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Abstract We consider the Euler equations with a capillary tensor in the case of the so-called
quantum hydrodynamics, which is formally equivalent to the Gross–Pitaevskii equation. Our
main result is the existence and uniqueness of global solutions without vortices for small data
in dimension at least 3. The absence of vortices means that the density remains bounded away
from 0. Previous results include existence of global solutions without uniqueness (Antonelli
and Marcati in Commun Math Phys 287(2):657–686, 2009) and lower bounds on the first
occurrence of vortices (Béthuel et al. in J Anal Math 110:297–338, 2010). Our proof uses
in a crucial way some deep results on the scattering of the Gross–Pitaevskii equation due
to Gustafson et al. (Commun Contemp Math 11(4):657–707, 2009). The optimality of our
assumptions is discussed, in particular we show that for slightly less regular initial data the
density does not even remain bounded. We also sketch in the appendix the key arguments for
the scattering of solutions of the Gross–Pitaevskii equation.
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1 Introduction

1.1 The Euler–Korteweg equations and the Madelung transform

The motion of an Euler–Korteweg compressible fluid is described by the following system:
⎧
⎪⎨

⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu) + div(ρu ⊗ u) + ∇P(ρ) = divK ,

(ρ, u)/t=0 = (ρ0, u0).

(1.1)

Here u = u(t, x) ∈ R
N stands for the velocity field, ρ = ρ(t, x) ∈ R

+ is the density and P
the pressure. We restrict ourselves to the case N ≥ 3. The general Korteweg tensor reads as
follows:

divK = div

(
(
ρκ(ρ)�ρ + 1

2
(κ(ρ) + ρκ

′
(ρ))|∇ρ|2)I d − κ(ρ)∇ρ ⊗ ∇ρ

)

. (1.2)

The capillary coefficient κ is a smooth function R
+∗ → R

+∗. The Euler–Korteweg system
has been studied byBenzoni et al. in [5]where they prove for a general capillary coefficient the
local existence of strong solutions for large data such that (ρ0−1, u0) belong to Hs+1(RN )×
Hs(RN )with s > N

2 +1. The proof relies on tricky energy inequalities, but the lack of uniform
bounds does not allow to obtain global solutions. On the other hand, the equation has some
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From Gross–Pitaevskii to Euler Korteweg… 723

dispersive structure so that global well-posedness is expectable at least if the dimension is
large enough and the initial data small enough. Throughout the paper, we denote the space
variable x ∈ R

N and we shall deal with the specific case:

κ(ρ) = κ1

ρ
so that divK = 2κ1ρ∇

(
�

√
ρ√

ρ

)

, κ1 ∈ R
+∗, P(ρ) = ρ2/2.

This capillary coefficient corresponds to the so-called quantum pressure. This case is of spe-
cial interest because it corresponds to the fluid formulation of the Gross–Pitaevskii equation.
More precisely, when the velocity u = ∇θ is irrotational, lim|x |→+∞ ρ = 1, the Madelung

transform ψ = √
ρe

i θ
2
√

κ1 allows formally to rewrite the Euler–Korteweg system as the
Gross–Pitaevski equation1 (GP):

{
2i

√
κ1∂tψ + 2κ1�ψ = (|ψ |2 − 1)ψ,

ψ(0, ·) = ψ0.
(1.3)

with the boundary condition lim|x |→+∞ |ψ | = 1. The Gross–Pitaevskii equation is the
Hamiltonian evolution associated to the Ginzburg–Landau energy:

E(ψ) =
∫

RN

(
κ1|∇ψ(t, x)|2 + 1

4
(|ψ |2 − 1)2

)
dx

=
∫

RN

(
κ1|∇ϕ(t, x)|2 + 1

4
(2Reϕ + |ϕ|2)2)dx .

(1.4)

withψ = 1+ϕ. Note that the fluid counterpart of this energy can be obtained by multiplying
the momentum equation by 2u and reads

∫

RN

(
4κ1|∇√

ρ|2(t, x) + (ρ|u|2)(t, x) + (ρ − 1)2(t, x)
)
dx

=
∫

RN

(
4κ1|∇√

ρ0|2(x) + (ρ0|u0|2)(x) + (ρ0 − 1)2(x)
)
dx .

(1.5)

Taking advantage of this correspondence, Antonelli andMarcati proved in [1,2] the existence
of global weak solution for the system (1.1) for irrotational initial data when N = 2, 3 and for
pressures that correspond to defocusing nonlinear Schrödinger equations (NLS) (see also [11]
for a simpler argument). It is important to mention that in [1,2] the authors deal with initial
density which are close to the vacuum, indeed ρ0 belongs to L2(RN ). The proofs consist in
constructing a sequence of global smooth solutions of the system (1.1) (for regularized initial
data). The main difficulty to pass from a solution of NLS to a solution of (1.1) is that ψ can
vanish, so that u = Im

(
ψ∇ψ/|ψ |2) is not clearly defined, even as a distribution. Next they

prove the convergence to a global weak solution of the system (1.1). The key point of the
proof is the strong L2

loc convergence of the nonlinear terms
√

ρnun ⊗ √
ρnun and |∇√

ρn |2.
This terms are in fact intertwined and converge using classical regularizing effects of Kato
type for the Schrödinger equation. Uniqueness was left open as no control of the vacuum
was provided.

On the other hand, Béthuel et al. studied in [6] the Gross–Pitaevskii equation in the long
wave regime (small data and slow oscillations), and proved the well-posedness of (1.1) for
large times. More precisely, they prove that for such times the density remains bounded away

1 It should be pointed out that for a general capillarity the Euler–Korteweg system can also be rewritten
as some degenerate quasi-linear Schrödinger equation, see [5]. The change of variable does not involve the
Madelung transform but is still singular near vacuum.
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724 C. Audiard, B. Haspot

from zero, which in this context corresponds to the absence of vortices. It relied in a crucial
way on dispersive properties of the Schrödinger equation. However, the question of global
well-posedness was left open.

The main novelty of our results is that we construct solutions that are both unique, without
vortices, and global. The price to pay is that we need to take small initial data and the
dimension N ≥ 3 in order to fully benefit of dispersive effects. Let us mention that we
obtained very recently in [3] the global well-posedness of (1.1) for small initial data and
general capillarity and pressure by a direct approach. In particular the Madelung transform
is not used. The drawback is that much stronger restrictions on the regularity of the initial
data are required (basically ρ0 ∈ 1 + H50).

In thisworkwe loosen the assumptions on the initial data : first we build upon the scattering
results for (GP) (see [27–29]) to construct a global solution ψ that remains bounded away
from 0 but is merely in L∞ ∩ Hs with s � N/2, second we use the Madelung transform
(which is well-defined since ψ is bounded away from 0) to construct a global strong solution
of the system (1.1). Uniqueness requires (ρ0, u0) ∈ (1 + Hs+1) × Hs, s > N/2 + 1.

Before stating our main results we give a (incomplete) review on scattering for NLS and
Gross–Pitaevskii.

1.2 On the Gross–Pitaevskii equation

Global well-posedness and solitons: Due to the unusual boundary condition at infinity, the
analysis of the Cauchy problem for the Gross–Pitaevskii equation is more involved than for
a defocusing NLS. Up to a change of variable and for simplicity we can replace (1.3) by
the normalized PDE i∂tψ + �ψ = (|ψ |2 − 1)ψ . The natural energy space is not H1(RN ),
and the L2(RN ) norm is not conserved (we will see that it is related to the low frequencies
behavior of the linearized equation near ψ = 1). The natural energy space associated to the
Gross–Pitaevskii equation is

E1 =
{
ψ ∈ H1

loc(R
N ), ∇ψ ∈ L2(RN ), |ψ |2 − 1 ∈ L2(RN )

}
.

Global well-posedness with large initial data in E1 has been proved by Gallo and Gérard in
[17,18] in dimension N ≤ 3 and by Kilipp et al. in [35] in the critical case N = 4. It was also
proved that for s ≥ 1 the Hs(RN ) regularity is also propagated but without uniform bounds
in time.

A striking difference between (GP) and defocusing Schrödinger equations is the existence
of traveling waves, namely solutions of the form (up to symmetry):

ψ(t, x) = uc(x1 − ct, x2, . . . , xN ),

where uc satisfies:

ic∂1uc − �uc − uc(1 − |uc|2) = 0. (1.6)

For N ≥ 2, due to the correspondence with the Euler equations, it was conjectured more than
thirty years ago that non-constant solutions do not exist for |c| >

√
2, this was rigorously

proved in [24]). Solutions of finite energy were constructed for small c in the pioneering
paper [8], and the full range 0 < |c| <

√
2 was obtained by Maris in [36] in dimension

N ≥ 3. Béthuel et al. proved in [7] that there is a lower bound on the energy of non-trivial
traveling waves for (1.8) in dimension N = 3, the result was then extended in any dimension
≥ 4 by de Laire [16]
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From Gross–Pitaevskii to Euler Korteweg… 725

0 < E0 = inf{E(ψ), ψ(t, x) = uc(x1 − ct, x2, . . . , xN ) solves (1.8) for c > 0}. (1.7)

On the other hand if N = 2 there exist non-trivial traveling waves of arbitrary small energy
(this it was conjectured by Jones et al. [33], see [7] for a proof). This is a clear obstruction to
scattering.
The scattering problem: We rewrite (1.3) for ϕ = ψ − 1:

i∂tϕ + �ϕ − 2Reϕ = F(ϕ) = (ϕ + 2ϕ̄ + |ϕ|2)ϕ. (1.8)

The strongest nonlinearity |ϕ|2ϕ corresponds to the defocusing cubic nonlinear Schrödinger
equation, but the dynamic is actually very different. The linearized system reads

i∂tϕ + �ϕ − 2Reϕ = 0. (1.9)

The system on Re(ϕ), Im(ϕ) can be diagonalized by the change of unknown (see [27])

v1 + iv2 = v := Vϕ := Reϕ + iU Imϕ with U =
√

−�(2 − �)−1,

and setting H = √−�(2 − �) we get the linear Schrödinger-like equation:

i∂tv − Hv = 0.

For completeness we recall what we mean by “scattering”. Consider the nonlinear
Schrödinger-like equation: {

i∂t u + A(−�)u = f (u),

u(0) = u0,

where A(−�) is a Fourier multiplier with real valued symbol. A solution is said to scatter (in
L2) if it is global,C(R+, L2), and there is u+ ∈ L2 such that ‖e−i t Au(t)−u+‖L2 →t→+∞ 0.
This should be understood as a domination of the dispersive decay over nonlinear effects.

A very natural framework for scattering corresponds to the case where the equation has
an energy and is globally well-posed in the energy space. The case of defocusing subcritical
Schrödinger equations is relatively well understood even for large initial data (e.g., [12]
chapter 7). Let us mention that over the last 15 years spectacular progress was made for
critical Schrödinger equation : following the groundbreaking results in [15] where scattering
was obtained for the quintic NLS in dimension 3, an extremely abondant literature has
developed, for example the global well-posedness and scattering for the critical defocusing
cubic Schrödinger equation (N = 4) was proved in [37].

However, despite the existence of a positive energy for Gross–Pitaevskii, the analogy
with defocusing NLS should not be overestimated, as for the former solitons exist and even
for small data scattering in dimension 2 is not expected to be true. Actually, the scattering
problem for (GP) is more similar to the following quadratic NLS:

i∂tϕ + �ϕ = λϕ2, ϕ|t=0 = ϕ0. (1.10)

The Duhamel formula reads ϕ(t) = eit�ϕ0 − i
∫ t
0 e

i(t−s)� f (ϕ(s))ds. Due to dispersive
decay, ‖eit�ϕ0‖L3 � ‖ϕ0‖L3/2/t N/6. Assume that ‖ϕ(t)‖L3 ≤ ε/t N/6, then the dispersion
gives in the Duhamel part

‖
∫ t

1
ei(t−s)�ϕ2(s)ds‖L3 �

∫ t

1

‖ϕ(s)‖2
L3

(t − s)N/6 ds

≤
∫ t

1

ε2

(t − s)N/6s
ds
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726 C. Audiard, B. Haspot

�

⎧
⎨

⎩

ε2 ln t√
t

, N = 3

Cε2

t N/6 , N ≥ 4.

so that the direct approach fails to get closed estimates in dimension 3, but any exponent in
the nonlinearity larger than 2 or dimension larger than 3 can be handled. The general case
was treated by Strauss [38] who proved that if the nonlinearity is basically a power α > α0

with

α0(N ) = 2 + N + √
N 2 + 12N + 4

2N
. (1.11)

then global well-posedness holds for small initial data. This does not mean that solutions of
quadratic NLS in dimension 3 cannot scatter, but rather that the structure of the nonlinearity
matters. The case of nonlinearities of the type λ1u2 + λ2ū2 was treated by Hayashi and
Naumkin [31], Hayashi et al. [30], Kawahara [34]. For the nonlinearity |u|2, almost global
existence has been proved by Ginibre and Hayashi [22], but there is no result of global
existence. As a way to clarify the structure of nonlinearities (and handle them), the notion
of space-time resonance has been introduced independently by Germain et al. in [19] and
Gustafson et al. in [29].

In the case of Gross–Pitaevskii, diagonalized (1.8) reads:

i∂tv − Hv =U
(
3v21 + (

U−1v2
)2 + |v1 + iU−1v2|2v1

)

+ i
(
2v1

(
U−1v2

) + |v1 + iU−1v2|2
(
U−1v2

))
, (1.12)

which seems extremely bad as (1.12) contains quadratic nonlinearities of type |v|2 with
singular factors U−1v2. Nevertheless for N ≥ 3, scattering for (GP) has been obtained in
a series of recent papers by Gustafson et al. [27–29]. They involve two key arguments: a
normal form transform to “desingularize” the nonlinearity, and in the difficult case N = 3 a
subtle analysis of the space-time resonances. The case N = 3 requires the data to be small
in weighted H1(RN ) spaces (to which, nevertheless, traveling waves belong, see [25] for the
decay rate in space of the traveling waves). For the convenience of the reader we include in
Appendix A a short description of the normal form transform and the method of space-time
resonances developed in [29]. The main results of [27,29]read as follows:

Theorem 1.1 (Gustafson et al. [27]). Suppose that N ≥ 4 and |σ | ≤ N−3
2 − 1

N , UσU−1Vϕ0

is sufficiently small in H
N
2 −1(RN ), then UσU−1Vϕ(t) remains small in H

N
2 −1(RN ) for all

t ∈ R. Moreover, there exist v± ∈ U−σ H
N
2 −1(RN ) such that:

‖Uσ
(
eit HU−1Vϕ(t) − v±

)
‖
H

N
2 −1

(RN )
−→±∞ 0, (1.13)

and the wave operators v± → U−1Vu(0) are local homeomorphisms near 0 in

U−σ H
N
2 −1(RN ).

Below we denote 〈x〉 = √
2 + |x |2 and 〈x〉−1H1 is the weighted space with norm ‖〈x〉v‖H1

and 〈∇〉 = √
2 − �.In dimension N = 3 for small initial data, Gustafson, Nakanishi, Tsai

obtain the following result.

Theorem 1.2 (Gustafson et al. [29]). Let N = 3. There exists δ > 0 such that for any
ϕ0 ∈ H1(R3) satisfying:

∫

R3
〈x〉2(|Re(ϕ0)|2 + |∇ϕ0|2

)
< δ, (1.14)
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From Gross–Pitaevskii to Euler Korteweg… 727

then there exists a unique global strong solution ψ = 1 + ϕ of (1.8) such that v = Vϕ =
Reϕ + iU Imϕ satisfies eit Hvv ∈ C(R, H1/〈x〉) and for some v+ ∈ 〈x〉−1H1

‖v(t) − e−i t Hv+‖H1 = O+∞(t−1/2), ‖〈x〉
(
v(t) − e−i t Hv+

)
‖H1 −→+∞ 0. (1.15)

Moreover, we have E(ψ) = ‖〈∇〉v+‖2
L2 , and the correspondence v(0) → v+ defines a

bi-Lipschitz map between 0 neighborhoods of 〈x〉−1H1.

Remark 1 There is some “room” in the above result. Gustafson Nakanishi and Tsai actually

solve a kind of quartic NLS for which the critical space is H
5
6 . Moreover, as they mention

in [29] the critical weight is rather 〈x〉 1
2 . Indeed in this situation we have:

‖εi t Hϕ0‖L3 ≤ 1

t
1
2

‖J1/2ϕ0‖L2 , J1/2 = e−i t H 〈x〉1/2eit H ,

and as mentioned before, a decay of order t−α , α > −1/2 is required to control of quadratic
terms. Scattering below H1 would ensure the global existence of strong solutionswith infinite
energy for (GP). Via the Madelung transform this would give solutions of infinite energy for
the Euler Korteweg system (1.1). However, the Proof of Theorem 1.2 relies on some precise
explicit computations, whose tractability to fractional Sobolev spaces or weights of fractional
power is not clear.

1.3 Main results

We recall Vϕ = Re(ϕ) + iU Im(ϕ), U = √−�/(2 − �). A reminder on Besov spaces is
included in Sect. 2.

Theorem 1.3 Let N ≥ 4, u0 = ∇θ0. Let ψ0 = √
ρ0eiθ0 and ϕ0 = ψ0 − 1, 1

a′ = 1
2 + 1

3N .
For any ε > 0, there exists δ > 0 such that if:

‖U−1Vϕ0‖
HN/2− 1

4 +ε∩B
N
2 − 1

4 +ε

a′,2
+ ‖ϕ̂0‖L1 < δ,

then there exists a global weak solution of the system (1.1) satisfying:

sup
x,t

|ρ − 1| ≤ 1

2
, ρ ∈ 1 + L∞

t H
N
2 − 1

4+ε(RN ) and u ∈ L∞
t H

N
2 − 3

2+2ε(RN ).

If in addition ϕ0 ∈ H
N
2 +1+ε then the global solution satisfies

(ρ − 1, u) ∈
(

L∞
locH

N
2 +1+ε(RN ) ∩ L2

locB
N
2 +1+ε

2N
N−2 ,2

)

×
(

L∞
locH

N
2 +ε(RN ) ∩ L2

locB
N
2 +ε

2N
N−2 ,2

(RN )

)

,

and is unique in this space.

In dimension N = 3 the statement is more intricate.

Theorem 1.4 Let N = 3 and q0 = ρ0 − 1 and u0 = ∇θ0. Furthermore ρ0 ∈ L∞ with
ρ0 ≥ c > 0. Assume that 2〈x〉∇√

ρ0 ∈ L2, 〈x〉u0 ∈ L2, q0 ∈ L2, cos θ0 − 1 ∈ L2 and

2 These assumptions are the translation of the condition on ϕ0 of Theorem 1.2, see (1.14).
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728 C. Audiard, B. Haspot

|x |(√ρ0 cos θ0 − 1) ∈ L2. Let ϕ0 = √
ρ0eiθ0 − 1, we assume that ϕ0 ∈ H

5
4+ε with ε > 0

and (1 + |ξ |ε1)ϕ̂0 ∈ L1 with ε1 > 0. Then there exists δ > 0 depending on ‖ϕ0‖
H

5
4 +ε

and

‖(1 + |ξ |ε1)ϕ̂0‖L1 such that if:
∫

R3

(〈x〉2(|∇√
ρ0|2 + ρ0|u0|2) + 〈x〉2(√ρ0 cos(θ0) − 1)2

)
dx < δ, (1.16)

then there exists a global weak solution (ρ, u) of the system (1.1) such that:

max(ρ,
1

ρ
) ∈ L∞(R, L∞(R3)), ρ ∈ 1 + L∞

loc

(
H

5
4+ε(R3)

)
and u ∈ L∞

loc(H
2ε(R3)).

If ϕ0 ∈ H
N
2 +1+ε then the global solution is unique and has the additional regularity:

ρ ∈ 1 + L∞
loc

(
H

N
2 +1+ε(R3)

)
and u ∈ L∞

loc

(
H

N
2 +ε(R3)

)
∩ L2

loc

(

B
N
2 +ε

6,2 (R3)

)

.

Remark 2 Let us point out that this result improves the local well-posedness from [5] in two
ways: the solutions are global, and at the level of local well-posedness we have a gain of one
derivative. This is due to a gain from Strichartz estimates.

Remark 3 Let us mention that global well-posedness remains open in dimension N = 2
even for small initial data. Scattering is quite unlikely as there exist smooth traveling waves
with arbitrarily low energy [7].

Remark 4 We assumed that (1 + |ξ |ε1)ϕ̂0 belongs to L1 in order to ensure that t →
‖e−i t Hϕ0‖L∞ is continuous in time. To illustrate the importance of this condition, we prove
in Theorem 3.1 (following an argument from [9]) that there exists ϕ0 arbitrarily small in
L∞ ∩ Hs with s < N

2 such that the solution of (GP) blows up in L∞.

Following the same idea than in the previous proofs, we easily get the following results of
local existence of strong solution with large initial data. It is an improvement on the regularity
required in [5], though in the specific case κ(ρ) = κ1

ρ
.

Corollary 1.5 Let N ≥ 3. Assuming that ρ0 ≥ c > 0 and ϕ0 = (
√

ρ0eiθ0 − 1) ∈ H
N
2 +1+ε

with u0 = ∇θ0 and ε > 0 then there exist T > 0 and a local strong solution (ρ, u) on [0, T )

of the system (1.1) with the following regularity:

(ρ − 1) ∈ CT

(
H

N
2 +1+ε

)
, u ∈ CT (H

N
2 +ε) ∩ L2

T

(

B
N
2 +ε

2N
N−2 ,2

)

.

Plan of the paper

In Sect. 2 we introduce the main technical tools (functional spaces, Strichartz estimates,
bilinear product and paraproduct) that will be used. Section 3 is devoted to the Proof of
Theorem 1.4, and is split in two parts: first we construct global solutions to (GP) such that
|ψ | remains bounded away from 0. To do this, we control the solution on short time thanks
to a Kato smoothing property, while on large time it is sufficient to use the decay from
Theorem 1.2. In the subsection for short-time control we also include a general blow up
result indicating that there is no hope to get L∞ bounds for initial data that are only in Hs ,
s < N/2. Applying theMadelung transform toψ , we construct in Sects. 3.5, resp. 3.6, global
weak, resp. strong, solutions. The uniqueness is proved by using the additional integrability
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provided by Strichartz estimates. In Sect. 4.1 we prove a simpler self-contained version of
Theorem 1.1 in [27] which is sufficient for the purpose of Sect. 4.2 where we prove Theorem
1.3. In Appendix A we sketch the Proof of Theorem 1.2 from [29] and we highlight the main
technical issues.

2 Main tools

Throughout the paper, C stands for a constant independent of the parameters in the context.
The notation A � B means that A ≤ CB. For all Banach space X , we denote byC([0, T ], X)

the set of continuous functions on [0, T ] with values in X . For p ∈ [1,+∞], L p(0, T, X) or
L p
T (X) is for the set ofmeasurable functions on (0, T )withvalues in X such that t → ‖ f (t)‖X

belongs to L p(0, T ).
In this section we recall some notation, definitions and technical tools. We denote the

Lebesgue, the Lorentz, the Bessel potential and the Besov spaces as L p , L p,q , Hs,p and Bs
p,q

respectively for 1 ≤ p, q ≤ +∞ and s ∈ R. We denote the Fourier transform on RN by:

Fϕ(ξ) = ϕ̂(ξ) =
∫

RN
ϕ(x)e−i xξdx,

Fx [ f (x, y)](ξ) = Fx f (ξ, y) =
∫

RN
f (x, y)e−i xξdx,

(2.1)

and the Fourier multiplier of any function ϕ:

ϕ(−i∇) f = F−1[ϕ(ξ)F f (ξ)],
ϕ(−i∇)x f (x, y) = F−1

x [ϕ(ξ)Fx f (ξ, y)]. (2.2)

We follow some notations of [29]. For any number or vector a we denote:

〈a〉 =
√
2 + |a|2, â = a

|a| , U (a) = |a|
〈a〉 , H(a) = |a|〈a〉. (2.3)

2.1 Littlewood–Paley decomposition

Let ϕ ∈ C∞(RN ) supported in {ξ ∈ R
N / 3

4 ≤ |ξ | ≤ 8
3 }, χ supported in the ball {ξ ∈

R
N / |ξ | ≤ 4

3 } such that:
∀ξ ∈ R

N , χ(ξ) +
∑

l∈N
ϕ(2−lξ) = 1 if ξ �= 0.

We define the dyadic blocks by:

�l u = 0 if l ≤ −2, �−1u = χ(D)u = h̃ ∗ u,

�l u = ϕ(2−l D)u if l ≥ 0, Slu =
∑

k≤l−1

�ku .

One can write u = ∑
k∈Z �ku for all temperate distribution. This decomposition is called

non-homogeneous Littlewood–Paley decomposition. The homogeneous dyadic blocks are

�̇l u = ϕ(2−l D)u, l ∈ Z.

Note that for u ∈ S ′, we have
∑

l∈Z �̇l u = u modulo polynomials. In particular in contrast
with the non-homogeneous case we do not have Squ = ∑

p≤q−1 �̇pu.
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Definition 2.1 Let 1 ≤ p, r ≤ +∞ and s ∈ R. For u ∈ S ′(RN ), we set:

‖u‖Bs
p,q

=
(
∑

l∈Z

(
2ls‖�l u‖L p

)q
) 1

q

.

The Besov space Bs
p,q is the set of temperate distribution u such that ‖u‖Bs

p,q
< +∞.

Proposition 2.2 The following properties holds:

1. Bs′
p,r1 ↪→ Bs

p,r if s
′ > s or if s = s′ and r1 ≤ r .

2. Bs
p1,r ↪→ Bs−N (1/p1−1/p2)

p2,r for p2 ≥ p1.

3. Real interpolation: if u ∈ Bs
p,∞ ∩ Bs′

p,∞ and s < s′ then u belongs to Bθs+(1−θ)s′
p,1 for all

θ ∈ (0, 1 and there exists a universal constant C such that:

‖u‖
Bθs+(1−θ)s′
p,1

≤ C

θ(1 − θ)(s′ − s)
‖u‖θ

Bs
p,∞‖u‖1−θ

Bs′
p,∞

.

Let now recall a few product laws in Besov spaces coming directly from the paradifferential
calculus of Bony (see [4,10]). For u and v two temperate distributions we have the formal
decomposition uv = Tuv + Tvu + R(u, v), with:

Tuv =
∑

p≤q−2

�pu�qv =
∑

q

Sq−1u�qv,

R(u, v) =
∑

q

�qu�̃qv with �̃q = �q−1 + �q + �q+1.

Proposition 2.3 Let p1, p2, r ∈ [1,+∞], (s1, s2) ∈ R
2 and p ∈ [1,+∞] then we have the

following estimates:

• If 1
p ≤ 1

p1
+ 1

p2
and s1 + s2 + N inf(0, 1 − 1

p1
− 1

p2
) > 0 then:

‖R(u, v)‖
B
s1+s2+ N

p − N
p1

− N
p2

p,r

� ‖u‖Bs1
p1,r

‖v‖Bs2
p2,r

. (2.4)

• If 1
p ≤ 1

p1
+ 1

p2
≤ 1 and s1 + s2 = 0 then:

‖R(u, v)‖
B

N
p − N

p1
− N

p2
p,∞

� ‖u‖Bs1
p1,1

‖v‖Bs2
p2,∞ . (2.5)

• If 1
p ≤ 1

p2
+ 1

λ
≤ 1 with λ ∈ [1,+∞] and p1 ≤ λ then:

‖Tuv‖
B
s1+s2+ N

p − N
p1

− N
p2

p,r

� ‖v‖Bs2
p2,r

⎧
⎪⎪⎨

⎪⎪⎩

‖u‖Bs1
p1,∞ if s1 + N

λ
<

N

p1
,

‖u‖Bs1
p1,1

if s1 + N

λ
= N

p1
.

(2.6)

• If 1
p ≤ 1

p2
+ 1

λ
≤ 1 with λ ∈ [1,+∞] and p1 ≤ λ then:

‖Tuv‖
B
s1+s2+ N

p − N
p1

− N
p2

p,r

� ‖v‖Bs2
p2,∞

{

‖u‖Bs1
p1,r

if s1 + N

λ
<

N

p1
. (2.7)
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The study of non-stationary PDE’s requires space of type Lρ(0, T, X) for appropriate Banach
spaces X . In our case, we expect X to be a Besov space, so that it is natural to localize the
equation through Littlewood–Paley decomposition. But, in doing so, we obtain bounds in
spaces which are not type Lρ(0, T, X) (except if r = p). We are now going to define the
spaces of Chemin–Lerner (see [13]) in which we will work, which are a refinement of the
spaces Lρ

T (Bs
p,r ).

Definition 2.4 Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1 ∈ R. We set:

‖u‖L̃ρ
T (B

s1
p,r )

= (∑

l∈Z
2lrs1‖�l u(t)‖r

Lρ
T (L p)

) 1
r .

We then define the space L̃ρ
T (Bs1

p,r ) as the set of temperate distribution u over (0, T ) × R
N

such that ‖u‖L̃ρ
T (B

s1
p,r )

< +∞.

We set C̃T (B̃s1
p,r ) = L̃∞

T (B̃s1
p,r ) ∩ C([0, T ], Bs1

p,r ). Let us emphasize that, according to
Minkowski’s inequality, we have:

‖u‖
L̃ρ
T

(
B
s1
p,r

) ≤ ‖u‖
Lρ
T

(
B
s1
p,r

) if r ≥ ρ, ‖u‖
L̃ρ
T

(
B
s1
p,r

) ≥ ‖u‖
Lρ
T

(
B
s1
p,r

) if r ≤ ρ. (2.8)

Remark 5 It is easy to generalize Propositions 2.3 to L̃ρ
T (Bs1

p,r ) spaces. The indices s1, p,
r behave just as in the stationary case whereas the time exponent ρ behaves according to
Hölder inequality.

In the sequel we will need a composition lemma in L̃ρ
T (Bs

p,r ) spaces (we refer to [4] for a
proof).

Proposition 2.5 Let s > 0, (p, r) ∈ [1,+∞] and u ∈ L̃ρ
T (Bs

p,r ) ∩ L∞
T (L∞).

1. Let F ∈ W [s]+2,∞
loc (RN ) such that F(0) = 0. Then F(u) ∈ L̃ρ

T (Bs
p,r ). More precisely

there exists a function C depending only on s, p, r , N and F such that:

‖F(u)‖
L̃ρ
T

(
Bs
p,r

) ≤ C(‖u‖L∞
T (L∞))‖u‖

L̃ρ
T

(
Bs
p,r

).

2. Let F ∈ W [s]+3,∞
loc (RN ) such that F(0) = 0. Then F(u) − F

′
(0)u ∈ L̃ρ

T (Bs
p,r ). More

precisely there exists a function C depending only on s, p, r , N and F such that:

‖F(u) − F
′
(0)u‖

L̃ρ
T

(
Bs
p,r

) ≤ C
(
‖u‖L∞

T (L∞)

)
‖u‖2

L̃ρ
T

(
Bs
p,r

).

Let us recall the useful lemma (see [4]).

Lemma 2.6 Let Rl = [v,�l ] · ∇ f , let σ ∈ R. Assume that −N min
(
1
p , 1

2

)
< σ < N

p + 1

then there exists a constant C > 0 such that the following inequality is true:

‖2lσ ‖Rl‖L2‖l2 ≤ C‖∇v‖
B

N
p
p,∞∩L∞

‖ f ‖Hσ . (2.9)
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2.2 Multilinear Fourier multipliers

For any function B(ξ1, . . . , ξd) on (RN )d , we associate the d-multilinear operator
B[ f1, . . . , fd ] defined by:

Fx B[ f1, . . . , fd ] =
∫

ξ=ξ1+···+ξd

B(ξ1, . . . , ξd)F f1(ξ1) . . .F fd(ξd)dξ2 . . . dξd , (2.10)

which is called a multilinear Fourier multiplier with symbol B. We will often identify the
symbol to the operator.

Remark 6 For any bilinear symbol B(η, ζ ) with ζ = ξ − η, we will need to consider
derivatives of the symbol with respect to η, ζ or ξ . In order to avoid confusions we use the
notation

(∇(η)
ξ B,∇ηB) = (∇ξ2 B(η, ξ − η), (∇ξ1 − ∇ξ2)B(η, ξ − η)),

(∇(ζ )
ξ B,∇ζ B) = (∇ξ1B(ξ − ζ, ζ ), (∇ξ2 − ∇ξ1)B(ξ − ζ, ζ )).

(2.11)

Under various assumptions, the Hölder type inequality ‖B[u, v]Lr � ‖u‖L p‖v‖Lq , 1/r =
1/p+1/q is true. The most famous result is due to Coifman andMeyer [14], and will mostly
be sufficient for our purpose.

Theorem 2.7 (Coifman–Meyer). Suppose that B satisfies:

|∂α
ξ1

∂
β
ξ2
B(ξ1, ξ2)| � 1

(|ξ1| + |ξ2|)|α|+|β| , (2.12)

for sufficiently many multi-indices (α, β). Then the operator:

B[·, ·] : L p × Lq → Lr ,

is bounded for:

1

r
= 1

p
+ 1

q
, 1 < p, q < +∞ and 1 ≤ r < +∞. (2.13)

Remark 7 For condition (2.12) to hold, it suffices for B to be homogeneous of degree 0 and
of class C∞ on the sphere.

Remark 8 Appendix A includes an interesting result (Lemma A.6) of Gustafson et al on
singular bilinear Fourier multipliers, for which there is a loss in the pseudoHölder inequality:
1/p + 1/q > 1/r .

As was shown in [23], one cannot generally replace the right-hand side of (2.12) by
|ξ1|−|α||ξ2|−|β|. Nevertheless, the following estimate from [29] will be useful.

Proposition 2.8 Let k ∈ N, for any r, p, q ∈ (1,+∞) such that 1
r = 1

p + 1
q ,

sup
0≤a≤1

‖〈ξ1〉2k(1−a)〈ξ2〉2ka
〈(ξ1, ξ2)〉2k [ f, g]‖L p0 (RN ) � ‖ f ‖L p(RN )‖g‖Lq (RN ). (2.14)
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2.3 Strichartz and dispersive estimates

Lemma 2.9 Let 2 ≤ p ≤ +∞, 0 ≤ θ ≤ 1, s ∈ R, and σ = 1
2 − 1

p . Then we have:

‖e−i t Hv‖Bs
p,2

� |t |−(N−θ)σ ‖U (N−2+3θ)σ 〈∇〉2θσ v‖Bs
p′,2 , (2.15)

where p′ = p
p−1 is the Hölder conjugate. For 2 ≤ p < +∞, we have also:

‖e−i t Hv‖L p,2 � |t |−(N−θ)σ ‖U (N−2+3θ)σ 〈∇〉2θσ v‖L p′,2 . (2.16)

Let us recall the Strichartz estimate for the operator H , we recall here a proposition due to
Gustafson et al. in [27,28].

Proposition 2.10 For j = 1, 2, let 2 ≤ p j , q j ≤ +∞, 2
q j

+ N
p j

= N
2 and s j = N−2

2 ( 12 − 1
p j

)

but (q j , p j ) �= (2,+∞). Then we have:

‖e−i Ht� jϕ‖Lq1 (L p1 ) ≤ ‖Us1� jϕ‖L2 ,

‖e−i Htϕ‖
Lq1

(
Bs
p1,2

) � ‖Us1ϕ‖Bs
2,2

,

‖
∫ t

0
e−i(t−s)H� j f ‖Lq1 (L p1 ) ≤ ‖Us1+s2� j f ‖Lq′

2
(
L p′2

),

‖
∫ t

0
e−i(t−s)H f ‖

Lq1
(
Bs
p1,2

) � ‖Us1+s2 f ‖
Lq

′
2

(

Bs
p′2,2

).

Remark 9 These Strichartz estimates are very close to the classical one for Schrödinger
equations except in low frequencies.

3 Proof of Theorem 1.4

In order to prove Theorem 1.4, it is enough to prove that the global strong solutionψ of (GP)
obtained by Gustafson et al. in [27] does not vanish, which is implied by the smallness of
‖ϕ‖L∞

x,t
. This is the aim of Sects. 3.1 to 3.3, then via theMadelung transformwe propagate the

regularity of ϕ on ρ − 1 and u = ∇θ . It is enough to obtain the existence of global solutions
to the system (1.1), uniqueness is then derived with an energy argument in Sect. 3.6.

Smallness of ‖ϕ‖L∞ norm

The Gross–Pitaevskii equation is known to be globally well-posed in the energy space {u ∈
H1
loc(R

3) : ∇u ∈ L2, |u|2 − 1 ∈ L2(R3)} (see [18]). Moreover, it propagates regularity:
for any s > 0 if ϕ0 ∈ Hs(R3) then the solution ϕ is bounded in L∞

loc(H
s(R3)). However,

from [18] we cannot deduce that this norms remains small uniformly in time, and therefore
we can not estimate the L∞ norm of 1

|ψ |2 (which is necessary in order to use the Madelung

transform as it corresponds to 1
ρ
).

Furthermore, the L∞ regularity is not propagated by the semi-group eit� which explains
why we need to use stronger spaces than the naive choice L∞ ∩ H1. However, in order to
exploit the time decay we will split the analysis between short and long time. In long time
using weighted data (see Theorem 1.2 of Gustafson et al.) ensures a small L∞ control of ϕ.
In short time we will use a smoothing effect on the Duhamel part in order to control the L∞

norm with initial data in HN/2−1/6+ε rather than H
N
2 +ε with ε > 0.
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3.1 L∞ control of ϕ in large time t ≥ α > 0

According to (A.11) in Appendix A:

‖|∇|−2+ 5θ
3 v<1(t)‖L6 � min(1, t−θ )‖v(t)‖X (t),

‖|∇|θ v≥1(t)‖L6 � min(t−θ , t−1)‖v(t)‖X (t),
(3.1)

with 0 ≤ θ ≤ 1. In particular it implies that:

‖U−1v<1(t)‖L6 + ‖∇U−1v≥1(t)‖L6 �
(

min
(
1, t−

3
5

)
+ 1

t

)

‖v(t)‖X (t). (3.2)

Since ϕ = V−1v = Rev + iU−1Imv we have for t ≥ α (which will be fixed in Sect. 3.3)
and by Sobolev embedding:

‖ϕ‖L∞
t≥α(H1,6) � ‖V−1v‖L∞

t≥1(H
1,6) � 1

t
3
5

‖v‖X (t),

‖ϕ‖L∞
t≥α(L∞) � 1

t
3
5

‖v‖X (t) � δ

t
3
5

≤ δ

α3/5
.

(3.3)

3.2 A smoothing property

It remains now to show that ψ does not cancel on the time interval [0, α]. To do this we
show that ϕ is small in L∞ by using a Kato smoothing property which gives us a gain of
half a derivative for the integral part in the Duhamel formula. This is a relatively well-known
property that seems to have been explicitly stated only recently by Bona et al. in [9]. This was
used to prove a dispersive blow up result for Schrödinger and Gross–Pitaevskii equations.
We include their result in this section as it enlightens the fact that L∞ is a “bad” space for
initial data.

Theorem 3.1 (Bona et al. [9])
For N ≥ 3, s > N

2 − 1
4 , ϕ0 ∈ Hs(RN ), let ϕ be the solution of (1.8) satisfying:

(
Re(ϕ)

Im(ϕ)

)

(t) = A(t)

(
Re(ϕ0)

Im(ϕ0)

)

+
∫ t

0
A(t − s)

(
Re(F(ϕ(s))
Im(F(ϕ(s))

)

ds (3.4)

= A(t)

(
Re(ϕ0)

Im(ϕ0)

)

+ I (t, x). (3.5)

with

A(t) =
(

cos(Ht) U sin(Ht)
−U−1 sin(Ht) cos(Ht)

)

.

Let ϕ0 ∈ Hs then there exists 0 < T < 1 such that (3.4) has a solution ϕ on [0, T ] which
verifies ϕ ∈ ST with ST = C([0, T ], Hs) ∩ L2([0, T ], Hs, 2N

N−2 ). Furthermore we have:

1. there exists β1 > 0 such that

ϕ(t) = eit (�−1)ϕ0 +
∫ t

0
ei(t−s)(�−1)F(ϕ)ds + g(t), ‖g‖L∞

T Hs+1

� T β1
(‖ϕ0‖Hs + ‖ϕ0‖3Hs

)
. (3.6)
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2.
∫ t

0
ei(t−s)(�−1)F(ϕ)ds ∈ C([0, T ], Hs+ 1

2 ), in particular I ∈ Cb([0, T ] × R
N ) and

there exists β > 0:

‖I‖Cb([0,T ]×RN ) � T β
(‖ϕ0‖2Hs + ‖ϕ0‖3Hs

)
. (3.7)

3. Moreover, for s < N/2, T > 0, there exists ε0 > 0, such that for any ε ≤ ε0
there exists ϕ0 ∈ Hs(R3) ∩ C∞(R3) with ‖ϕ0‖Hs∩L∞ ≤ ε, the solution is in ST and
‖ϕ(·, T )‖L∞(R3) = +∞.

Remark 10 • This is essentially is a linear result. The blow up of the L∞ norm is due to
the linear evolution part while nonlinear terms remain bounded. It can be proved (using
invariances of the equations) that for any (x0, t0) ∈ R

d × R
∗ there exists an initial data

such that the solution blows up in L∞ precisely at (x0, t0).
• Actually the results from [9] are slightly different from the statement of Theorem 3.1.

For the comfort of the reader we include a short proof.

Proof We first prove (1). Consider the Cauchy problem
{
i∂tϕ + �ϕ − 2Re(ϕ) = (ϕ + 1)|ϕ|2 + 2Re(ϕ)ϕ = F(ϕ),

ϕ|t=0 = ϕ0.

Since s > N/2 − 1 (the critical index for cubic NLS) the existence of a solution in ST :=
C([0, T ], Hs)∩ L2([0, T ], Hs, 2N

N−2 ) follows from the standard theory (it suffices to consider
Reϕ as a source term, see [12]). Taking ϕ0 in Hs ensures the existence of a strong solution on
an interval [0, T ] (T depends on ‖ϕ0‖Hs since we are subcritical and in addition we assume
that T < 1) with in addition: ‖ϕ‖ST � ‖ϕ0‖Hs .

We remind the notations:

H = √−�(2 − �), U =
√ −�

2 − �
, and A(t) =

(
cos(Ht) U sin(Ht)

−U−1 sin(Ht) cos(Ht)

)

,

the Duhamel formula reads
(
Re(ϕ)

Im(ϕ)

)

(t) = A(t)

(
Re(ϕ0)

Im(ϕ0)

)

+
∫ t

0
A(t − s)

(
Re(F(ϕ(s))
Im(F(ϕ(s))

)

ds.

The linear evolution operator A(t) can be compared with the Schrödinger evolution group

AS =
(

cos(−�t) sin(−�t)
− sin(−�t) cos(−�t)

)

by Taylor expansion : there exists C1 such that

(1 + |ξ |2)|H(ξ) − |ξ |2 − 1| + |U (ξ) − 1| ≤ C1, (|ξ | + |ξ |2)|U−1(ξ) − 1| ≤ C1.

We can deduce directly from the mean value theorem that there exists C > 0 such that:

(1+ |ξ |2)‖R(ξ, t)‖ := (1+ |ξ |2)
∥
∥
∥
∥A(ξ, t) −

(
cos

(
(|ξ |2 + 1)t

)
sin

(
(|ξ |2 + 1)t

)

− sin
(|ξ |2 + 1)t

)
cos

(
(|ξ |2 + 1)t

)

) ∥
∥
∥
∥ ≤ Ct

(the singularity of U−1 in low frequencies is harmless since there is a factor sin(Ht) which
cancels at the same order). The associated operator R(�, t) is thus continuous Hs → Hs+2,

and setting M(t) =
(

cos t sin t
− sin t cos t

)

the solution rewrites for any t ∈]0, T ]:
(
Re(ϕ)

Im(ϕ)

)

(t) = AS(t)M(t)

(
Re(ϕ0)

Im(ϕ0)

)

+ ∫ t
0 AS(t − s)M(t − s)

(
Re(F(ϕ(s))
Im(F(ϕ(s))

)

ds

+R(t)

(
Re(ϕ0)

Im(ϕ0)

)

+ ∫ t
0 R(t − s)

(
Re(F(ϕ(s))
Im(F(ϕ(s))

)

ds,
(3.8)
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with
∥
∥
∥
∥R(t)

(
Re(ϕ0)

Im(ϕ0)

)∥
∥
∥
∥
Hs+2

� t‖ϕ0‖Hs .

For the nonlinear term of the second line we have ϕ ∈ CT Hs ∩ L p
T H

s,q , for any admissible
(p, q). Taking q = N

s + ε with ε > 0 sufficiently small and s < N
2 such that 2 < q < 2N

N−2 ,
p > 2 and Hs,q ↪→ L∞. Using product rules in Sobolev spaces, we have:

‖ϕ2‖Hs−1 � ‖ϕ‖Hs‖ϕ‖L∞ � ‖ϕ‖Hs‖ϕ‖Hs,q ,

‖ϕ3‖Hs−1 � ‖ϕ‖Hs‖ϕ‖2Hs,q ,

so that putting these estimates in
∫ t
0 R(t − s)F(ϕ)ds

∥
∥
∥
∥

∫ t

0
R(t − s)

(
Re(F(ϕ(s))
Im(F(ϕ(s))

)

ds

∥
∥
∥
∥
Hs+1

� ‖F(ϕ)‖L1
T H

s−1

� T
p−2
p ‖ϕ‖L∞

T Hs

(
‖ϕ‖L p

T H
s,q + ‖ϕ‖2

L p
T H

s,q

)

� T
p−2
p
(‖ϕ‖2St + ‖ϕ‖3ST

)
.

Indeed we recall that the norm ST enables to control all the Strichartz norm. The estimate
‖ϕ‖ST � ‖ϕ0‖Hs ends the proof of 1).

The first line of (3.8) rewrites in complex coordinates as eit (�−1)ϕ0 +
∫ t

0
ei(t−s)(�−1)

F(ϕ(s))ds, so that points (2) and (3) are precisely3 Proposition 4.1 and Lemma 2.1 from
[9].

For completeness we mention the argument for point 3): the function ϕ0 = e−i x2/4

(1 + x2)m/2

belongs to Hs for m > s + N/2 (and obviously C∞(R3) ∩ L∞) and the linear solution to
the corresponding Cauchy problem eit�ϕ0 blows up precisely at time tb = 1, and at the point
xb = 0 if m ≤ 3. This follows from the explicit formula

eit�ϕ0(x) = 1

(4iπ t)3/2

∫

R3
ei

|x−y|2
4t ϕ0(y)dy = 1

(4iπ t)3/2

∫

R3
ei

|x−y|2
4t dy

e−iy2/4

(1 + y2)m/2 dy,

which holds for all (x, t) �= (0, 1) (it can be rigorously justified by oscillating integrals
arguments). For (x, t) = (0, 1), 1/(1+|x |2)m/2 is not integrable iffm ≤ N which gives L∞
blow up. Blow up for T �= 1 and small data is easily obtained by a scaling argument. ��
3.3 Global L∞ control of ϕ

We recall the assumption of Theorem 1.4: (1+ |ξ |ε1)ϕ̂0 ∈ L1. Let us consider eit (�−1)ϕ0 in
(3.6) and set

C(t, x) = ϕ0(x) − eit (�−1)ϕ0(x) = 1

(2π)N

∫

R3
eix ·ξ

(
1 − e−i t (1+|ξ |2)) ϕ̂0(ξ)dξ.

3 The smoothing property of from [9] is actually stated for nonlinearities of type |u|αu but can be carried out
without any change to our case. There is also a condition [α + 1] ≥ s + 1/2 however it is only required to
differentiate the function u → |u|pu, in our case the nonlinearity is polynomial so this is not an issue.
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To estimate this term we fix M > 0, we have for all (t, x) ∈ [0, T ] × R
3:

|
∫

R3
eix ·ξ (1 − e−i t (1+|ξ |2))ϕ̂0(ξ)dξ | ≤ t (1 + M2)‖ϕ̂0‖L1 + 2

Mε1
‖ξε1 ϕ̂0‖L1 . (3.9)

Let us mention in addition that eit (�−1)ϕ0 belongs to L∞(R+, L∞). Let us look now at the
density ρ when t ∈ [0, T ]:
ρ(t, ·) = |ψ(t, ·)|2 = |1 + ϕ(t, ·)|2

=
(

1 + Re(eit (�−1)ϕ0) + Re
(
I (t) + g(t)

)
)2

+
(

Im(eit (�−1)ϕ0) + Im
(
I (t) + g(t)

)
)2

≥ (
1 + Re(eit (�−1)ϕ0)

)2 − |I (t) + g(t)|2 − 2|1 + Re(eit (�−1)ϕ0)||I (t) + g(t)|
+ (

Im(eit (�−1)ϕ0)
)2 − |I (t) + g(t)|2 − 2|Im(eit (�−1)ϕ0)||I (t) + g(t)|

≥ ρ0(x) − |I (t) + g(t)|2 − 2|1 + Re(eit (�−1)ϕ0)||I (t) + g(t)|
− |I (t) + g(t)|2 − 2|Im(eit (�−1)ϕ0)||I (t) + g(t)| − 2ReC

(
1 + Re(ϕ0)

) − (ReC)2

− 2ImC Im(ϕ0) − (ImC)2.

We deduce from (3.9), (3.6), (3.7) and using the assumption ρ0 = |1 + ϕ0|2 ≥ c that there
exists t1 sufficiently small and c′ > 0 such that:

ρ(s, x) ≥ c′ for all (s, x) ∈ [0, t1] × R
N . (3.10)

We fix now the α of Sect. 3.1 such that t1 = α. Combining now (3.3) and (3.10), and taking
δ small enough (δ depends on ϕ0) we obtain:

|ψ(t, x)|2 = ρ(t, x) ≥ c′

2
∀t ≥ 0 and ∀x ∈ R

3. (3.11)

Remark 11 It will sufficient in the following to proves that the solution (ρ, u) of system (1.1)
has no vacuum for t ≥ 0.

3.4 How to propagate the regularity from ϕ to ρ and u

Theorem 1.2 ensures the existence of a unique global solution ϕ to the system (1.8) with
in addition ϕ ∈ C(R+, H1(R3)) ∩ L2(R+, H1,6). Indeed (see Appendix (A.12)) U−1v ∈
L2(H1,6). In this section, we use theMadelung transform and composition results in Sobolev
spaces to estimate ρ and u. Up to a change of variables we can assume κ1 = 1, which we will
do from now on (see however our remarks in the Appendix B on how the smallness condition
depends of κ1).

Remark 12 In this section in order to prove the existence of global strong solution for the
system (1.1) we propagate high regularity of ϕ on ρ and u. Then according to standard theory

of nonlinear Schrödinger equations ϕ belongs to C
(
(0, T ), H

N
2 +1+ε

(
R
3
))

for any T > 0

(see [12], Theorems 5.3.1, p. 146 and 5.4.1, p. 146) for any T > 0.Moreover, using Strichartz

estimates one can check also ϕ ∈ L2
T

(

B
N
2 +1+ε

6,2

)

.

Proposition 3.2 Let N = 3. Assume that the solution ϕ of (1.8) belongs to C([0,+∞),

Hs(R3))∩L2([0, T ], Bs
6,2) for any T > 0with s > 3

2 and that |ψ(t, x)| = |1+ϕ(t, x)| ≥ c1
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for all (t, x) ∈ R
+ × R

3 then we have:

q = ρ − 1 ∈ L∞
T (Hs(R3)) ∩ L2

T

(
Bs
6,2

)
and u ∈ L∞ (

Hs−1(R3)
) ∩ L2

T

(
Bs−1
6,2

)
.

(3.12)

More precisely we have for any T > 0:

‖q‖
L∞
T (Hs )∩L2

T

(
Bs
6,2

) �
(
1 + ‖ϕ‖L∞

T,x

)
‖ϕ‖

L∞
T (Hs )∩L2

T

(
Bs
6,2

),

‖u‖L∞
T (Hs−1) �

(
1 + C1(‖ϕ‖L∞

T,x
)(1 + ‖ϕ‖L∞

T (Hs ))
)‖ϕ‖L∞

T (Hs ),

‖u‖L2
T (Bs−1

6,2 )
�
(
1 + C2(‖ϕ‖L∞

T,x
)(1 + ‖ϕ‖L∞

T (Hs ))
)‖ϕ‖L2

T (Bs
6,2)

.

(3.13)

Remark 13 A similar result holds when N ≥ 4 and the solution of (1.8) belongs to

C([0,+∞), Hs(RN )) ∩ L2
(

[0, T ], Bs
2N
N−2 ,2

)

for any T > 0 with s >
N

2
.

Proof We are now interested in translating the regularity of ϕ on ρ and u via the Madelung
transform:

ψ(t, x) = 1 + ϕ(t, x) = √
ρ(t, x)eiθ(t,x)/2 with u = ∇θ. (3.14)

In particular we are going to use a polar decomposition (used also in [2]):

τ(t, x) = ψ(t, x)

|ψ(t, x)| =
(

1 + ϕ(t, x)

|1 + ϕ(t, x)| − 1

)

+ 1,

q(t, x) = 2Re(ϕ) + |ϕ|2,

u(t, x) = ∇θ(t, x) = Im
([

(
1 + ϕ(t, x)

|1 + ϕ(t, x)|2 − 1)∇ϕ(t, x) + ∇ϕ(t, x)
])

.

(3.15)

Let us point out that u is well defined on (0,+∞)×R
N since we have assumed that |ψ | ≥ c1.

We have now by Propositions (2.3) and (2.5) (since 2s − 1 − N
2 ≥ s − 1):

‖q‖
L∞
T (Hs )∩L2

T

(
Bs
6,2

) �
(
1 + ‖ϕ‖L∞

T,x

)
‖ϕ‖

L∞
T (Hs )∩L2

T

(
Bs
6,2

),

‖u‖L∞
T (Hs−1) �

(

1 + ‖
(

1 + ϕ̄(t, x)

|1 + ϕ(t, x)|2 − 1

)

‖L∞
T,x

)

‖∇ϕ‖L∞
T (Hs−1)

+ ‖
(

1 + ϕ̄(t, x)

|1 + ϕ(t, x)|2 − 1

)

‖L∞
T (Hs )‖∇ϕ‖L∞

T (Hs−1)

�
(
1 + C1(‖ϕ‖L∞

T,x
, ‖ 1

|ψ | ‖L∞
T,x

)(1 + ‖ϕ‖L∞
T (Hs ))

)‖ϕ‖L∞
T (Hs ).

(3.16)

In the same way we have:

‖u‖L2
T (Bs−1

6,2 )
�
(
1 + C2(‖ϕ‖L∞

T,x
, ‖ 1

|ψ | ‖L∞
T,x

)(1 + ‖ϕ‖L∞
T (Hs ))

)‖ϕ‖L2
T (Bs

6,2)
. (3.17)

��
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3.5 Existence of global weak solution when N = 3

Smooth initial data

We first assume that the initial data (ρ0, u0) are smooth: in this case ϕ0 is in Hs(R3) with s
large. Using propagation of the regularity (see Cazenave [12], Chapter 5) the solution ϕ(t)
constructed in Theorem 1.2 is in C([0, T ], Hs(R3)) for any T > 0. In particular taking s
large enough, by Sobolev embedding ϕ belongs toC3(R×R

3). It implies that ϕ is a classical
solution of Gross–Pitaevskii equation and we are going to exhibit a solution (ρ, u) of the
system (1.1) using the Madelung transform. Setting:

ρ = |1 + ϕ|2 and u = 2Im

(

∇ϕ
1 + ϕ̄

|1 + ϕ|2
)

,

it is clear that u is well defined since |1 + ϕ| ≥
√

c′
2 (see Sect. 3.3). In addition (ρ, u) is in

C3(R×R
3)×C2(R×R

3) so that the formal Madelung transform leading from (GP) to (EK)
is actually rigorously defined and (ρ, u) is a global classical solution of the system (1.1).

General case

Let us now treat the general case where (ρ0, u0) verify the assumption of Theorem 1.4 with

ϕ0 ∈ H
5
4+ε(R3) in particular. We set ϕn

0 = ϕ0 ∗ψn withψn = n3ψ(n·) a regularizing kernel
(withψ ∈ C∞

0 (R3),
∫

ψ(y)dy = 1, 0 ≤ ψ ≤ 1 and suppψn ⊂ B(0, 1)) such that ϕn
0 belongs

to Hs for any s large enough. We are interesting in showing that ϕn
0 verify the assumptions of

Theorem 1.2. Assume that 〈x〉 f ∈ L2(R3) then we have by Hölder’s inequality and Fubini
theorem:

∫

〈x〉2|
∫

f (x − y)ψn(y)dy|2dx ≤
∫

〈x〉2
(∫

| f (x − y)|2ψn(y)dy

)

dx,

≤ 2
∫

| f (x)|2dx + 2
∫

(|x − y|2 + |y|2)
(∫

| f (x − y)|2ψn(y)dy

)

dx,

≤ 4
∫

| f (x)|2dx + 2
∫

|x |2| f (x)|2dx = 2
∫

〈x〉2| f (x)|2dx .
In particular we have:

∫

R3
〈x〉 (|Reϕn

0 |2 + |∇ϕn
0 |2) dx ≤ 2

∫

R3
〈x〉 (|Reϕ0|2 + |∇ϕ0|2

)
dx = δ1. (3.18)

In addition ϕn
0 is uniformly bounded in H

5
4+ε(R3) then taking δ1 small enough there exist

some sequence ϕn solution of the Gross–Pitaevskii equation via Theorem 1.2. Furthermore
from Sect. 3.3, we have |ψn | ≥ c′′ > 0 uniformly in n (because (1 + |ξ |ε1)ϕ̂n

0 is uniformly
bounded in L1, this is due to the fact that ψ̂n is uniformly bounded in L∞ since ψn is
uniformly bounded in L1).

Since ψn is smooth, according to the previous paragraph (ρn, un = (|1 + ϕn |2,
2Im(∇ϕn

1+ϕ̄n
|1+ϕn |2 ) is a global weak solution of the system (1.1) with initial data (ρn

0 , un0).
We recall now that:

ρn(t, x) − 1 = 2Re(ϕn) + |ϕn |2,

un(t, x) = ∇θn(t, x) = Im
([

(
1 + ϕn(t, x)

|1 + ϕn(t, x)|2 − 1)∇ϕn(t, x) + ∇ϕn(t, x)
])

.
(3.19)
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Again using paraproduct laws we deduce easily (since ϕn is uniform bounded in L∞
T,x ) that

(ρn − 1) is uniformly bounded in L∞
T (H

5
4+ε(R3)) for any T > 0. We observe now by using

Propositions 2.3 and 2.5 that:

‖un‖L∞
T (H2ε ) � ‖( 1 + ϕn(t, x)

|1 + ϕn(t, x)|2 − 1‖L∞
T (L∞)‖ϕn‖

L∞
T (H

5
4 +ε

)

+ ‖( 1 + ϕn(t, x)

|1 + ϕn(t, x)|2 − 1‖
L∞
T (H

5
4 +ε

)
‖ϕn‖

L∞
T (H

5
4 +ε

)
+ ‖ϕn‖

L∞
T (H

5
4 +ε

)

≤ ‖ϕn‖
L∞
T (H

5
4 +ε

)

(

1 + C2(‖ϕn‖L∞
T,x

, ‖ 1

|ψn | ‖L
∞
T,x

)(1 + ‖ϕn‖L∞
T (Hs ))

)

.

We have proved that un belongs uniformly to L∞(H2ε(R3)). From Sect. 3.2 (ρn,
1
ρn

) is

uniformly bounded in L∞(R+, L∞(R3)). We observe now from Plancherel theorem that
there exist C, ε > 0 such that:

‖ϕn − ϕ‖2
C([0,T ],H 5

4 + ε
2 (R3))

≤ ‖(1 − ψ̂n)1{|ξ |≤εn}‖2L∞‖ϕ‖2
C([0,T ],H 5

4 + ε
2 (R3))

+ C
∫

{|ξ |≥εn}
(1 + |ξ |2) 5

4+ ε
2 |ϕ̂n(t, ξ)|2dξ.

We deduce now since ϕn is uniformly bounded in L∞
T (H

5
4+ε(R3)) that:

lim
n→+∞ ‖ϕn − ϕ‖

C([0,T ],H 5
4 + ε

2 (R3))
= 0. (3.20)

Using again paraproduct law we prove easily that:

lim
n→+∞ ‖(ρn − 1) − (ρ − 1)‖

C

(

[0,T ],H 5
4 + ε

2 (R3)

) = 0,

lim
n→+∞ ‖un − u‖C([0,T ],H ε (R3)) = 0.

It implies easily from Proposition 2.5 that (∇√
ρn)n∈N converges strongly in C([0, T ],

H
1
4+ ε

2 (R3)) by using Proposition 2.5 and the fact that ( 1
ρn , ρn) is uniformly bounded in

L∞
T (L∞). In particular it yields the strong convergence of (∇√

ρn)n∈N in L2
loc(R

+ × R
3)

to ∇√
ρ which is sufficient to pass to the limit in the sense of distribution in the capillary

terms. We proceed similarly in order to deal with the terms ρnun = un + (ρn − 1)un and
ρnun × un = un × un + (ρn − 1)un × un . Indeed we know that un converges strongly to
u in C([0, T ], L2+α(ε)) with α(ε) > 0 by Sobolev embedding. Furthermore since (ρn − 1)
converges strongly inC([0, T ], L2) and is uniformly bounded in L∞

T,x , it implies that (ρn−1)
converges strongly in anyC([0, T ], L p)with 2 ≤ p < +∞. ByHölder inequality it achieves
the proof of the existence of a global weak solution.

3.6 Existence of global strong solution when N ≥ 3

In the previous section we have proved the existence of a global weak solution for the Euler–
Korteweg system (1.1)when N = 3 under the assumption of smallness (1.16) and the fact that

ϕ0 ∈ H
5
4+ε(R3). With additional assumption on ϕ0 ∈ H

N
2 +1+ε we obtain new control on

q = ρ−1 and u since we have shown by using Proposition 3.12 that they belong respectively

in L∞
loc

(
H

N
2 +1+ε

)
∩ L2

loc

(

B
N
2 +1+ε

q,2

)

(with q = 2N
N−2 ) and in L∞

loc(H
N
2 +ε) ∩ L2

loc(B
N
2 +ε

q,2 ).
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Our main task is to prove now that under these controls the global weak solution that we
have constructed is unique. Let us start by rewriting the system (1.1) using the change of
unknown introduced by Benzoni et al. in [5]:

{
∂t ln ρ + u · ∇ ln ρ + divu = 0,

∂t z + u · ∇z + i∇z · w + i∇divz = ρ w,
(3.21)

with:

w = ∇ ln ρ, L = ln ρ, z = u + iw.

The following proposition is proved in [5] (Proposition 3.3, p. 11) using a gauge method.

Proposition 3.3 Let z be a Hs solution with s > 0 of:
{

∂tρ + div(ρv) = ρg,

∂t z + v · ∇z + i∇z · w + i∇divz = f,
(3.22)

on [0, T ] × R
N with w = ∇ ln ρ. Then the following estimates hold true for all t ∈ [0, T ]

and α ∈ [0, 1):

‖z(t)‖2Hs � ‖z0‖2Hs +
∫ t

0

(‖ f ‖Hs‖z‖Hs + A(τ )‖z‖2Hs

)
dτ

+‖w(t)‖2C−α‖z(t)‖2Hs−1+α . (3.23)

and:

‖(√ρz)(t)‖2L2 � ‖√ρz(0)‖2L2 +
∫ t

0
‖√ρz‖L2‖√ρ f ‖L2dτ. (3.24)

with:

A(t) = 1 + ‖Dz(t)‖L∞ + ‖g(t)‖L∞ .

Benzoni et al obtain the following corollary (see 4.2, p. 23 in [5]).

Corollary 3.4 Let (L , z) satisfy the assumptions of Proposition 3.3 with g = 0, then we
have for C > 0:

‖z‖L∞
T (Hs ) � eC

∫ T
0 A(τ )dτ

(
1 + ‖w‖max(1,s)

L∞
T (L∞)

) (
‖z0‖Hs + ‖ f ‖L1

T (Hs )

)
. (3.25)

Remark 14 Let us mention that if z is irrotational, then we can extend the range of s to
s > − N

2 (see the remark 4.1, p. 24 of [5]).

In the spirit of Proposition 5.1, p. 29 of [5] we obtain the following proposition.

Proposition 3.5 Let N ≥ 3. Let (L1 = ln ρ1, z1) and (L2 = ln ρ2, z2) be two solutions of
(3.21) on [0, T ] × R

N in (L∞(Hs+1) ∩ L2(Bs+1
q,2 )) × (L∞(Hs) ∩ L2(Bs

q,2) with
N
2 < s

and q = 2N
N−2 . Assume in addition that Li (i = 1, 2) is bounded in L∞. Let us denote

δL = L2 − L1 and δz = z2 − z1. Then the following estimate hold true for all t ∈ [0, T ]
with 0 < s′ < N

2 − 1:

‖(δL(t), δz(t))‖Hs′ � (‖δL(0)‖Hs′ θ1(t) + ‖δz(0)‖Hs′ θ2(t))θ3(t), (3.26)

with θ1, θ2 and θ3 continuous positive functions. These functions depend on the following
norms ‖qi‖L∞

t (Hs+1)∩L2
t (B

s+1
q,2 ))

and ‖ui‖L∞
t (Hs )∩L2

t (B
s
q,2)

with i ∈ {1, 2}.
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Remark 15 Let us mention that this proposition improves Proposition 5.1 p 29 of [5] where
‖Dui‖Hs < ∞ is required.

Proof The equation satisfied by δz reads:

∂tδz + u1 · ∇δz + i∇δz · w1 + i∇divδz = ∇δρ − (δu) · ∇z2 − i∇z2 · δw,

with δu = u2 −u1, δρ = ρ2 −ρ1 and δw = w2 −w1. We observe that δz solves an equation
of type (3.22) since ρ1 verifies the mass equation ∂tρ1 + div(ρ1u1) = 0 and w1 = ∇ ln ρ1
(we are in particular in the case g = 0). Applying corollary 3.4 we can estimate δz in Hs′

with s′ > 0 (that we will define later) as follows when t ∈ [0, T ]:

‖δz(t)‖Hs′ � γ (t)eC
∫ t
0 (1+‖Dz1‖L∞ )dτ

(

‖δz(0)‖Hs′ +
∫ t

0
(‖∇δρ‖Hs′ + ‖δu · ∇z2‖Hs′

+ ‖∇z2 · δw‖Hs′ dτ
)
)

, (3.27)

with γ (t) = 1 + ‖w1‖max(1,s′)
L∞
t (L∞)

. Let us mention that in our case since L1 is bounded in

L∞
T (Hs+1) with s > N

2 we deduce by Proposition 2.5 that w1 is bounded in L∞
T (L∞).

Similarly Dz1 belongs to L1
T (L∞) by Besov embedding since ∇z1 is in L2

T (Bs−1
2N
N−2 ,2

) and

s > N
2 .

It remains now to estimate the integrand in the right-hand side of (3.27). By Proposition 2.3
since we have 1

2 ≤ N−2
2N + 1

λ
≤ 1 with λ = N ∈ [1,+∞], 2 ≤ N and s′ + 1 < N

2 then:

‖Tδu∇z2‖Hs′ � ‖δu‖Hs′ ‖∇z2‖
B

N
2 −1
2N
N−2 ,∞

,

‖T∇z2δu‖Hs′ � ‖∇z2‖L∞‖δu‖Hs′ .

(3.28)

Similarly we have since s′ + N−2
2 = s′ + N

2 − 1 > 0 then:

‖R(∇z2, δu)‖Hs′ � ‖∇z2‖
B

N
2 −1
2N
N−2 ,∞

‖δu‖Hs′ . (3.29)

We deduce that if 0 < s′ < N
2 − 1:

‖δu · ∇z2‖Hs′ + ‖∇z2 · δw‖Hs′ � ‖Dz2‖
L∞∩B

N
2 −1
2N
N−2 ,∞

‖δz‖Hs′ .

Let us deal now with the term δρ and we set δL = ln ρ2 − ln ρ1 with L = ln ρ, we have
then:

‖∇δρ‖Hs′ ≤ ‖δρ‖Hs′+1 �
∫ 1

0
‖δL exp(L1 + τδL)‖Hs′+1dτ

�
∫ 1

0
‖δL( exp(L1 + τδL) − 1)‖Hs′+1 + ‖δL‖Hs′+1

)
dτ.
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Next for τ ∈ [0, 1] we have using Proposition 2.3, 2.5, s′ + 1 − N
2 < 0 and the fact that

L1 = ln(1 + q1), L2 = ln(1 + q2) ∈ L∞:

‖T(exp(L1+τδL)−1)δL‖Hs′+1 � ‖δL‖Hs′+1‖(exp(L1 + τδL) − 1)‖L∞ ,

‖TδL(exp(L1 + τδL) − 1)‖Hs′+1 � ‖δL‖
B
s′+1− N

2∞,2

‖(exp(L1 + τδL) − 1)‖
B

N
2
2,∞

� ‖δL‖Hs′+1‖(exp(L1 + τδL) − 1)‖
B

N
2
2,∞

� ‖δL‖Hs′+1C

(∥
∥
∥

(

ρ1,
1

ρ1
, ρ2,

1

ρ2

)∥
∥
∥
L∞

)(
∥
∥
∥L1‖

L∞∩B
N
2
2,∞

+
∥
∥
∥L2‖

L∞∩B
N
2
2,∞

)

� ‖δL‖Hs′+1C ′
(∥
∥
∥

(

ρ1,
1

ρ1
, ρ2,

1

ρ2

)∥
∥
∥
L∞

)(
∥
∥
∥q1‖

L∞∩B
N
2
2,∞

+
∥
∥
∥q2‖

L∞∩B
N
2
2,∞

)

,

‖R(exp(L1 + τδL) − 1), δL)‖Hs′+1 � ‖δL‖Hs′+1‖ exp(L1 + τδL) − 1‖
B

N
2
2,∞

� ‖δL‖Hs′+1C ′
1

(∥
∥
∥

(

ρ1,
1

ρ1
, ρ2,

1

ρ2

)∥
∥
∥
L∞

)(
∥
∥
∥q1

∥
∥
∥
L∞∩B

N
2
2,∞

+ ‖q2‖
L∞∩B

N
2
2,∞

)

.

Plugging all these inequalities in (3.27), using the fact that:

‖δL‖Hs′+1 ≤ ‖δz‖Hs′ + ‖δL‖L2 ≤ ‖δz‖Hs′ + ‖δL‖Hs′ ,

we have for s′ ∈]0, N
2 − 1[:

‖δz(t)‖Hs′ � γ (t)eC
∫ t
0 (1+‖Dz1‖L∞ )dτ

(

‖δz(0)‖Hs′

+
∫ t

0

(

‖δL(τ )‖Hs′C ′
1(‖(ρ1,

1

ρ1
, ρ2,

1

ρ2
)(τ )‖L∞)(‖q1(τ )‖

L∞∩B
N
2
2,∞

+ ‖q2(τ )‖
L∞∩B

N
2
2,∞

)

+‖δz(τ )‖Hs′
(
C ′
1(‖(ρ1,

1

ρ1
, ρ2,

1

ρ2
)(τ )‖L∞)(‖q1(τ )‖

L∞∩B
N
2
2,∞

+ ‖q2(τ )‖
L∞∩B

N
2
2,∞

)

+‖Dz2(τ )‖
L∞∩B

N
2 −1
2N
N−2 ,∞

)
)

dτ

)

. (3.30)

Applying Gronwall’s inequality, we end up with:

‖δz(t)‖Hs′ � ϕ(t) +
∫ t

0
ϕ(s)ψ(s) exp

(∫ t

s
ψ(u)du

)

ds, (3.31)

with for s ∈ [0, t]:
ϕ(s) = γ (s)eC

∫ s
0 (1+‖Dz1‖L∞ )dτ

×
(

‖δz(0)‖Hs′ +
∫ s

0

(‖δL(τ )‖Hs′C ′
1(‖(ρ1,

1

ρ1
, ρ2,

1

ρ2
)(τ )‖L∞)(‖q1(τ )‖

L∞∩B
N
2
2,∞

+‖q2(τ )‖
L∞∩B

N
2
2,∞

)
)
dτ

)

.

and for C > 0:
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ψ(s) = Cγ (t)eC
∫ t
0 (1+‖Dz1‖L∞ )dτ

×(
C ′
1(‖(ρ1,

1

ρ1
, ρ2,

1

ρ2
)(s)‖L∞)(‖q1(s)‖

L∞∩B
N
2
2,∞

+ ‖q2(s)‖
L∞∩B

N
2
2,∞

)

+‖Dz2(s)‖
L∞∩B

N
2 −1
2N
N−2 ,∞

)
.

In order to close the estimate we have to deal with the term ‖δL(τ )‖Hs′ which appears in
the right-hand side of (3.31) (in the term ϕ(t)). In order to do this, we use the fact that
δL = ln ρ2 − ln ρ1 satisfies the following equation:

∂tδL + u2 · ∇δL + δu · ∇L1 + divδu = 0,

and:

∂t�lδL + u2 · ∇�lδL + �l
(
δu · ∇L1 + divδu

) = [u j
2,�l ]∂ jδL .

Taking the L2 inner product of the above equation with�lδL , performing several integration
by parts and integrate in time we get:

‖�lδL(t)‖2L2 � ‖�lδL0‖2L2 +
∫ t

0

(‖�l(δu · ∇L1)(τ )‖L2‖�lδL(τ )‖L2

+‖�lδu‖L2‖�l(δw)(τ)‖L2
)
dτ +

∫ t

0
(‖�lδL(τ )‖L2‖Rl(τ )‖L2

+‖divu2(τ )‖L∞‖�lδL(τ )‖2L2)dτ. (3.32)

We have set Rl = [u j
2,�l ]∂ jδL . Using Lemma 2.6 (since s′ < N

2N
N−2

= N
2 − 1), multiplying

the previous equation by 22ls
′
and summing we have:

‖δL(t)‖2
Hs′ � ‖δL0‖2Hs′ +

∫ t

0
‖∇u2(τ )‖

L∞∩B
N
2 −1
2N
N−2 ,∞,

‖δL(τ )‖2
Hs′ dτ

+
∫ t

0

(‖δu · ∇L1(τ )‖Hs′ ‖δL(τ )‖Hs′ + ‖δu‖Hs′ ‖δw(τ)‖Hs′
)
dτ. (3.33)

Next by using Proposition 2.3 we have since s′ < N
2 − 1:

‖δu · ∇L1‖Hs′ � ‖δu‖Hs′ ‖∇L1‖
L∞∩B

N
2 −1
2N
N−2 ,∞

.

Plugging this inequalities in (3.33) and using the fact that ‖δu‖Hs′ ‖δL‖Hs′ ≤ 1
2 (‖δz‖2Hs′ +

‖δL‖2
Hs′ ) we have:

‖δL(t)‖2
Hs′ � ‖δL0‖2Hs′ +

∫ t

0

(‖∇u2(τ )‖
L∞∩B

N
2 −1
2N
N−2 ,∞

+ ‖∇L1(τ )‖
L∞∩B

N
2 −1
2N
N−2 ,∞

)‖δL(τ )‖2
Hs′ dτ

+
∫ t

0

(
1 + ‖∇L1(τ )‖

L∞∩B
N
2 −1
2N
N−2 ,∞

)‖δz(τ )‖2
Hs′ dτ. (3.34)

Using Gronwall’s lemma we obtain:

‖δL(t)‖2
Hs′ � ϕ1(t) +

∫ t

0
ϕ1(s)ψ(s) exp

(∫ t

s
ψ1(u)du

)

ds, (3.35)
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with for s ∈ [0, t]:

ϕ1(s) = ‖δL0‖2Hs′ +
∫ t

0

(
1 + ‖∇L1(τ )‖

L∞∩B
N
2 −1
2N
N−2 ,∞

)‖δz(τ )‖2
Hs′ dτ

and for C > 0:

ψ1(s) = C
(‖∇u2(s)‖

L∞∩B
N
2 −1
2N
N−2 ,∞

+ ‖∇L1(s)‖
L∞∩B

N
2 −1
2N
N−2 ,∞

)

It implies that:

‖δL(t)‖2
Hs′ � ϕ2(t)

(
1 +

∫ t

0
ψ1(s) exp(

∫ t

s
ψ1(u)du)ds

)
, (3.36)

with:

ϕ2(t) = ‖δL0‖2Hs′ + ‖δz‖2
L∞
t (Hs′ )

∫ t

0

(
1 + ‖∇L1(τ )‖

L∞∩B
N
2 −1
2N
N−2 ,∞

)
dτ

Taking now the L∞
t norm of (3.31) and plugging it in (3.36), we have:

‖δL(t)‖2
Hs′ �

(

‖δL0‖2Hs′ + (
ϕ(t)(1 +

∫ t

0
ψ(s) exp(

∫ t

s
ψ(u)du)ds)

)2
)

× (
1 +

∫ t

0
ψ1(s) exp(

∫ t

s
ψ1(u)du)ds

)
.

(3.37)

From Hölder inequality and Young inequality, we deduce that

ϕ2(t) ≤ γ 2(t)e2C
∫ t
0 (1+‖Dz1‖L∞ )dτ ×

(

2‖δz(0)‖2
Hs′ + 2t

∫ t

0

(‖δL(τ )‖2
Hs′

× (
C ′
1(‖(ρ1,

1

ρ1
, ρ2,

1

ρ2
)(τ )‖L∞)

)2
(‖q1(τ )‖

L∞∩B
N
2
2,∞

+ ‖q2(τ )‖
L∞∩B

N
2
2,∞

)2
)
dτ

)

.

It gives:

‖δL(t)‖2
Hs′ �

(

‖δL0‖2Hs′ + ψ4(t)
(‖δz(0)‖2

Hs′ + t
∫ t

0
‖δL(τ )‖2

Hs′ ψ3(τ )dτ
)

× (
1 +

∫ t

0
ψ(s) exp(

∫ t

s
ψ(u)du)ds)

)2
)

× (
1 +

∫ t

0
ψ1(s) exp(

∫ t

s
ψ1(u)du)ds

)
. (3.38)

with:

ψ3(t) = (
C ′
1(‖(ρ1,

1

ρ1
, ρ2,

1

ρ2
)(τ )‖L∞)

)2
(‖q1(τ )‖

L∞∩B
N
2
2,∞

+ ‖q2(τ )‖
L∞∩B

N
2
2,∞

)2

ψ4(t) = γ 2(t)e2C
∫ t
0 (1+‖Dz1‖L∞ )dτ

Using again Gronwall lemma it yields:

‖δL(t)‖2
Hs′ �

(‖δL(0)‖2
Hs′ ψ7(t) + ‖δz(0)‖2

Hs′ ψ8(t)
)
ψ6(t), (3.39)
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with ψ6, ψ7, ψ8 continuous positive functions in time. It is important to observe that all the
quantities

∫ t
0 ψ(τ)dτ ,

∫ t
0 ψ1(τ )dτ ,

∫
ψ3(τ )dτ ,ψ4(t) are locally bounded in time. This is due

to the fact that∇u1,∇u2 are in L2
t (B

N
2 −1
2N
N−2 ,2

∩L∞) (and in particular is also L1
loc(B

N
2 −1
2N
N−2 ,2

∩L∞))

and q1, q2 are in L2
t (B

N
2
2N
N−2 ,2

) ∩ L∞(B
N
2 +1
2,2 ).

Finally, plugging (3.39) in (3.31) yields the desired inequality. ��

Lipschitz control on the velocity u

We recall that ϕ belongs to L2
loc(B

s
6,2(R

3)) (with s > 3
2 + 1 + ε) by propagation of the

regularity for an initial data in Hs . From Proposition 3.12 we deduce that u belongs to
L2
loc(B

s−1
6,2 ) for any T > 0 and∇u ∈ L2

T (Bs−2
6,2 ). From Sobolev embedding we have obtained

that ∇u is in L2
T (L∞(R3)) for any T > 0 since 1

6 − s−2
3 < 0. Using Proposition 3.5 we

conclude that the solution (ρ, u) is unique.

4 Proof of Theorem 1.3: global well-posedness for N ≥ 4

4.1 A subcritical version of Theorem 1.1

We prove in this section a simpler version of Theorem 1.1:

Proposition 4.1 Let s > N
2 − 1, N ≥ 4, 1/q = 1/2 − 1/N. If ‖U−1Vϕ0‖Hs < ε, ε small

enough then the solution of (GP) (1.8) is global and remains small:

‖U−1Vϕ‖L∞
t Hs∩L2

t B
s
q,2

� ‖U−1Vϕ0‖Hs .

Furthermore, eit HU−1Vϕ(t) converges in Hs as t → ∞.

As we work in subcritical settings both in term of regularity (s > N
2 − 1) and scattering (in

dimension 4 the Strauss exponent is � 1.78 so that quadratic nonlinearities are not an issue),
the only difficulty comes from the “diagonalization” : ifw = U−1ϕ1 + iϕ2 := U−1Vϕ, then
w is solution of

i∂tw − Hw = (
3ϕ2

1 + ϕ2
2 + |ϕ|2ϕ1

) + iU−1 (2ϕ1ϕ2 + |ϕ|2ϕ2
)

= (
3(Uw1)

2 + w2
2 + |Vw|2Uv1

) + iU−1 (2Uw1 w2 + |Vw|2v2
)
.

and a singular multiplierU−1 is present in the imaginary part of the nonlinearity. The remedy
is a normal form introduced in [27] (then refined in [28]): the new variable

Z = w + U−1

2 − �
|ϕ|2 := w + 1

〈∇〉2 |ϕ|2 = U−1ϕ1 + U−1

〈∇〉2 |ϕ|2 + iϕ2,

satisfies the following equation :

i∂t Z − HZ = i∂tw − Hw + 2i

〈∇〉2 Re(ϕ∂tϕ) − H

〈∇〉2 |ϕ|2

= 2ϕ2
1 + |ϕ|2ϕ1 − i

U−1div

〈∇〉2
[
4ϕ1∇ϕ2 + ∇(|ϕ|2ϕ2)

] := P(ϕ). (4.1)
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We see that this change of variable desingularizes the imaginary part since U−1div is a
bounded operator on L p , 1 < p < ∞. Obviously, it remains necessary to check that the map
w → Z is invertible in our functional settings.

Functional spaces Set b := 1

q
= 1

2
− 1

N
,
1

p
= 1

2
− 1

2N
so that (2, q), (4, p) are admissible

Strichartz pairs. For s > N/2 − 1 we define the space

X = L∞(R+, Hs(RN )) ∩ L2(R+, Bs
q,2(R

N )).

In particular we note that by interpolation :

‖u‖L4
t (B

s
p,2)

� ‖u‖X . (4.2)

Mapping w → Z = w +U−1〈∇〉−2|UV−1w|2 For 1
r̃

= 1

r
+ 1

N
< 1, s > 0 according

to the (dual) Sobolev embeddings

‖U−1 f ‖Bs
r,2

� ‖S0U−1 f ‖Lr + ‖(1 − S0) f ‖Bs
r,2

� ‖ f ‖W 1,̃r + ‖ f ‖Bs+1
r̃ ,2

� ‖ f ‖Bs+1
r̃ ,2

.

For s > N/2 − 1 ≥ 1,
1

q ′ = 1

2
+ 1

N
, the product estimates from Proposition 2.3 yield

‖U−1〈∇〉−2| f |2‖Hs � ‖| f |2‖Bs−1
q′,2

� ‖ f ‖Hs−1‖ f ‖B0
N ,1

� ‖ f ‖2Hs , (4.3)

‖U−1〈∇〉−2| f |2‖Bs
q,2

� ‖ f ‖Hs‖ f ‖
BN/2−1
q,1

� ‖ f ‖Hs‖ f ‖Bs
q,2

. (4.4)

From a fixed point argument, the map w → w + U−1〈∇〉−2|UV−1w|2 is Lipschitz with
Lipschitz inverse Hs → Hs on a neighborhood of 0. In particular for some δ > 0,

‖Z‖Hs < δ ⇒ ‖Z‖Hs ∼ ‖U−1Vϕ‖Hs ,

and provided ‖Z‖X is small enough

‖Z‖X ∼ ‖U−1Vϕ‖X � ‖ϕ‖X . (4.5)

Fixed point argument (sketch of) Scattering for Z is equivalent to solve

Z(t) = e−i t H Z0 − i
∫ t

0
e−i(t−τ)H P(ϕ(τ))dτ.

From the Strichartz estimates of Proposition 2.17, we have

‖e−i t H Z0 − i
∫ t

0
e−i(t−τ)H P(ϕ(τ))dτ‖X � ‖Z0‖Hs + ‖P(ϕ)‖L2Bs

q′,2
,

andwefirst check ‖P(ϕ)‖L2Bs
q′ ‖ � ‖Z‖2X+‖Z‖3X . For example, the termϕ2

1 can be estimated

as follows
‖ϕ2

1‖L2Bs
q′,2

� ‖ϕ1‖L∞Hs‖ϕ1‖L2Bs
q,2

≤ ‖ϕ1‖2X � ‖Z‖2X .

The cubic termU−1�〈∇〉−2(|ϕ|2ϕ2) is handled thanks to the embedding (4.2) (note that the
multiplier U−1�〈∇〉−2 is not singular at ξ = 0)
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‖U−1�〈∇〉−2(|ϕ|2ϕ2)‖L2Bs
q′,2

� ‖|ϕ|2ϕ2‖L2Bs
q′,2

� ‖|ϕ|2‖L2Hs‖ϕ‖L∞Hs

� ‖ϕ‖2L4Bs
p,2

‖ϕ‖L∞Hs

� ‖Z‖3X .

The other terms can be dealt with similarly, this gives

‖e−i t H Z0 − i
∫ t

0
e−i(t−τ)H P(ϕ(τ))dτ‖X ≤ ‖Z0‖Hs + ‖Z‖2X + ‖Z‖3X .

Contractivity can be obtained by a similar argument since P(ϕ) is essentially polynomial, and
the fixed point theorem can be applied to obtain a unique global solution. The convergence
of eit Hw follows from the convergence of

∫∞
0 eiτH P(ϕ)dτ in Hs .

4.2 L∞ bounds

We follow the same plan as for Theorem 1.4.

Global control of ‖ϕ‖L∞
As a first step we prove time decay for Z , the global solution of (4.1)

i∂t Z − HZ = 2ϕ2
1 + |ϕ|2ϕ1 − i

U−1div

〈∇〉2
[
4ϕ1∇ϕ2 + ∇(|ϕ|2ϕ2)

] = P(ϕ).

We set 1/q = 1/2 − 2/(3N ), 1/a′ = 1/2 + 1/(3N ), s > N/2 − 1. We have the following
composition estimates (similar to (4.3),(4.4)):

‖U−1〈∇〉−2|ϕ|2‖Hs � ‖ϕ‖2Hs ,

‖U−1〈∇〉−2|ϕ|2‖Bs
a′,2 � ‖ϕ2‖Bs−1

6N/(3N+8),2
� ‖ϕ‖Hs−1‖ϕ‖B0

3N/4,1
� ‖ϕ‖2Hs ,

‖U−1〈∇〉−2|ϕ|2‖Bs
q,2

∼ ‖ϕ‖Hs‖ϕ‖Bs
q,2

.

Using a fixed point argument, we deduce that for ‖Z‖Hs∩Bs
a′,2 << 1 resp. ‖Z‖Hs∩Bs

q,2
<< 1,

‖Z‖Hs∩Bs
a′,2 ∼ ‖U−1Vϕ‖Hs∩Bs

a′,2 � ‖ϕ‖Hs∩Bs
a′,2 , (4.6)

resp. ‖Z‖Hs∩Bs,
q,2

∼ ‖U−1Vϕ‖Hs∩Bs
q,2

� ‖ϕ‖Hs∩Bs
q,2

, (4.7)

‖Z‖Bs
q,2

∼ ‖U−1Vϕ‖Bs
q,2

. (4.8)

Proposition 4.2 Let s > N/2 − 1, 1/a′ = 1/2 + 1/(3N ), 1/q = 1/2 − 2/(3N ), Z0 ∈ Hs,
Z ∈ L∞(Hs) ∩ L2(Bs

2N
N−2 ,2

) be the global solution of (4.1).

There exists ε0 > 0 such that if Z0 ∈ Bs+1/3
a′,2 , with ‖Z0‖Bs+1/3

a′,2 ∩Hs ≤ ε0, then

sup
t≥0

t1/3‖Z(t)‖Bs
q,2

� ‖Z0‖Bs+1/3
a′,2

.

Proof We set m(t) = sup0≤τ≤t τ
1/3‖Z‖Bs

q,2
. The embedding Bs+1/3

a,2 ↪→ Bs
q,2 and the dis-

persion estimate give:

‖e−i t H Z0‖Bs
q,2

� ‖e−i t H Z0‖Bs+1/3
a,2

� 1

t N (1/2−1/a)
‖Z0‖Bs+1/3

a′,2
=

‖Z0‖Bs+1/3
a′,2

t1/3
.
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Therefore it is only a matter of bounding the Duhamel term. Using Minkowski’s inequality
and the dispersion estimate (see Lemma 2.9) with θ = 0, σ = 2

3N ) we obtain
∥
∥
∥
∥

∫ t

0
ei(t−τ)H P(ϕ)dτ

∥
∥
∥
∥
Bs
q,2

�
∫ t

0

‖P(ϕ)(τ, ·)‖Bs
q′,2

(t − τ)2/3
dτ (4.9)

It remains to estimate ‖P(ϕ)(τ, ·)‖Bs
q′,2 . Arguing as in Sect. 4.1 it is sufficient to estimate

‖ϕ2‖Bs
q′,2 + ‖ϕ3‖Bs

q′,2 , this will be done by using paraproduct laws in Besov spaces. For

quadratic terms, Proposition 2.3 with q ≤ λ = 3N
4 gives since s > N

2 − 2:

⇒ ‖ϕ2‖Bs
q′,2 � ‖ϕ‖Bs

q,2
‖ϕ‖

B
N
2 −2
q,1

� ‖ϕ‖2Bs
q,2

.

For cubic terms we observe that s+s+N (1/q ′ −1/q−1/2−1/(3N )) = 2s+1−N/2 > s,
thus Proposition 2.3 gives

‖ϕ2ϕ‖Bs
q′,2 � ‖ϕ2‖Bs

6N/(3N+2),2
‖ϕ‖Bs

q,2
.

Using again Proposition 2.3 we get

‖ϕ2‖Bs
6N/(3N+2),2

� ‖ϕ‖Hs‖ϕ‖Bs
q,2

⇒ ‖ϕ3‖Bs
q′,2 � ‖ϕ‖Hs‖ϕ‖2Bs

q,2
.

Plugging the quadratic and cubic estimate in (4.9) yield
∥
∥
∥
∥

∫ t

0
ei(t−τ)H P(ϕ)(τ, ·)ds

∥
∥
∥
∥
Bs
q,2

�
∫ t

0

m(τ )2

(t − τ)2/3τ 2/3
dτ ≤ m(t)2

t1/3

∫ 1

0

1

(1 − τ)2/3τ 2/3
dτ

� m(t)2

t1/3
.

Using the Duhamel formula m(t) ≤ C‖Z0‖Bs+1/3
a′,2

+Cm(t)2, and from a bootstrap argument

supt m(t) � ‖Z0‖Bs+1/3
a′,2

. ��
Proposition 4.3 For s > N/2− 1/4, 1/a = 1/2− 1/(3N ), if U−1Vϕ0 ∈ Hs ∩ Bs

a′,2 there
exists ε0 such that

‖U−1Vϕ0‖Hs∩Bs
a′,2 ≤ ε0 and ‖e−i t�ϕ0‖L∞([0,1]×RN ) ≤ 1/4 ⇒ ‖ϕ‖L∞(R+×RN ) ≤ 1/2.

Proof If ‖U−1Vϕ0‖Hs∩Bs
a′,2 << 1, from Proposition 4.2, ‖Z(t)‖

Bs−1/3
q,2

� ‖U−1

Vϕ0‖Bs
a′,2/t

1/3. Using then (4.7) we get

∀ t ≥ 1, ‖ϕ(t)‖L∞ � ‖ϕ‖
Bs−1/3
q,2

� ‖Z‖
Bs−1/3
q,2

<< 1.

The bound on ‖ϕ‖L∞([0,1]×RN ) is then obtained thanks to Theorem 3.1 :

‖ϕ‖L∞([0,1]×RN ) ≤ ‖e−i t�ϕ0‖L∞([0,1]×RN ) + C‖ϕ0‖Hs + C
∥
∥
∫ t

0
ei(t−s)�F(ϕ)ds

∥
∥
Hs+1/2

≤ 1

4
+ Cε0.

��
End of the Proof of Theorem 1.3
Proposition 4.3 provides the existence of a solution ϕ to (1.8) such that 1 + ϕ is bounded
away from 0. The rest of the proof is the same as for N = 3, see paragraphs 3.5 and 3.6.
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Appendix A: Sketch of proof of Theorem 1.2 when N = 3

For comfort of the reader, we outline in this appendix the main ideas of the (fairly long and
technical) Proof of Theorem1.2. For a complex number f , we use the non-standard notation:

f + = f, f − = f̄ . (A.1)

A.1 Space time resonances

Let us consider the general nonlinear Schrödinger equation:

i∂t u + �u = f (u, u), x ∈ R
d . (NLS)

For N = 3, the decay is not strong enough to obtain scattering with an argument similar to the
one of Sect. 4.1, see also our discussion on the so-called Strauss exponent in the introduction.
Well-posedness for small data in weighted spaces was obtained by Hayashi and Naumkin
[31] in the case f (u) = λu2 + μu2, while no global well-posedness nor blow up is known
for the case f (u) = |u|2 (except almost global existence, see [22]).

Let us give a short description of the idea of space-time resonances in the simple case
f (u, u) = u2, since u is expected to have an asymptotically linear behavior, it is natural to
consider ũ = e−i t�u, solution of

ũ(t) = u0 − i
∫ t

0
e−is�

(
eis�ũ

) (
eis�ũ

)
ds (A.2)

⇔ ̂̃u(t) = û0 − i
∫ t

0

∫

Rd
eis�(ξ,η)̂̃u(s, η)̂̃u(s, ξ − η)dηds. (A.3)

with �(ξ, η) = |ξ |2 −|η|2 −|ξ −η|2. The existence of global solutions reduces to construct
a fixed point to (A.2) in a suitable functional space, and thus estimate the integral in (A.3). As
∂s ũ = −ie−is�u2, an integration by parts in the s variable increases the nonlinearity in (A.3)
and can be done if� does not vanish. Unfortunately,� vanishes on the large set {η ⊥ ξ −η}.
Nevertheless, from the identity eis� = ∇η�·∇ηeis�

s|∇η�|2 , it is apparent that an integration by parts

in the η variable can be fruitful too as it adds the coefficient 1
s , which improves the decay.

This idea leads to the following definition:

Definition 1 The time resonant set is T = {(η, ξ) : �(η, ξ) = 0}.
The space resonant set is S = {(η, ξ) : ∇η�(η, ξ) = 0}.
The space-time resonant set is R = T ∩ S.

In our example, � vanishes iff 2η ⊥ ξ , while ∇η� vanishes if η = ξ − η. This implies for
the space-time resonant set

T ∩ S = {(ξ, η) : �(ξ, η) = 0} ∩ {(ξ, η) : ∇η�(ξ, η) = 0} = {ξ = η = 0}.
Thus using a convenient frequency partition, a gain by integration by parts can always be
obtained. On the other hand this clarifies why it is hard to handle the nonlinearity |u|2, indeed
in this case �(ξ, η) = |ξ |2 + |η|2 − |ξ − η|2 and it is easily checked that T ∩ S = {ξ = 0}
which is of dimension 3 (in the phase space (η, ξ) ∈ (R3)2).
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The concept of space-time resonanceswas introduced byGustafson et al. [29] to obtain the
scattering for theGross–Pitaevskii equation. IndependentlyGermain et al introduced it in [19]
to give a newproof of scattering for (NLS)with f (u, u) = u2 before tackling global existence
for the gravity waves problem [20]. This strategy has had since numerous applications for the
study of global well-posedness of dispersive equations (e.g., Euler–Poisson [26], capillary
waves [21], or our recent work on the general Euler–Korteweg system [3]).

From elementary computation, we have the following proposition for the phase associated
to the nonlinearity |ϕ|2.
Proposition A.1 (spacetime resonances for (A.4)) The space resonant set for �(η, ξ) =
H(ξ) − H(η) + H(ξ − η) is {ξ = 0}.
The spacetime resonant set for �(η, ξ) = H(ξ) − H(η) − H(ξ − η) is {ξ = 0}.
The large size of the space-time resonant set is one of the reasons why scattering for (1.3) is
a difficult issue.

A.2 Normal form

Let us rewrite the Gross–Pitaevskii equation for the variable v = ϕ1 + iUϕ2:

i∂tv − Hv = U
(
3ϕ2

1 + ϕ2
2 + |ϕ|2ϕ1

) + i
(
2ϕ1ϕ2 + |ϕ|2ϕ2

)
. (A.4)

TheU in factor of the real part of the nonlinearity is a nice feature, indeed its symbol cancels
at ξ = 0, which is precisely the spacetime resonant set in the worst case (see Proposition
A.1). Namely near ξ = εη, η << 1 we have

H(εη) − H(η) + H((ε − 1)η) ∼ε→0,|η|→0
−3ε|η|3
2
√
2

= −3|ξ | |η|2
2
√
2

.

In other words the U in factor counterbalances the negative effects due to the space-time
resonant set (indeed the nonlinearity |ϕ|2 is present since for example ϕ2

1 = ϕ2+ϕ2+2|ϕ|2).
On the other hand we have the singular relation ϕ2 = U−1v2, and there is no good mul-

tiplier on the imaginary part which contains the quadratic, singular term 2ϕ1ϕ2. The normal
form from Sect. 4.1 was the remedy to the singular relation, however the new nonlinearity has
no good multiplier property, this is why Gustafson et al used the following different change
of variable in [29]:

Z = v − B ′
1[ϕ1, ϕ1] + B ′

1[ϕ2, ϕ2],
where B ′

1 is the real valued symmetric bilinear Fourier multiplier of symbol 1
2+|ξ1|2+|ξ2|2 .

After some tedious computations one finds:

i∂t Z − HZ = NZ (v), (A.5)

with

NZ (v) = U (B1[v1, v1] + B2[v2, v2]) + C + Q,

where B1, B2 are bilinear multipliers and C (resp. Q) contains cubic (resp. quartic) terms.
Thanks to this change of variables the new nonlinearity has both a “null structure” and smooth
quadratic nonlinearities. Note however that cubic and quartic nonlinearities are not smooth
(they are only smooth in ϕ). For later use, let us mention that the symbol of B2 is

B2(ξ1, ξ2) = −2〈ξ1〉〈ξ2〉
2 + |ξ1|2 + |ξ2|2

ξ1

|ξ1|
ξ2

|ξ2| = B ′
2(ξ1, ξ2)

ξ1

|ξ1|
ξ2

|ξ2| , (A.6)
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that is the composition of the Riesz multipliers and a smooth bilinear multiplier B ′
2 (see

Proposition 2.8).

A.3 The functional space, reduction to a priori estimates

Replacing in (A.3) � by −H , after an integration by parts in the η variable, we get a factor
∇η(̃u) = −iF(xeit Hu) which must be controlled. Furthermore, in view of the Strichartz
estimates it is natural to use ‖U−1/6v‖L2

t W 1,6 . Thus a natural functional space to study global
well-posedness is:

‖Z‖X∩S([0,T ]) = sup
0≤t≤T

‖Z(t)‖X (t) + ‖Z‖S([0,T ])

= sup
0≤t≤T

(‖Z(t)‖H1 + ‖e−i t H xeit H Z‖H1
) + ‖U−1/6Z‖L2

T W
1,6 .

For ψ(0) ∈ 1 + H1, global well-posedness is well-known (e.g., see the appendix of [8]),
thus the main goal is to prove a priori estimates for the map

Z �→ e−i t H Z(0) − i
∫ t

0
e−i(t−s)HNZ (v)(s)ds. (A.7)

More precisely it suffices that for some k ≥ 0

‖e−i t H Z(0) − i
∫ t

0
e−i(t−s)HNZ (v)(s)ds‖X∩S([0,T ]) � ‖Z0‖X (0)

+‖Z‖2X∩S([0,T ])
(
1 + ‖Z‖kX∩S([0,T ])

)
. (A.8)

with constants independent of T so that a standard bootstrap argument implies global well-
posedness and scattering4. In the rest of this appendix we shortly summarize the strategy:
bounding ‖Z‖S is relatively elementary and is explained in Sect. A.4. The main issue is the
control of xeit H Z , and more precisely the so-called bilinear terms with phase derivative from
[29]. The main ideas (estimates on singular bilinear multipliers and the decomposition of the
phase space (η, ξ) in “non-resonant” regions) are described in Sect. A.5.

A.4 Control of the S norm, action of the normal form

This section summarizes the estimates that can be obtained simply by using only standard
product rules, functional spaces embeddings, Strichartz estimates and dispersive estimates of
the form (2.15) and (2.16). They cover two points: the normal form is a well-defined change
of variables for small data, and the S norm of the map (A.7) is controlled by the S ∩ X norm
of Z . First let us give a list of quantities controlled by the X ∩ S norm.

Proposition A.2 Let v<1 = F−1(1{|ξ |<1}v̂(ξ)) and v≥1 = F−1(1{|ξ |≥1}v̂(ξ)). For 0 ≤ θ ≤
1, we have the following estimates

‖v(t)‖Ḣ−1 � ‖v(t)‖X (t), (A.9)

4 Actually in [27] the authors obtain some time decay:

‖Z − e−i(t−T0)H Z(T0)‖X∩S(T0,+∞) � 〈T0〉−ε‖Z‖2X∩S(T0,∞)

(
1 + ‖Z‖X∩S(T0,∞)

)
.
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‖U−2v‖L6 � ‖v(t)‖X (t) � ‖v(t)‖X (t), (A.10)

‖|∇|−2+ 5θ
3 v<1(t)‖L6 � min(1, t−θ )‖v(t)‖X (t),

‖|∇|θ v≥1(t)‖L6 � min(t−θ , t−1)‖v(t)‖X (t).
(A.11)

and U−1v satisfies dispersion/Strichartz type estimates

‖U−1v(t)‖L6 � 〈t〉− 3
5 ‖v(t)‖X (t),

‖U−1v‖L2
t (H1,6) � ‖v‖X (t)∩S(t),

(A.12)

‖〈∇〉 2
3U−1v(t)‖L4 � t−

7
12 ‖v(t)‖X (t). (A.13)

We have also control of Strichartz norms of ϕ in terms of the norm of ‖v‖X∩S .

Proposition A.3 We have the following estimates:

‖ϕ‖L∞(H1) � ‖v‖X ,

‖ϕ‖L2(H1,6) � ‖v‖X∩S .
(A.14)

Estimates on the normal form Using the estimates above and basic product rules, one
can prove that the normal form v �→ Z is a well-defined change of variables near 0 in our
functional settings, and that the smallness condition on ϕ0 is equivalent to the smallness in
X (0) of Z0 (we refer to (1.14) for this condition). The fact that themap v → Z is bi-Lipschitz
in X∞ ∩ S∞ is crucial since we need to estimate the nonlinearity NZ (v) (which depends a
priori only on v) in norms of Z in X∞ ∩ S∞.

Proposition A.4 ([29] Sects. 6, 7). There exists ε > 0 such uniformly in T > 0, the map

X ∩ S([0, T ]) �→ X ∩ S([0, T ]),
v �→ Z = v + B ′

1[ϕ1, ϕ1] + B ′
1[ϕ2, ϕ2] = v + b(ϕ),

is bi-Lipschitz from B(0, ε) to its image, in particular

X (0) �→ X (0),

v0 �→ v0 + b(ϕ0),

is bi-Lipschitz B(0, ε) to its image, and under the same smallness condition v and Z have
the same asymptotics:

‖v − Z‖S∩X ([T1,T2] � T−1/6
1 ‖Z‖S∩X ([T1,T2]).

For ‖Z0‖X (0) small enough we have ‖Z0‖X (0) ∼ ‖〈x〉∇ϕ0‖L2 + ‖〈x〉Re(ϕ0)‖L2 .

Control of the S norm

Proposition A.5 For all T2 ≥ T1 ≥ 0 we have:

‖
∫ t

T
e−i(t−s)HNZ (v)ds‖S([T1,T2]) � 〈T1〉−1/2

(
‖v‖2X∩S([T1,T2]) + ‖v‖4X∩S([T1,T2])

)
,

(A.15)
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Sketch of proof We only show how to bound
∫ t
T1
e−i(t−s)H B2[v2, v2]ds for T1 ≥ 1 (for finite

time it suffices to use the results of strong solution in finite time). The Strichartz estimate of
Proposition 2.17 gives:

‖U −1
6

∫ t

T
e−i(t−s)H B2[v2, v2]ds‖L2([T1,T2]H1,6) � ‖B2[v2, v2]‖L1([T1,T2],H1),

‖
∫ t

T
e−i(t−s)H B2[v2, v2]ds‖L∞

t>T (H1) � ‖B2[v2, v2]‖L1
t>T (H1).

(A.16)

Let R1, R2 Riesz operator, using Proposition 2.8, Hölder’s inequality, interpolation and
‖v(t)‖L6 � t−1‖v‖X∩S([T1,T2]) (see (A.12)) leads to

‖B2[v2, v2]‖L1([T1,T2],H1) � ‖R1v2‖L4([T1,T2],W 1,3)‖R2v2‖L4/3([T1,T2],L6)

� T−1/2
1 ‖v‖2X∩S([T1,T2]).

�

A.5 Control of the X norm

In order to estimate the X ([0, T ]) norm of (A.7), the main issue is to control

‖xeit H
∫ t

0
e−i(t−s)HNZ (v)(s)ds‖H1 = ∥

∥∇ξ (D)

∫ t

0
eisH(ξ)F

(
NZ (v)(s)

)
ds
∥
∥
H1 .

For simplicity, we focus on the quadratic term B2(Z2, Z2). Following [29], for any complex
we denote z+ = z, z− = z. Since Z2 = (Z+ − Z−)/(2i), the generic term to estimate is
B2[Z±, Z±]. Let us denote the Fourier transform of the profile Z̃± = e±i t H(ξ)F(Z±)(ξ),
we have to control in particular the following term:

∫ t

0

∫

Rd
∇ξ

(

eis(H(ξ)∓H(η)∓H(ξ−η)B2(η, ξ − η)Z̃±(η)Z̃±(ξ − η)

)

dηds.

We set �±±(η, ξ) = H(ξ) ∓ H(η) ∓ H(ξ − η). As was pointed out in Sect. A.1, the worst
case in term of spacetime resonances is the +− case, where the resonant set is {ξ = 0}.
Finally, let us point out that when ∇ξ falls on eisH(ξ)±H(η)±H(ξ−η), we get the term:

∫ t

0

∫

Rd
is∇ξ�±±eis�±± B2(η, ξ − η)Z̃±(η)Z̃±(ξ − η)

)
dηds. (A.17)

This is the worst as we both have a loss of decay due to the s factor and a loss of derivative
(in high frequencies) due to ∇ξ�, and indeed it is easily checked that for this term a direct
approach only relying on Strichartz estimate and the decay provided by the X norm fails.
This is the point where integration by parts in η or s is required. The last two paragraphs
focus on the two ideas developed in [29] to effectively do it:

• partition of the phase space in time non-resonant and space non-resonant areas: there
is a decomposition of the symbol B2 = BX

2 + BT
2 such that (in some sense precised

in Lemma A.7) BX
2 , resp. BT

2 , is supported in a non-space, resp. time, resonant area.
Furthermore it is convenient to localize in frequencyby introducing for j ∈ ZLittlewood–
Paley functions χ j , and Ba,b,c,T

2 = χa(ξ)χb(η)χc(ξ − η)B2(η, ξ − η), and similarly

Ba,b,c,T
2 .
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• Once the integration by parts are performed, the new terms obtained are estimated thanks
to a bilinear multiplier estimate with losses for non-smooth multipliers. We also mention
why this estimate cannot be avoided.

The bilinear multiplier estimate For conciseness we write � instead of �±±. Using the
partition of unity 1 = ∑

χa(ξ)χb(η)χc(ξ − η), one is reduced to estimate each integral:

Iabc =
∫ t

0

∫

Rd
is∇ξ�±±eis�±± Ba,b,c

2 (η, ξ − η)Z̃±(η)Z̃±(ξ − η)
)
dηds. (A.18)

An integration by parts in η or s can be done thanks to the identities:

eis� = ∇η�

is|∇η�|2 · ∇ηe
is�, eis� = 1

i�
∂se

is�.

To be fruitful, of course it is necessary that ∇η�±±, resp. �, does not vanish on
supp(Ba,b,c,X ), resp. supp(Ba,b,c,T ), but this is not sufficient. In order to apply the celebrated
Coifman–Meyer theorem, one needs to have |∂αB| � (|η| + |ξ |)−|α|. Such an estimate is
hopeless as can be seen from an elementary computation: near ξ = εη with ε, |η| << 1, we
have

H(εη) − H(η) + H((ε − 1)η) ∼ −3ε|η|3
2
√
2

= −3|ξ | |η|2
2
√
2

,

while |εη|2 − |η|2 + |(1 − ε)η|2 ∼ −2|η| |ξ |,
thus there is no hope for 1/� to belong to any standard class of multipliers.

The remedy from [29] is the following multiplier estimate which only requires a very
weak regularity for the multiplier:

Lemma A.6 Let 0 ≤ s ≤ N
2 , (p, q) any dual-Strichartz exponent except for the endpoint

namely

2

p
+ N

q
= 2 + N

2
, p < 2. (A.19)

Let (p1q1) and (p2, q2) satisfy:

1

p
= 1

p1
+ 1

p2
,
1

q
+ 1

q(s)
= 1

q1
+ 1

q2
,

1

q(s)
= 1

2
− s

N
,

p ≤ p1, p2 ≤ +∞, q ≤ q1, q2 ≤ +∞
Then for any bilinear Fourier multiplier we have:

‖
∫

eit H B[u, v]dt‖L2 � ‖B‖L̃∞
ξ Ḃs

2,1,η+L̃∞
ξ Ḃs

2,1,ζ
‖u‖L p1 Lq1 ‖v‖L p2 Lq2 .

with the first norm of B is in the (ξ, η) coordinates and the second in the (ξ, ζ ) = (ξ, ξ −η).
If 1/q1 + 1/q2 = 1/2 + 1/q(s), 2 ≤ q1, q2 ≤ q(s), 1

q(s) = 1
2 − s

N , then for any bilinear
Fourier multiplier:

‖B[ϕ,ψ]‖L2 � ‖B‖L̃∞
ξ Bs

2,1,η+L̃∞
ξ Bs

2,1,ζ
‖ϕ‖Lq1 ‖ψ‖Lq2 .

We recall here the definition of Chemin–Lerner spaces:

‖ f (ξ, η)‖L̃ p
ξ (Ḃs

q,r,η) = (∑

l∈Z
2lsr‖ f ‖r

L p
ξ (Lq

η)

) 1
r .
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Remark 16 When s = N
2 Lemma A.6 is similar to a classical Strichartz estimates where

B[u, v] behaves like a classical product u v ( in high frequencies it is in particular sufficient
to work with s = N

2 since the classical Strichartz estimates are sufficient to estimate the
quadratic nonlinearities). Let us observe that q(s) is the Sobolev exponent for the embedding
Ḃs
2,1 ⊂ Lq(s) and 1

q(s) gives the precise loss compared with Hölder inequality, in particular it

implies that when 0 ≤ s < N
2 we need a better long-time decay to use this result compared

with the classical Strichartz estimate.

Remark 17 It is actually simpler to control the L̃∞(Hs) norm by the L∞(Hs+ε) norm with
ε > 0.

We set [Bs] = L̃∞
ξ Bs

2,1,η + L̃∞
ξ Bs

2,1,ζ , with the lemma in hand, it is now a matter of checking
that for any (a, b, c) either
∥
∥
∥
∥
∇η� · ∇ξ�

|∇η�|2 Ba,b,c,X
2

∥
∥
∥
∥[Bs ]

,

∥
∥
∥
∥∇η

(∇η� · ∇ξ�

|∇η�|2 Ba,b,c,X
2

))

‖[Bs ] or
∥
∥
∥
∥
∇ξ�

�
Ba,b,c,T
2

∥
∥
∥
∥[Bs ]

,

(A.20)

satisfies “good” estimates.5

The phase space partition and consequence. Following (A.20), we define

Ba,b,c,X
1,2 = ∇η� · ∇ξ�

|∇η�|2 Ba,b,c,X
2 , Ba,b,c,X

2,2 = ∇η

(∇η� · ∇ξ�

|∇η�|2 Ba,b,c,X
2

)

,

Ba,b,c,T
3,2 = ∇ξ�

�
Ba,b,c,T
2 .

(A.21)

The crucial result is the following Lemma (which is also true for the quadratic nonlinearity
UB1[v1, v1])) .
Lemma A.7 Let M = max(a, b, c), m = min(a, b, c) and l = min(b, c). Then

• For any (a, b, c) ∈ Z
3

for M << 1, 0 < ε << 1, ‖Ba,b,c,X
1,2 ‖H1+ε � l

1
2−2ε, ‖Ba,b,c,X

2,2 ‖H1+ε � l
1
2−2εM−1,

for M ≥ 1, |ε| << 1, ‖Ba,b,c,X
1,2 ‖

H
3
2 +ε

� l1−ε〈a〉−1, ‖Ba,b,c,X
2,2 ‖

H
3
2 +ε

� l−ε〈a〉−1,

(A.22)

• For any (a, b, c) ∈ Z
3, 0 < s < 2,

‖Ba,b,c,T
3,2 ‖[Bs ] �

( 〈M〉
M

)s

l
3
2−s〈a〉−1. (A.23)

For the sake of completeness, let us illustrate how this lemma can be used to control a typical
non-time resonant term. By integrations by parts in s we observe that we have to estimate
terms of the form:

∫ T

0
eisHU

(
Ba,b,c,T
3,2 [Z±, sN±

Z ] + Ba,b,c,T
3,2 [sN±

Z , Z±])ds or

∫ T

0
eisHUBa,b,c,T [Z±, Z±]ds

5 “Good” means that combining these estimates with Lemma A.6 is sufficient to close the estimates on (A.7).
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Applying Lemma A.6, Bernstein’s lemma and using the fact that U is increasing we have:

‖
∫ T

0
eisH

( ∑

b�a∼c

Ba,b,c
3 [sN Z , Z ] + Ba,b,c

3 [Z , sN Z ]
)

ds‖H1

�
∑

b�a∼c

U (b)
1
2U (c)〈a〉〈b〉−1〈c〉−1‖Ba,b,a

3 ‖[B 1
2 +ε ]+[B3/2]‖U

− 1
2 〈∇〉tNZ‖(

L
1

1−ε/2
T ∩L2

T

)

(L3)

× ‖U−1〈∇〉Z‖L∞
T (L2)

�
∑

b�a∼c

U (b)
1
2U (a)〈b〉−1‖Ba,b,a

3 ‖[
B

1
2 +ε

]

+[B3/2]
‖U− 1

2 〈∇〉tNZ‖(
L

1
1−ε/2
T ∩L2

T

)

(L3)

× ‖U−1〈∇〉Z‖L∞
T (L2). (A.24)

Let us deal now with the case a << 1 which gives:

∑

b�a<<1

U (b)
1
2U (a)〈b〉−1‖Ba,b,a

3 ‖[H1+ε ]

�
∑

a<<1

∑

b�a

U (b)
1
2U (a)〈b〉−1

( 〈a〉
a

)1+ε

b
1
2−ε〈a〉−1,

�
∑

a<<1

∑

b�a

b
1
2 a a−1−εb

1
2−ε �

∑

a<<1

a−ε
∑

b�a

b1−ε �
∑

a<<1

a−εa1−ε � 1.

(A.25)

and for a ≥ 1 we get with |ε| > 0 small enough:

∑

b�a, a�1

U (b)
1
2U (a)〈b〉−1‖Ba,b,a

3 ‖[
H

3
2 +ε

]

�
∑

a�1

∑

b�a

U (b)
1
2U (a)〈b〉−1

( 〈a〉
a

) 3
2+ε

b−ε〈a〉−1,

�
∑

a�1

〈a〉−1
∑

b�a

U (b)
1
2 〈b〉−1b−ε � 1.

(A.26)

On the other hand (A.9),(A.11) give

‖U−1Z‖L∞L2 � ‖Z‖X ([0,∞[),
‖U 1/2t Z2‖

L
1

1−ε/2 L3
� ‖t‖Z‖2L6‖

L
1

1−ε/2
� ‖t−1‖

L
1

1−ε/2
‖Z‖2X ([0,∞[ � ‖Z‖2X ([0,∞[.

To finish let us describe briefly the delicate case when a ≤ b ∼ c which corre-
sponds to the space-time resonant set. Let us consider in particular the most difficult term
∑

a�b∼c

∫ t
0 e

isH
(
Ba,b,c
3,2 [Z+, Z−])ds, applying again Lemma A.6, Bernstein’s lemma and

the fact that Bε
2,2 is embedded in B0

2,1 for non-homogeneous Besov space, we have::
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‖
∑

a�b∼c

∫ t

0
eisH

(
Ba,b,c
3,2 [Z+, Z−])ds‖H1 �

∑

b

∑

a�b

‖
∫ t

0
eisH

(〈a〉Ba,b,b
3,2 [Z+, Z−])ds‖L2

�
∑

b

‖
∫ t

0
eisH

∑

a�b

(〈a〉Ba,b,b
3,2 [Z+, Z−])ds‖H ε

�
∑

b

〈b〉ε′ ‖
∫ t

0
eisH

∑

a�b

(〈a〉Ba,b,b
3,2 [Z+, Z−])ds‖L2

�
∑

b<<1

U (b)U (b)
1
6

〈b〉−2‖
∑

a�b

〈a〉Ba,b,b
3,2 ‖[B1+ε ]‖〈∇〉U−1Z+‖L∞(L2)‖〈∇〉U−1/6Z−‖

L
1

1− ε
2 (L6)

+
∑

b�1

U (b)U (b)
1
6 〈b〉−2+ε′ ‖

∑

a�b

〈a〉Ba,b,b
3,2 ‖[B 3

2 ]‖

〈∇〉U−1Z+‖L∞(L2)‖〈∇〉U−1/6Z‖L4/3(L6).

(A.27)

Let us deal now with the case b << 1, we have then:

∑

b<<1

U (b)U (b)
1
6 〈b〉−2‖

∑

a�b

〈a〉Ba,b,b
1, j ‖[H1+ε ] �

∑

b<<1

U (b)U (b)
1
6 sup
a�b

‖〈a〉Ba,b,b
1, j ‖[H1+ε ],

�
∑

b<<1

U (b)U (b)
1
6

( 〈b〉
b

)1+ε

b
1
2−ε �

∑

b<<1

b
7
6 b− 1

2−2ε � 1. (A.28)

We obtain similar estimates for the case b � 1.

Conclusion. Collecting bounds similar to the one above eventually leads to (A.8), the same
argument works if we replace [0,∞[ by [0, T ], so that if the initial data are small enough, Z
must remain small in X ∩ S([0, T ] uniformly in T > 0. In particular (see (A.15)) the solution
scatters.

Appendix B: Some remarks on the sharpness

As scattering for the Gross–Pitaevskii equation holds for small data, there are two natural
questions: what is the optimal functional space X0 for the initial data, and in such settings is
there an optimal constant such ‖ψ0‖X0 < c implies scattering of the solution? In the present
state of the art, those questions seem out of reach, but we mention here what the existing
theory allows to guess.

First, we point out that all the traveling wave with finite energy have (1.14) finite. Indeed
let us recall that in their work Jones et al. [32,33] claim that the traveling wave have the
following asymptotic expansion in space (see [25] for a rigorous proof):

ψc(x1, x⊥) ∼ 1 + iαx1

(x21 + (1 − c2
2 )|x⊥|2) N

2

+ o(1/|x |N−1).

In particular ∇ψc is O( 1
|x |N ) so that 〈x〉∇ψc ∈ L2 for N ≥ 3.
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The smallness condition in Theorem 1.1 and 1.2 is not precisely quantified. Since the
energy of traveling waves has a lower bound for N ≥ 3 (see [7]), and as they might be the
“minimal nonlinear objects”, the following conjecture was made in [29]:

Conjecture Let N = 3. For any global solution ψ ∈ C(R, 1 + E1) of (GP) satisfying
E(ψ) < E0 there is a unique z+ ∈ H1(R3) satisfying E(ψ) = ‖〈∇〉z+‖2

L2 and

‖M(ϕ(t)) − e−i t H z+‖H1(R3) →t→+∞ 0, (B.1)

with M(ϕ) = v + 〈∇〉−2|ϕ|2. Moreover, the map ϕ(0) → z+ is a homeomorphism between

the open balls of radius E
1
2
0 around 0 in E1 and H1.

Remark 18 Let us recall that setting ψκ1 :

ψκ1(t, x) = ψ

(
t

κ1
,

√
2x

κ1

)

,

where ψ is the solution of Theorem 1.2 then if ψ is solution of (1.3), ψκ1 is solution of the
following Gross–Pitaevski equation:

iκ1∂tψ
κ1 + κ2

1

2
�ψκ1 = (|ψκ1 |2 − 1

)
ψκ1 . (B.2)

In particular the smallness Assumption (1.14) corresponds to:
∫

R3
〈√2x/κ1〉2

(|Re(ϕκ1
0 )|2 + κ2

1

2
|∇ϕ

κ1
0 |2) <

(
κ1√
2

)3

δ,

By using the Madelung transform ψκ1(t, x) = √
ρ(t, x)e

i ϕ(t,x)
κ1 , then (ρ,∇ϕ) is solution of

system (1.1) with κ1. When κ1 decreases, the condition becomes more and more restrictive.
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35. Killip, R., Tadahiro, O., Pocovnicu, O., Vişan, M.: Global well-posedness of the Gross–Pitaevskii and
cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions. Math. Res. Lett.
19(5), 969–986 (2012)

36. Mariş, M.: Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. Ann.
Math. (2) 178(1), 107–182 (2013)

37. Ryckman, E., Visan,M.:Globalwell-posedness and scattering for the defocusing energy-critical nonlinear
Schrödinger equation in R

1+4. Am. J. Math. 129(1), 1–60 (2007)
38. Strauss, W.: Nonlinear scattering theory at low energy. J. Funct. Anal. 41, 110–133 (1981)

123


	From the Gross–Pitaevskii equation to the Euler Korteweg system, existence of global strong solutions with small irrotational initial data
	Abstract
	1 Introduction
	1.1 The Euler–Korteweg equations and the Madelung transform
	1.2 On the Gross–Pitaevskii equation
	1.3 Main results
	Plan of the paper


	2 Main tools
	2.1 Littlewood–Paley decomposition
	2.2 Multilinear Fourier multipliers
	2.3 Strichartz and dispersive estimates

	3 Proof of Theorem 1.4
	3.1 Linfty control of varphi in large time t geq alpha>0
	3.2 A smoothing property
	3.3 Global Linfty control of varphi
	3.4 How to propagate the regularity from varphi to rho and u
	3.5 Existence of global weak solution when N=3
	Smooth initial data
	General case

	3.6 Existence of global strong solution when N geq 3
	Lipschitz control on the velocity u


	4 Proof of Theorem 1.3: global well-posedness for N geq 4
	4.1 A subcritical version of Theorem 1.1
	4.2 L infty bounds

	Acknowledgements
	Appendix A: Sketch of proof of Theorem 1.2 when N=3
	A.1 Space time resonances
	A.2 Normal form
	A.3 The functional space, reduction to a priori estimates
	A.4 Control of the S norm, action of the normal form
	A.5 Control of the X norm

	Appendix B: Some remarks on the sharpness
	References




