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Abstract Fuchs (Abelian groups, Pergamon,Oxford, 1960, Problem 72) asked the following
question: which groups can be the group of units of a commutative ring? In the following
years, some partial answers have been given to this question in particular cases. The aim
of the present paper is to address Fuchs’ question when A is a finite characteristic ring.
The result is a pretty good description of the groups which can occur as group of units in
this case, equipped with examples showing that there are obstacles to a “short” complete
classification. As a by-product, we are able to classify all possible cardinalities of the group
of units of a finite characteristic ring, so to answer Ditor’s question (Ditor in Am Math Mon
78(5):522–523, 1971).

Keywords Commutative algebra · Group theory · Fuchs’ problem · Units groups · Finite
characteristic rings
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1 Introduction

In [7, Problem 72] Fuchs posed the following problem:

Characterize the groups which are the groups of all units in a commutative and asso-
ciative ring with identity.

In the following years, this question and related ones have been considered by many
authors. A first result is due to Gilmer [8], who classified the finite commutative rings A with
the property that the group of units A∗ is cyclic, classifying as a by-product also the possible
cyclic groups that arise in this case.
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Further steps in the study of Fuchs’ Problem came from the results by Hallet and Hirsch
[9], and subsequently by Hirsch and Zassenhauss [10], combined with [2]. From their results,
one can deduce necessary conditions for a finite group to be the group of units of a reduced
and torsion free ring.

Later on, Pearson and Schneider [11] combined the result of Gilmer and the result of
Hallet and Hirsch to describe explicitly all possible finite cyclic groups that can occur as A∗
for a commutative ring A.

In 1971 Ditor [4], in view of the difficulty of dealing with the general Fuchs Problem,
posed the following less general question:

Which whole numbers can be the number of units of a ring?

In his paper, he answered this question in the easier case of odd integers.
Other instances on this subject were considered also by other authors, like Eldridge and

Fischer [6], who considered rings with the descending chain condition, or DolLzan [5], who
classified the finite rings A for which A∗ is a finite group whose order is either a prime power
or not divisible by 4. Recently, Chebolu and Lockridge [1] have studied Fuchs’ problem in a
different setting and have been able to classify the indecomposable abelian groups that are
realizable as the group of units of a ring.

The aim of the present paper is to address Fuchs’ and Ditor’s questions when A is a finite
characteristic ring. We call an abelian group realizable if it is the group of units of some
finite characteristic ring.

We first show that the general problem can be reduced to the study of the group of units
of finite local rings. In Theorem 3.1 and Corollary 3.2, we give necessary conditions for an
abelian group to be realizable. The conditions found in Theorem 3.1 allow to produce infinite
families of non-realizable groups (see Proposition 4.1). As a direct consequence, we reobtain
the classification of cyclic units groups already found by Gilmer in [8] (see Corollary 4.2).

On the other hand, in the paper, we also give positive answers; in fact, we exhibit large
classes of groups that are realizable. For example, in Propositions 4.3 we show that, for
p > 2, all groups of the form F

∗
pλ × Pλ are realizable, for all λ ≥ 1 and for all abelian

p-group P . Proposition 4.3 contains a similar result for p = 2.
Moreover, in Sect. 5, we give further examples which are not included in Propositions 4.3

and 4.8. Both the propositions and the construction of the examples need the case of rings
with characteristic a power of 2 to be treated separately. This is mainly due to the particular
behavior of (Z/pnZ)∗ for p = 2.

Our results allow to exhibit infinite families of ”new” examples of realizable groups (see
Remark 4.6) and infinite families of non-realizable groups (see Proposition 4.1), reducing
considerably the space between necessary and sufficient conditions for a group to be realiz-
able. In view of the examples in Sect. 5, we believe that a more precise statement of necessary
and sufficient conditions would be very complicated.

Moreover, we are able to completely answer Ditor’s question for finite characteristic rings
(see Corollary 3.3) and to construct, for each possible cardinality n, a finite characteristic
ring A with |A∗| = n.

As a final remark, we point out that our results include all previously known facts for the
case under consideration; some results already proved in [8] and in [5] have been derived as
particular cases in our paper.

In a forthcoming paper [3], we investigate Fuchs’ and Ditor’s Problems in the case of
characteristic 0 rings andwe obtain a complete classification of the groups of units of reduced
rings.
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2 Notation and preliminary results

Let A be ring with 1 of finite characteristic. As usually, A∗ will denote its multiplicative
group, which we shall assume finite and abelian throughout the paper.

We recall that a ring is called reduced if its nilradical is trivial, namely, if it does not
contain non-zero nilpotents.

Remark 2.1 Let n = char(A), then Z/nZ is the fundamental subring of A. Let B =
Z/nZ[A∗]; then B ⊆ A, and B∗ = A∗.

We also note that the rings A and B have the same nilradical; in fact, the nilradical of B
is obviously contained in the nilradical of A; on the other hand, if a ∈ A is such that an = 0
for some n ∈ N, then 1 + a ∈ A∗ ⊆ B∗, so a ∈ B. In particular, A is reduced if and only if
Z/nZ[A∗] is reduced.

If A is a domain, then its characteristic is a prime number p andZ/pZ[A∗] is a finite field.
In this paper, we are interested in determining the possible abelian groups that occur as

groups of units of a finite characteristic ring: as a consequence of the previous remark, we
may restrict our study to commutative and finite rings.

In the following, we shall make repeated use of the following proposition:

Proposition 2.2 Let A be a commutative ring, let N denote its nilradical and let I be an
ideal of A contained inN. Then the sequence

1 → 1 + I ↪→ A∗ φ→ (A/I)∗ → 1, (1)

where φ(x) = x + I, is exact.

Proof Clearly

1 → 1 + I → A∗ → A∗/(1 + I) → 1

is exact. Moreover, the map � : A∗ → (A/I)∗ defined by x �→ x + I is a homomorphism
with kernel equal to 1 + I. Further, if x + I ∈ (A/I)∗ and (x + I)(y + I) = 1 + I then
xy ∈ 1 + I ⊆ A∗, so x ∈ A∗ and � is surjective, so A∗/(1 + I) ∼= (A/I)∗. 	


The case when I = N is particularly interesting since, as we shall see in the following,
for finite characteristic rings the exact sequence (1) always splits in this case (see Theorem
3.1). However, there are cases when the exact sequence does not split.

3 General results

As noted in the previous section, we may suppose that A is finite and commutative, so we
will assume it in the following. Under this assumption, we have that A is artinian, then by
the structure theorem of artinian rings, A is isomorphic to a direct product of artinian local
rings,

A ∼= A1 × · · · × As,

and hence

A∗ ∼= A∗
1 × · · · × A∗

s .
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This reduces the problem to the study of the cardinality and the structure of the group of
units of a finite local ring. We recall that the characteristic of such a ring is a prime power.
The following theorem describes the groups of units in this case.

Theorem 3.1 Let p be a prime, and let (A,m) be a finite local ring of characteristic a power
of p, such that A∗ is finite. Then

A∗ ∼= F
∗
pλ × H (2)

where A/m ∼= Fpλ and H = 1+m is an abelian p-group.Moreover, the filtration {1+mi }i≥1

has the property that all its quotients are Fpλ -vector spaces and |H | = pλk for some k ≥ 0.
Conversely, for each prime p, for each λ ≥ 1 and for each k ≥ 0 there exists a local

artinian ring with characteristic a power of p such that A∗ ∼= F
∗
pλ × H with |H | = pλk .

Finally, when restricting to reduced local artinian rings, the groups of units that can be
obtained are precisely the multiplicative groups of finite fields.

Proof In our hypothesis,we have that the nilradicalN coincideswithm, so the exact sequence
in (1) can be written as

1 → 1 + m → A∗ → (A/m)∗ → 1. (3)

Consider the finite chain
m ⊃ m2 ⊃ · · · ⊃ mr = {0}. (4)

We have that, for each i = 1, . . . r − 1, the quotient mi/mi+1 is a A/m-vector space, and
hence has cardinality pλki for some positive integer ki . Putting k = ∑r−1

i=1 ki , we obtain that|m| = pλk and hence |1 + m| = pλk .
We can now apply Schur–Zassenhaus Theorem (see [12, 9.12]) to the exact sequence in

(3): it follows that A∗ ∼= F
∗
pλ × (1 + m) and equation (2) follows with H = 1 + m.

Moreover, the isomorphism mi/mi+1 → (1 + mi )/(1 + mi+1) induced by the map
x �→ 1+x ensures that the quotients of the filtrations {mi }i≥1 and {1+mi }i≥1 are isomorphic,
hence (1 + mi )/(1 + mi+1) is a Fpλ -vector space for each i .

Conversely, let λ ≥ 1, k ≥ 0 and let f (t) ∈ (Z/pk+1
Z)[t] be a monic polynomial of

degree λ such that its reduction modulo p, f̄ (t), is irreducible. Define

R =
(
Z/pk+1

Z
) [t]

( f (t))
;

clearly R is a local artinian ring and its maximal ideal m is generated by the class of p. As
above, R∗ ∼= F

∗
pλ × (1 + m) and it is easy to check that |1 + m| = |m| = pλk .

We conclude by noticing that the statement about reduced rings is clear, since a reduced
local artinian ring is a field. 	


We summarize the results for a general ring of finite characteristic in the following corol-
lary, which also retrieves some known results as particular cases.

Corollary 3.2 Let A be a ring of finite characteristic. Then A∗ is a finite the product of
groups as in (2), where each prime p|char(A), gives at least one factor.

Moreover, the finite abelian groups that occur as group of units of reduced rings of finite
characteristic are exactly the finite products of multiplicative groups of finite fields.

Finally, if A is a domain, then A∗ is the multiplicative group of a finite field.

Proof As observed at the beginning of this section, if A is a ring of finite characteristic with
a finite abelian group of units, then A∗ ∼= A∗

1 × · · · × A∗
s , where Ai are local artinian finite

rings. Then, the information on A∗ can be derived by applying Theorem 3.1 to each Ai . 	
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Theorem 3.1 allows to completely answer the question raised by Ditor [4] in the case of
finite characteristic rings. In fact, we have the following

Corollary 3.3 The possible values for |A∗|when char(A) is finite are all products of numbers
of type (pλ − 1)pλk , where p|char(A), λ ≥ 1 and k ≥ 0. In this product there exists at least
a factor of type (pλ − 1)pλk for each prime divisor of char(A).

We note that the examples in the proof of Theorem 3.1 allow the explicit construction of
a ring A with |A∗| = n, for each possible n.

For the sake of completeness, we include the following corollary, which is not new and
can be found for example in [4].

Corollary 3.4 The finite abelian groups of odd order that occur as groups of units of a ring
A are the finite products of groups of type F∗

2λ . In particular, if |A∗| = p is prime, then p is
a Mersenne prime.

Proof It is enough to note that if |A∗| is odd, then necessarily char(A) > 0 and to apply
Corollary 3.3. 	


4 Families of realizable and non-realizable groups

Theorem 3.1 does not solve completely the question of classifying the abelian p-groups H
which occur as 1 + m in a local artinian ring. However, in view of the constraints on the
filtration of the group H , our results show that the group H cannot be any p-group if λ > 1,
nor any group of order a power of pλ; in fact, we have the following

Proposition 4.1 Let p be a prime, let k and λ be positive integers and let H be an abelian
p-group of cardinality pλk . If there exists a local artinian ring A such that A∗ ∼= F

∗
pλ × H,

then the exponent of H is at most pk .

Proof By Theorem 3.1, a necessary condition in order that H can appear in (2) is that H
has a filtration whose quotients are Fpλ -vector spaces, so since |H | = pλk , the length of its
filtration can be at most k, and every element of H must have order at most pk . 	

Example 1 The group H ∼= Z/p3Z × (Z/pZ)2λ−3 does not occur as 1+ m if A/m = Fpλ ,
since |H | = p2λ and H contains elements of order p3.

From the previous proposition, it is easy to obtain a complete classification of finite cyclic
groups of units which arise in the case of finite characteristic rings. This result is not new
(as we have already noted, it was firstly proved by Gilmer [8]); however, we include it since,
at least for the case p > 2, it is an immediate consequence of Proposition 4.1. Actually,
the proof for the case p = 2 requires some more effort, which, however, well highlights the
importance of the condition on the filtration in Theorem 3.1.

Corollary 4.2 A finite cyclic group is the group of units of a local artinian ring of charac-
teristic a power of a prime p if and only if its order is:

a. pλ − 1 for λ ≥ 1;
b. (p − 1)pk for k ≥ 1 and p > 2;
c. 2;
d. 4.
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A finite cyclic group is the group of units of a finite characteristic ring if and only if its order
is the product of a set of pairwise coprime integers of the previous list.

Proof By Theorem 3.1, using the same notation, we have A∗ ∼= F
∗
pλ × H and in particular

H must be cyclic: Proposition 4.1 implies |H | = 1 or λ = 1. It follows that |A∗| can only
be either pλ − 1 with λ ≥ 1 or (p − 1)pk for k ≥ 1. For p > 2 all these groups occur, for
example with A = Fpλ and A = Z/pk+1

Z.
For p = 2 we obtain all groups of order 2λ − 1 by choosing A = F2λ . We obtain the

groups of order 2 and 4 by choosing A = Z/4Z or (Z/2Z)[x]/(x3).
On the other hand, when the characteristic of A is a power of 2, no other case is possible.

In fact, since (Z/8Z)∗ is not cyclic, necessarily the characteristic of A can only be 2 or 4. We
also note that in both cases 2x = 0 for all x ∈ m (if not, ±1± x would be 4 distinct elements
with the same square, and this is not possible in a cyclic group). Assume that |A∗| = 2k ;
then λ = 1 and H = 1 + m is cyclic of order 2k . Let 1 + μ be a generator of 1 + m. The
only filtration of 1 + m which satisfies the condition of Theorem 3.1 is

{
(1 + m)2

i
}

1≤i≤k
.

It follows that the length of the filtration in (4) is r − 1 = k and μr = 0. Now, since 2μ = 0,
and 1+μ has order 2k , we have (1+μ)2

k−1 = 1+μ2k−1 = 1. Therefore, 2k−1 < r = k+1,
so k = 1 or k = 2.

Finally, the statement about a general ring A of finite characteristic follows recalling that
its group of units A∗ is the product of groups of units A∗

i (i = 1, . . . , r ) of local artinian
rings, so it is cyclic if and only if all the A∗

i ’s are cyclic and their orders are pairwise coprime.
	


On the positive side, we are able to exhibit a large class of new groups that are realizable,
in the sense that they cannot be in general obtained as a product of realizable cyclic groups
(see Remark 4.6). In Proposition 4.3, we show that for each p > 2, λ ≥ 1 and for each
abelian p-group P one can construct a ring A for which H = Pλ. In particular, for λ = 1
all abelian p-groups are possible.

The case p = 2 is exceptional and needs to be treated separately: a class of groups (most
of them new) which can be realized in this case is given in Proposition 4.8.

In the next section, we will exhibit examples of realizable groups which are not covered
by Propositions 4.3 and 4.8.

Proposition 4.3 Let p > 2 be a prime. For each λ ≥ 1 and for each finite abelian p-group
P there exists a local artinian ring A such that

A∗ ∼= F
∗
pλ × Pλ.

Proof Consider the decomposition of the group P as a product of cyclic groups P ∼=
Z/pa0Z×Z/pa1Z×· · ·×Z/parZwith a0 ≥ a1 ≥ · · · ≥ ar , and let f (t) ∈ (Z/pa0+1

Z)[t]
be a monic polynomial of degree λ such that its reduction modulo p, f̄ (t), is irreducible. As
in the proof of Theorem 3.1, define

R = (Z/pa0+1
Z)[t]

( f (t))

and

A = R[x1, . . . , xr ]
(
pai xi , xi x j

)
1≤i, j≤r

.
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We already observed that R is a local artinian ring with maximal ideal mR = (p). We note
that also A is a local artinian ring with maximal ideal mA = (p, x̄1, . . . , x̄r ); in fact,

A/mA ∼= R/mR ∼= Fpλ ,

and mA is the unique prime ideal of A since all its elements are nilpotent.
We will show that A∗ ∼= F

∗
pλ × Pλ.

Let I = (x̄1, . . . , x̄r ) ⊂ mA. By Proposition 2.2 we have the exact sequence

1 → 1 + I ↪→ A∗ φ→ (A/I)∗ → 1.

Now, it is clear that (A/I)∗ ∼= R∗ ⊂ A∗ so the exact sequence splits and A∗ ∼= R∗ × (1+I).
We note that 1 + I ∼= I since the map x �→ 1 + x is a group isomorphism. Now,

I ∼= (Z/pa1Z × · · · × Z/parZ)λ since, as an abelian group, it is generated by the elements
{t̄ j x̄i }0≤ j<λ,1≤i≤r and t̄ j x̄i has additive order pai , since a1 ≤ a0 + 1. On the other hand,
by Theorem 3.1, we know that R∗ ∼= Fpλ × (1 + mR), so we are left to prove that 1 +
mR ∼= (Z/pa0Z)λ. We note that R is a free (Z/pa0+1

Z)-module with basis 1, t̄, . . . , t̄λ−1,
so R ∼= (

Z/pa0+1
Z

)λ
as a group, hence mR = pR ∼= (Z/pa0Z)λ. Thus, we are reduced to

show that 1 + mR ∼= mR . Since both are p-groups, it is enough to prove that the subgroup
(1 + mR)pl of elements of exponent pl of 1 + mR has the same cardinality of the subgroup
(mR)pl of elements of exponent pl of mR . This is a direct consequence of the following
lemma. 	

Lemma 4.4 Let μ ∈ mR = pR and let l ≥ 0. Then,

(1 + μ)p
l = 1 ⇐⇒ plμ = 0.

Proof By the binomial theorem,

(1 + μ)p
l = 1 + plμ +

pl∑

k=2

(
pl

k

)

μk . (5)

We claim that, if μ ∈ pi R (i ≥ 1) and hence plμ ∈ pl+i R, then
(pl
k

)
μk ∈ pl+i+1R, for

all k ≥ 2. In fact, clearly μk ∈ pik R; moreover, it is a classical result that if pc‖ k, then
pl−c‖ (pl

k

)
, so, since p > 2 and k ≥ 2, we have that pl−k+2 divides

(pl
k

)
and

pl+(i−1)k+2 |
(
pl

k

)

μk .

Now, l + (i − 1)k + 2 ≥ l + i + 1 since this is equivalent to (i − 1)(k − 1) ≥ 0 (recall
that i ≥ 1 and k ≥ 2), and the claim follows.

In conclusion, if plμ = 0 (namely, if l + i ≥ a0 + 1), then
(pl
k

)
μk = 0 also for all k ≥ 2,

so (1 + μ)p
l = 1; on the other hand, if plμ = 0, then there exists i with l + i ≤ a0 such

that plμ ∈ pl+i R\pl+i+1R, so

(1 + μ)p
l ≡ 1 + plμ ≡ 1 (mod pl+i+1).

	

The case λ = 1 of Proposition 4.3 immediately gives the following
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Corollary 4.5 Let p > 2 be a prime. For each finite abelian p-group P there exists a finite
local ring A such that

A∗ ∼= F
∗
p × P.

Remark 4.6 Proposition 4.3 produces infinite examples of ”new” groups of units. In fact,
if p > 2 is not a Mersenne prime, and P is a non cyclic abelian p-group, then the group
F

∗
pλ × Pλ is realizable but is not a product of cyclic realizable groups. In fact, it is enough

to observe that 2a − 1 = pb has no solution in view of the famous Catalan–MihLailescu
Theorem.

Remark 4.7 Proposition 4.3 cannot be generalized to p = 2. In fact, putting p = 2 and λ = 1
we would obtain that all abelian 2-groups are groups of units but, as recalled in Corollary
4.2, this is not true already for cyclic groups.

The peculiarity of the case p = 2 lies in the fact that the group (Z/2aZ)∗ is not cyclic in
general. However, in the following proposition, we exhibit a large class of groups of units of
rings with characteristic a power of 2.

Proposition 4.8 Let P be a finite abelian 2-group and let 2a be its exponent. Then, for each
integer a0 ≥ a − 1 and for each λ ≥ 1 there exists a local artinian ring A such that

A∗ ∼= F
∗
2λ × Z/2Z × Z/2a0−1

Z × (Z/2a0Z)λ−1 × Pλ.

Proof Consider the decomposition of P as a product of cyclic groups, P ∼= Z/2a1Z× · · · ×
Z/2arZ with a1 ≥ · · · ≥ ar , so a = a1. Let f (t) ∈ Z[t] be a monic polynomial of degree λ

such that its reduction modulo 2, f̄ (t), is irreducible. As in Proposition 4.3, define

R =
(
Z/2a0+1

Z
)[t]

( f (t))

and

A = R[x1, . . . xr ]
(2ai xi , xi x j )1≤i, j≤r

;

R and A are local artinian rings with maximal ideals mR = 2R and mA = (2, x̄1, . . . , x̄r ),
respectively. We will show that A has the required group of units. Again, letting I =
(x̄1, . . . , x̄r ) ⊂ mA, we can argue as in the proof of Proposition 4.3 and get A∗ ∼= R∗×(1+I)

and 1 + I ∼= I ∼= Pλ.

Moreover, R∗ ∼= F
∗
2λ ×(1+2R). Thenwe have to study the group 1+2R: as in Proposition

4.3 we have R ∼= (Z/2a0+1
Z)λ as a group, so 2R ∼= (Z/2a0Z)λ, but, contrary to the case

p > 2, 1 + 2R is not always isomorphic to 2R.
When a0 = 1, it is easy to see that the group 1 + 2R is elementary abelian of cardinality

2λ.

Assume now a0 ≥ 2. To determine the structure of 1 + 2R it is enough to know the
structure of its subgroup (1 + 2R)2 and of the quotient (1 + 2R)/(1 + 2R)2, since this
quotient has the same number of generators as the group 1 + 2R.

We begin by studying the quotient. Clearly, it is an elementary abelian 2-group, so it is
enough to determine its order; now, |(1+ 2R)/(1+ 2R)2| = | ker ϕ| where ϕ : (1+ 2R) →
(1+2R)2 is defined by u �→ u2. Let 1+2p(t) ∈ 1+2R, where p(t) ∈ R and deg p(t) < λ.
We have

(
1 + 2p(t)

)2 = 1 ⇐⇒ 4p(t)(1 + p(t)) = 0 ⇐⇒ p(t)(1 + p(t)) ∈ 2a0−1R.
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Finite groups of units of finite characteristic rings 669

Since R is a local ring, one between p(t) and 1+ p(t) is invertible, so either p(t) ∈ 2a0−1R
or 1 + p(t) ∈ 2a0−1R and actually exactly one of these two relations holds. Hence, ker ϕ =
2a0 R ∪ 1 + 2a0 R and

∣
∣(1 + 2R)/(1 + 2R)2

∣
∣ = | ker ϕ| = 2|2a0 R| = 2λ+1.

Next, to study (1+ 2R)2, we find it convenient to study first the larger group 1+ 4R. We
observe that |(1+2R)/(1+4R)| = 2λ (recall that a0 ≥ 2), hence |(1+4R)/(1+2R)2| = 2.
As in Proposition 4.3, we prove that 1+4R is isomorphic to 4R ∼= (Z/2a0−1

Z)λ by showing
that the two groups have the same number of elements of exponent 2l for all l. This is a
consequence of the following slight variation of Lemma 4.4.

Lemma 4.9 Let μ ∈ 4R and let l ≥ 0. Then,

(1 + μ)2
l = 1 ⇐⇒ 2lμ = 0.

Proof Let μ ∈ 2i R with i ≥ 2. Consider the expansion of (1 + μ)2
l
. Clearly 2l+i‖2lμ; as

in the proof of Lemma 4.4 it is enough to show that 2l+i+1 divides
(2l
k

)
μk for k ≥ 2. In this

case, 2l−k+1 divides
(2l
k

)
, so

2l−k+1+ik |
(
2l

k

)

μk

Now, l − k + 1 + ik ≥ l + i + 1 since this is equivalent to i(k − 1) ≥ k and i, k ≥ 2. 	

Putting everything together we get

(1 + 2R)2 ∼= Z/2a0−2
Z × (Z/2a0−1

Z)λ−1

and

(1 + 2R) ∼= Z/2Z × Z/2a0−1
Z × (Z/2a0Z)λ−1.

	


5 Further examples

In this section, we give examples showing that the groups H obtained in Propositions 4.3
and 4.8 do not exhaust all realizable groups.

Example 2 Let p > 2, f (t) be a monic polynomial of degree 2 which is irreducible modulo
p and let

A = (Z/p2Z)[t, x]
( f (t), px2, x p−1 + p)

.

We claim that A is a finite local artinian ring and, denoting by m its maximal ideal, we have
A∗ ∼= Fp2 × (1 + m) and 1 + m is not the square of a group, so this group of units does not
belong to the set of groups described in Proposition 4.3. Defining

R = (Z/p2Z)[t]
( f (t))

, B = R[x]
(x p−1 + p)
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670 I. Del Corso, R. Dvornicich

we have

A = B

(px̄2)
.

Denoting by x̄ the class of x in B, we have

B = ⊕p−2
i=0 Rx̄i

as an R-module. It follows that, as an R-module, the ideal (px̄2) is equal to ⊕p−2
i=2 Rpx̄i ,

hence

A = ⊕p−2
i=0 Rx̄i

⊕p−2
i=2 Rpx̄i

∼= R2 ⊕
(

R

pR

)p−3

as an R-module, and |A| = p2p+2. Clearly A is a finite local artinian ring, since B is such;
its maximal ideal is m = (p, ¯̄x) = ( ¯̄x), where ¯̄x denotes the class of x̄ in A. This gives the
R-module isomorphism

m = pR ⊕ R ¯̄x ⊕p−2
i=2 R ¯̄xi ∼= R ⊕

(
R

pR

)p−2

,

so, |m| = p2p and A/m ∼= Fp2 , i.e., in the notation of Proposition 4.3, λ = 2.
We show that

1 + m ∼= Z/p2Z × (Z/pZ)2p−2

and hence it is not the square of a group. In fact, it is enough to prove that in 1+m there are
exactly p2p−1 elements of exponent p.

Let a ∈ 1 + m, then a can be written as a = 1 + a0 p + a1 ¯̄x + · · · + ap−2 ¯̄x p−2 where
a1 ∈ R is uniquely determined, and ai ∈ R is uniquely determined modulo p if i = 1. Then
a p = 1 + p(a1 − a p

1 ) ¯̄x = 1 if and only if the reduction of a1 modulo p belongs to Fp . The
elements a verifying this condition are p2p−1 since there are p2 possibilities for ai if i = 1,
and p3 possibilities for a1, and the claim follows.

Example 3 For p = 2 and a0 ≥ 3, consider the ring

A =
(
Z/2a0+1

Z
) [t, x]

(
t2 + t + 1, 4x, x2 + 2x

) .

We show that A is a finite local artinian ring, but A∗ does not belong to the set of groups
described in Proposition 4.8. Theorem 3.1 guarantees that A∗ = (A/m)∗ × (1 + m), where
m is the maximal ideal of A.

Similarly to above, we can consider the ring

R = (
Z/2a0+1

Z
) [t]/ (

t2 + t + 1
) ;

we have mR = m ∩ R = 2R and A/m = RmR = F4, so in the previous notation λ = 2. As
seen in the proof of Proposition 4.8, we have that

1 + mR = (1 + m) ∩ R∗ ∼= Z/2Z × Z/2a0−1
Z × Z/2a0Z

is a subgroup of 1 + m.
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Denote by x̄ the class of x in A; arguing as in Example 2, we have

m = (2, x̄) = 2R ⊕ x̄ R ∼= R/2a0 R ⊕ R/4R

as an R-module, and |1 + m| = |m| = 22a0+4.
To determine the decomposition of 1 + m as a product of cyclic groups, we begin by

counting its elements of exponent 2. Let μ ∈ m, then μ = 2ρ +σ x̄ , where ρ, σ ∈ R and are
uniquely determined modulo 2a0 R and modulo 4R, respectively. Taking into account that
4x̄ = 0, we have

(1 + μ)2 = 1 ⇐⇒ 4(ρ + ρ2) + 2(σ + σ 2)x̄ = 0

⇐⇒ ρ + ρ2 ∈ 2a0−1R and σ + σ 2 ∈ 2R. (6)

Now, ρ + ρ2 ∈ 2a0−1R if and only if ρ ∈ 2a0−1R ∪ (−1 + 2a0−1R) and each of the two
classes has 4 representatives in R/2a0 R, so there are 8 possibilities for ρ. The condition
σ + σ 2 ∈ 2R can be rewritten as π(σ) + π(σ)2 = 0, where π : R/4R → R/2R ∼= F4 is
the canonical projection. This means that π(σ) ∈ F2, so there are 8 possibilities for σ . In
conclusion, there are 26 elements of exponent 2 in 1+m. This yields that the decomposition
of 1+m has 6 cyclic factors. Taking into account that 1+m has order 22a0+4, 6 cyclic factors
and a subgroup isomorphic to Z/2Z × Z/2a0−1

Z × Z/2a0Z, it is immediate to see that

1 + m ∼= (Z/2Z)3 × Z/4Z × Z/2a0−1
Z × Z/2a0Z

so, for a0 ≥ 3, the group A∗ does not belong to the set of groups described in Proposition
4.8.
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