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Abstract We give a geometric characterization of certain hypersurfaces of cohomogeneity
one in the complex projective and hyperbolic planes. We also obtain some partial classifica-
tions of austere hypersurfaces and of Levi-flat hypersurfaces with constant mean curvature
in these spaces.
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1 Introduction

The method of equivariant differential geometry has shown to be a powerful tool for the
construction of submanifolds with specific geometric properties; see for example [19], [20].
Given a proper isometric action of a Lie group H on aRiemannianmanifold M̄ , the idea of the
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method is tofinda curve in the orbit space M̄/H such that the unionof the correspondingorbits
in M̄ yields a submanifold M with the desired geometric property. It turns out that for many
interesting properties, finding such a curve is equivalent to solving certain ordinary differential
equation. Thus, existence and uniqueness of such a curve is guaranteed, for given initial
conditions. The resulting submanifolds M are, intrinsically, manifolds of cohomogeneity
one, that is, they admit an isometric action whose principal orbits have codimension one
in M .

In [16], Gorodski and Gusevskii constructed many examples of complete constant mean
curvature hypersurfaces of cohomogeneity one in complex hyperbolic spacesCHn , by apply-
ing the equivariant method to several cohomogeneity-two polar actions on CHn . We recall
that a proper isometric action on a Riemannian manifold is called polar if there is a subman-
ifold intersecting all the orbits of the action perpendicularly; such a submanifold must be
totally geodesic and is called a section of the action. Thus, the resulting hypersurfaces appear
as the union of orbits through some curve in the two-dimensional section.

Recently, the authors [13] discovered the first examples of real hypersurfaces with exactly
twodistinct nonconstant principal curvatures in the complex projective and hyperbolic planes,
CP2 andCH2, thus answering an open question posed byNiebergall and Ryan in [26]. These
newexamples are, again, constructed using the equivariantmethod applied to cohomogeneity-
two polar actions on CP2 and CH2. (Ivey and Ryan derived a construction of the same
examples by a different approach in [22].)

In the context of real hypersurfaces in Kähler manifolds, the class of Hopf hypersurfaces
has been studied thoroughly. Recall that, if M is a real hypersurface in a Kähler manifold
with complex structure J , and ξ is a (locally defined) unit normal vector field on M , then
Jξ is called the Hopf vector field of M . Moreover, M is said to be Hopf at a point p ∈ M if
Jξ is an eigenvector of the shape operator S of M at p, and M is called a Hopf hypersurface
if it is Hopf at every point. For example, all homogeneous hypersurfaces in CPn (that is,
those which are orbits of a cohomogeneity-one isometric action onCPn) happen to be Hopf.
Furthermore, Hopf hypersurfaces with constant principal curvatures in CPn and CHn have
been classified [2], [23], and it follows from these classifications that such hypersurfaces are
open parts of homogeneous ones.

However, the examples constructed in [13] and [16] are generically non-Hopf. Moreover,
in CHn , n ≥ 2, there are examples of non-Hopf homogeneous hypersurfaces [5]. The
observation that motivates this paper is that most of the examples in [13] and [16], and some
examples in [5], share the following geometric properties:

(C1) The smallest S-invariant distribution D of M that contains Jξ has rank 2.
(C2) D is integrable.
(C3) The spectrum of S|D is constant along the integral submanifolds of D.

Here S stands for the shape operator of M . A real hypersurface M satisfying (C1) and
(C2) was called 2-Hopf in [8] and [22]. Motivated by this terminology, we will say that a
real hypersurface M in a Kähler manifold is strongly 2-Hopf if it satisfies conditions (C1),
(C2) and (C3) above. The generalization of these definitions to k-Hopf and strongly k-Hopf
hypersurfaces, for any positive integer k, is straightforward. It is important to mention that
the notions of Hopf, 1-Hopf and strongly 1-Hopf real hypersurfaces agree when the ambient
manifold is a nonflat complex space form CPn or CHn (see [26]). Also, note that condition
(C1) has been studied in the context of real hypersurfaces with constant principal curvatures
in nonflat complex space forms [11]. Finally, observe that if we define h as the number of
principal curvature spaces of M onto which the Hopf vector field has nontrivial projection,
then M is Hopf precisely when h = 1, and condition (C1) is equivalent to h = 2.
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Strongly 2-Hopf hypersurfaces… 471

Themain result of this paper is a characterization of the cohomogeneity-one hypersurfaces
in CP2 or CH2 constructed via the equivariant method applied to a polar action of cohomo-
geneity two. Such characterization is achieved in terms of the strongly 2-Hopf property. It is
important to mention here that polar actions on nonflat complex space forms have been clas-
sified [12], [27]: up to orbit equivalence, there is exactly one polar action of cohomogeneity
two on CP2, and exactly four on CH2 (see Subsection 2.2). In what follows we will denote
by M̄2(c) a nonflat complex space form of complex dimension 2 and constant holomorphic
curvature c �= 0. Then, our main result can be stated as follows.

Main Theorem Consider a polar action of a group H acting with cohomogeneity two and
with section � on a nonflat complex space form M̄2(c).

Let p ∈ � be a regular point, and σ : (−ε, ε) → � a unit speed curve in� with σ(0) = p.
Define the subset H · σ = {h(σ (t)) : h ∈ H, t ∈ (−ε, ε)} of M̄2(c). Then, there exists a
finite subset wp of the unit sphere of Tp� such that, for ε small enough, if σ̇ (0) /∈ wp, the
set H · σ is a strongly 2-Hopf hypersurface of M̄2(c), whereas if σ̇ (0) ∈ wp, then H · σ is a
real hypersurface of M̄2(c) that is Hopf at p.

Conversely, any strongly 2-Hopf real hypersurface in M̄2(c) is locally congruent to a
hypersurface constructed as above.

A first consequence of this result is a local characterization of the examples of constant
mean curvature hypersurfaces constructed by Gorodski and Gusevskii [16].

Corollary 1.1 Let H and� be as in the Main Theorem, and let η ∈ R. Then, for any regular
point p ∈ � and any unit w ∈ Tp�, there is exactly one locally defined curve σ on � with
σ(0) = p, σ̇ (0) = w, and such that the hypersurface H · σ has constant mean curvature η.
Conversely, any strongly 2-Hopf real hypersurface with constant mean curvature in M̄2(c)
is locally congruent to a hypersurface constructed in this way.

It is interesting to point out here that, in the family of constant mean curvature hypersur-
faces in M̄2(c), the wealth of strongly 2-Hopf examples contrasts with the rigidity of those
that are Hopf. Indeed, we have the following result:

Theorem 1.2 Let M be a connected Hopf real hypersurface in CP2 or CH2 with constant
mean curvature. Then M is an open part of a homogeneous Hopf hypersurface.

The homogeneous Hopf hypersurfaces in CPn and CHn are usually referred to as the
examples in Takagi’s and Montiel’s lists [26]. In the case of CP2, these are geodesic spheres
and tubes around a totally geodesic RP2, whereas in CH2 they are geodesic spheres, tubes
around a totally geodesic RH2, tubes around a totally geodesic CH1, and horospheres.

We will also investigate the so-called austere hypersurfaces. These objects were intro-
duced by Harvey and Lawson [17] in their study of special Lagrangian submanifolds and
are defined as those hypersurfaces whose principal curvature functions are invariant under
multiplication by −1. Thus, austere hypersurfaces provide a subclass of minimal hypersur-
faces. The classification of austere hypersurfaces in spheres, or in the complex projective and
hyperbolic planes, is not known [10], [21]. In this sense, we prove the following result.

Theorem 1.3 Let M be a real hypersurface of M̄2(c), c �= 0, whose Hopf vector field has
nontrivial projection onto at most two principal curvature spaces (i.e. h ≤ 2). Then M is
austere if and only if it is an open part of one of the following examples:

(1) a Lohnherr hypersurface in CH2, or
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(2) a Clifford cone in CP2 or CH2, or
(3) a bisector in CH2.

In particular, M is strongly 2-Hopf on the open and dense subset of nonumbilical points.

All the examples in this classification are ruled, in the sense that their maximal complex
distribution is integrable and its integral submanifolds are totally geodesic in the ambient
space. We briefly describe the examples in Theorem 1.3. The Lohnherr hypersurface is
the only, up to congruence, complete ruled hypersurface of CHn with constant principal
curvatures [25]. It is also the unique minimal homogeneous hypersurface of CHn [5]. A
Clifford cone is a minimal hypersurface which is constructed as follows (see also [1], [15]
and [24] for alternative descriptions). The Lie group H = U (1)×U (1) acts on M̄2(c) polarly
with cohomogeneity two. This action has three fixed points in CP2, and only one in CH2.
Let p be one of these fixed points, and Sr any geodesic sphere centered at p. Then a Clifford
cone with vertex p is the (singular) hypersurface made of all geodesic rays starting from p
and hitting the only two-dimensional H -orbit that is minimal as a submanifold of Sr . Finally,
a bisector in CHn is a minimal hypersurface of cohomogeneity one defined as the set of
points in CHn that are at the same distance from two fixed points [15].

Another applicationof theMainTheoremconcerns the existence ofLevi-flat hypersurfaces
of cohomogeneity one. We recall that a real hypersurface of a complex manifold is called
Levi-flat if it is foliated by complex hypersurfaces (see §6.2). This notion is important in
the study of holomorphic foliations, and indeed, an outstanding problem is the existence
of complete, smooth Levi-flat hypersurfaces in the complex projective plane; nonexistence
has been proved for CPn , n ≥ 3 [28]. Note that the following result contrasts with the
nonexistence of Levi-flat, Hopf real hypersurfaces in nonflat complex space forms [9].

Corollary 1.4 Let H and � be as in the Main Theorem. Then, for any regular point p ∈ �

and any unit w ∈ Tp�, there is exactly one locally defined curve σ on � with σ(0) = p,
σ̇ (0) = w, and such that the hypersurface H ·σ is Levi-flat. Conversely, any strongly 2-Hopf,
Levi-flat real hypersurface in M̄2(c) is constructed locally in this way.

It is interesting to determine towhat extent imposing some additional geometric conditions
restricts the class of Levi-flat hypersurfaces. In this sense, Bryant [7] classified Levi-flat
minimal hypersurfaces in two-dimensional complex space forms. It follows from his result
that, forCP2 andCH2, each example in his classification is invariant under a one-dimensional
subgroup of the ambient isometry group. Byweakening theminimality condition, and adding
the strongly 2-Hopf assumption, we can obtain the following result.

Theorem 1.5 Let M be a connected, Levi-flat, strongly 2-Hopf real hypersurface in M̄2(c),
c �= 0. Then M has constant mean curvature if and only if it is an open part of

(1) a Lohnherr hypersurface in CH2, or
(2) a Clifford cone in CP2 or CH2, or
(3) a bisector in CH2.

In particular, M is austere and ruled.

This work is organized as follows. In Sect. 2 we establish notation, recall some basic
concepts and results about submanifold geometry and polar actions on complex space forms,
and prove Theorem 1.2. In Sect. 3 we prove some formulas for the Levi-Civita connection of
a hypersurface satisfying h = 2. The proof of the Main Theorem is presented in Sect. 4: in
§4.1 we explain how to construct strongly 2-Hopf hypersurfaces, and in §4.2 we characterize
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these examples. Then, Sect. 5 is devoted to the study of austere hypersurfaces and the proof of
Theorem 1.3. Finally, in Sect. 6, we give some applications of the Main Theorem and prove
the remaining theorems.

2 Preliminaries

In this section, we settle some notation and terminology concerning submanifold theory and
polar actions, with particular emphasis on the case of nonflat complex space forms.

2.1 Submanifold geometry in complex space forms

Let M be a smooth submanifold of a Riemannian manifold M̄ . Since the arguments that
follow are local, we can assume that M is embedded. We denote by TpM and νpM the
tangent and normal spaces to M at p, respectively. Let X , Y , Z , W be tangent vector fields
along M , and let ξ be normal. We denote by 〈 · , · 〉 the metric of M̄ , by ∇̄ its Levi-Civita
connection, and by R̄ its curvature tensor, whichwe adoptwith the following sign convention:
R̄(X, Y )Z = [∇̄X , ∇̄Y ]Z − ∇̄[X,Y ]Z . The Levi-Civita connection of M is denoted by ∇ and
is determined by the Gauss formula

∇̄XY = ∇XY + II (X, Y ),

where II is the second fundamental form of M . The Weingarten formula reads

∇̄X ξ = −Sξ X + ∇⊥
X ξ

where Sξ is the shape operator of M with respect to ξ , and ∇⊥ is the normal connection of
M . Moreover, we have the relation 〈II (X, Y ), ξ 〉 = 〈Sξ X, Y 〉.

The shape operator Sξ is a self-adjoint endomorphism with respect to the induced metric
on M , and thus it can be diagonalized with real eigenvalues. These eigenvalues are called the
principal curvatures of M with respect to ξ , the corresponding eigenspaces are the principal
curvature spaces, and the corresponding eigenvectors are the principal curvature vectors. The
mean curvature vector field H of M is defined as the trace of the second fundamental form.
We say that M has parallel second fundamental form (resp. parallel mean curvature) if II
(resp.H) is parallel with respect to the normal connection∇⊥. We say that M has flat normal
bundle if every normal vector can be extended locally to a parallel normal vector field or,
equivalently, if the curvature of ∇⊥ is zero.

Now let M be a hypersurface of M̄ , and ξ a unit normal vector field on M . In this case,
we simply write S for the shape operator Sξ . The Codazzi equation is then written as

〈R̄(X, Y )Z , ξ 〉 = 〈(∇X S)Y, Z〉 − 〈(∇Y S)X, Z〉,
and, by letting R denote the curvature tensor of M , the Gauss equation reads

〈R̄(X, Y )Z ,W 〉 = 〈R(X, Y )Z ,W 〉 + 〈SX, Z〉〈SY,W 〉 − 〈SX,W 〉〈SY, Z〉.
We now restrict our attention to the case M̄ = M̄n(c), where M̄n(c) represents a complex

space form of complex dimension n and constant holomorphic curvature c ∈ R, that is,
a complex projective space CPn if c > 0, a complex Euclidean space C

n if c = 0, or a
complex hyperbolic space CHn if c < 0. We denote by J the complex structure of M̄n(c).
Since M̄n(c) is Kähler, we have that ∇̄ J = 0. We will also need the formula of the curvature
tensor R̄ of a complex space form of constant holomorphic sectional curvature c:
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〈R̄(X, Y )Z ,W 〉 = c

4

(
〈Y, Z〉〈X,W 〉 − 〈X, Z〉〈Y,W 〉
+ 〈JY, Z〉〈J X,W 〉 − 〈J X, Z〉〈JY,W 〉 − 2〈J X, Y 〉〈J Z ,W 〉

)
.

Let M be a real hypersurface of M̄n(c), that is, a submanifold with real codimension one.
The tangent vector field Jξ is called the Hopf or Reeb vector field of M . We define the
integer-valued function h on M as the number of principal curvature spaces onto which Jξ

has nontrivial projection or, equivalently, as the dimension of the minimal subspace of the
tangent space to M that contains Jξ and is invariant under the shape operator S. Thus, M is
said to be Hopf at a point p if h(p) = 1, and is called a Hopf hypersurface if h = 1 on M ,
that is, if Jξ is a principal curvature vector field everywhere. If h is constantly equal to an
integer number k, then there is a smooth distribution D of rank k on M that consists of the
minimal subspace of the tangent space to M at each point that contains Jξ and is S-invariant.
If D is integrable, then M is said to be k-Hopf. If additionally, the principal curvatures of M
corresponding to the principal directions in D are constant along the leaves of D, then we
will say that M is strongly k-Hopf.

For more information on submanifold geometry and real hypersurfaces in complex space
forms, we refer to [3], [8] and [26].

As an application of well-known results about Hopf real hypersurfaces in nonflat complex
space forms, we prove Theorem 1.2.

Proof of Theorem 1.2 Let M be a Hopf real hypersurface in M̄2(c), c �= 0, with constant
mean curvature. Let α denote the principal curvature of the Hopf vector field. By [26, Theo-
rem 2.1] we know that α is constant on M . Now, by [26, Corollary 2.3(ii)], if β and γ denote
the other principal curvatures of M , we have that 2α(β + γ ) − 4βγ + c = 0. This equation,
together with the constancy of α and α+β+γ , implies that β and γ are also constant. Hence,
M is a Hopf hypersurface with constant principal curvatures in M̄2(c), c �= 0. According to
their classification by Kimura [23] and Berndt [2], we conclude that M must be an open part
of a homogeneous Hopf hypersurface.

2.2 Polar actions

Let M̄ be aRiemannianmanifold, and H a connected group of isometries of M̄ . The isometric
action H × M̄ → M̄ , (h, p) �→ h(p), is called proper if the map H × M̄ → M̄ × M̄ ,
(h, p) �→ (g(p), p), is proper, which implies that the orbits of the H -action are embedded,
the space M̄/H of orbits is Hausdorff, and the isotropy groups Hp = {h ∈ H : h(p) = p}
are compact. An orbit of a proper action is called principal if its isotropy groups are minimal
among all the isotropy groups of the orbits. In particular, principal orbits have maximal
dimension. The codimension of a principal orbit is called the cohomogeneity of the action.
If an orbit has codimension higher than the cohomogeneity, it is called singular. A point is
said to be regular if it lies on a principal orbit.

Two isometric actions are called orbit equivalent if they have the same orbits, modulo an
isometry of the ambient space. A submanifold of M̄ is called homogeneous if it is an orbit
of an isometric action on M̄ . A Riemannian manifold is said to be of cohomogeneity one if
it admits a cohomogeneity-one isometric action.

We say that a proper isometric action H × M̄ → M̄ is polar if there exists a submanifold
� of M̄ that intersects all the H -orbits, and every such intersection is perpendicular. Such a
submanifold� is totally geodesic, has the dimension of the cohomogeneity of the action, and
is called a section. Polar actions admit sections through any given point in M̄ . It turns out that
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Strongly 2-Hopf hypersurfaces… 475

the set �reg of regular points in � is an open and dense subset of �. For more information
on isometric and polar actions we refer to [3, Chapter 2].

In this work, we use polar actions to construct examples of interesting hypersurfaces in
nonflat complex space forms of dimension two. Thus, let us comment on their classification.
Polar actions on complex projective spaces were classified (up to orbit equivalence) by
Podestà and Thorbergsson [27], whereas for complex hyperbolic spaces the corresponding
classification was obtained by the first two authors and Kollross [12], although the case of the
complex hyperbolic plane had previously been solved by Berndt and the first author [6]. We
are interested in the case of cohomogeneity two. It is known that, in this case, sections � are
totally real, that is, 〈JT�, T�〉 = 0. In particular, they are totally geodesic real projective
planes RP2 if c > 0, and totally geodesic real hyperbolic planes RH2 if c < 0.

In CP2 there is only one polar action of cohomogeneity two up to orbit equivalence,
namely the action of the group U (1) × U (1), which is induced from the standard action
of U (1) × U (1) × U (1) on the 5-sphere via the Hopf map. This action has three fixed
points, the other orbits are contained in the geodesic spheres around each one of these points,
and topologically they can be circles or two-dimensional tori (the latter are the principal
orbits).

In CH2 there are four polar actions of cohomogeneity two up to orbit equivalence. One
of them is dual to the one described for CP2. It is the action of U (1) × U (1) on CH2,
which has only one fixed point in this case, and the other orbits are again circles or 2-tori
contained in the geodesic spheres around the fixed point. In order to describe the other
three examples we introduce some notation (see [6] for details). Let g = su(1, 2) be the
Lie algebra of the isometry group of CH2, and k = s(u(1) ⊕ u(2)) the Lie algebra of
the isotropy group of some point of CH2. The corresponding Cartan decomposition can
be written as g = k ⊕ p, where p is the orthogonal complement of k in g with respect
to the Killing form of g. Then, a choice of a maximal abelian subspace a of p determines a
decompositiong = g−2α⊕g−α⊕g0⊕gα⊕g2α , called the restricted root space decomposition.
Here, g0 = k0 ⊕ a, where k0 ∼= u(1) is the centralizer of a in k. Thus, the other three
cohomogeneity-two polar actions on CH2 correspond to the connected subgroups H of
SU (1, 2) with the following Lie algebras: h = g0, h = k0 ⊕ g2α , and h = � ⊕ g2α , where �

is a one-dimensional vector subspace of gα . Topologically, the principal orbits of these first
two actions are two-dimensional cylinders, while those of the last one are two-dimensional
planes.

3 Levi-Civita connection of a hypersurface with h = 2

In this section, we calculate the Levi-Civita connection of a real hypersurface M in M̄2(c),
c �= 0, satisfying h = 2. This information will be used several times throughout this paper.

Let M be a real hypersurface with unit normal vector field ξ and shape operator S in
a nonflat complex space form M̄2(c). Let α, β and γ be the three principal curvatures of
M . For each principal curvature λ, we denote by Tλ the corresponding principal curvature
distribution; note that, in principle, this distribution might be singular. We will denote by
(Tλ) the module of smooth vector fields X on M such that X p ∈ Tλ(p) for every point p.

For the following proposition, we only assume that M satisfies condition (C1) in the
definition of strongly 2-Hopf hypersurface, that is, theHopf vector field Jξ ofM has nontrivial
projections onto exactly h = 2 principal curvature spaces, say onto Tα and Tβ . This implies
that α �= β at every point.
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Proposition 3.1 There are positive smooth functions a, b : M → R with a2 + b2 = 1, and
an orthonormal frame {U, V, A} on M with U ∈ (Tα), V ∈ (Tβ), A ∈ (Tγ ), such that

Jξ = aU + bV, JU = −bA − aξ, JV = aA − bξ, J A = bU − aV .

Proof Since Jξ is a unit vector field tangent to M which has nontrivial projection onto Tα

and Tβ , we can write Jξ = aU + bV , where U ∈ (Tα), V ∈ (Tβ) are unit vector fields,
and a, b are smooth functions on M satisfying a2 + b2 = 1, and a, b > 0. Let A ∈ (Tγ )

be a unit vector field; take it perpendicular to U and V in case γ has multiplicity 2. Then,
{U, V, A} constitutes an orthonormal frame on M .

As −ξ = J 2ξ = a JU + bJV , and a �= 0, taking inner product with V we get that
〈JU, V 〉 = 0. This implies that JU , JV ∈ span{A, ξ}. Now, 〈JU, ξ 〉 = −〈U, Jξ 〉 = −a,
and sinceU has unit length, we obtain 〈JU, A〉 = ±b. By changing the sign of A if necessary,
we can assume that JU = −bA−aξ . A similar argument shows that JV = aA−bξ . Finally,
these expressions imply 〈J A,U 〉 = b, 〈J A, V 〉 = −a, and 〈J A, ξ 〉 = 0, from where the
result follows.

Proposition 3.2 Assume that α �= β �= γ �= α at every point. Then the Levi-Civita connec-
tion of M in terms of the basis {U, V, A} is given by the following equations:

∇UU = Vα

α − β
V − 3abc − 4Aα

4(α − γ )
A, ∇UV = − Vα

α − β
U +

(
α + 3a2bc − 4aAα

4b(α − γ )

)
A,

∇V V = − Uβ

α − β
U + 3abc + 4Aβ

4(β − γ )
A, ∇VU = Uβ

α − β
V −

(
β + 3ab2c + 4bAβ

4a(β − γ )

)
A,

∇AU =
(
γ − Ab

a

)
V + Uγ

α − γ
A, ∇U A = 3abc − 4Aα

4(α − γ )
U −

(
α + 3a2bc − 4aAα

4b(α − γ )

)
V,

∇AV =
(
−γ + Ab

a

)
U + V γ

β − γ
A, ∇V A =

(
β + 3ab2c + 4bAβ

4a(β − γ )

)
U − 3abc + 4Aβ

4(β − γ )
V,

∇A A = − Uγ

α − γ
U − V γ

β − γ
V .

Moreover:

Ua = bVα

α − β
, Va = bUβ

α − β
, Aa = −bAb

a
,

Ub = − aVα

α − β
, Vb = − aUβ

α − β
, V γ = a(γ − β)Uγ

b(α − γ )
,

(1)

Ab = aγ + ac
(
a2 − 2b2

)

4(α − β)
− 3a3c(β − γ )

4(α − β)(α − γ )
− αa(β − γ )

α − β
+ a2(β − γ )

b(α − β)(α − γ )
Aα,

Aβ = − 3abc

4
− aβ(β − γ )

b
− ac(β − γ )

4b(α − γ )
− aα(β − γ )2

b(α − γ )
− 3a3c(β − γ )2

4b(α − γ )2
+ a2(β − γ )2

b2(α − γ )2
Aα.

(2)

Proof Using the fact that U and A are orthogonal eigenvectors of S associated with the
eigenvalues α and γ , respectively, we get

〈(∇U S)A,U 〉 = 〈∇U SA − S∇U A,U 〉 = 〈∇U (γ A),U 〉 − 〈∇U A, SU 〉
= (Uγ )〈A,U 〉 + γ 〈∇U A,U 〉 − α〈∇U A,U 〉 = (α − γ )〈∇UU, A〉.

As U is a unit vector field, we have 〈∇AU,U 〉 = 0. Thus, proceeding as before, we get
〈(∇AS)U,U 〉 = Aα. Moreover, the expression of the curvature tensor of a complex space
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form yields 〈R̄(U, A)U, ξ 〉 = −3abc/4. Hence, the Codazzi equation applied to the triple
(U, A,U ) implies

〈∇UU, A〉 = 1

α − γ

(
Aα − 3abc

4

)
.

Applying the Codazzi equation to the triples (U, V,U ), (U, A,U ), (U, A, A), (U, V, V ),
(V, A, V ) and (V, A, A), we obtain in a similar way:

〈∇UU, V 〉= Vα

α − β
, 〈∇UU, A〉 = 1

α − γ

(
Aα − 3abc

4

)
, 〈∇A A,U 〉 = − Uγ

α − γ
,

〈∇V V,U 〉=− Uβ

α − β
, 〈∇V V, A〉 = 1

β − γ

(
Aβ + 3abc

4

)
, 〈∇A A, V 〉 = − V γ

β − γ
.

(3)
Since J is parallel with respect to the Levi-Civita connection ∇̄ of M̄2(c), we have

∇̄U Jξ = J ∇̄U ξ = −J SU = −α JU . Taking this into account, and using Proposition 3.1
and (3), we get

0 = U 〈A, Jξ 〉 = 〈∇̄U A, Jξ 〉 + 〈A, ∇̄U Jξ 〉 = a〈∇U A,U 〉 + b〈∇U A, V 〉
+ αb〈A, A〉 + αa〈A, ξ 〉

= − a

α − γ

(
Aα − 3abc

4

)
+ b〈∇U A, V 〉 + αb,

from where we can obtain 〈∇U A, V 〉. This, and analogous calculations with V 〈A, Jξ 〉 = 0
and A〈V, Jξ 〉 = Ab, give the expressions

〈∇UV, A〉 = α − a

b(α − γ )

(
Aα − 3abc

4

)
, 〈∇AU, V 〉 = γ − Ab

a
,

〈∇VU, A〉 = −
(

β + b

a(β − γ )

(
Aβ + 3abc

4

))
.

(4)

Equations (3) and (4) give the formulas for the Levi-Civita connection.
Now, the relations U 〈V, Jξ 〉 = Ub, V 〈V, Jξ 〉 = Vb, A〈A, Jξ 〉 = 0, and a(Xa) +

b(Xb) = 0 for any X ∈ T M , together with the formulas obtained for the Levi-Civita
connection, yield Eqs. (1).

Finally, if we apply theCodazzi equation to the triples (U, V, A) and (U, A, V ), we obtain:

〈∇VU, A〉 = c + 4(β − γ )〈∇UV, A〉
4(α − γ )

, 〈∇AU, V 〉 = − (a2 − 2b2)c − 4(β − γ )〈∇UV, A〉
4(α − β)

.

Combining this with (4), we derive (2).

4 Strongly 2-Hopf hypersurfaces

In this section, we investigate the structure of strongly 2-Hopf hypersurfaces in CP2 and
CH2. We prove the first part of the Main Theorem in §4.1, and the second part in §4.2.

4.1 Construction

We proceed with the construction of the examples of strongly 2-Hopf hypersurfaces in a
nonflat complex space form M̄2(c), c �= 0.
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Wefix a connected group H of isometries of M̄2(c) acting polarly andwith cohomogeneity
two on M̄2(c). Let � be a section for this action, and �reg the set of regular points of �.

Let σ : t ∈ (−ε, ε) �→ σ(t) ∈ �reg be a unit speed curve, and put p = σ(0). Then, the
subset

M = H · σ = {h(σ (t)) : t ∈ (−ε, ε), h ∈ H}
is a three-dimensional hypersurface in M̄2(c) that is foliated by equidistant principalH -orbits,
and orthogonally, by the curves h ◦ σ : t ∈ (−ε, ε) �→ (h ◦ σ)(t) = h(σ (t)) ∈ �reg , for
each h ∈ H . Note that M = H ·σ is intrinsically a cohomogeneity one manifold. Moreover,
the integrable distributions associated with these two foliations are invariant under the shape
operator of M . Indeed, if ξ is a unit normal vector field on M , the principal curvatures (resp.
principal curvature spaces) of some orbit H · q at q with respect to ξ are also principal
curvatures (resp. principal curvature spaces) of M at q . This follows from the fact that ξ is
an H -equivariant normal field along principal orbits of a polar action, and therefore ξ is also
parallel with respect to the normal connection of the orbits [3, Corollary 2.3.7]. In particular,
the principal curvatures of M along an H -orbit are constant. Our purpose is to argue that,
generically, M is a strongly 2-Hopf hypersurface.

Consider the map

� : w ∈ S1(Tp�) �→ 〈S(ξw)p (Jξw)p, Jw〉 ∈ R,

defined in the unit sphere of Tp�, and where S denotes the shape operator of the surface
H · p, and ξw ∈ Tp� is the unit vector obtained by rotatingw 90◦ (in some fixed orientation)
around the origin of Tp�. Denote bywp the subset of vectors of S1(Tp�)where� vanishes.
Observe that M = H · σ is Hopf at p if and only if σ̇ (0) ∈ wp .

In [13, end of §2.2], it was shown that, by virtue of the Ricci equation, the map � cannot
vanish identically. Therefore, since � is an analytic map, the set wp cannot be infinite. (We
note that in [13] it was claimed that wp had at most two elements, but this does not need to
be true, since � is not linear as asserted there; however, all other statements in [13] remain
true.) Thus, if w = σ̇ (0) /∈ wp , then M = H · σ is not Hopf at p. By continuity, this implies
that, if σ̇ (0) /∈ wp and for ε small enough, then M is not Hopf at any point. Denote byD the
rank-2 integrable distribution tangent to the H -orbits. Then, if ξ is a unit normal vector field
to M , then Jξ ∈ D (since � is totally real), and hence, D is the smallest distribution of M
containing Jξ and invariant under the shape operator of M . Moreover, as mentioned above,
the principal curvatures of M whose principal curvature spaces lie in D are constant along
the H -orbits, that is, along the integral submanifolds of D. This completes the proof that M
is strongly 2-Hopf whenever σ̇ (0) /∈ wp , which concludes the proof of the first part of the
Main Theorem.

4.2 The equations of a strongly 2-Hopf hypersurface

The aim of this subsection is to prove the second part of the Main Theorem, that is, to show
that a strongly 2-Hopf real hypersurface in M̄2(c), c �= 0, must be locally congruent to a
hypersurface constructed as in the previous subsection.

From now on, we assume that M is strongly 2-Hopf with associated distribution D. We
will use the notation given above in Proposition 3.1, so in particular D = span{U, V }. In the
following proposition, we determine the Levi-Civita connection of M .
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Proposition 4.1 The Levi-Civita connection of M in terms of the frame {U, V, A} is given
by the following equations:

∇UU = −b(c − 4α(α − β))

4a(α − β)
A, ∇VU = c

4(α − β)
A,

∇UV = c

4(α − β)
A, ∇V V = −a(c + 4β(α − β))

4b(α − β)
A,

∇U A = b(c − 4α(α − β))

4a(α − β)
U − c

4(α − β)
V, ∇V A = − c

4(α − β)
U + a(c + 4β(α − β))

4b(α − β)
V

∇AU =
(

c(β − γ )

4(α − β)2
− c(a2 − 2b2)

4(α − β)

)
V, ∇AV =

(
− c(β − γ )

4(α − β)2
+ c(a2 − 2b2)

4(α − β)

)
U,

∇A A = 0.

Furthermore, we have Da = Db = Dα = Dβ = Dγ = 0.

Proof First of all, note that, in case that γ equals one of the other twoprincipal curvatures in an
open set of M , then the relations above hold, according to [13, Proposition 4.1]. Therefore, it
is enough to prove Proposition 4.1 for the casewhereM has three distinct principal curvatures
at every point. In particular, Proposition 3.2 holds.

By definition of strongly 2-Hopf hypersurface, we have Uα = Uβ = Vα = Vβ = 0.
Then, Equations (1) imply Ua = Ub = Va = Vb = 0.

Since the distribution D = span{U, V } is integrable due to the strongly 2-Hopf assump-
tion, we must have 〈∇UV − ∇VU, A〉 = 0. Using Proposition 3.2, this allows us to obtain
after some calculations

Aα = αb(α − γ )

a
+ bc(α − γ )

4a(β − α)
+ 3abc

4
,

Aβ = −βa(β − γ )

b
− ac(β − γ )

4b(α − β)
− 3abc

4
,

Ab = a

(
c
(
a2 − 2b2

)

4(α − β)
− c(β − γ )

4(α − β)2
+ γ

)
.

(5)

The last step is to show that Uγ = 0. Proposition 3.2, Eqs. (5), and the assumption
Uα = 0, easily imply

[U, A]α = (∇U A − ∇AU )α = − 1

α − γ

(
αb(α − γ )

a
+ bc(α − γ )

4a(β − α)
+ 3abc

4

)
Uγ,

U Aα = b(c − 4α(α − β))

4a(α − β)
Uγ, AUα = 0.

Thus,

0 = ([U, A] −U A + AU )α = − 3abc

4(α − γ )
Uγ,

which yields Uγ = 0, as desired. Finally, by (1), we get V γ = Uγ = 0. Putting together
all these results, we obtain Proposition 4.1.

In order to conclude the proof of the Main Theorem, we need to extract certain geometric
information on the integrable distributions D and RA, and then use this information to show
thatM can be constructed as in the statement of theMain Theorem. The arguments needed for
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this purpose are completely analogous to those developed in [13, Sections 5 and 6]. Hence,
we will restrict ourselves to give a quick idea of the arguments and state the main partial
results involved. We refer to [13] for detailed proofs.

A first consequence of Propositions 3.1 and 4.1 is the following.

Proposition 4.2 The leaves of the integrable distribution D are flat, totally real surfaces of
M̄2(c) with parallel second fundamental form and flat normal bundle.

Observe that the relation ∇A A = 0 in Proposition 4.1 implies that the integral curves of
A are geodesics of M and, by the Gauss formula, their curvature as curves in M̄2(c) is γ .
Moreover, these curves are, locally, intersections of M with totally geodesic, totally real
surfaces in M̄2(c). More precisely, we have:

Proposition 4.3 Let σ be an integral curve of A through a point p ∈ M. Let Q p =
expp(RAp ⊕ Rξp), where expp denotes the Riemannian exponential map of M̄2(c) at p.

Then Qp is a totally real, totally geodesic surface of M̄2(c), and σ is contained in Qp.
Furthermore, the curve σ is determined by the initial conditions σ(0) = p, σ̇ (0) = Ap,

and the fact that σ is a unit speed curve in Qp = expp(RAp ⊕ Rξp) with curvature γ with
respect to ξ .

Next, one can show that, if Qp and σ are as above, then Qp intersects the integral subman-
ifolds of D perpendicularly along σ . This, Proposition 4.3, the fact that the integral curves
of A are geodesics in M , and the fact that the curvature γ is constant along the leaves of D,
allows to show the following result.

Proposition 4.4 We have:

(i) The integral surfaces of D are equidistant submanifolds of M̄2(c).
(ii) Let L be an integral surface of the distribution D, and let Lt be an integral surface of

D whose distance to L is a sufficiently small number t. Then, in a neighborhood U of
a point in L there exists a parallel normal vector field ηt such that

Lt = {expp(ηt (p)) : p ∈ U}.
Now, it follows directly from Proposition 4.2 that the integral submanifolds of D are

flat, Lagrangian surfaces of M̄2(c) with parallel mean curvature. Then, [13, Theorem 2.1]
guarantees that each one of these surfaces is an open part of a principal orbit of a polar action
of cohomogeneity two on M̄2(c). By Proposition 4.4, the integral surfaces ofD are obtained
by exponentiating a parallel normal vector field along a fixed leaf. Moreover, on a principal
orbit of a polar action every parallel normal field is equivariant. Altogether, this implies that
all leaves ofD are principal orbits of the same polar action of a group H . Moreover, for each
p ∈ M the integral curve of A through p is contained in the totally geodesic submanifold
Qp = expp(RAp ⊕Rξp), which is perpendicular to the leaf ofD through p and, then, must
be a section for the H -action. Therefore, M is obtained, locally, as H · σ , where σ is an
integral curve of A. This concludes the proof of the Main Theorem.

5 Austere hypersurfaces

In this section, we investigate austere real hypersurfaces in M̄2(c), c �= 0, under the only
assumption that the Hopf vector field does not have nontrivial projection onto three principal
curvature spaces. In other words, we just assume h ≤ 2. We prove first that h must be
constantly equal to 2 in an open dense subset.
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Proposition 5.1 There are no Hopf austere hypersurfaces in M̄2(c), c �= 0.

Proof Austere hypersurfaces have, by definition, vanishing mean curvature. Then, by Theo-
rem1.2, aHopf austere hypersurface in M̄2(c), c �= 0,must be an open part of a homogeneous
Hopf hypersurface. But by direct inspection of the principal curvatures of the examples in
Takagi’s and Montiel’s lists [26, §3] one can check that the only Hopf, homogeneous, mini-
mal hypersurfaces in M̄2(c), c �= 0, are geodesic spheres or tubes around a totally geodesic
RP2 of certain fixed radius. But none of these examples is austere.

Hence, if M is an austere hypersurface of M̄2(c), c �= 0, with h ≤ 2, then there is an
open and dense subset of M where h = 2. In what follows we will assume that calculations
take place in this subset. Note that the assumption that M is austere implies that its principal
curvatures are α, −α and 0, for some smooth function α on M . We will use the notation
established in Proposition 3.1.

Proposition 5.2 Let M be an austere hypersurface of M̄2(c), c �= 0, with h = 2, and three
distinct principal curvaturesα,−α and0. Then M is strongly 2-Hopf, theHopf vector field has
nontrivial projections onto Tα and T−α , and the norm of both projections is a = b = 1/

√
2.

Proof Assume first that Jξ has nontrivial projection onto Tα and T0. Thus, we put β = 0
and γ = −α in the results of Sect. 3. In particular, by (1) and (2) we have

Aα = b

4a
(5c + 8α2 + 9b2c), Ab = a

4α
(5c − 4α2 − 3ca2), Va = Vb = 0, (6)

Vα = − a

2b
Uα, Ua = − a

2α
Uα, Ub = a2

2bα
Uα. (7)

Using Proposition 3.1, the formulas for the Levi-Civita connection in Proposition 3.2, (6)
and (7), the Gauss equation applied to (U, V,U, A) implies, after some calculations, that

Uα = Vα = Ua = Ub = 0. (8)

Using again Propositions 3.1 and 3.2, (6) and (8), the Gauss equation applied to (U, V,U, V )

yields α2 = 1
4 (2+3b2)c. Similarly, by the Gauss equation applied to (A, V,U, A)we obtain

that α2 = (−8+9b2+27b4)c
4(−7+3b2)

. But both expressions for α2 are incompatible for b ∈ R. This
contradiction implies the nonexistence of austere hypersurfaces whose Hopf vector field has
nontrivial projections onto Tα and T0.

Since α and −α are interchangeable, we just have to deal with the case where Jξ has
nontrivial projection onto Tα and T−α . Thus, we put β = −α and γ = 0 in the results of
Sect. 3. Then, by (2) we get

Aα = ab

2
(c + 4α2). (9)

Hence, by applying the Gauss equation to (A, V, A,U ), and using Propositions 3.1 and 3.2
with β = −α, γ = 0, and (9), we obtain abc(a2−b2)(c+4α2) = 0. If a �= b on a nonempty
subset U of M , we deduce that U is a real hypersurface with constant principal curvatures
±√−c/2 and 0 in M̄2(c), c < 0. By the classification in [4], U must be an open part of a
Lohnherr hypersurface, but this example satisfies a = b everywhere, which is a contradiction.
Therefore, we must have a = b on M . Since a2 + b2 = 1, we deduce that a = b = 1/

√
2.

But then (1) yields Uα = Vα = 0. This, together with (9) and Proposition 3.2, implies that
∇UV − ∇VU = 0. Hence, M is strongly 2-Hopf, as we wanted to show.
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In order to conclude the proof of Theorem 1.3, we will make use of the notion of ruled
hypersurface. Recall that a real hypersurface M in a complex space form is called ruled if
the maximal complex distribution (Jξ)⊥ of M is integrable and its integral submanifolds are
totally geodesic complex hypersurfaces of the ambient space [8, §8.5.1].

Proof of Theorem 1.3 Observe that (Jξ)⊥ = RJ A⊕RA = R(bU −aV )⊕RA. By Propo-
sition 5.2, we have SJ A = αbU + αaV = (α/

√
2)(U + V ) = α Jξ and SA = 0, which

implies that S(Jξ)⊥ ⊂ RJξ . By [8, Proposition 8.27], M is a ruled hypersurface. In par-
ticular, M is a minimal ruled hypersurface in M̄2(c), c �= 0. Lohnherr and Reckziegel [25]
proved that there is at most one minimal ruled hypersurface in CP2 up to local congruence,
and at most three in CH2.

Kimura [24] proved that a cone over a Clifford torus in CP2 is austere and ruled. Since
ruled hypersurfaces satisfy h ≤ 2 everywhere (indeed h = 2 on an open and dense subset),
Kimura’s example gives the only possibility of an austere hypersurface with h ≤ 2 in CP2.

In CH2 there are three known (noncongruent) examples of minimal ruled hypersurfaces:
Clifford cones [1, §3], Lohnherr hypersurfaces [25, §4], and bisectors [8, p. 447]; see also [15,
p. 253]. All of them are known to be austere with h ≤ 2. Therefore, these are precisely the
examples of austere hypersurfaces with h ≤ 2 in CH2.

Remark 5.3 It is known that a ruled hypersurface M in a complex space form is locally con-
structed by attaching to an integral curve τ of Jξ the complex totally geodesic hypersurfaces
that are normal to τ̇ . It was also shown in [25] that a ruled hypersurface in M̄2(c), c �= 0, is
minimal if and only if τ is a circle contained in a totally geodesic and totally real submanifold
of M̄2(c). Moreover, in the projective case, any two such circles give rise to the same ruled
hypersurface, up to congruence, whereas in the hyperbolic case, two circles τ1, τ2 give rise
to congruent ruled hypersurfaces if and only if their curvatures

∥∥∇̄τ̇1 τ̇1
∥∥, ∥∥∇̄τ̇2 τ̇2

∥∥ are both
greater, equal, or less than

√−c/2. It follows from our study above that ∇̄Jξ Jξ = αA for an
austere hypersurface with h = 2. Note that from (9) we have that α − √−c/2 has constant
sign. One can show that the cases α >

√−c/2, α = √−c/2 and α <
√−c/2 correspond,

respectively, to Clifford cones, Lohnherr hypersurfaces and bisectors.

We conclude this section by observing that we could have finished the proof of Theo-
rem 1.3 without using the results about ruled hypersurfaces. We sketch briefly the idea of
this alternative argument.

In view of Propositions 5.1 and 5.2, an austere hypersurfaceM in M̄2(c), c �= 0, satisfying
h ≤ 2, is strongly 2-Hopf in an open and dense subset and, thus, must be constructed by the
procedure described in Subsection 4.1. Moreover, according to Proposition 4.3, the curve σ

inside the section � of a polar H -action must have curvature γ = 0. In other words, we need
σ to be a pregeodesic in �, that is, ∇̄σ̇ σ̇ ∈ span{σ̇ }.

Moreover, if M = H · σ is to be austere, the trace of the shape operator Sξ of the orbits
H · σ(t), with respect to the normal vector field ξ of M , must vanish. This follows from the
fact that the principal curvatures of the integral leaves of D = span{U, V } with respect to ξ

coincide with the spectrum of the shape operator of M restricted to D, but this spectrum is
{α,−α}, for some H -invariant function α on M , according to Proposition 5.2. Thus, ξp must
be perpendicular to the mean curvature vector field of the orbit H · p, for every p ∈ M . By
H -equivariance, it is enough to have this property along the points of σ . LetH be the vector
field on � defined by the fact that Hp is the mean curvature vector of H · p at p. Then the
condition reads Hσ(t) ∈ span{σ̇ (t)} for every t .

It turns out that M = H · σ is austere if and only if σ is a pregeodesic and Hσ(t) ∈
span{σ̇ (t)}, for all t . Thus, the idea is to find all curves σ satisfying both conditions, for each
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polar action of cohomogeneity 2 on M̄2(c), c �= 0. This requires a good understanding of
such actions and, in particular, one needs to determine the mean curvature vector field H
on � explicitly, and to compute the derivative ∇̄HH. Here we skip the elementary but long
calculations involved.

As mentioned in Subsection 2.2, the unique polar action of cohomogeneity two on CP2

(up to orbit equivalence) is the action of H = U (1) ×U (1). A section � for this action is a
totally geodesic RP2, and the orbit space CP2/H is homeomorphic to a geodesic triangle
of angles (π/2, π/2, π/2) inside � = RP2. Due to the action of the Weyl group on �,
it is enough to find a curve σ in this triangle. It turns out that the only curves satisfying
the above-mentioned conditions are the bisectors of the three angles of the triangle. Each
such a curve σ joins a vertex of the triangle (which is a fixed point of the H -action) to the
only minimal principal H -orbit, which we call a Clifford torus of CP2. Thus, the resulting
hypersurface H · σ is a cone over a Clifford torus in CP2.

InCH2 there are four cohomogeneity-two polar actions up to orbit equivalence. A section
� for each of them is always a totally geodesic RH2. The action of H = U (1) × U (1) is
in some sense dual to the corresponding action on CP2, and the only suitable curves σ in �

give rise to Clifford cones (cf. [16, §3.2]). The action of the group H with Lie algebra h = g0
admits only one curve σ in � such that H · σ is austere; in this case, the hypersurface H · σ
turns out to be a bisector (cf. [16, §3.4]). The action corresponding to h = k0 ⊕ g2α does not
admit any suitable curve σ . Finally, the case h = �⊕g2α , with � a one-dimensional subspace
of gα , admits only one suitable curve σ , and the corresponding austere hypersurface H · σ

is a Lohnherr hypersurface (which is called a fan in [16, §3.6]).

6 Applications

In this section, we derive some characterizations of strongly 2-Hopf hypersurfaces that sat-
isfy some additional properties. We first prove Corollaries 1.1 and 1.4 in Subsections 6.1
and 6.2, respectively, and then, in Subsection 6.3 we classify strongly 2-Hopf, Levi-flat real
hypersurfaces with constant mean curvature in M̄2(c), c �= 0 (Theorem 1.5).

The Main Theorem guarantees that strongly 2-Hopf hypersurfaces in M̄2(c), c �= 0, are
constructed locally as a set H ·σ = {h(σ (t)) : t ∈ (−ε, ε), h ∈ H}, where H is a connected
group of isometries acting polarly and with cohomogeneity two on M̄2(c), and σ is a smooth
curve in the regular part of a section � of the H -action. Our purpose is to determine which
curves σ give rise to a real hypersurface with one or several additional properties.

6.1 Strongly 2-Hopf hypersurfaces with constant mean curvature

In order to prove Corollary 1.1, we assume that the mean curvature of the resulting hyper-
surface H · σ is constant. Thus, let p ∈ � be a regular point, w ∈ Tp� a tangent vector,
and σ a smooth curve in the regular part of � such that σ(0) = p and σ̇ (0) = w. Let ξ be
one of the two unit normal vector fields along σ that are tangent to �, and let γ denote the
curvature of σ with respect to ξ . We also denote by ξ the unique extension to a smooth unit
normal vector field along H ·σ ; note that such extension is H -equivariant. Observe also that,
by equivariance, the principal curvatures of H · σ with respect to ξ are constant along each
H -orbit. Then the mean curvature of H ·σ with respect to ξ will have a constant value η ∈ R

if and only if the curvature function γ satisfies γ (t) = η−α(ξ(t))−β(ξ(t)) for all t where σ

is defined, being α(ξ(t)) and β(ξ(t)) the principal curvatures of the orbit H ·σ(t)with respect
to ξσ(t) at the point σ(t). In other words, we need (∇̄σ̇ σ̇ )(t) = (η − α(ξ(t)) − β(ξ(t)))ξσ(t)
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for all t . But, in local coordinates, this yields an ordinary differential equation of second
order in normal form, so it admits a unique local solution σ for initial conditions σ(0) = p
and σ̇ (0) = w. This, together with the Main Theorem, proves Corollary 1.1. Observe that,
by the Main Theorem, the hypersurface with constant mean curvature constructed above is
generically strongly 2-Hopf.

6.2 Levi-flat strongly 2-Hopf hypersurfaces

The Levi form of a real hypersurface M in a Kähler manifold is the symmetric bilinear map
L : (Jξ)⊥ × (Jξ)⊥ → νM defined by

L(X, Y ) = II (X, Y ) + II (J X, JY ),

where (Jξ)⊥ is the maximal complex distribution of M . Then M is called Levi-flat if its Levi
form vanishes identically. It is easy to check that M is Levi-flat if and only if the maximal
complex distribution of M is integrable. Thus, ruled hypersurfaces are a very particular case
of Levi-flat hypersurfaces. See [18] for more information on Levi-flat hypersurfaces.

Consider a real hypersurface M in M̄2(c), c �= 0, satisfying h = 2. We will use the
notation established in Sect. 3. Assume thatM is Levi-flat. Then, its Levi formvanishes. Since
A, J A ∈ (Jξ)⊥ by Proposition 3.1, we have II (A, A) + II (J A, J A) = 0 or, equivalently,
〈SA, A〉 + 〈SJ A, J A〉 = 0. Using Proposition 3.1 again, this condition reads

γ + b2α + a2β = 0.

Now, in order to prove Corollary 1.4 the procedure is analogous to the one described above
in §6.1. One just has to take into account that now the curve σ must have curvature function
γ (t) = −b(ξ(t))2α(ξ(t))− a(ξ(t))2β(ξ(t)), where a(ξ(t)) and b(ξ(t)) are the norms of the
orthogonal projections of Jξ(t) onto the principal curvature spaces Tα(ξ(t)) and Tβ(ξ(t)) of
the surface H · σ(t) with respect to ξ(t), at each point σ(t).

6.3 Levi-flat strongly 2-Hopf hypersurfaces with constant mean curvature

Our aim in this subsection is to prove Theorem 1.5.
Let M be a Levi-flat strongly 2-Hopf real hypersurface in M̄2(c), c �= 0, with constant

mean curvature η. By Subsections 6.1 and 6.2, we have that γ = η − α − β and γ =
−b2α − a2β. Since a2 + b2 = 1, we deduce a2α + b2β = η. If we take derivatives in this
expression with respect to the vector field A, we obtain

2aαAa + a2Aα + 2bβAb + b2Ab = 0.

From (5) in Sect. 4 and from the relation aAa + bAb = 0, we deduce the expressions of
Aa, Ab, Aα and Aβ in terms of a, b and the principal curvatures. Thus, substituting into the
previous equation we obtain after some calculations that 3γ = α +β. Since γ = η −α −β,
then γ = η/4 and α + β = 3η/4.

From the equations a2 + b2 = 1 and αb2 + βa2 = −γ , we get the expressions a2 =
(γ +β)/(β −α) and b2 = (α+γ )/(α−β). Since α+β is constant, we have A(α+β) = 0.
Putting together this with (5), the previous expressions for a2 and b2, and the relations
γ = η/4 and β = 3η/4 − α, we obtain after some calculations that

0 = η(8α2 − 6ηα + 3η2 − 4c).

We distinguish between the minimal and non-minimal cases. Thus, if η �= 0, the previous
equation implies that α is constant, and then M has constant principal curvatures. But real
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hypersurfaces with constant principal curvatures in the complex projective and hyperbolic
planes have been classified [4], [29] (see [14] for a survey). On the one hand, in CP2 there
do not exist non-Hopf hypersurfaces with constant principal curvatures, while in CH2 the
only non-Hopf hypersurfaces with constant principal curvatures are the Lohnherr hypersur-
face (which is minimal), and its equidistant hypersurfaces (which are non-minimal). All of
them are strongly 2-Hopf, as follows from [5, §4.1] (cf. [11]). However, only the Lohnherr
hypersurface is Levi-flat: it is the only one that satisfies the relation γ = −b2α − a2β, as
can be checked from [11, Theorem 3.12]. Hence, the case η �= 0 is impossible.

Assume now that η = 0. Then γ = 0, β = −α and a2 = b2 = 1/2. In particular, M
is an austere strongly 2-Hopf hypersurface in M̄2(c), c �= 0. By the classification achieved
in Sect. 5, we deduce that M must be an open part of a Lohnherr hypersurface, or a Clifford
cone, or a bisector. Finally, observe that all these examples are Levi-flat, since they are ruled.
This concludes the proof of Theorem 1.5.

References

1. Ahn, S.-S., Lee, S.-B., Suh, Y.-J.: On ruled real hypersurfaces in a complex space form. Tsukuba J. Math.
17(2), 311–322 (1993)

2. Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine
Angew. Math. 395, 132–141 (1989)

3. Berndt, J., Console, S., Olmos, C.: Submanifolds and Holonomy. Monographs and Research Notes in
Mathematics, 2nd edn. CRC Press, Boca Raton (2016)

4. Berndt, J., Díaz-Ramos, J.C.: Real hypersurfaces with constant principal curvatures in the complex hyper-
bolic plane. Proc. Am. Math. Soc. 135(10), 3349–3357 (2007)

5. Berndt, J., Díaz-Ramos, J.C.: Homogeneous hypersurfaces in complex hyperbolic spaces. Geom. Dedic.
138, 129–150 (2009)

6. Berndt, J., Díaz-Ramos, J.C.: Polar actions on the complex hyperbolic plane. Ann. Global Anal. Geom.
43, 99–106 (2013)

7. Bryant, R.L. Levi-flat minimal hypersurfaces in two-dimensional complex space forms, Lie groups,
geometric structures and differential equations-one hundred years after Sophus Lie (Kyoto/Nara, 1999).
Adv. Stud. Pure Math, Math. Soc. Japan, Tokio. 37, 1–44 (2002)

8. Cecil, T.E., Ryan, P.J.: Geometry of Hypersurfaces. Springer, New York (2015)
9. Cho, J.T.: Levi-parallel hypersurfaces in a complex space form. Tsukuba J. Math. 30(2), 329–343 (2006)

10. Cho, J.T., Kimura, M.: Austere hypersurfaces in 5-sphere and real hypersurfaces in complex projective
plane. In: Cheng, Q.-M., Maeda, S., Ohnita, Y. (eds.) Differential Geometry of Submanifolds and its
Related Topics, pp. 245–259. World Science Publisher, Hackensack (2014)

11. Díaz-Ramos, J.C., Domínguez-Vázquez, M.: Non-Hopf real hypersurfaces with constant principal cur-
vatures in complex space forms. Indiana Univ. Math. J. 60(3), 859–882 (2011)

12. Díaz-Ramos, J.C., Domínguez-Vázquez, M., Kollross, A.: Polar actions on complex hyperbolic spaces.
Math. Z. (2017). doi:10.1007/s00209-017-1864-5

13. Díaz-Ramos, J.C., Domínguez-Vázquez, M., Vidal-Castiñeira, C.: Real hypersurfaces with two principal
curvatures in complex projective and hyperbolic planes. J. Geom. Anal. 27(1), 442–465 (2017)

14. Domínguez-Vázquez, M.: Real hypersurfaces with constant principal curvatures in complex space forms.
Differ. Geom. Appl. 29, S65–S70 (2011)

15. Goldman, W.M.: Complex Hyperbolic Geometry. Oxford Mathematical Monographs, Oxford Science
Publications, The Clarendon Press, Oxford University Press, New York (1999)

16. Gorodski, C., Gusevskii, N.: Complete minimal hypersurfaces in complex hyperbolic space. Manuscr.
Math. 103, 221–240 (2000)

17. Harvey, R., Lawson Jr., H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)
18. Hermann, R.: Convexity and pseudoconvexity for complex manifolds. J. Math. Mech. 13(4), 667–672

(1964)
19. Hsiang, W.-Y., Lawson Jr., H.B.: Minimal submanifolds of low cohomogeneity. J. Differ. Geom. 5, 1–38

(1971)
20. Hsiang, W.-Y.: Minimal cones and the spherical Bernstein problem, I. Ann. of Math. 2 118(1), 61–73

(1983)

123

http://dx.doi.org/10.1007/s00209-017-1864-5


486 J.C.Díaz-Ramos et al.

21. Ionel, M., Ivey, T.A.: Austere submanifolds in CPn . Comm. Anal. Geom. 24(4), 821–841 (2016)
22. Ivey, T.A., Ryan, P.J.: Hypersurfaces in CP2 and CH2 with two distinct principal curvatures. Glasg.

Math. J. 58(1), 137–152 (2016)
23. Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am.

Math. Soc. 296, 137–149 (1986)
24. Kimura, M.: Sectional curvatures of holomorphic planes on a real hypersurface in P

n(C). Math. Ann.
276(3), 487–497 (1987)

25. Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms. Geom. Dedic. 74(3),
267–286 (1999)

26. Niebergall, R., Ryan, P.J.: Real hypersurfaces in complex space forms, Tight and Taut Submanifolds.
MSRI Publications, Cambridge (1997)

27. Podestà, F., Thorbergsson, G.: Polar actions on rank-one symmetric spaces. J. Differ. Geom. 53, 131–175
(1999)

28. Siu, Y.-T.: Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension
≥ 3. Ann. Math. 2 151(3), 1217–1243 (2000)

29. Wang, Q.M.: Real hypersurfaces with constant principal curvatures in complex projective spaces. I. Sci.
Sinica Ser. A 26(10), 1017–1024 (1983)

123


	Strongly 2-Hopf hypersurfaces in complex projective and hyperbolic planes
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Submanifold geometry in complex space forms
	2.2 Polar actions

	3 Levi-Civita connection of a hypersurface with h=2
	4 Strongly 2-Hopf hypersurfaces
	4.1 Construction
	4.2 The equations of a strongly 2-Hopf hypersurface

	5 Austere hypersurfaces
	6 Applications
	6.1 Strongly 2-Hopf hypersurfaces with constant mean curvature
	6.2 Levi-flat strongly 2-Hopf hypersurfaces
	6.3 Levi-flat strongly 2-Hopf hypersurfaces with constant mean curvature

	References




