d + on(1) and ‖J ′

2+(un)‖L2∗ (�) = on(1). (3.12)

Then (un) ⊂ L2+
(�) is a bounded sequence. In what follows, we define (wn) ⊂ H1

0 (�)

and (vn) ⊂ L2∗
(�) by wn := K2+,�(un) and ṽn := |un |2+−2un , for each n ∈ N. So

un = |ṽn |2∗−2ṽn and wn is the unique solution of the problem{−�wn = un, x ∈ �,

wn = 0, on ∂�.
(3.13)
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By (3.12) and the definitions of wn and vn , both (wn), (ṽn) are bounded sequences with
|ṽn − wn |2∗ → 0 as n → ∞, that is, wn = ṽn + on(1) in L2∗

(�).
The sequence (wn) is a (PS)d sequence for I2∗ . Indeed, for any φ ∈ H1

0 (�), (3.13) gives

I ′
2∗(wn)φ =

∫
�

∇wn∇φ dx −
∫

�

|wn |2∗−2wnφ dx

=
∫

�

unφ dx −
∫

�

|wn |2∗−2wnφ dx

=
∫

�

(
|ṽn |2∗−2ṽn − |wn |2∗−2wn

)
φ dx

≤ C
∣∣|ṽn |2∗−2ṽn − |wn |2∗−2wn

∣∣
2+‖φ‖

and so,

‖I ′
2∗(un)‖H−1(�) ≤ C

∣∣|ṽn |2∗−2ṽn − |wn |2∗−2wn
∣∣
2+

As wn − ṽn → 0 in L2∗
(�), it follows that

‖I ′
2∗(wn)‖H−1(�) = on(1). (3.14)

Moreover, since J ′
2+(un)un = 0,

I2∗(wn) = 1

2

∫
�

|∇wn |2 dx − 1

2∗

∫
�

|wn |2∗
dx

= 1

2

∫
�

wnun dx − 1

2∗

∫
�

|vn |2∗
dx + on(1)

= 1

2

∫
�

wnun dx − 1

2∗

∫
�

|un |2+
dx + on(1)

=
(
1

2
− 1

2∗

) ∫
�

|un |2+
dx + on(1)

=
(

1

2+ − 1

2

) ∫
�

|un |2+
dx + on(1)

= J2+(un) + on(1) = d + on(1). (3.15)

Thus, (wn) is a (PS)d sequence for I2∗ . Next, fix w̃n := tnwn where tn > 0 is such that
tnwn ∈ M2∗ . We claim that (w̃n) is a (PS)d for I2∗ . Indeed, once (un) is a bounded sequence
onN2+ , then lim inf

n→∞ |un |2+ > 0. Furthermore, using again that wn = vn + on(1) in L2∗
(�),

we see that tn satisfies

t2n

∫
�

|∇wn |2dx = t2
∗

n

∫
�

|wn |2∗
dx

= t2
∗

n

[ ∫
�

|vn |2∗
dx + on(1)

]

= t2
∗

n

∫
�

|un |2+
dx + t2

∗
n on(1),

which leads to

(t2−2∗
n − 1)

∫
�

|un |2+
dx = on(1).
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Therefore, as (un) does not vanish, tn → 1 as n → ∞ which permits to conclude that (w̃n)

is a (PS)d sequence for I2∗ . Hence, the sequence (vn) given by vn = tn ṽn = tn |un |2+−2un
is also a (PS)d sequence for I2∗ . ��

4 Proof of Theorem 1.1

After the study made in the previous section, we are able to prove our main result. To this
end, we will consider the application β : Np′,δ → R

N given by

β(u) =

∫
�

x |u|2+
dx∫

�

|u|2+
dx

.

Once L p′
(�) ↪→ L2+

(�), β is well defined and

β ◦ 
p′,δ(x) = x, ∀x ∈ �−. (4.1)

The next result establishes an important estimate associated with β.

Proposition 4.1 There are ε, p∗, δ1 > 0 such that for each p ∈ (p∗, 2∗) and δ ∈ (0, δ1), if
u ∈ Np′,δ satisfies Jp′,δ(u) ≤ c∗ + ε, then β(u) ∈ �+, where c∗ is defined in Proposition
3.5.

Suppose by contradiction that the result is false. Then, there are sequences (εn), (pn), (δn)
with εn → 0, δn → 0, pn → 2∗ and un ∈ Np′

n ,δn
such that

Jp′
n ,δn

(un) ≤ c∗ + εn and β(un) /∈ �+. (4.2)

To simplify the notation,wewill use Jn := Jp′
n ,δn

,Nn := Np′
n ,δn

,Gn := Gp′
n ,δn

, gn := gp′
n ,δn

and Kn := Kp′
n ,�

.
We begin noticing that (|un |p′

n
) is bounded, since (2.2) and (2.3) lead to

c∗ + εn ≥ Jn(un) = Jn(un) − 1

2
J ′
n(un)un

=
∫

�

(
Gn(un) − 1

2
gn(un)un

)
dx

≥
(

γδn

p′
n

− 1

2

)
|un |p

′
n

p′
n
,

and
(

γδn
p′
n

− 1
2

)
→ 1

N as n → ∞.

Claim 4.2 There is tn > 0 such that tnun ∈ Np′
n
, that is, J ′

p′
n
(tnun)tnun = 0, and tn → 1 as

n → ∞.

The existence of such (tn) is a consequence of the definition of Jp′
n
. Thus, for each n ∈ N,∫

�

|tnun |p′
n dx =

∫
�

Kn(tnun)tnun dx,

that is,

t
p′
n−2

n

∫
�

|un |p′
n dx =

∫
�

Kn(un)un dx . (4.3)
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Since un ∈ Nn , (2.2) gives∫
�

Kn(un)undx =
∫

�

gn(un)undx =
∫

�

|un |p′
ndx + on(1). (4.4)

By (4.3) and (4.4), (
t
p′
n−2

n − 1
) ∫

�

|un |p′
n dx = on(1). (4.5)

Moreover, by (2.3),

cp′
n ,δn

≤ Jn(un) =
∫

�

(Gn(un) − 1

2
Kn(un)un) dx

=
∫

�

(Gn(un) − 1

2
gn(un)un) dx

≤ 1

p′
n

∫
�

|un |p′
n dx .

Then, by Proposition 3.5, lim inf
n→∞ |un |p

′
n

p′
n

> 0. Thereby, (4.5) ensures that lim
n→∞ tn = 1 and

the claim is proved.
Let ũn := tnun , for all n ∈ N. Since ũn ∈ Np′

n
, by using (4.2) and the same argument

explored in the proof of Claim 3.6, we get

c∗ + on(1) = cp′
n

≤ Jp′
n
(ũn) = Jp′

n
(tnun)

≤ Jn(un) + on(1) ≤ c∗ + εn + on(1),

that is,

lim
n→∞ Jp′

n
(ũn) = c∗.

Now observe that by the definition of J2+ , there is rn > 0 such that rnũn ∈ N2+ .

Claim 4.3 (|ũn |p′
n
) and (rn) are bounded sequences and lim inf

n→∞ |rnũn |p
′
n

p′
n

> 0.

In fact, once rnũn ∈ N2+ ,∫
�

|rnũn |2+
dx =

∫
�

K2+,�(rnũn)rnũn dx,

that is,

1

r2−2+
n

∫
�

|ũn |2+
dx =

∫
�

K2+,�(ũn)ũn dx

from where it follows that

1

r2−2+
n

∫
�

|ũn |2+
dx =

∫
�

Kp′
n ,�

(ũn)ũn dx .

Here, we had used the fact that Kp′
n ,�

(ũn) = K2∗,�(ũn), because p′
n > 2+ and meas(�) <

∞.
Besides, since ũn ∈ Np′

n
and Jp′

n
(ũn) → c∗,(

1

2
− 1

p′
n

) ∫
�

|ũn |p′
n dx =

(
1

pn
− 1

2

) ∫
�

|ũn |p′
n dx = Jp′

n
(ũn) = c∗ + on(1),
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so

lim
n→∞

∫
�

|ũn |p′
n dx = Nc∗ = SN/2. (4.6)

Since ũn = tnun and tn → 1, it follows that (|un |p′
n
) is also bounded.UsingHölder inequality,

∫
�

|ũn |2+
dx ≤ |�| 2

+
θn

(∫
�

|un |p′
n dx

) 2+
p′n

,

where 1
θn

= 1
2+ − 1

p′
n

→ 0 as n → ∞. Therefore,

∫
�

|ũn |2+
dx ≤ on(1) +

(∫
�

|ũn |p′
ndx

) 2+
p′n

, (4.7)

and (|ũn |2+) is bounded. Moreover, arguing as in the proof of (3.10) we have that
lim inf
n→+∞ |ũn |2+

2+ > 0. This together with (4.6), (4.7) and the fact that ũn ∈ Np′
n
gives that

(rn) is bounded. We finish the proof of the claim by applying Lemma 3.1.
Now, using the equality

c∗ = inf
u∈M2∗

I2∗(u) = inf
u∈N2+

J2+(u), (see [2])

we find

c∗ ≤ J2+(rnũn).

Thus, combining the Hölder’s inequality with (4.7) and Claim 4.3, we obtain

c∗ ≤ J2+(rnũn) = 1

2+

∫
�

|rnũn |2+
dx − 1

2

∫
�

K2+,�(rnũn)rnũn dx

≤
(

1

p′
n

+ on(1)

) ⎡
⎣on(1) +

(∫
�

|rnũn |p′
ndx

) 2+
p′n

⎤
⎦

− 1

2

∫
�

Kp′
n ,�

(rnũn)rnũn dx

= on(1) + 1

p′
n

(∫
�

|rnũn |p′
ndx

) 2+
p′n − 1

2

∫
�

Kp′
n ,�

(rnũn)rnũn dx

= on(1) + 1

p′
n

(∫
�

|rnũn |p′
ndx

)1+on(1)

− 1

2

∫
�

Kp′
n ,�

(rnũn)rnũn dx

= on(1) + 1

p′
n

∫
�

|rnũn |p′
ndx − 1

2

∫
�

Kp′
n ,�

(rnũn)rnũn dx

= on(1) + Jp′
n
(rnũn)

≤ on(1) + Jp′
n
(ũn) = on(1) + c∗.

Consequently, wn := rnũn ∈ N2+ satisfies J2+(wn) → c∗. Without loss of generality, using
the Ekeland’s Variational Principle, we can assume that wn also satisfies J ′

2+(wn) → 0 as
n → ∞, that is, (wn) is a (PS) sequence for J2+ at the level c∗.
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By Lemma 3.9, there is a (PS) sequence (vn) ⊂ M2∗ for I2∗ at the level c∗. Observe that
(vn) satisfies ∫

�
|∇vn |2dx(∫

�
|vn |2∗dx

) 2
2∗

=
(∫

�

|vn |2∗
dx

)1− 2
2∗ =

(∫
�

|vn |2∗
dx

) 2
N

(4.8)

and

c∗ + on(1) = I2∗(vn) =
(
1

2
− 1

2∗

) ∫
�

|vn |2∗
dx = 1

N

∫
�

|vn |2∗
dx,

that is,

lim
n→∞

∫
�

|vn |2∗
dx = Nc∗ = SN/2. (4.9)

By (4.8) and (4.9),

lim
n→∞

∫
�

|∇vn |2dx(∫
�

|vn |2∗dx
) 2
2∗

= S.

By setting the function wn = vn|vn |2∗ , we have that

|wn |2∗ = 1 and lim
n→+∞

∫
�

|∇wn |2 dx = S.

Arguing as in [32, Lemma 5.23], we can apply the Concentration–Compactness Lemma due
to Lions [32, Lema 1.40] to find u ∈ D1,2(RN ) and a subsequence of (un), still denoted by
itself, such that

wn ⇀ u in D1,2(RN ),

|∇wn |2 ⇀ μ in M(RN ),

and

|wn |2∗ → ν in M(RN ),

where μ and ν are positive finite measure with ν concentrated at a single point y ∈ �.
Therefore, ∫

�

x |wn |2∗
dx →

∫
�

x dν = y ∈ �

or equivalently

α(vn) :=

∫
�

x |vn |2∗
dx∫

�

|vn |2∗
dx

→
∫

�

x dν = y ∈ �,

implying that

α(vn) ∈ �+

for n large enough. Thereby,

β(un) = α(vn) ∈ �+,

for n large enough, which contradicts (4.2). This completes the proof. ��
As a by-product of the last proposition, we have that
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Corollary 4.4 For ε, p∗, δ1 > 0 given in Proposition 4.1, for each p ∈ (p∗, 2∗), δ ∈ (0, δ1),
if u ∈ Sp′ satisfies �p′,δ(u) ≤ c∗ + ε, then β

(
mp′,δ(u)

) ∈ �+.

Proof Indeed, for fixed p ∈ (p∗, 2∗), δ ∈ (0, δ1), if u ∈ Sp′ is such that �p′,δ(u) ≤ c∗ + ε,
then mp′,δ(u) ∈ Np′,δ with Jp′,δ

(
mp′,δ(u)

) ≤ c∗ + ε. By Theorem 4.1, β
(
mp′,δ(u)

) ∈ �+.
��

The next result establishes a crucial relation between cat
(Sc∗+ε

p′
)
and cat(�), where

Sc∗+ε
p′ = {u ∈ Sp′ : �p′,δ(u) ≤ c∗ + ε}.

Proposition 4.5 For ε, p∗, δ1 > 0 given in Proposition 4.1, p ∈ (p∗, 2∗) and δ ∈ (0, δ1),
we have

cat
(Sc∗+ε

p′
) ≥ cat(�).

Proof By Proposition 3.5, we can fix r > 0 such that cp′,Br (0) < c∗ +ε. Let k = cat(Sc∗+ε
p′ ).

Then, there are k closed contractible sets A j ⊆ Sc∗+ε
p′ , j = 1, . . . , k such that ∪k

j=1A j =
Sc∗+ε
p′ . This means that there are k continuous applications h j : [0, 1] × A j → Sc∗+ε

p′ such
that

h j (0, u) = u, h j (1, u) = h j (1, v),∀u, v ∈ A j , j = 1, . . . , k. (4.10)

Setting Bj := (
m−1

p′,δ ◦ 
p′,δ
)−1

(A j ), j = 1, . . . , k, we derive that Bj are closed and

Bj ⊂ �−. Moreover, as

�p′,δ((m
−1
p′,δ ◦ 
p′,δ)(y)) = Jp′,δ(
p′,δ(y)) = cp′,Br (0) < c∗ + ε,∀y ∈ �−,

or equivalently

�p′,δ((m
−1
p′,δ ◦ 
p′,δ)(�

−)) ⊂ Sc∗+ε
p′ ,

we also have that
k⋃
j=1

Bj = �−. (4.11)

Consider the applications l j : [0, 1] × Bj → �+ given by

l j (t, x) := β ◦ mp′,δ ◦ h j (t,m
−1
p′,δ ◦ 
p′,δ(x)).

Then l j is continuous and, for x, y ∈ Bj ⊂ �+, using (4.10) and (4.1),

l j (0, x) = β ◦ mp′,δ ◦ h j (0,m
−1
p′,δ ◦ 
p′,δ(x))

= β ◦ mp′,δ ◦ m−1
p′,δ ◦ 
p′,δ(x)

= β ◦ 
p′,δ(x) = x,

and

l j (1, x) = β ◦ mp′,δ ◦ h j (1,m
−1
p′,δ ◦ 
p′,δ(x))

= β ◦ mp′,δ ◦ h j (1,m
−1
p′,δ ◦ 
p′,δ(y))

= l j (1, y).
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Thus, Bj are contractible and by (4.11),

cat (�) = cat�+(�−) ≤ k = cat(Sc∗+ε
p′ ),

as desired. ��

Proof of Theorem 1.1 Let p ∈ (p∗, 2∗) and 0 < δ < δ∗ := min{δ0, δ1}. Then, by Lemma
3.7-(iv), c∗ +ε > c∗ = infSp′ �p′,δ . This and Corollary 3.8 allow us to apply the Lusternik–

Schnirelmann category to �p′,δ , which guarantee us that �p′,δ has at least cat(Sc∗+ε
p′ )

nontrivial critical points on Sc∗+ε
p′ . Applying Lemma 3.7-(iv) and Proposition 4.5, we con-

clude that Jp′,δ has at least cat(�) nontrivial critical points. Thus, by Theorem 2.1, (Pp,δ)

has at least cat(�) nontrivial solutions. Moreover, since f is odd, Corollary 3.3 together with
maximum principle yields these solutions can be chosen positive. ��
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