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Abstract Functional capacities on the Grushin space G
n
α are introduced, developed, and

subsequently applied to the theory of Sobolev embeddings.
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Introduction

The isoperimetric inequality on the Euclidean space R
n has been investigated by many

scholars (cf. [16,34–37], etc). This inequality has been appropriately extended to the Carnot-
Carathéodory spaces in [3,10,12,21,32,42] without sharp constants and extremal sets in
general. However, on the Grushin plane (existing as the simplest example of the Carnot-
Carathéodory spaces and appearing in the hypoelliptic operator theory; cf. [18,19,25,26,44]),
Monti and Morbidelli found the sharp constants and extremal sets for the isoperimetric
inequality in [39]. Recently, Franceschi and Monti [17] studied the isoperimetric problem on
the Grushin space G

n
α (regarded as the high-dimensional case of the Grushin plane)—under
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a symmetry assumption that depends on the dimension, they proved the existence, additional
symmetry, and regularity of an isoperimetric set. On the other hand, in [45,46] Xiao split the
isoperimetric inequality twice via the directional capacity on the Euclidean space, thereby
exploring its applications in handling the sharp Sobolev inequalities via the variational capac-
ities and their affine counterparts; see also [47,48] for more information. This paper, as a
continuation of Liu’s paper [33] discussing the BV-capacity on the Gushin plane, shows that
the isoperimetric inequality over any given Grushin space can be also split twice, thereby
discovering several new results through considering the so-called functional capacities on
G

n
α in three sections:

� The first section presents several fundamental properties of the functional capacities;
� The second section gives some geometric estimates for the functional capacities;
� The third section provides certain applications of the functional capacities to the
Sobolev-type imbeddings.

Notation Throughout this paper, unless otherwise indicated, we use C to denote constants
that depend on the homogeneous dimension of a given Grushin space and are not necessarily
the same at each occurrence. And, A ∼ B means that there exist C > 0 and c > 0 such that
c ≤ A

B ≤ C.

1 Basics of functional capacities

1.1 Grushin spaces and their metrics

From now on, let R
n = R

h × R
k , where h, k ≥ 1, n = h + k are integers. For a given real

number α ≥ 0, define a family of vector fields on R
n by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xi = ∂xi ∀ i ∈ {1, 2, . . . , h};
Xh+ j = |x |α∂y j ∀ j ∈ {1, 2, . . . , k};

|x | =
(

h∑

i=1
x2i

) 1
2

.

It should be noted that the above vector fields satisfy Hörmander’s condition when α = 2m
are evens (cf. [28]). These vector fields induce the following distance between two points
g, g′ in R

n :

dα(g, g′) = inf
{
T | ∃ Lipschitz continuous curve γ : [0, T ] → R

n such that

γ (0) = g, γ (T ) = g′and

γ ′(t) =
n∑

i=1

ai (t)Xi (γ (t)) with
n∑

i=1

|ai (t)|2 ≤ 1, for a.e. t ∈ [0, T ]
}
.

As a metric in R
n , dα(g, g′) is well defined and coincides with the Carnot-Carathéodory

distance—namely—one has:

dα(g, g′) = inf
γ=(x,y)∈�g,g′

∫ 1

0

√
√
√
√

h∑

i=1

|ẋi (t)|2 + |x(t)|−2α
k∑

j=1

|ẏ j (t)|2dt,
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where �g,g′ is the set of all Lipschitz continuous curves

γ : [0, 1] → R
n with γ (0) = g & γ (1) = g′.

The resulting space G
n
α = (Rn, dα) is the completion of the Riemannian metric space

{(x, y) ∈ R
n : x 
= 0} equipped with the Riemannian metric

ds2 = dx2 + |x |−2αdy2.

Moreover, for n = 2, we can clearly see the geometric structure of G
2
α—in fact—[2, Lemma

2] yields that the Gaussian curvature and the Riemannian density are

K = (−α2 − α)|x |−2 & d A = |x |−αdxdy on G
2
α\{(x, y) ∈ R

2 : x 
= 0},
respectively, and they explode while approaching the y-axis.

By [18] or [44], we know that for any g = (x, y), g′ = (x ′, y′) ∈ G
n
α one has:

dα(g, g′) ∼
h∑

i=1

|xi − x ′
i | +

k∑

j=1

min
{|y j − y′

j |
1

1+α , |y j − y′
j ||x |−α

}
. (1)

The ball with radius r and center g under the metric dα is given by

Bα(g, r) = {g′ ∈ G
n
α : dα(g, g′) < r}.

According to [18] there are two positive constants c1 < c2 such that

Qα(g, c1r) ⊆ Bα(g, r) ⊆ Qα(g, c2r) ∀ g = (x, y) ∈ G
n
α, (2)

where

Qα(g, r) =
h∏

i=1

[xi − r, xi + r ] ×
k∏

j=1

[y j − r(|x | + r)α, y j + r(|x | + r)α].

Inclusion (2) implies that there exists a positive constant C such that

|Bα(g, 2r)| ≤ C |Bα(g, r)| ∀ (g, r) ∈ G
n
α × (0,∞).

The dilation on G
n
α is given by

δλ(x, y) = (λx, λα+1y), λ > 0.

The standard measure on G
n
α is the usual Lebesgue measure dg = dxdy, so one has (cf.

[39]):

|δλ(E)| = λQ |E | ∀ measurable set E ⊆ G
n
α,

where Q = h + (α + 1)k is called the homogeneous dimension of G
n
α . Via the anisotropic

dilation we introduce the following quasimetric ρ:

ρ(g, g′) = (|x − x ′|2α+2 + (α + 1)2|y − y′|2)
1

2α+2 ∀ g = (x, y), g′ = (x ′, y′) ∈ G
n
α.

The ball with radius r and center g under ρ is given by

B(g, r) = {g′ ∈ G
n
α : ρ(g, g′) < r}.
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According to (1), there are two positive constants C1 and C2 such that
{

1
C1

dα(g, g′) ≤ ρ(g, g′) ≤ C1dα(g, g′) as max{|x |, |x ′|} ≤ |y − y′| 1
α+1 ;

dα(g, g′) ≤ C2ρ(g, g′) as max{|x |, |x ′|} ≥ |y − y′| 1
α+1 ,

holds for any two points g = (x, y), g′ = (x ′, y′) ∈ G
n
α . Moreover, if E is a bounded subset

of G
n
α , then there exists a positive constant C3 (depending on the set E) such that

ρ(g, g′) ≤ C3
(
dα(g, g′)

) 1
α+1 as max{|x |, |x ′|} ≥ |y − y′| 1

α+1

holds for any two points g = (x, y), g′ = (x ′, y′) in E .

1.2 Definitions of BV and functional capacities

The divergence of a vector-valued function ϕ ∈ C1(Rn; R
n) is defined as

divαϕ =
h∑

i=1

∂xi ϕi + |x |α
k∑

j=1

∂y j ϕh+ j .

The corresponding gradient operator is defined as

∇α = (∂x1 , . . . , ∂xh , |x |α∂y1 , . . . , |x |α∂yk ).

Let 
 ⊆ R
n be an open set. The Xα-variation of f ∈ L1(
) is determined by

‖ Xα f ‖ (
) = sup
ϕ∈F

∫




f (g)divαϕ(g)dg,

where F is the class of all functions ϕ = (ϕ1, . . . , ϕn) ∈ C1
0 (
; R

n) such that

‖ ϕ ‖∞= sup
g∈Gn

α

(| ϕ1(g) |2 + · · · + | ϕn(g) |2) 1
2 ≤ 1.

An L1 function f is said to have a bounded Xα-variation on 
 provided ‖ Xα f ‖ (
) < ∞,
and the collection of all such functions is denoted by BV(
). The space BV loc(
) is the set
of functions belonging to BV(U ) for each open set U ⊂⊂ 
. A measurable set E ⊆ R

n is
of locally finite α-perimeter in 
 (or an Xα-Caccioppoli set) if the indicator 1E of E ⊆ G

n
α

belongs to BV loc(
)—namely—if

‖ ∂E ‖α (U ) :=‖ Xα1E ‖ (U ) < ∞
for every open set U ⊂⊂ 
. From [40] we see that ‖ Xα f ‖ is a Radon measure on 


whenever f ∈ BV loc(
).
As in [21] or [17], the α-perimeter of a measurable set E ⊆ G

n
α is given by

Pα(E) = sup

{∫

E
divαϕ(g)dg : ϕ ∈ F

}

.

Naturally, Pα(E) has the following lower semicontinuity, i.e., if (Eh)h∈N is a sequence of
measurable sets whose characteristic functions converge in L1

loc(R
n) to the indicator 1E of

E , then
Pα(E) ≤ lim inf

h→∞ Pα(Eh). (3)
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For a set E ⊆ G
n
α let A(E,BV(Gn

α)) be the class of admissible functions on G
n
α , i.e., all

functions f ∈ BV(Gn
α) satisfying 0 ≤ f ≤ 1 and f = 1 in a neighborhood of E (an open

set containing E). Then the BV-capacity of E is determined by

cap(E,BV(Gn
α)) := inf{‖ Xα f ‖ (Gn

α) : f ∈ A(E,BV(Gn
α))}.

For 1 ≤ p < Q and p∗ = Qp
Q−p , define

Vp =
{

f ∈ L p∗(Gn
α) :

∫

Gn
α

| ∇α f (g) |p dg < ∞
}

.

For E ⊆ G
n
α , set

Kp
E = { f ∈ Vp : f ≥ 0, E ⊆ int{g : f (g) ≥ 1}}.

Then the p-capacity of E is defined as

capα,p(E) = inf{‖ ∇α f ‖p
p: f ∈ Kp

E }.
In particular, if E ⊆ G

n
α be a compact set, the p-capacity of E is given by

capα,p(E) = inf{‖ ∇α f ‖p
p: f ∈ A(E)},

where

A(E) = { f ∈ C∞
0 (Gn

α) : f ≥ 1E }
and C∞

0 (Gn
α) is the class of all C∞ functions with compact support in G

n
α .

1.3 Basic facts on functional capacities

Previously, several capacities on the generalmetric spaceswere studied in [7,11,13,14,23,24,
29,31].While the last two references [7,11] tell us that themethods used to develop the theory
of p-capacities are closely related to those used in certain variational minimization problems
on Grushin spaces and Carnot-Carathéodory spaces, there are still some problems left open
for the p-capacities on Carnot-Carathéodory spaces, even on Grushin spaces. Nevertheless,
below is a list of the metric properties on capα,p .

Theorem 1 Let A, B ⊆ G
n
α .

(i) If A ⊆ B, then capα,p(A) ≤ capα,p(B).

(ii) capα,p(δλA) = λQ−pcapα,p(A).

(iii) capα,p(Ly′ A) = capα,p(A) ∀ vertical translations L y′ with y′ ∈ R
k .

(iv) capα,p(B((0, y), r)) = r Q−pcapα,p(B((0, 0), 1)) ∀ y ∈ R
k .

(v) If A and B are compact subsets of G
n
α , then

capα,p(A ∪ B) + capα,p(A ∩ B) ≤ capα,p(A) + capα,p(B).

(vi) If {Ai }∞i=1 is a sequence of compact subsets of G
n
α with A1 ⊇ A2 ⊇ · · · Ak ⊇ · · · ,

then

lim
k→∞ capα,p(Ak) = capα,p(∩∞

k=1Ak).
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(vii) If {Ak}∞k=1 is a sequence of subsets of G
n
α , then

capα,p

( ∞∪
k=1

Ak

)
≤

∞∑

k=1

capα,p(Ak).

(viii) If {Ak}∞k=1 is a sequence of subsets of G
n
α with A1 ⊆ A2 ⊆ A3 ⊆ · · · , then

lim
k→∞ capα,p(Ak) = capα,p

( ∞∪
k=1

Ak

)
.

Proof (i) This is an obvious consequence of the definition of p-capacity.
(ii) For any ε > 0, there exists a function f ∈ Kp

A, such that
∫

Gn
α

|∇α f |pdg < capα,p(A) + ε.

Let φ(g) = f (δλ−1g). Then φ ∈ Kp
δλA

. Since
∫

G
n
α

|∇αφ|pdg =
∫

G
n
α

|∇α f

(
x

λ
,

y

λα+1

)

|pdxdy

=
∫

G
n
α

⎛

⎝
h∑

i=1

(

∂xi f

(
x

λ
,

y

λα+1

))2
+ |x |2α

k∑

j=1

(

∂y j f

(
x

λ
,

y

λα+1

))2
⎞

⎠

p
2

dxdy

=
∫

G
n
α

⎛

⎝
1

λ2

h∑

i=1

(
∂ξi f (ξ, η)

)2 + 1

λ2
|ξ |2α

k∑

j=1

(
∂η j f (ξ, η)

)2

⎞

⎠

p
2

λQdξdη

= λQ−p
∫

G
n
α

|∇α f |pdg,

one has

capα,p(δλA) ≤ λQ−p(capα,p(A) + ε),

whence

capα,p(δλA) ≤ λQ−pcapα,p(A).

The converse inequality of this last inequality can be similarly proved. So the desired
equality is verified.

(iii) This follows from the integral formula
∫

Gn
α

|∇α f (x, y + y′)|pdxdy =
∫

Gn
α

|∇α f (x, y)|pdxdy.

(iv) This follows from (ii) and (iii).
(v) For any ε > 0, there are two functions φ ∈ Kp

A, ψ ∈ Kp
B such that

∫

Gn
α

|∇αφ|dg < capα,p(A) + ε

2
&
∫

Gn
α

|∇αψ |dg < capα,p(B) + ε

2
.

Let

ϕ1 = max{φ,ψ} & ϕ2 = min{φ,ψ}.
Then

ϕ1 ∈ Kp
A∪B & ϕ2 ∈ Kp

A∩B .
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Using the proof of Lemma 2.4 in [30], we can obtain

|∇αϕ1|p + |∇αϕ2|p = |∇αφ|p + |∇αψ |p a.e g ∈ G
n
α,

thereby getting

capα,p(A ∪ B) + capα,p(A ∩ B)

≤
∫

Gn
α

|∇αϕ1|pdg +
∫

Gn
α

|∇αϕ2|pdg

=
∫

Gn
α

|∇αφ|pdg +
∫

Gn
α

|∇αψ |pdg

≤ capα,p(A) + capα,p(B) + ε,

as desired.
(vi)–(vii)–viii) These follow readily from validating their counterparts for the Sobolev

p-capacities on metric spaces presented in [29] (cf. [13]). ��
1.4 Direct formulas for functional capacities

The next result indicates that capα,p can be evaluated among some different function spaces.

Theorem 2 Let K be a compact subset of G
n
α .

(i)
capα,p(K ) = inf{‖ ∇α f ‖p

p: f ∈ B(K )},
where B(K ) is the class of all functions f ∈ C∞

0 (Gn
α) with f = 1 in a neighborhood

of K and 0 ≤ f ≤ 1 on G
n
α .

(ii)
capα,p(K ) = inf{‖ ∇α f ‖p

p: f ∈ �(K )},
where �(K ) is the class of all functions f ∈ C1

0 (G
n
α) with f = 1 in a neighborhood of

K and 0 ≤ f ≤ 1 on G
n
α .

(iii)

capα,p(K ) = inf
f ∈A(K )

⎧
⎪⎨

⎪⎩

⎛

⎝

∫ 1

0

dτ
( ∫

Eτ
|∇α f |p−1dμτ

) 1
p−1

⎞

⎠

1−p
⎫
⎪⎬

⎪⎭
,

where Eτ = {g ∈ G
n
α : | f (g)| = τ } and dμτ =‖ ∂Eτ ‖α is the α-perimeter measure of

Eτ .
(iv)

capα,p(K ) = inf
f ∈B(K )

⎧
⎪⎨

⎪⎩

⎛

⎝

∫ 1

0

dτ
( ∫

Eτ
|∇α f |p−1dμτ

) 1
p−1

⎞

⎠

1−p
⎫
⎪⎬

⎪⎭
.

(v)

capα,p(K ) = inf
f ∈�(K )

{∫ 1

0

( ∫

Eτ

|∇α f |p−1dμτ

)− Q
p
dτ

}− p
Q

for
Q

Q − 1
≤ p < Q.
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Proof The proofs of (i)–(ii)–(iii)–(iv) are standard (cf. Sections 2.2.1& 2.2.2 in [35]), so they
are omitted.

(v) As showed in [48, Theorem 1], for f ∈ �(K ), applying the co-area formula on G
n
α

(cf. [40, Theorem 4.2]) and the Hölder inequality, we have

‖ ∇α f ‖p
p=
∫ 1

0

( ∫

Et
| ∇α f |p−1dμt

)
dt ≥

( ∫ 1

0

(
∫

Et
| ∇α f |p−1dμt

)− Q
p dt
)− p

Q
,

thereby getting

capα,p(K ) ≥ inf
f ∈�(K )

(∫ 1

0

(∫

Et
| ∇α f |p−1dμt

)− Q
p

dt

)− p
Q

.

In what follows we consider the reverse form of the above inequality. For any f ∈ �(K )

and s ∈ (0, 1], let us choose

fs(g) =
⎧
⎨

⎩
1 − γs

∫ f (g)
0

( ∫

Er | ∇α f |p−1dμr
)− 1+ Q

p
p dr as f (g) ≤ s;

0 as f (g) ≥ s,

where

γs =
(∫ s

0

( ∫

Er
| ∇α f |p−1dμr

)− Q
p
dr

)− 1+ Q
p

p

.

By the co-area formula on G
n
α again we have

capα,p(K ) ≤‖ ∇α f ‖p
p≤
(∫ 1

0

( ∫

Et
| ∇α f |p−1dμt

)− Q
p
dt

)− p
Q

.

However, we are required to verify fs ∈ �(K ). Of course, it is enough to check 0 ≤ fs ≤ 1—
in fact—this follows from the Hölder inequality-implied estimate:

∫ s

0

( ∫

Er
| ∇α f |p−1dμr

)− 1+ Q
p

p
dr ≤ γ −1

s under
1

Q
+ 1

p
≤ 1.

��
Corollary 3 Let 1 < p < Q.

(i) For almost all t ≥ 0 and any f ∈ C∞
0 (Gn

α)with its level setLt = {g ∈ G
n
α : | f (g)| > t}

one has:
(
Pα(Lt )

) p
p−1 ≤

[

− d

dt
|Lt |
](∫

Et
|∇α f |p−1dμτ

) 1
p−1

. (4)

(ii) The inequality

capα,p(K ) ≥ inf
f ∈B(K )

⎛

⎝−
∫ 1

0

(d|Lτ |
dτ

) dτ
(
Pα(Lτ )

) p
p−1

⎞

⎠

1−p

is valid for any compact subset K of G
n
α .
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(iii) LetC (r)denote the infimum Pα(E) for all boundedopen sets E inG
n
α withC

∞ boundary
such that |E | ≥ r . Then the inequality

capα,p(K ) ≥
⎛

⎝

∫ ∞

|K |
dr

(
C (r)

) p
p−1

⎞

⎠

1−p

is valid for any compact set K of G
n
α .

Proof (i) It is enough to check (4). In fact, a combination of (4) and (iv) of Theorem 2 derives
that (ii) is valid and (iii) can be deduced from (ii).

By Hölder’s inequality, for almost all t and T with t < T ,

(∫

Lt\LT

| f |p−1|∇α f |dg
) p

p−1 ≤
(∫

Lt\LT

| f |pdg
)(∫

Lt\LT

|∇α f |pdg
) 1

p−1

.

Using the co-area formula (cf. Theorem 5.2 in [21]) on the left side and another co-area
formula (cf. Theorem 4.2 in [40]) on the right side, we have

(∫ T

t
τ p−1Pα(Lτ )dτ

) p
p−1

≤
(∫

Lt\LT

| f |pdg
)(∫ T

t
dτ
∫

Eτ

|∇α f |p−1dμτ

) 1
p−1

.

We divide both sides of the above inequality by (T − t)
p

p−1 and estimate the first factor on
the right-hand side to obtain

(∫ T

t
τ p−1Pα(Lτ )

dτ

T − t

) p
p−1

≤ T p |Lt\LT |
T − t

(
1

T − t

∫ T

t
dτ
∫

Eτ

|∇α f |p−1dμτ

)

.

Passing to the lower limit as T → t and via lower semicontinuity property (3), we conclude
that the left side of (4) is valid for almost t > 0. Using Theorem 5.2 in [21] again, we know
that Et is an Xα-Caccioppoli set for a.e. t ∈ R. The right side of (4) is the analogue of the
Lebesgue density theorem and the weak convergence for Radon measures. ��
1.5 Equilibrium potentials for functional capacities

A function f on G
n
α is called p-quasicontinuous provided that for each ε > 0 there exists an

open set U such that f |Gn
α\U is continuous and capα,p(U ) < ε. The following proposition

reveals the continuous property of any Vp-function; see [24,30] for the cases ofmetric spaces.

Proposition 4 For any f ∈ Vp there exists a function h ∈ Vp such that f (g) = h(g) for
almost every g ∈ G

n
α and h is p-quasicontinuous. Denote by f ∗ the representative of f ,

which is defined by

f ∗(g) =
{
limr→0

1
|B(g,r)|

∫

B(g,r) f (g′)dg′ if the limit exists;
0 otherwise.

(5)

Then f ∗ is also p-quasicontinuous if f ∈ Vp, and the limit in (5) exists capα,p a.e. on G
n
α .

Lemma 5 Assume that the sequence { fk}∞k=1 is precompact on Vp and every function in
the sequence is p-quasicontinuous. Then there exists a subsequence { fki }∞i=1 and a p-
quasicontinuous function f ∈ Vp such that for each δ > 0 there exists an open set U
with the properties fki → f uniformly on Gn

α\U and capα,p(U ) < δ.
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By the above lemma we can easily extract a subsequence such that fki → f (i → ∞)

for capα,p a.e. g ∈ G
n
α . We omit the proof of Lemma 5, while [8,24,29] and [43] have

investigated the quasicontinuity on metric spaces.

Lemma 6 (cf. [41]) Let ξ, η be any two vectors in R
n. Then

(i) For p ≥ 2,

(|ξ |p−2ξ − |η|p−2η)(ξ − η) ≥ 21−p|ξ − η|p.
(ii) For 1 < p ≤ 2,

(|ξ | + |η|)2−p(|ξ |p−2ξ − |η|p−2η)(ξ − η) ≥ (p − 1)|ξ − η|2.
Denote by V ′

p the dual space of Vp . Then we define an operator A from Vp into V ′
p by

(A(u), v) =
∫

Gn
α

|∇αu|p−2∇αu · ∇αvdg ∀ u, v ∈ Vp.

In fact, the operator A is the p-Laplacian-type operator on the Grushin space which is
investigated in [6,7]. Moreover, if

DE = { f ∈ Vp : f ∗(g) ≥ 1 f or capα,p a.e. g ∈ G
n
α},

then we are led to find u ∈ DE such that

(A(u), v − u) =
∫

Gn
α

|∇αu|p−2∇αu · ∇α(v − u)dg ≥ 0 ∀ v ∈ DE . (6)

Equation (6) is closely related to the p-capacity, so it is a question which deserves a serious
consideration on the Grushin space. Moreover, the coming-up-next lemma can be verified
by Lemmas 5–6; see [49, Lemma 3.4] for the Euclidean case.

Lemma 7 Assume that p > 1. Then there exists a unique solution to (6).

Lemma 8 Let p > 1. Then u ∈ DE is a solution of (6) if and only if
∫

Gn
α

|∇αu|pdg = inf

{∫

Gn
α

|∇αv|pdg : v ∈ DE

}

. (7)

Proof If u ∈ DE is a solution of (6), then we have, for any v ∈ DE ,
∫

Gn
α

|∇αu|p dg ≤
∫

Gn
α

|∇αu|p−2∇αu · ∇αv dg

≤ 1

2

∫

Gn
α

|∇αu|pdg + 1

2

∫

Gn
α

|∇αu|p−2|∇αv|2dg.

Furthermore, by the Hölder inequality,
∫

Gn
α

|∇αu|pdg ≤
∫

Gn
α

|∇αu|p−2|∇αv|2dg

≤
(∫

Gn
α

|∇αu|pdg
)1− 2

p
(∫

Gn
α

|∇αv|pdg
) 2

p

,

whence (7) is valid.
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Conversely, assume that (7) holds. Fix v ∈ DE and set φ = v − u. Let 0 < ε ≤ 1. Then
it is easy to see that u + εφ ∈ DE . Therefore,

∫

Gn
α

|∇αu|pdg ≤
∫

Gn
α

|∇α(u + εφ)|pdg

and moreover,
∫

Gn
α

|∇α(u + εφ)|p − |∇αu|p
ε

dg ≥ 0.

Since

lim
ε→0

|∇α(u + εφ)|p − |∇αu|p
ε

= p|∇αu|p−2∇αu · ∇αφ

holds for a.e. g ∈ G
n
α , the Lebesgue dominated convergence theorem is used to derive that

u ∈ DE is a solution of (6). In fact, if we choose the desired majorant

ϕ = |∇αφ||∇αu|p−1 + |∇αφ|p,
then we can utilize u, φ ∈ Vp to check

|∇α(u + εφ)|p − |∇αu|p
ε

≤ Cϕ & ϕ ∈ L1(Gn
α).

��
Theorem 9 Let p > 1. If u is a solution of (6), then

capα,p(E) =
∫

Gn
α

|∇αu|pdg.

Such u is called an equilibrium potential for capα,p(E).

Proof If f ∈ Kp
E , then it follows from (5) that f ∗ ≥ 1E capα,p-almost everywhere on Gn

α .
Thus, Kp

E ⊆ DE . By Lemma 8, we have
∫

Gn
α

|∇αu|pdg ≤ capα,p(E).

We next consider the reverse inequality. Assume that u is a solution of (6). Define a function
θ(t) as follows:

θ(t) =
⎧
⎨

⎩

2 if t ≥ 1;
1 + t if 0 < t < 1;
1 if t ≤ 0.

Clearly, ∫

Gn
α

|∇αθ(u)|pdg ≤
∫

Gn
α

|∇αu|pdg. (8)

It is easy to check that (θ(u))∗ ≥ 1 capα,p-almost everywhere on Gn
α . Moreover,

θ(u) ∈ DE ∩ {u : u ≥ 0}.
If we can show that Kp

E is dense in DE ∩ {u : u ≥ 0}, then it follows from (8) that

capα,p(E) ≤
∫

Gn
α

|∇αu|pdg.

123



684 Y. Liu, J. Xiao

Therefore, fix u ∈ DE with u ≥ 0. By Proposition 4, u∗ is p-quasicontinuous. So for each
ε > 0 there is a open set Uε such that

capα,p(Uε) < ε

and u∗ |Gn
α\Uε

is continuous. Denote by

Bε = {g ∈ G
n
α\Uε : u∗ > 1 − ε}.

By the above facts, Bε is a relatively open subset of G
n
α\Uε; thus, there exists an open set

Mε such that

Bε = Mε ∩ {Gn
α\Uε}.

Without losing generality, we may assume that u∗(g) ≥ 1E for every g ∈ G
n
α . The definition

of p-capacity implies that there exists a function vε ∈ Vp such that
∫

Gn
α

|∇αvε|p dg < ε with vε ≥ 0 & Uε ⊆ I nt{g : vε(g) ≥ 1}.

If

uε = (1 − ε)−1u∗ + vε,

then it is the function which we are looking for. It is easy to check that uε ∈ Kp
E and uε → u

in Vp as ε → 0. This completes the proof. ��

2 Geometric estimates for functional capacities

2.1 Isoperimetric and isocapacitary inequalities

These inequalities are presented in the following assertion.

Theorem 10 Let
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α > 0 & Q = h + (α + 1)k;

c(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α+1
α+2

(
2
∫ π

0 sinα θdθ
)− 1

α+1 as h = 1 = k
|Eα |

(Pα(Eα))
Q

Q−1
= chk

∫ 1
0 f (r)kdr

k

(

chk
∫ 1
0

√
f ′(r)2+r2α f (r)k−1dr

) Q
Q−1

as h = 1 < k;

chk = hkπ
h
2 π

k
2

�(1+ h
2 )�(1+ k

2 )
& f (r) = ∫ π/2

arcsin r sin
α+1(t)dt.

(i) There exists a constant c(α) > 0 such that for any measurable set E ⊆ G
n
α with finite

measure
| E |≤ c(α)(Pα(E))

Q
Q−1 . (9)

When h = 1, the equality holds in (9) for the isoperimetric set

Eα =
{

(x, y) ∈ G
n
α : |y| <

∫ π
2

arcsin|x |
sinα+1(t)dt, |x | < 1

}

.

Moreover, the isoperimetric sets are unique up to dilations δλ and vertical translations
L y′(x, y) = (x, y + y′) ∀ y′ ∈ R

k .
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(ii) If 1 ≤ p < q < Q, then

(
capα,p(·)

) 1
Q−p ≤ c(p, q, α)

(
capα,q(·)

) 1
Q−q ,

where

c(p, q, α) =
(
q − p

Q − q
· Q
p

+ 1

) p
Q−p

(
(
c(α)

) Q−1
Q

q(Q − 1)

Q − q

) Q(q−p)
(Q−q)(Q−p)

.

(iii) For any compact set K ⊆ G
n
α ,

|K | Q−p
Q ≤ (c(α)

) (Q−1)p
Q

(
Q − p

Q(p − 1)

)−(p−1)

capα,p(K ) ∀ p ∈ (1, Q).

(iv) For any compact set K ⊆ G
n
α ,

capα,1(K ) = inf
g⊇K

Pα(g),

where the infimum is taken over all bounded open sets g with C∞ boundary in G
n
α

containing K .

Proof (i) This is exactly the isoperimetric inequality on G
n
α presented in [17,39].

(ii) For any compact set K ⊆ G
n
α , let g = f δ with the positive constant δ to be fixed later,

where

f ∈ A(K ) = { f ∈ C∞
0 (Gn

α) : f ≥ 1K }.
Then g ∈ A(K ). Moreover, an application of ∇αg = δ f δ−1∇α f deduces

∫

Gn
α

| ∇αg |p dg = δ p
∫

Gn
α

| f |(δ−1)p| ∇α f |p dg

≤ δ p
( ∫

Gn
α

| ∇α f |q dg
) p

q
( ∫

Gn
α

| f |p(δ−1)( qp )′ dg
)1− p

q
.

Note that

p(δ − 1)

(
q

p

)′
= p(δ − 1)

q
p

q
p − 1

= qQ

Q − q
.

At this time,

δ = q − p

Q − q
· Q
p

+ 1.

Therefore, by (15),

( ∫

Gn
α

| f |p(δ−1)( qp )′ dg
)1− p

q =
[
(∫

Gn
α

| f | Qq
Q−q dg

) Q−q
Qq

] Q(q−p)
Q−q

≤
((
c(α)

) Q−1
Q

q(Q − 1)

Q − q
‖ ∇α f ‖q

) Q(q−p)
Q−q

.
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The above inequality implies
∫

Gn
α

| ∇αg |p dg

≤
(
q − p

Q − q
· Q
p

+ 1

)p ((
c(α)

) Q−1
Q

q(Q − 1)

Q − q

) Q(q−p)
Q−q ‖ ∇α f ‖p

q

(
‖ ∇α f ‖q

) Q(q−p)
Q−q

=
(
q − p

Q − q
· Q
p

+ 1

)p ((
c(α)

) Q−1
Q

q(Q − 1)

Q − q

) Q(q−p)
Q−q ‖ ∇α f ‖

q(Q−p)
Q−q

q .

Hence

capα,p(K ) ≤
(
q − p

Q − q
· Q
p

+ 1

)p ((
c(α)

) Q−1
Q

q(Q − 1)

Q − q

) Q(q−p)
Q−q (

capα,q(K )
) Q−p
Q−q .

This implies the desired inequality

(
capα,p(K )

) 1
Q−p ≤

( q−p
Q−q · Q

p + 1
) p
Q−p

((
c(α)

) Q−1
Q q(Q−1)

Q−q

) Q(p−q)
(Q−q)(Q−p)

(
capα,q(K )

) 1
Q−q .

(iii) Via isoperimetric inequality (9), we have

Pα(K ) ≥ (c(α)
)− Q−1

Q |K | Q−1
Q .

Using (iii) of Corollary 3 and noticing

C (r) = (c(α)
)− Q−1

Q r
Q−1
Q ,

we obtain

capα,p(K ) ≥ (c(α)
)− (Q−1)p

Q

(
Q − p

Q(p − 1)

)p−1

|K | Q−p
Q .

(iv) Let f ∈ B(K ). Using the coarea formula in Theorem 5.2 of [21], we have
∫

Gn
α

|∇α f |dg =
∫ 1

0
Pα{g ∈ G

n
α : | f (g)| ≥ t}dt ≥ inf

g⊇K
Pα(g).

Conversely, suppose that g is a bounded open set with C∞ boundary and containing K .
Let

d(g) = distRn (g, G
n
α\g) & gt = {g ∈ G

n
α : d(g) > t}.

Let ϕ denote a nondecreasing function, infinitely differentiable on [0,∞), equal to unity
for d ≥ 2ε and equal to zero for d ≤ ε, where ε is a sufficiently small positive number.
Denote by uε(g) = ϕ(d(g)). Since uε ∈ B(K ), we can use the coarea formula in the
Euclidian context to obtain

capα,1(K ) ≤
∫

Gn
α

|∇αuε(g)| dg =
∫ 2ε

0
ϕ′(t)

∫

∂gt

|∇αd(g)|
|∇Rn d(g)| dH

n−1dt.

Upon letting ε → 0, we conclude that the right side of the above inequality tends
to Pα(g) by Proposition 2.1 in [17] and the proof of Theorem 2.3 in [21], and so
capα,1(K ) ≤ Pα(g).

��
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2.2 Functional capacity of a ball

This is helpful and useful for a better understanding of the geometry of capα,p(·).
Theorem 11 Let α > 0 and 1 ≤ p < ∞. Suppose g0 = (0, y0) ∈ G

n
α.

(i) capα,p(B(g0, r)) =
⎧
⎨

⎩

Q
(
Q−p
p−1

)p−1
σpr Q−p as 1 < p < Q;

0 as p ≥ Q,

where σp = ∫B(g0,1)
| ∇αρ(g0, g) |p dg.

(ii) Pα(B(g0, r)) = chk
2(1+α)k

�( α+h
2α+2 )�( k2 )

�(
Q+α
2α+2 )

r Q−1, where chk is the constant appearing in The-

orem 10.

(iii) If h = 1, then capα,1(B̄(g0, r)) = capα,1(B(g0, r)) = c1k
2(1+α)k

√
π�( k2 )

�( k+1
2 )

r Q−1.

Proof (i) This follows from [7].
(ii) Firstly, we show that

Pα(B(o, r)) = 2π

1 + α
r Q−1 & Pα(B̄(o, r)) = 2π

1 + α
r Q−1

hold, where o = (0, 0) ∈ G
n
α.

Note that
{
B(o, r) = {(x, y) ∈ G

n
α : |y| < φ(|x |)};

φ(|x |) = (1 + α)−1
√
r2α+2 − |x |2α+2.

So, via [17] we have

Pα(B(o, r)) = chk

∫ r

0
(φ′(s)2 + s2α)

1
2 sh−1φ(s)k−1ds

= chkr Q−1

(1 + α)k−1

∫ 1

0
sα+h−1(1 − s2α+2)

k
2−1ds

= chk
2(1 + α)k

�( α+h
2α+2 )�( k2 )

�(
Q+α
2α+2 )

r Q−1.

Since B(o, r) and B̄(o, r) are equivalent,

Pα(B̄(o, r)) = Pα(B(o, r)) = chk
2(1 + α)k

�( α+h
2α+2 )�( k2 )

�(
Q+α
2α+2 )

r Q−1.

By [17] again, we know that Pα(·) is invariant under a vertical translation Ly with y ∈ R
k .

Therefore,
⎧
⎪⎨

⎪⎩

Pα(B((0, y), r)) = chk
2(1+α)k

�( α+h
2α+2 )�( k2 )

�(
Q+α
2α+2 )

r Q−1

Pα(B̄((0, y), r)) = chk
2(1+α)k

�( α+h
2α+2 )�( k2 )

�(
Q+α
2α+2 )

r Q−1
∀ y ∈ R

k .

(iii) Theorem 1(iii) implies that it suffices to show that

capα,1(B(o, r)) = c1k
2(1 + α)k

√
π�( k2 )

�( k+1
2 )

r Q−1.
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On the one hand, by Theorem 10(iv) and Theorem 11(ii) we conclude that if h = 1 then

capα,1(B(o, r)) ≤ Pα(B(o, r)) = c1k
2(1 + α)k

√
π�( k2 )

�( k+1
2 )

r Q−1.

On the other hand, for any set A ⊆ G
n
α with its interior int A ⊇ B(o, r) it is sufficient to

prove that

Pα(B(o, r)) ≤ Pα(A).

As in [17], we consider the following functions �,� : R
n → R

n :

�(ξ, η) = (sgn(ξ)|(α + 1)ξ | 1
α+1 , η

)
& �(x, y) =

(

sgn(x)
|x |α+1

α + 1
, y

)

.

Clearly, the function � is a homeomorphism and � is its inverse. Let B̃ = �(B(o, r)). Then

it is easy to see that B̃ is an Euclidean ball inR
n with the radius rα+1

α+1 . Via [17, Proposition 2.5],
we know

P(B̃) = Pα(B(o, r)),

where P(·) is the Euclidean perimeter of a set in R
n . Also,

P(�(A)) = Pα(A).

Clearly,

B̃ ⊆ �(A) & P(B̃) ≤ P(�(A)),

so

Pα(B(o, r)) ≤ Pα(A).

Consequently,

capα,1(B(o, r)) ≤ Pα(B(o, r)) = c1k
2(1 + α)k

√
π�( k2 )

�( k+1
2 )

r Q−1.

��

The following rough estimates for balls (related to the different metrics) can be obtained
and may be usually sufficient for applications.

Theorem 12 Let 1 ≤ p < Q.

(i) There are two positive constants C1 and C2 depending only on Q and p such that

C1|Bα(g, r)| Q−p
Q ≤ capα,p(Bα(g, r)) ≤ C2r

−p|Bα(g, r)| ∀ g ∈ G
n
α.

(ii) There are two positive constants C3 and C4 depending only on Q and p, such that

C3|B(g, r)| Q−p
Q ≤ capα,p(B(g, r)) ≤ C4r

−p|Bα(g, r)| ∀ g = (x, y) ∈ G
n
α.
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Proof (i) From Theorem 3.3 in [15] (cf. [20,22]), we can choose the cutoff function u ∈
C∞
0 (Bα(g, 2r)) satisfying

u = 1 on Bα(g, r) and |∇αu(h)| ≤ Cr−1 a.e. h ∈ G
n
α.

Then the definition of p-capacity and the doubling property derive

capα,p(Bα(g, r)) ≤
∫

Gn
α

|∇αu(h)|pdh ≤ Cr−p|Bα(g, 2r)| ≤ C2r
−p|Bα(g, r)|.

On the other hand, for any u ∈ C∞
0 (Gn

α) with u = 1 in a neighborhood of Bα(g, r) and
0 ≤ u ≤ 1 on Gn

α , using the Sobolev inequality in Proposition 17 we have

|Bα(g, r)| Q−p
Qp ≤

( ∫

Bα(g,r)
|u| Qp

Q−p dh
) Q−p

Qp ≤ p(Q − 1)

Q − p

(
c(α)

) Q−1
Q
( ∫

Gn
α

| ∇αu |p dg
) 1

p
.

A further application of the definition of p-capacity derives

C1|Bα(g, r)| Q−p
Q ≤ capα,p(Bα(g, r)),

where

C1 =
(
p(Q − 1)

Q − p
(c(α))

Q−1
Q

)−p

.

(ii) By the relation between dα and ρ we know that for any point g ∈ G
n
α

B(g, r) ⊆ Bα(g,Cr),

where the constantC > 1 is independent of g. Then we apply the monotonicity of p-capacity
to obtain

capα,p(B(g, r)) ≤ capα,p(Bα(g,Cr)) ≤ C4r
−p|Bα(g, r)|.

Utilizing the Sobolev inequality in Proposition 17 again, we have, for any u ∈ A(B(g, r)),

|B(g, r)| Q−p
Qp ≤

(∫

B(g,r)
|u| Qp

Q−p dh

) Q−p
Qp ≤ p(Q − 1)

Q − p

(
c(α)

) Q−1
Q

(∫

Gn
α

| ∇αu |p dg

) 1
p

.

Using the definition of p-capacity, we get

C3|B(g, r)| Q−p
Q ≤ capα,p(B(g, r)),

where

C3 =
(
p(Q − 1)

Q − p

(
c(α)

) Q−1
Q

)−p

.

��
If r > β|x | with β > 1, then |x | + r ∼ r , and hence it is easy to deduce

Corollary 13 Let 1 ≤ p < Q.

(i) There are two positive constants C ′
1 and C ′

2 depending only on Q and p such that if
r > β|x | with β > 1 then

C ′
1r

−p|Bα(g, r)| ≤ capα,p(Bα(g, r)) ≤ C ′
2r

−p|Bα(g, r)| ∀ g = (x, y) ∈ G
n
α.
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(ii) There are two positive constants C ′
3 and C ′

4 depending only on Q and p, such that if
r > β|x | with β > 1 then

C ′
3|B(g, r)| Q−p

Q ≤ capα,p(B(g, r)) ≤ C ′
4|B(g, r)| Q−p

Q ∀ g = (x, y) ∈ G
n
α.

2.3 1-Capacity versus BV-capacity

The 1-capacity has a close relationship with the BV-capacity. In what follows, we prove their
equivalence by two-sided estimates. Similar arguments on the metric spaces have appeared
in [27].

Theorem 14 For any compact set E ⊆ G
n
α , there exists a constant C such that

cap(E,BV(Gn
α)) ≤ capα,1(E) ≤ Ccap(E,BV(Gn

α)).

Proof From the definition of 1-capacity and BV-capacity it follows that

cap(E,BV(Gn
α)) ≤ capα,1(E).

We next show that

capα,1(E) ≤ Ccap(E,BV(Gn
α))

holds. Assume that cap(E,BV(Gn
α)) < ∞. Let ε > 0 and choose a function u ∈

A(E,BV(Gn
α)) such that

‖ Xαu ‖ (Gn
α) < cap(E,BV(Gn

α)) + ε.

By the coarea formula again (cf. Theorem 5.2 in [21]) and the Cavalieri principle,

‖ Xαu ‖ (Gn
α) =

∫ 1

0
Pα({g ∈ G

n
α : u(g) > t})dt

and there exists a t0 ∈ (0, 1) such that

Pα({g ∈ G
n
α : u(g) > t0}) < cap(E,BV(Gn

α)) + ε.

Applying isoperimetric inequality (9) derives

|{g ∈ G
n
α : u(g) > t0}| < ∞.

From Theorem 3.1 in [31], we obtain a collection of disjoint balls Bα(gi , ri ), i = 1, 2, . . . ,
such that

{g ∈ G
n
α : u(g) > t0} ⊆ ∪∞

i=1Bα(gi , 5ri )

and
∞∑

i=1

|Bα(gi , 5ri )|
5ri

< CPα({g ∈ G
n
α : u(g) > t0}).

Using Theorem 1 and Theorem 12, we have

capα,1(E) ≤
∞∑

i=1

capα,1(Bα(gi , 5ri ))

≤ C
∞∑

i=1

Bα(gi , 5ri )

5ri

≤ C(cap(E,BV(Gn
α)) + ε).
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Letting ε → 0, we obtain the desired result. ��
2.4 Relationship with Hausdorff capacity

The Hausdorff capacity and the Hausdorff measure on R
n and even on some metric spaces

have been investigated in, e.g., [1,4,14,27,50]. Similarly, we can define the Hausdorff mea-
sure and capacity on G

n
α .

For 1 ≤ p < Q the Hausdorff capacity H p
α (E) of E ⊆ G

n
α with respect to the metric dα

is defined by
⎧
⎪⎪⎨

⎪⎪⎩

inf
{ ∞∑
i=1

|Bα(gi ,ri )|
r pi

: E ⊆ ∪∞
i=1Bα(gi , ri )

}
if 1 ≤ p < h + k;

inf
{ ∞∑
i=1

|Bα(gi , ri )|
Q−p
Q : E ⊆ ∪∞

i=1Bα(gi , ri )
}

if h + k ≤ p < Q.

Moreover, the Hausdorff measure Hp
α(E) of E ⊆ G

n
α is defined by

⎧
⎪⎪⎨

⎪⎪⎩

supδ>0 inf
{ ∞∑
i=1

|Bα(gi ,ri )|
r pi

: E ⊆ ∪∞
i=1Bα(gi , ri ), ri ≤ δ

}
if 1 ≤ p < h + k;

supδ>0 inf
{ ∞∑
i=1

|Bα(gi , ri )|
Q−p
Q : E ⊆ ∪∞

i=1Bα(gi , ri ), ri ≤ δ
}
if h + k ≤ p < Q.

It is obvious that

H p
α (E) ≤ Hp

α(E) ∀ E ⊆ G
n
α.

It should be noted that H p
α (E) and Hp

α(E) are exactly the Q − 1-dimensional Hausdorff
capacity and measure in [33] when p = 1. Moreover, unlike the case of Euclidean spaces,
the Hausdorff capacity and measure on G

n
α are defined by different forms and depend on the

range of the index p.

Theorem 15 Let 1 ≤ p < Q.

(i) If p ∈ [1, h + k), then for any g ∈ G
n
α and r > 0 there exists a positive constant C

such that
Cr−p|Bα(g, r)| ≤ H p

α (Bα(g, r)) ≤ r−p|Bα(g, r)|. (10)

(ii) If p ∈ [h + k, Q), then for any g ∈ G
n
α and r > 0 there exists a positive constant C

such that
C |Bα(g, r)| Q−p

Q ≤ H p
α (Bα(g, r)) ≤ |Bα(g, r)| Q−p

Q . (11)

(iii) If p ∈ [1, Q), there exists a positive constant C such that

capα,p(E) ≤ CH p
α (E) (12)

holds for any compact set E ⊆ G
n
α .

(iv) There exist two positive constants C5 and C6 such that

C5H
1
α (E) ≤ capα,1(E) ≤ C6H

1
α (E) (13)

holds for any compact set E ⊆ G
n
α .

Proof (i) It is obvious that

H p
α (Bα(g, r)) ≤ r−p|Bα(g, r)|
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by the definition of Hausdorff capacity. We only consider the lower bound. For any
collection of balls {Bα(g j , r j )} covering Bα(g, r) with r j ≤ r , j = 1, 2, . . ., then

∞∑

j=1

|Bα(g j , r j )|
r pj

≥
∞∑

j=1

|Bα(g j , r j )|
r p

≥ |Bα(g, r)|
r p

.

In what follows, suppose first that there exists j0 such that r j0 > r . Without loss of
generality, we may assume that

Bα(g j , r j ) ∩ Bα(g, r) 
= ∅ ∀ j.

Then

Bα(g, r j0) ⊆ Bα(g j0 , 3r j0).

If 1 ≤ p < h + k and g = (x, y), using (2) we have

∞∑

j=1

|Bα(g j , r j )|
r pj

≥ |Bα(g j0 , r j0)|
r pj0

≥ C
|Bα(g j0 , 3r j0)|

r pj0

≥ C
|Bα(g, r j0)|

r pj0

≥ C ′rh+k−p
j0

(|x | + r j0)
αk

≥ C ′rh+k−p(|x | + r)αk

≥ C ′′ |Bα(g, r)|
r p

.

In short,

H p
α (Bα(g, r)) ≥ Cr−p|Bα(g, r)|,

where C = min{C ′′, 1}. This completes the proof of (10).
(ii) Clearly,

H p
α (Bα(g, r)) ≤ |Bα(gi , ri )|

Q−p
Q .

An application of Theorem 12(i) and Theorem 15(iii) validates (11).
(iii) Take any covering balls {Bα(gi , ri )} such that E ⊆ ∪∞

i=1Bα(gi , ri ). By Theorem 1(i)
and (vii) and Theorem 12 we have

capα,p(E) ≤
∞∑

i=1

capα,p(Bα(gi , ri )) ≤ C
∞∑

i=1

r−p
i |Bα(gi , ri )|.

Therefore, (12) holds true by the definition of Hausdorff capacity.
(iv) We combine (iii) in this theoremwith Theorem 14 and [31, Theorem 3.6] to derive (13).

��
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3 Applications to Sobolev-type imbeddings

3.1 Sobolev-type inequalities

The first is the endpoint case.

Proposition 16 For any f ∈ C∞
0 (Gn

α) one has

( ∫

Gn
α

| f | Q
Q−1 dg

) Q−1
Q ≤ (c(α)

) Q−1
Q

∫

Gn
α

| ∇α f | dg. (14)

The constant
(
c(α)

) Q−1
Q in the above inequality is sharp when h = 1.

Proof Assume that 0 ≤ f ∈ C∞
0 (Gn

α). By the coarea formula (cf. Theorem 5.2 in [21]) and
Theorem 10, we have

∫

Gn
α

|∇α f |dg =
∫ ∞

0
Pα(Et ) dt ≥ (c(α)

) 1−Q
Q

∫ ∞

0
|Et |1−

1
Q dt,

where

Et = ({g ∈ G
n
α : f (g) > t}).

Let

ft = min{t, f } & χ(t) =
(∫

Gn
α

f
Q

Q−1
t dg

)1− 1
Q ∀ t ∈ R.

It is easy to see that

lim
t→∞ χ(t) =

(∫

Gn
α

| f | Q
Q−1 dg

)1− 1
Q

.

We can check that χ(t) is locally Lipschitz and χ ′(t) ≤ |Et |1−
1
Q , a.e. t . Hence,

(∫

Gn
α

| f | Q
Q−1 dg

)1− 1
Q =

∫ ∞

0
χ ′(t)dt ≤

∫ ∞

0
|Et |1−

1
Q dt ≤ (c(α)

) Q
Q−1

∫

Gn
α

|∇α f |dg.

Following [39] we prove the sharpness of the constant c(α)when h = 1, where we assume
α ≥ 1 for technical reasons. We take a bounded open set E ⊆ G

n
α with boundary of class

C2. For any ε > 0 let ρ(p) = dα(p, E) and

fε(p) =

⎧
⎪⎨

⎪⎩

1 if p ∈ Ē;
1 − ε−1ρ(p) if 0 < ρ(p) < ε;
0 if ρ(p) ≥ ε.

Denote by

Eε = {g ∈ G
n
α : ρ(p) < ε}.

By Theorem 5.1 in [40], we obtain the identity

lim
ε→0

ε−1|Eε\E | = Pα(E).
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Applying the Sobolev inequality to fε and letting ε → 0, we have

|E | Q−1
Q = lim

ε→0
‖ fε‖ Q

Q−1

≤ (
c(α)

) Q−1
Q

(

lim
ε→0

ε−1
∫

Eε\E
|∇αρ|dp

)

= (
c(α)

) Q−1
Q

(

lim
ε→0

ε−1|Eε \ E |
)

= Pα(E),

where we have used the Eikonal equation and the coarea formula (cf. Theorem 5.2 in [21]).
Thus we get isoperimetric inequality (9) which implies the sharpness of (14). ��

The second is the 1 < p < Q Sobolev inequality on Grushin spaces.

Proposition 17 Let 1 < p < Q. For any f ∈ C∞
0 (Gn

α) one has

(∫

Gn
α

| f | Qp
Q−p dg

) Q−p
Qp

≤ (c(α)
) Q−1

Q
p(Q − 1)

Q − p

(∫

Gn
α

| ∇α f |p dg

) 1
p

, (15)

where the constant c(α) appears in Theorem 10.

Proof For some γ > 1 to be fixed later, we obtain, via (14) and the Hölder inequality,

(∫

Gn
α

| f | γ Q
Q−1 dg

) Q−1
Q

≤ γ
(
c(α)

) Q−1
Q

∫

Gn
α

| f |γ−1| ∇α f | dg

≤ γ
(
c(α)

) Q−1
Q

(∫

Gn
α

| f | p(γ−1)
p−1

)1− 1
p
(∫

Gn
α

| ∇α f |p dg

) 1
p

.

Choosing

γ = p(Q − 1)

Q − p

and noting

γ − 1 = Q(p − 1)

Q − p
,

we conclude that (15) holds. ��
3.2 Splitting Sobolev-type inequalities

In order to split (14)–(15) via functional capacities, we need the following assertion.

Theorem 18 (i) The analytic inequality

‖ f ‖ Q
Q−1

≤ (c(α)
) Q−1

Q

(∫ ∞

0

(
capα,1({g ∈ G

n
α : | f (g)| ≥ t})) Q

Q−1 dt
Q

Q−1

) Q−1
Q

(16)

for any Lebesgue measurable function f with compact support in G
n
α , is equivalent to,

the geometric inequality

|M | Q−1
Q ≤ (c(α)

) Q−1
Q capα,1(M) (17)
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for any compact domain M ⊆ G
n
α .

(ii) Inequalities (16) and (17) are true. Moreover, they are sharp only when h = 1.

Proof In what follows, we always adopt the short notation:


t ( f ) = {g ∈ G
n
α : | f (g)| ≥ t}

for a function f defined on G
n
α and a number t > 0.

(i) Given a compact domain M ⊆ G
n
α, let f = 1M . Then

‖ f ‖ Q
Q−1

= |M | Q−1
Q

and


t ( f ) =
{

M, if t ∈ (0, 1],
∅, if t ∈ (1,∞).

Hence
∫ ∞

0

dt
Q

Q−1

(capα,1(
t ( f )))
Q

1−Q

=
(∫ 1

0
+
∫ ∞

1

)
dt

Q
Q−1

(capα,1(
t ( f )))
Q

1−Q

= (capα,1(M))
Q

Q−1 .

Therefore, (16) implies (17).
Conversely, we prove that (17) implies (16). Suppose that (17) holds for any compact

subdomain of G
n
α . For t > 0 and f , a Lebesgue measurable function with compact support

in G
n
α , we use the definition of the Lebesgue Q

Q−1 -integral on a given metric space and (17)
to get

‖ f ‖
Q

Q−1
Q

Q−1
=
∫ ∞

0
|
t ( f )|dt

Q
Q−1 ≤ (c(α)

) Q−1
Q

∫ ∞

0

(
capα,1(
t ( f ))

) Q
Q−1 dt

Q
Q−1 .

(ii) Thanks to the equivalence between (16) and (17), it suffices to prove that (17) is valid.
In fact, by application of the definition of capα,1(·) to (14) we have

|M | Q−1
Q ≤ (c(α)

) Q−1
Q inf{‖ ∇α f ‖1: f ∈ C∞

0 (Gn
α), f ≥ 1M },

namely, (17) holds true.
In the sequel we consider the sharpness of (17) when h = 1. Via (17) and (19) we have

|M | Q−1
Q ≤ (c(α)

) Q−1
Q capα,1(M) ≤ (c(α)

) Q−1
Q Pα(M).

Choose M = Eα as given in Theorem 10. Since Eα is the isoperimetric set, it follows from
Theorem 10 that

|Eα| Q−1
Q = (c(α)

) Q−1
Q capα,1(Eα) = (c(α)

) Q−1
Q Pα(Eα).

This implies the sharpness of (17). ��
Now, (14) can be separated according to the following formulation.

Theorem 19 (i) The analytic inequality

(∫ ∞

0

(
capα,1({g ∈ G

n
α : | f (g)| ≥ t})) Q

Q−1 dt
Q

Q−1

) Q−1
Q ≤‖ ∇α f ‖1 ∀ f ∈ C1

0(G
n
α)

(18)
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is equivalent to the geometric inequality

capα,1(M) ≤ Pα(M) (19)

for any compact domain M ⊆ G
n
α with C1 boundary.

(ii) Inequalities (18) and (19) are true. Moreover, they are sharp only when h = 1.

Proof (i) For δ > 0 and M ⊆ G
n
α (a compact domain with C1 boundary), let R > 0 be such

that M ⊆ Bα(o, R), where o = (0, 0) ∈ G
n
α. Choose δ > 0 such that

2δ < distRn (M, ∂Bα(o, R)),

where distRn (·, ∂Bα(o, R)) represents the Euclidean distance from M to Bα(o, R).
Define the Lipschitz function

fδ(g) =
{
1 − δ−1distRn (g, M) if distRn (g, M) < δ,

0 if distRn (g, M) ≥ δ.

Let Aδ be the intersection of Bα(o, R) with a tubular neighborhood of M of radius δ. If (18)
holds, then

M ⊆ 
t ( fδ) ∀ t ∈ [0, 1]

is applied to derive

capα,1(M) ≤
(∫ 1

0

(
capα,1(
t ( fδ))

) Q
Q−1 dt

Q
Q−1

) Q−1
Q

≤‖ ∇α fδ ‖1 .

Meanwhile, using the coarea formula given in Theorem 5.2 in [21] yields

‖ ∇α fδ ‖1 ≤ 1

δ

∫

Aδ

|∇αdistRn (g, M)|dxdy

≤ 1

δ

∫ δ

0

∫

{g∈Bα(o,R): distRn (g,M)=s}
|∇αdistRn (·, M)|
|∇RndistRn (·, M)|dH

1ds,

whereHn−1 is the (n−1)-dimensional Hausdorff measure inR
n . Letting δ → 0we conclude

that the right side of the above inequality will tend to Pα(M) and we have used Proposition
2.1 in [17]. Then (19) is valid.

Suppose that (19) is true for any compact subdomain of G
n
α with C1 boundary. The

monotonicity of capα,1(·) ensures that t → capα,1(
t ( f )) is a decreasing function on [0,∞)

and so that

t
1

Q−1 (capα,1(
t ( f )))
Q

Q−1 = (tcapα,1(
t ( f )))
1

Q−1 capα,1(
t ( f ))

≤
(∫ t

0
capα,1(
r ( f ))dr

) 1
Q−1

capα,1(
t ( f ))

= Q − 1

Q

d

dt

(∫ t

0
capα,1(
r ( f ))dr

) Q
Q−1

.
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Via (19) and the above estimate we obtain
∫ ∞

0
(capα,1(
t ( f )))

Q
Q−1 dt

Q
Q−1 = Q

Q − 1

∫ ∞

0
(capα,1(
t ( f )))

Q
Q−1 t

1
Q−1 dt

≤
∫ ∞

0

⎛

⎝
d

dt

(∫ t

0
capα,1(
r ( f ))dr

) Q
Q−1

⎞

⎠ dt

=
(∫ ∞

0
capα,1(
t ( f ))dt

) Q
Q−1

≤
(∫ ∞

0
Pα(
t ( f ))dt

) Q
Q−1

=‖ ∇α f ‖
Q

Q−1
1 ,

where we have used Theorem 5.2 in [21] again in the last step.
(ii) Due to the equivalence between (18) and (19), it is enough to check that (19) is valid

for any compact subdomain of G
n
α . It is easy to discover that Theorem 10(iv) implies (19).

By Theorem 11, it is easy to see that for any y ∈ R
k ,

capα,1(B̄((0, y), r)) = Pα(B̄((0, y), r)) & capα,1(Eα) = Pα(Eα),

which imply the sharpness of (19) when h = 1. As in [33], (19) has two kinds of minimizers
and it is different from the setting for R

n ; see [45]. ��
Remark 1 Until now, it is uncertain that inequalities (16), (17), (18) and (19) are sharp under
h > 1. Resolving this issue depends on the optimal constant of the isoperimetric problem on
a given Grushin space for h > 1.

To separate (15), let f ∈ C∞
0 (Gn

α) and

T = sup{t > 0 : capα,p({g ∈ G
n
α : | f (g)| ≥ t}) > 0} > 0. (20)

By some computations we obtain

ψ(t) =
∫ t

0

dτ

[φ(τ)] 1
p−1

< ∞ ∀ t ∈ (0, T ),

where

φ(t) =
∫

Et
|∇α f |p−1dμt

and dμτ =‖ ∂Eτ ‖α is the perimeter measure of the level set Eτ of f . In a similar way to
verify Lemma 2.3.1 in [35], we get the following result on Grushin spaces.

Lemma 20 Let f ∈ C∞
0 (Gn

α) and satisfy (20). Then the function t (ψ) is absolutely contin-
uous on any segment [0, ψ(T − δ)] for δ ∈ (0, T ), and

∫

Gn
α

|∇α f |pdg ≥
∫ ψ(t)

0
[t ′(ψ)]pdψ, (21)

where the function t (ψ) is the inverse of ψ(t) on the interval [0, ψ(T )]. If T = max | f |,
then the equality sign in (21) is valid.
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This last lemma is utilized to give a separation of (15).

Theorem 21 Let 1 < p < Q.

(i) The analytic inequality

‖ f ‖ Qp
Q−p

≤ c(p, α)

(∫ ∞

0

(
capα,p({g ∈ G

n
α : | f (g)| ≥ t})) Q

Q−p dt
Qp
Q−p

) Q−p
Qp

(22)

for any Lebesgue measurable function f with compact support in G
n
α , is equivalent to,

the geometric inequality

|M | Q−p
Qp ≤ c(p, α)(capα,p(M))

1
p (23)

for any compact domain M ⊆ G
n
α , where

c(p, α) = (c(α)
) Q−1

Q

(
Q − p

Q(p − 1)

) 1
p −1

.

(ii) Inequalities (22) and (23) are true.
(iii) The analytic inequality

(∫ ∞

0

(
capα,p({g ∈ G

n
α : | f (g)| ≥ t})) Q

Q−p dt
Qp
Q−p

) Q−p
Qp ≤ ‖ ∇α f ‖p

ψ
− 1

Q
p,Q

∀ f ∈ C1
0 (G

n
α)

(24)
holds with

ψp,Q = �(Q)

�(
Q
p )�(1 + Q − Q

p )
.

Proof (i) Via the integral formula and (23), we conclude that (22) holds. Conversely, if (22)
is true, then (23) follows from taking f = 1M .

(ii) Theorem 10(iii) implies (23).
(iii) By [38, (40)] we get

(∫ ∞

0

(
capα,p({g ∈ G

n
α : | f (g)| ≥ t})) Q

Q−p dt
Qp
Q−p

) Q−p
Qp ≤ C ‖ ∇α f ‖p ∀ f ∈ C1

0(G
n
α)

Furthermore, we prove that the constant C has the form ψp,Q . Let

ψ(t) =
∫ t

0

(∫

{g:| f (g)|=τ }
|∇α f (g)|p−1dμτ

) 1
1−p

dτ

and denote by t (ψ) the inverse function of ψ(t). Then Lemma 20 deduces

∫

Gn
α

|∇α f (g)|pdg =
∫ ∞

0
|t ′(ψ)|pdψ. (25)
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Via the Bliss inequality in [9] we have

(∫ ∞

0
t (ψ)

Qp
Q−p

dψ

ψ
1+ Q(p−1)

Q−p

) Q−p
Qp

(26)

≤
(
Q − p

p − 1

) Q−p
Qp
(

�(Q)

�(
Q
p )�(1 + Q − Q

p )

) 1
Q (∫ ∞

0
|t ′(ψ)|pdψ

) 1
p

.

Using (25) and integrating by parts we deduce that (26) amounts to

⎛

⎝

∫ ∞

0

d
(
t (ψ)

Qp
Q−p
)

ψ
Q(p−1)
Q−p

⎞

⎠

Q−p
Qp

≤
(

�(Q)

�(
Q
p )�(1 + Q − Q

p )

) 1
Q
(∫

Gn
α

|∇α f (g)|pdg
) 1

p

. (27)

From Theorem 2(iii) we have

capα,p({g ∈ G
n
α : | f (g)| ≥ t}) ≤ [ψ(t)]1−p,

thereby getting (24) via (27). ��
Remark 2 It follows from Proposition 17 that

|M | Q−p
Qp ≤ (c(α)

) Q−1
Q

p(Q − 1)

Q − p
(capα,p(M))

1
p

for any compact domain M ⊆ G
n
α . But a straightforward computation gives

(
c(α)

) Q−1
Q

p(Q − 1)

Q − p
>
(
c(α)

) (Q−1)
Q

(
Q − p

Q(p − 1)

) 1
p −1

.

Moreover,

lim
α→0

c(p, α) =
(
p − 1

2 − p

)1− 1
p

(2− 1
p π− 1

2 ),

which appears in [45, (3.3)] for h = 1 = k.

Corollary 22 The analytic inequality

‖ f ‖ Qp
Q−p

≤ c(p, α)ψ
1
Q
p,Q ‖ ∇α f ‖p, f ∈ C∞

0 (Gn
α), (28)

holds, where c(p, α) and ψp,Q are given in Theorem 21.

Proof We only need to prove that the constant in (28) is strictly less than the constant in (15),
that is,

c(p, α)ψ
1
Q
p,Q <

(
c(α)

) Q−1
Q

p(Q − 1)

Q − p
.

To this end, we need the following inequality for the Gamma function:

�(x + y + 1)

�(x + 1)�(y + 1)
≤ (x + y)x+y

x x yy
∀ x, y ∈ R

+.

123



700 Y. Liu, J. Xiao

If

x = Q

p
− 1 & y = Q − Q

p
,

then
(
c(α)

) Q−1
Q p(Q−1)

Q−p

c(α)
(Q−1)

Q

(
Q−p

Q(p−1)

)−(1− 1
p )

ψ
1
Q
p,Q

≥ p(Q − 1)

(Q − p)
1
p (Q(p − 1))1−

1
p

⎛

⎝
�(Q)

�
(
Q
p

)
�
(
1 + Q − Q

p

)

⎞

⎠

− 1
Q

≥ p(Q − 1)

(Q − p)
1
p (Q(p − 1))1−

1
p

(
Q
p − 1

) 1
p − 1

Q
(
Q − Q

p

)1− 1
p

(Q − 1)1−
1
Q

=
(
Q − 1

Q − p

) 1
Q

p
1
Q > 1,

due to 1 < p < Q and Q > 2. This completes the proof of this corollary. ��

Remark 3 The constant c(p, α)ψ
1
Q
p,Q in (28) is not sharp. As a matter of fact, if α = 1, p =

2, h = 1 and k = 1, then Q = 3 and

c(2, 1)ψ
1
3
2,3 =

(
16

3
√
3

) 1
3

π− 1
3 ,

which is bigger than the constant π− 1
3 in [5, Theorem 1].
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