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Abstract For the planar N -centre problem

ẍ = −
N∑

i=1

mi (x − ci )

|x − ci |α+2 , x ∈ R
2\{c1, . . . , cN },

where mi > 0 for i = 1, . . . , N and α ∈ [1, 2), we prove the existence of entire parabolic
trajectories, having prescribed asymptotic directions for t → ±∞ and prescribed topological
characterization with respect to the set of the centres.
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1 Introduction and statement of the main result

The N -centre problem is the problem of the motion of a test particle in the attracting field
generated by N fixed heavy bodies c1, . . . , cN ; in celestial mechanics, it often arises as a
simplified version of the restricted circular (N + 1)-body problem in a rotating frame, when
centrifugal and Coriolis’ forces are neglected. For N = 1, of course, it just reduces to the
classical Kepler problem, while the case N = 2 has been solved by Jacobi (see, for instance,
[21]). For N ≥ 3, on the contrary, the problem has been proved to be analytically non-
integrable [5] and, in spite of its simple-looking structure, can indeed exhibit very complicated
dynamics (see, among others, [7,8,13–15,18]).

In this paper we will deal with the planar generalized N-centre problem

ẍ = −
N∑

i=1

mi (x − ci )

|x − ci |α+2 , x ∈ R
2\{c1, . . . , cN }, (1)

where α ∈ [1, 2), thus including the classical Newtonian case α = 1 as a particular case;
of course, mi > 0 for i = 1, . . . , N . Notice that the above equation has an Hamiltonian
structure, with total energy given by

H(x, ẋ) = 1

2
|ẋ |2 −

N∑

i=1

mi

α|x − ci |α .

With this in mind, our aim is to prove the existence of entire parabolic (i.e., zero-energy)
solutions to (1) having prescribed asymptotic directions at ±∞. More precisely, denoting by
� = {c1, . . . , cN } the set of the centres and naming partition of � any subset P ⊂ � with
P �= ∅ and P �= �, our main result reads as follows.

Theorem 1.1 Let N ≥ 2. For any asymptotic directions ξ−, ξ+ ∈ S
1 with ξ− �= ξ+ and for

any partition P of �, there exists a self-intersection-free parabolic solution x : R → R
2\�

of (1) satisfying |x(t)| → ∞ for t → ±∞,

lim
t→±∞

x(t)

|x(t)| = ξ±

and separating the set � according to the partition P .

A comment about the statement: by the Jordan Theorem on a sphere, the above parabolic
solution divides the plane into two connected components, both unbounded (see for instance
[10, Lemma 2.1]); accordingly, the sentence “separating the set � according to the partition
P” means that two centres lie in the same connected component if and only if they are both
in P or both in �\P .

Theorem 1.1 has to be interpreted in the context of scattering; indeed, it shows how
the presence of two or more centres gives rise to (zero-energy) connections between any
pair of asymptotic directions (but different), thus allowing in particular any value for the
scattering angle. We stress that the analysis of the zero-energy case seems to be particularly
interesting from this point of view; indeed, it is well known that for the central potential
Vα(x) = m

α|x |α (corresponding to the case N = 1 in the generalized N -centre problem) all
parabolic solutions span an angle of 2π/(2−α) (see, for instance, [9, Proposition 6.1]). This
is in strong contrast with the positive energy case, where all (but one) scattering angles are
always achieved; accordingly, it is immediately understood that the possibility of an arbitrary
zero-energy scattering angle as in Theorem 1.1 is a genuine consequence of the presence of
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N ≥ 2 centres and of the interaction of a parabolic solution with them. Incidentally, let us
observe that, by collapsing all the centres into a single one, such parabolic solutions converge
to the juxtaposition of two rectilinear zero-energy solutions of the α-Kepler problem (see
Remark 3.3). From this perspective, we can also interpret Theorem 1.1 as a continuation-
type result, producing, however, classical solutions starting from generalized ones (the case
ξ− = ξ+ being indeed the only one in which we cannot rule out the presence of collisions).

We refer the reader to [3,4,12,16,17] for interesting investigations, from different point of
views, about zero-energy solutions of various problems in celestial mechanics; we notice that,
in spite of the differences between the considered models, all these results show the crucial
role of parabolic solutions as carriers from different regions of the phase-space, in complete
agreement with Theorem 1.1. We also mention that an extensive analysis of the scattering
process for the planar N -centre problem has already be given in the excellent monograph
[14] by Klein and Knauf, dealing, however, only with the Newtonian case (α = 1) and with
positive energy solutions. The results therein are obtained via a global regularization of the
problem, allowing to apply the theory of geodesics on surfaces of negative curvature. It is
plausible that some results for the zero-energy case could be derived via a limiting procedure;
we stress, however, that our approach is more direct and it allows the study of the generalized
problem (1) with α ∈ [1, 2) in a unified way.

For the proof of our result, we combine indeed the variational approach to the construction
of topologically non-trivial solutions of the Bolza boundary value problem associated with
(1), developed in [18,19], together with a limiting procedure introduced in the recent paper
[9], dealing with parabolic solutions of the N -centre problem in the three-dimensional space.
Both these tools are available when α ∈ [1, 2); it has to be emphasized, however, that the
Newtonian case is still more difficult, and indeed requires the use of some (local, Levi-
Civita type) regularization techniques. We also notice that, while in the spatial case solutions
of the (fixed-energy) Bolza problem were found via a min-max argument, thus producing
entire solutions with (at least generically) non-trivial Morse index, here minimization of
the Maupertuis functional in suitable homotopy classes is enough, thus leading to locally
minimal solutions.

As a final comment, we remark that the multiplicity pattern in Theorem 1.1 is a conse-
quence of the result proved in [18,19], providing solutions separating the set of the centres
according to any given partition of it. It is likely that the use of more refined arguments,
on the lines of [11,22], could lead to solutions in different homotopy classes, allowing for
self-intersections and revolutions around the centres; in this way, one should obtain a much
richer zero-energy dynamics, including scattering solutions, semi-bounded solutions as well
as bounded orbits exhibiting symbolic dynamics. Moreover, one of the reviewers pointed
out that it should be possible to obtain infinitely many noncollision parabolic solutions with
prescribed asymptotic directions as well as chaotic dynamics by using the results of the very
recent paper [6]. All this will be the subject of a future investigation.

1.1 Plan of the paper

In Sect. 2 we review the existence of topologically non-trivial parabolic solutions of the Bolza
problem, while in Sect. 3 we show how to obtain entire parabolic solutions via a limiting
procedure. Actually, we are going to prove that the conclusion of Theorem 1.1 holds true for
a larger class of equations of the type

ẍ = ∇U (x), x ∈ R
2\�, (2)
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872 A. Boscaggin et al.

under suitable assumptions on the potential U ∈ C∞(R2\�) which we are going to list here
below. First of all, we require

U (x) > 0, for every x ∈ R
2\�. (3)

Second, dealingwith the behaviour ofU near the centres we assume that, for some α ∈ [1, 2),
U (x) = mi

α|x − ci |α +Ui (x), i = 1, . . . , N , (4)

where mi > 0 and Ui is smooth on R
2\(�\{ci })). Finally, as for the behaviour of U at

infinity, we require that, with the same α as above and some m > 0,

U (x) = m

α|x |α + W (x), (5)

where, for some β > α/2 + 1,

W (x) = O

(
1

|x |β
)

and ∇W (x) = O

(
1

|x |β+1

)
, for |x | → +∞.

It is easy to verify that the potential

V (x) =
N∑

i=1

mi

α|x − ci |α ,

giving rise to the generalized N -centre problem (1), satisfies all the above conditions, with
m = ∑N

i=1 mi and β = α + 1.

2 Parabolic solutions of the Bolza problem

In this section we look for solutions of the (free-time) fixed-endpoints problem
{
ẍ = ∇U (x)
x(±ω) = q±,

(6)

satisfying the zero-energy relation

1

2
|ẋ |2 = U (x); (7)

recall that solutions of (6) satisfying (7) are called parabolic solutions of (6). Motivated by
the final application, and in order to make all the discussion more transparent, we assume
from the beginning that

|q−| = |q+| and q− �= q+; (8)

also, we suppose that |ci | < |q−| for i = 1, . . . , N , that is, all the centres lie inside the ball
centred at the origin and of radius |q−| = |q+|.

Having in mind a variational approach, we introduce the Maupertuis functional

M(u) =
∫ 1

−1
|u̇(t)|2 dt

∫ 1

−1
U (u(t)) dt

defined on the Hilbert manifold

�̂ = �̂q± =
{
u ∈ H1([−1, 1];R2\�) : u(±1) = q±}

;
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notice that, in view of (3), it holds that M(u) ≥ 0 for any u ∈ �̂. As well known (see, for
instance, [1, Theorem 4.1] and [19, Appendix B])M is smooth and any critical point u ∈ �̂

satisfies, for t ∈ [−1, 1],

ü(t) = ω2 ∇U (u(t)),
1

2
|u̇(t)|2 − ω2U (u(t)) = 0,

where

ω =
( ∫ 1

−1 |u̇(t)|2 dt
2

∫ 1
−1U (u(t)) dt

)1/2

. (9)

Observe that, since q+ �= q−, u is not constant: as a consequence, ω > 0 and the function

x(t) = u

(
t

ω

)
, t ∈ [−ω,ω],

is easily seen to be a parabolic solution of ẍ = ∇U (x) on the interval [−ω,ω]; moreover,
of course, x(±ω) = q±.

Following [18,19], multiple critical points of M can be found by minimizing in suitable
homotopy classes. Precisely, write q± = |q±|eiθ± , for suitable θ± ∈ [0, 2π), and define, for
any u ∈ �̃, the path vu : [−1, 2] → R

2\� as

vu(t) =
{
u(t) t ∈ [−1, 1]
|q−|ei(θ++(θ−−θ++2π)(t−1)) t ∈ [1, 2] if θ− < θ+,

and

vu(t) =
{
u(t) t ∈ [−1, 1]
|q−|ei(θ++(θ−−θ+)(t−1)) t ∈ [1, 2] if θ+ < θ−,

namely we artificially close the path u with the arc on ∂B|q−| connecting q+ with q− in the
counterclockwise sense. With this notation, and given l ∈ Z

N
2 , we introduce the set

�̂l = {
u ∈ �̂ : Ind(vu, ci ) ≡ li mod 2, ∀ i = 1, . . . , N

}
,

being (in complex notation)

Ind(vu, ci ) = 1

2π i

∫

vu

dz

z − ci

the usual winding number of a closed planar path. We are now in position to prove the
following result:

Theorem 2.1 Let q−, q+ be as in (8) and let l ∈ Z
N
2 satisfying

∃k �= m : lk �= lm . (10)

Then, there exists a self-intersection-free parabolic solution of (6), corresponding to a
(collision-free) minimizer of M in the H1-weak closure of �̂l .

Proof The existence of a minimizer u of M in the H1-weak closure of �̂l follows from
standard lower-semicontinuity/coercivity arguments; notice, however, that the coercivity of
M is not straightforward, following from the assumption at infinity (5) (see [9, Lemma 4.2]
for the details). The fact that u is collision-free can be proved as in [18, Theorem 4.12] or in
[19, Theorem 2.3], using (4) in an essential way and taking into account that the assumption
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q− �= q+ rules out the case of collision–ejection solutions. Finally, the fact that u is self-
intersection free follows as in [18, Theorem 4.12] again (see, in particular, [18, Proposition
4.24]). 
�

3 Entire parabolic solutions

In this section we prove Theorem 1.1 via an approximation argument. More precisely, given
ξ−, ξ+ ∈ S

1 with ξ− �= ξ+ and a partition P of �, we first define l ∈ Z
N
2 by setting li = 1

if and only if ci ∈ P and we apply Theorem 2.1 with the choice q± = Rξ± for R > 0 large
enough (notice that in this way (8) is surely satisfied) so as to find an associated parabolic
solution xR : [−ωR, ωR] → R

2; then, we are going to show that an entire parabolic solution
x : R → R

2 can be obtained by passing to the limit when R → +∞.
In order to do this, the assumption at infinity (5) will play a crucial role. For further

convenience, we fix from the beginning two constants C−,C+ > 0 and a constant K >

supi |ci | + 1 such that

|W (x)| ≤ C+
|x |β and |∇W (x)| ≤ C+

|x |β+1 , for every |x | ≥ K , (11)

2|W (x)| + |∇W (x) · x | ≤ (2 − α)m

2α

1

|x |α , for every |x | ≥ K , (12)

C−
|x |α ≤ U (x) ≤ C+

|x |α , for every |x | ≥ K , (13)

and
√
m

α

1

|x |α/2 − C+
|x |β−α/2 ≤ √

U (x) ≤
√
m

α

1

|x |α/2 + C+
|x |β−α/2 , for every |x | ≥ K . (14)

The estimates (11), (12) and (13) are rather obvious, while (14) follows from (11) using the
elementary inequalities 1 − |s| ≤ √

1 + s ≤ 1 + 1
2 s (valid for s ≥ −1).

We are now in position to give the proof; as a useful notation, we set rR(t) = |xR(t)| and,
whenever rR(t) �= 0, sR(t) = xR(t)

rR(t) . We split our arguments into several steps; first of all, we
observe that due to the assumption (10) any solution xR enters the ball BK , so that

lim sup
R→+∞

min
t

rR(t) ≤ K < +∞.

3.1 The virial identity and some preliminary estimates

Preliminary, we observe that, due to the fact that xR has zero-energy (see 7), the following
equality—often referred to as virial identity—holds true:

d2

dt2

(
1

2
rR(t)2

)
= 2U (xR(t)) + ∇U (xR(t)) · xR(t).

Using (5) and (12), we see that the above expression is strictly positive for |xR(t)| ≥ K ,
precisely

d2

dt2

(
1

2
rR(t)2

)
≥ (2 − α)m

2αrR(t)α
. (15)

Therefore, t0 ∈ (−ωR, ωR) can be a local maximum for t �→ rR(t) only if rR(t0) < K .
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On the one hand, this implies that rR(t) < R for every t ∈ (−ωR, ωR). As a consequence,
xR separates the set� according the partitionP , in the sense specified in [18, pp. 3263–3264]
(that is to say, when closing the path xR as described in Sect. 2 so as to find a Jordan curve
γR , two centres lie in the same connected component of R2\γR if and only if they are both
in P or both in �\P).

On the other hand, it follows that there are exactly two instants t±R ∈ (−ωR, ωR), with
t−R < t+R , such that rR(t±R ) = K (implying rR(t) < K for t ∈ (t−R , t+R ) and rR(t) > K for
t /∈ [t−R , t+R ]); moreover, ṙR(t) �= 0 for t /∈ (t−R , t+R ). Using the fact that xR has zero-energy
together with (13), we also find

ωR − t+R =
∫ ωR

t+R

ṙR(t)

ṙR(t)
dt ≥ 1√

2C+

∫ ωR

t+R

ṙR(t)

rR(t)−α/2 dt

= 1

(1 + α/2)
√
2C+

(
R1+α/2 − K 1+α/2) ,

implying that ωR − t+R → +∞ for R → +∞. Analogously, −ωR − t−R → −∞.

For the rest of the proof, it is convenient to suppose t−R = −t+R , that is, the time spent by
xR inside the ball BK is a symmetric interval with respect to the origin. This is not restrictive,
up to a (R-dependent) time shift of the solution xR . With a slight abuse of notation, we will
still denote by xR this time translation, and by [ω−

R , ω+
R ] its interval of definition.

3.2 Passing to the limit: a generalized solution

In this step, we show how to pass to the limit when R → +∞, so as to find an entire
generalized solution, that is, a solution with a zero-measure (but possibly non-empty) set of
collision instants, see [2]. For the next arguments, we write

A[a,b](x) =
∫ b

a

(
1

2
|ẋ(t)|2 +U (x(t))

)
dt

for the action of an H1-path x : [a, b] → R
2\�; notice that, whenever x satisfies the

zero-energy relation (7), we have

A[a,b](x) =
∫ b

a
|ẋ(t)|2 dt = 2

∫ b

a
U (x(t)) dt = √

2
∫ b

a
|ẋ(t)|√U (x(t)) dt.

Having introduced this notation, the crucial point will be to prove that

lim sup
R→+∞

A[t−R ,t+R ](xR) < +∞, (16)

with t±R defined by the previous step. From this, several facts can be deduced. Precisely, since

(
inf|x |≤K

U (x)

) (
t+R − t−R

) ≤
∫ t+R

t−R
U (xR(t)) dt,

we get at first that t+R − t−R is bounded, say t+R − t−R ≤ 2T for any R. From this, together with
the fact that |xR(t)| ≤ K for t ∈ [t−R , t+R ] and with (16) again, we infer that

‖xR‖2
H1(t−R ,t+R )

=
∫ t+R

t−R

(|xR(t)|2 + |ẋR(t)|2) dt

123



876 A. Boscaggin et al.

is bounded aswell. Using,moreover, the fact that |ẍR(t)| ≤ (
sup|x |≥K U (x)

)
for t /∈ [t−R , t+R ],

together with the boundedness of |xR(t±R )| and of |ẋR(t±R )| =
√
2U (xR(t±R )), we finally

conclude that xR is bounded in H1
loc(R). As a consequence, there exists an H1-function

x∞ : R → R
2 such that xR → x∞ weakly in H1

loc(R) (in particular, uniformly on compact
sets) for R → +∞. Of course, x∞ turns out to be a parabolic solution of (2) as long
as it does not collide with the set of the centres; moreover, |x∞(t)| ≥ K for |t | ≥ T so
that the arguments of Sect. 3.1 imply that x∞ is unbounded for t → ±∞. Finally, by the
H1
loc-boundedness and Fatou’s lemma,

∫ T

−T
U (x∞(t)) dt ≤ lim inf

R→+∞

∫ T

−T
U (xR(t)) dt = lim inf

R→+∞
1

2

∫ T

−T
|ẋR(t)|2 dt < ∞,

implying that the set of collision instants has zero measure.
The rest of this subsection is then devoted to the proof of (16). We are going to show that

A[ω−
R ,ω+

R ](xR) ≤
(√

2m

α

4

2 − α

)
R1−α/2 + M (17)

and that

A[ω−
R ,t−R ]∪[t+R ,ω+

R ](xR) ≥
(√

2m

α

4

2 − α

)
R1−α/2 − M, (18)

for some constant M > 0, from which (16) clearly follows.
We first prove (17). To this end, let us define the H1-path

ζ(t) =

⎧
⎪⎨

⎪⎩

ξ+η+(t) for t ∈ [1,�+
R ]

γ (t) for t ∈ [−1, 1]
ξ−η−(t) for t ∈ [�−

R ,−1],

where γ is an arbitrary H1-path joining the points K ξ− and K ξ+ and separating the set
according to the partition P (in the sense specified in Sect. 2), η+ : [1,+∞) → [K ,+∞)

and η− : (−∞,−1] → [K ,+∞) are the solutions of the Cauchy problems

η̇± = ±√
2U (ξ±η±), η±(±1) = K

and �+
R ,�−

R (for R > K ) are the unique points such that η±(�±
R ) = R. Then, we set

ζ̃ (t) = ζ

(
�−

R + 1

2
(�+

R − �−
R )(t + 1)

)
, for any t ∈ [−1, 1],

in such a way that ζ̃ is an H1-path defined on [−1, 1], joining the points Rξ− and Rξ+ and
separating the set according to the partition P . Using the well-known relation

1√
2
A[ω−

R ,ω+
R ](xR) = √

M(uR), with uR(t) = xR

(
ω−
R + 1

2
(ω+

R − ω−
R )(t + 1)

)
,

together with the minimality of uR in the corresponding homotopy class, we find

1√
2
A[ω−

R ,ω+
R ](xR) ≤

√
M(ζ̃ ).
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We, therefore, compute

√
M(ζ̃ ) = 1√

2
inf
�>0

A[−�,�](ζ̃ (·/�)) ≤ 1√
2

∫ �+
R

�−
R

(
1

2
|ζ̇ (t)|2 +U (ζ(t))

)
dt

≤ 1√
2

∫ −1

�−
R

(
1

2
|η̇−(t)|2 +U (ξ−η−(t))

)
dt + 1√

2
A[−1,1](γ )

+ 1√
2

∫ �+
R

1

(
1

2
|η̇+(t)|2 +U (ξ+η+(t))

)
dt

= M+ +
∫ �−

R

−1

√
U (ξ−η−(t))η̇−(t) dt +

∫ �+
R

1

√
U (ξ+η+(t))η̇+(t) dt

= M+ +
∫ R

K

√
U (ξ−r) dr +

∫ R

K

√
U (ξ+r) dr,

with M+ = 1√
2
A[−1,1](γ ) (not depending on R). Now, using the estimate from above in (14)

we find
√
U (ξ±r) ≤

√
m

α

1

rα/2 + C+
rβ−α/2 , for every r ≥ K ,

so that, with a simple computation,

√
M(ζ̃ ) ≤

(√
m

α

4

2 − α

)
R1−α/2 + M+ + 4C+

2β − α − 2
,

finally implying (17). To prove (18), we write

A[ω−
R ,t−R ]∪[t+R ,ω−

R ](xR) = √
2

∫

[ω−
R ,t−R ]∪[t+R ,ω−

R ]
|ẋR(t)|√U (xR(t)) dt

and we observe that |ẋR(t)| ≥ |ṙR(t)|; moreover, by the arguments in Sect. 3.1, ṙR(t) < 0
for t ∈ [ω−

R , t−R ] and ṙR(t) > 0 for t ∈ [t+R , ω+
R ]. Hence, using the estimate from below (14)

yields the conclusion.

3.3 Asymptotic directions

We now prove that the (generalized) solution x∞ has ξ± has asymptotic directions for t →
±∞, respectively; more precisely, writing s∞(t) = x∞(t)

|x∞(t)| for |t | ≥ T , we are going to

show that s∞(±∞) = ξ±. Throughout this step of the proof, we assume that the solution
xR is defined on the whole real line, as well. This is not restrictive, since the arguments of
Sect. 3.1 (together with the boundedness of ∇U at infinity) rule out the occurrence of blow-
up phenomena, and of course does not have influence on the local convergence xR → x∞;
however, it turns out to be useful since it allows to perform estimates valid for any t large
enough (in absolute value).

We give the details for t → +∞. As a first step, we prove that

rR(t) ≥
(

(2 − α)m

2α

) 1
α+2 (

t − t+R
) 2

α+2 , for every t ≥ t+R . (19)
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To obtain the above inequality, we first integrate (15) on [t+R , s], recalling that rR(s) ≤ rR(t)
whenever t+R ≤ s ≤ t , so as to obtain

d

dt

(
1

2
rR(s)2

)
≥ (2 − α)m

2αm

(s − t+R )

rR(t)α
, for every t ≥ s;

a further integration on [t+R , t] thus yields (19).
Taking into account that t+R ≤ T , it follows from (19) that there exists T̂ > T such that

rR(t) ≥ K + 1 for t ≥ T̂ . We now claim that

|ṡR(t)| ≤ C

(t − T )
4

α+2

, for every t ≥ T̂ , (20)

where C > 0 is a suitable constant depending only on the potential (and on K ). To prove
this, we define AR(t) = xR(t)∧ ẋR(t). Taking into account (5) and (11), we first obtain from
(19) that

| ȦR(t)| = |xR(t) ∧ ∇W (xR(t))| ≤ C+
rβ
R(t)

≤ C+
[

2α

(2 − α)m

]β/(α+2) 1

(t − t+R )2β/(α+2)

for every t ≥ t+R . Denoting by t̂R ∈ (t+R , T̂ ] the (unique) instant such that rR(t̂R) = K + 1,
we then obtain, for t ≥ T̂ ,

|AR(t)| ≤ |xR(t̂R)||ẋR(t̂R)| +
∫ +∞

t̂R
| ȦR(τ )| dτ

≤ rR(t̂R)

√
2U (xR(t̂R)) +

∫ +∞

t̂R
| ȦR(τ )| dτ,

where

rR(t̂R)

√
2U (xR(t̂R)) ≤ √

2C+(K + 1)
2−α
2

∫ +∞

t̂R
| ȦR(τ )| dτ ≤ C+

[
2α

(2 − α)m

]β/(α+2)
α + 2

2β − α − 2

1

(t̂R − t+R )(2β−α−2)/(α+2)

t̂R − t+R ≥ 1

(1 + α/2)
√
2C+

[(K + 1)1+α/2 − K 1+α/2]

using (13) to bound from above U (xR(t̂R)). We have argued as in Sect. 3.1 to bound from
below the quantity t̂R − t+R . Observing that |ṡR(t)| = |AR(t)|

|rR(t)|2 and using (19) once again, (20)
finally follows.

From this we can easily conclude. Indeed, on the one hand, Lebesgue’s theorem is seen
to apply, giving (together with uniform convergence on compact sets),

sR(+∞) = sR(T̂ ) +
∫ ∞

T̂
ṡR(τ ) dτ → s∞(T̂ ) +

∫ ∞

T̂
ṡ∞(τ ) dτ = s∞(+∞)

for R → +∞. On the other hand, recalling that sR(ω+
R ) = ξ+ and using (20) again,

sR(+∞) = ξ+ +
∫ +∞

ω+
R

ṡR(τ ) dτ → ξ+,

finally yielding s∞(+∞) = ξ+. The proof that s∞(−∞) = ξ− is analogous.
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3.4 Avoiding collisions

In this step, we rule out the occurrence of collisions for x∞, that is, we prove that x∞(t) /∈ �

for any t ∈ R. We need to distinguish two cases, depending on whether α ∈ (1, 2) or α = 1.

Let us suppose that α ∈ (1, 2). Assume by contradiction that x−1∞ (�) �= ∅; to fix the
ideas, suppose that x∞ has (at least one) collision with the centre c1 and take δ∗ > 0 so small
that ci /∈ Bδ∗(c1) for i = 2, . . . , N . Then, it is possible to find τ−

R , τR, τ+
R ∈ (t−R , t+R ) such

that τ−
R < τR < τ+

R , δR := |xR(τR) − c1| = mint |xR(t) − c1| → 0+,

|xR(τ±
R ) − c1| = δ∗ and |xR(t) − c1| ≤ δ∗, for any t ∈ [τ−

R , τ+
R ].

Since t+R − t−R is bounded and xR → x∞ uniformly on compact sets, both τR − τ−
R and

τ+
R − τR are bounded away from zero. Let us define

vR(t) = 1

δR

(
xR

(
δ
1+α/2
R t + τR

)
− c1

)
, t ∈ [−γR, σR],

where

−γR = τ−
R − τR

δ
1+α/2
R

and σR = τ+
R − τR

δ
1+α/2
R

.

Notice that −γR → −∞ and σR → +∞, |vR(0)| = 1, |vR(t)| ≥ 1 and |δRvR(t)| ≤ δ∗ for
t ∈ [−γR, σR]. An easy computation shows that, writing U as in (4), vR satisfies

v̈R = − m1vR

|vR |α+2 + δ1+α
R ∇U1(δRvR + c1)

and
1

2
|v̇R |2 = m1

α|vR |α + δα
RU1(δRvR + c1).

As a consequence, it is easy to see that vR → v∞ in C2loc(R), where v∞ is a zero-energy
solution of

v̈∞ = − m1v∞
|v∞|α+2 .

By [9, Proposition 6.1], v∞ has transversal self-intersections. Since transversal self-
intersections are stable with respect to small perturbations, this contradicts the fact that
xR (and hence vR) is self-intersection free, thus ending the proof.

Assume instead that α = 1. Keeping the previous notation (and assuming now, up to
passing to a subsequence, the existence of the limit τR → τ∞) we define the Sundman
integral

sR(t) =
∫ t

τR

dτ

|xR(τ ) − c1| , t ∈ [τ−
R , τ+

R ],

and we use (with the usual identification R
2 ∼= C) the well-known Levi-Civita change of

variables
wR(s)2 = xR(tR(s)) − c1, s ∈ [σ−

R , σ+
R ],

being tR the inverse of sR and σ±
R = sR(τ±

R ). Notice that the above change of variables
is not one-to-one; however, we can uniquely define wR by writing in polar coordinates
xR − c1 = ρReiϕR and setting wR = ρ

1/2
R eiϕ/2. Also, observe that both σ−

R and σ+
R are

bounded away from zero, since |sR(t)| ≥ |t − τR |/δ∗.
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Standard computations yield:

ẍR = 2w′′
R

wR

|wR |4 = −2
w2

R |w′
R |2

|wR |6 .

Here and in what follows all functions wR and their derivatives are evaluated at s = sR(t).
Using the equation and writing U as in (4) with α = 1 we get

2w′′
RwR = 2

w2
R |w′

R |2
|wR |2 − m1w

2
R

|wR |2 + |wR |4∇U1(c1 + w2
R)

which gives

w′′
R = wR

|wR | |w
′
R |2 − m1wR

2|wR |2 + wR

2
|wR |2∇U1(c1 + w2

R)

once it is multiplied by the complex conjugate wR . Finally, the zero-energy relation for xR
yields

w′′
R = wR

2
U1(c1 + w2

R) + wR

2
|wR |2∇U1(c1 + w2

R); (21)

moreover

|wR(0)| = |xR(τR) − c1| = δR → 0

and

|w′
R(0)|2 = m1

2
+ |wR(0)|2

2
U1(c1 + wR(0)2) → m1

2
.

By a continuous dependence argument, wR converges (up to subsequences) uniformly on
compact intervals containing the origin to the solutionw∞ of the Cauchy problem associated
with (21) having initial conditions w∞(0) = 0 and w∞(0) = ν for some |ν|2 = m1

2 ;
moreover, the symmetries of differential Eq. (21) imply that it must be w∞(−s) = −w∞(s)
for any s small enough.

It follows that

tR(s) = τR +
∫ s

0
|wR(σ )|2 dσ → t∞(s) = τ∞ +

∫ s

0
|w∞(σ )|2 dσ

uniformly on compact sets for R → +∞; moreover, the map s �→ t∞(s) − τ ∗ is an odd
function. Taking into account that xR → x∞ uniformly on compact sets, we find

w∞(s)2 = x∞(t∞(s)) − c1, for every s small enough,

finally implying that x∞(t) �= c1 for t near τ∞ and that

x∞(τ∞ − t) = x∞(τ∞ + t), for every t small enough.

Since x∞ is a classical solution of (2) outside the collision set, and possibly repeating the
above argument for any collision instant, we find a contradiction with the global property
that x∞ has different asymptotic directions for t → ±∞.
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3.5 Conclusion

To conclude, we only need to show that x∞ is self-intersection free and that has the desired
topological characterization. Actually, this second property immediately follows from the
first one (taking into account the topological characterization of xR), so let us show that x∞
is self-intersection free. Of course, transversal self-intersections are ruled out since xR is
self-intersection free. On the other hand, assume by contradiction that there is a tangential
self-intersection, that is, x∞(t1) = x∞(t2) and ẋ∞(t1) parallel to ẋ∞(t2) for some t1 �= t2.
Then, the zero-energy condition gives |ẋ∞(t1)| = |ẋ∞(t2)|, so that ẋ∞(t1) = ±ẋ∞(t2).
Both the cases are not possible in view of the local uniqueness to the Cauchy problems.
More precisely, in the first one x∞ should be periodic, while in the second one it should
be x∞(t) = x∞(t2 + t1 − t), which implies that ẋ∞((t2 + t1)/2) = 0 contradicting the
conservation of energy.

Remark 3.1 If α ∈ (1, 2) then the conclusion of Theorem 1.1 still holds true when ξ+ = ξ−.
In fact we observe that, if α > 1, then Theorem 2.1 holds also for q+ = q− (see [19]).
Moreover, condition (10) grants that the minimizer u of M in �̂l is not constant and that its
value ω in (9) is positive. Therefore, it is possible to repeat the argument of Sect. 3 which
does not use the assumption ξ+ �= ξ− for α ∈ (1, 2).

Remark 3.2 Arguing as in [9, Proposition 2.4], it is possible to prove that the solution given
by Theorem 1.1 satisfies the asymptotic estimate

|x(t)| ∼
(√

m

2α
(2 + α)

) 2
2+α

|t | 2
2+α ,

when t → ±∞.

Remark 3.3 We finally briefly describe the behaviour of the above found parabolic solutions
when collapsing all the centres into a single one. In order to do this,we consider the parameter-
dependent N -centre problem

ÿε = −
N∑

i=1

mi (y − εci )

|y − εci |α+2 (22)

when ε → 0+. Using a rescaling argument, solutions to the above equation can be obtained
starting from solutions of (1). More precisely, if x denotes an entire parabolic solution of
(1), then the function

yε(t) = ε x

(
t

ε
2+α
2

)
, t ∈ R;

is a zero-energy solution of (22). As a consequence of the asymptotic estimate given in
Remark 3.2, we have that the pointwise limit of yε(t) for ε → 0+ exists, with

lim
ε→0+ yε(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(√
m

2α
(2 + α)

) 2
2+α

|t | 2
2+α ξ− t < 0,

0 t = 0,
(√

m

2α
(2 + α)

) 2
2+α

|t | 2
2+α ξ+ t > 0.

As mentioned in the introduction, we have thus shown that, by collapsing all the centres into
a single one, yε converges to the juxtaposition of two rectilinear solutions of the α-Kepler
problem (actually, the convergence is easily seen to be C2loc(R\{0}); compare with [22]).
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