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Abstract We present two examples of foliations with infinite dimensional basic symplectic
and complex cohomologies, along with a general sufficient condition for such phenomena.
This puts restrictions onpossible generalisations of several finiteness results fromRiemannian
foliations to any broader class. The examples are also noteworthy for the unusual behaviour
of their basic de Rham cohomology.
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1 Introduction

In this short paper, a simple algebraic Lemma 1 (based on the methods used in [4]) enables us
to relate the special basic cohomologies to the ordinary basic cohomology of a foliation. We
thus obtain interesting examples of infinite dimensional basic Bott–Chern and Aeppli coho-
mologies (in the transversally holomorphic case), and basic (d+dΛ)- and ddΛ-cohomologies
(in the transversally symplectic case). These cohomologies (and especially their non-foliated
counterparts) are subject of extensive studies (cf. [2–4,9,12,14]); in particular, it can be
proved (cf. [12]) that for Riemannian foliations they are all finite dimensional. Our examples
amount to say that certain compactness conditions in those proofs cannot be dropped, which
is by nomeans obvious (cf. [10], whichworks for both compact and non-compactmanifolds).
The examples also violate various dualities present in the Riemannian case. We will begin
the next section with a review of all relevant notions.
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The behaviour of special basic cohomologies in our examples revealed an interesting
picture. Of all the peculiarities collected in the last section, we single out here the following:
The basic cohomology of our transversally holomorphic example has infinite dimension in
degrees 2 and 4, and finite dimension in degree 3. To the extent of our knowledge, no example
of basic cohomology reverting to finite dimension was ever given. It is worth pointing out
that we know essentially only twoways of producing infinite dimensional basic cohomology:
either Schwarz’ [13] or Ghys’ [7]. We feel it is important to better understand how the infinite
dimensional basic cohomology may arise in non-Riemannian foliations. Lemma 1 and its
application to the transversally holomorphic example shed some light on this matter.

2 Foliations

2.1 Transverse structures

We start with a brief review of some basic facts about foliations and transverse structures.
The interested reader is referred to [11] for a thorough exposition. All manifolds are assumed
to be compact.

Definition 1 A codimension n foliationF on a smoothmanifold M is given by the following
data:

– an open cover U := {Ui }i∈I of M;
– a n-dimensional smooth manifold T0;
– for each Ui ∈ U a submersion fi : Ui −→ T0 with connected fibres (called plaques);
– for each intersectionUi ∩U j �= ∅ a local diffeomorphism γi j of T0 such that f j = γi j ◦ fi .

The last condition ensures that the plaques glue nicely to form a partition of M by sub-
manifolds of codimension n, called leaves of F . We call T = ∐

Ui ∈U fi (Ui ) the transverse
manifold of F . The local diffeomorphisms γi j generate a pseudogroup Γ of transformations
on T (called the holonomy pseudogroup).

The space of leaves M
/F of the foliation F can be identified with T

/
Γ . We note that

neither T nor T
/
Γ need to be compact, even if M is.

Definition 2 A smooth form ω on M is called basic iff for any vector field X tangent to the
leaves of F we have

iXω = iXdω = 0

Basic forms are in one-to-one correspondence with Γ -invariant smooth forms on T , a point
of view that we will take below.

It is clear that dω is basic for any basic form ω. Hence, the set of basic forms of F ,
Ω•(M/F), is a subcomplex of the de Rham complex of M . We define the basic cohomology
(or sometimes basic de Rham cohomology if other basic cohomologies are in play) of F to
be the cohomology of this subcomplex and denote it by H•(M/F).

A transverse structure on F is any Γ -invariant structure on T . We will need the following
examples.

Definition 3 F is said to be transversally orientable iff T is orientable and all the γi j are
orientation preserving. F is said to be homologically orientable if the top basic cohomology
space Hn(M/F) = R. Contrary to the non-foliated case, these two notions are not equivalent
as we will see later on.
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Definition 4 F is said to be Riemannian iff T has a Γ -invariant Riemannian metric.

We emphasise here a strong property of the Riemannian foliations: their basic cohomology
is always finite dimensional. We refer the reader to [6] for the proof applicable also to the
other cohomologies considered below.

From now on, we will restrict our attention to foliations of even codimension 2n.

Definition 5 F is said to be transversally symplectic iff T admits a Γ -invariant closed
non-degenerate 2-form ω, called a transverse symplectic form. Again, contrary to the non-
foliated case, this does not imply homological orientability, although it makesF transversally
oriented.

Definition 6 F is said to be transversally holomorphic iff T admits a complex structure that
makes all the γi j holomorphic.

Definition 7 A foliation is said to be Hermitian if it is both transversally holomorphic and
Riemannian (we emphasise that neither of these condition implies the other), and both struc-
tures are compatible. The compatibility condition is not restrictive: given any Riemannian
structure g and transverse holomorphic structure J , g(·,·)+g(J ·,J ·)

2 is a Riemannian structure
compatible with J .

If F is transversally holomorphic, we have the standard decomposition of the space of
complex-valued forms Ω•(M/F,C) into forms of the type (p, q), and d decomposes as
∂ + ∂̄ of orders (1, 0) and (0, 1), respectively. We can then define the basic Dolbeault double
complex

(
Ω•,•(M/F,C), ∂, ∂̄

)
, basic Dolbeault cohomology H •̄

∂
(M/F) = ker∂̄

/
im ∂̄ ,

and basic Frölicher spectral sequence just like in the non-foliated case. We note that for a
Hermitian foliation, the basic Dolbeault cohomology is again finite dimensional and even
without this assumption, the basic Frölicher sequence converges to the basic cohomology.

2.2 Bott–Chern and Aeppli cohomology theories

Let M be a manifold endowed with a transversally holomorphic foliation F of complex
codimension n. Using the operators ∂ and ∂̄ above, we can construct the basic Bott–Chern
and basic Aeppli cohomologies of F :

H•,•
BC (M/F) :=ker∂ ∩ ker∂̄ ∩ Ω•,•(M/F)

im ∂∂̄ ∩ Ω•,•(M/F)

H•,•
A (M/F) := ker∂∂̄ ∩ Ω•,•(M/F)

im ∂ ∩ im ∂̄ ∩ Ω•,•(M/F))

For a non-foliated account of these cohomologies, see [1]. Assuming the foliation is Hermi-
tian, we have some restrictions on these cohomologies. We recall the results from [12].

Theorem 1 If M is a compact manifold endowed with a Hermitian foliation F , then the
dimensions of H•,•

BC (M/F) and H•,•
A (M/F) are finite.

Corollary 1 If M is a compact manifold endowed with a Hermitian homologically orientable
foliation F , then there is an isomorphism

H p,q
BC (M/F) −→ Hn−p,n−q

A (M/F)

induced by the transverse Hodge star operator.

123



402 A. Czarnecki, P. Raźny

Note that these theorems apply also to any transversally holomorphicRiemannian foliation
since we can tweak the given Riemannian structure to a Hermitian one, as described in
Definition 7. Neither Bott–Chern, nor Aeppli cohomology depends on the metric, and the
theorem only requires any Hermitian metric to be present.

We also note that for a non-foliated Kähler manifold, these cohomologies are isomorphic
to Dolbeault cohomology—so their failure to do so measures how far a manifold is from
being Kähler. The same applies to the foliated, transversally Kähler case.

2.3 ddΛ- and (d + dΛ)-cohomology theories

LetF be a transversally symplectic foliation of codimension 2n on M with a basic symplectic
form ω. Let us start with the definition of the symplectic star operator for F . The transverse
symplectic form defines a non-degenerate pairing G̃ of the vector fields on the transverse
manifold. We can then extend it to a (non-degenerate) pairing G on basic forms.

Definition 8 The symplectic star operator is a linear operator

∗s : Ωk(M/F) −→ Ω2n−k(M/F)

uniquely defined by the formula

α1 ∧ ∗sα2 = G(α1, α2)
ωn

n!
where α1 and α2 are arbitrary basic k-forms.

The symplectic star operator indeed preserves the basic forms and is an isomorphism, cf.
[5,10] for the theory in the non-foliated case. Out of the many operators connected to the
symplectic star, we only use

dΛα := (−1)k+1 ∗s d ∗s (α)

where α is again any basic k-form. We note the relation ddΛ + dΛd = 0. We can use
this operator to define basic cohomology theories similar to those reviewed in the previous
subsection (cf. [14]):

H•
dΛ(M/F) := ker(dΛ)

im(dΛ)

H•
d+dΛ(M/F) := ker(d + dΛ)

im(ddΛ)

H•
ddΛ(M/F) := ker(ddΛ)

im(d) + im(dΛ)

It is easy to see that the basic dΛ-cohomology is simply the basic cohomology with reversed
gradation and hence will not concern us. In a manner slightly different from Corollary 1, the
symplectic star gives Poincaré dualities in the last two cohomologies

H p
ddΛ(M/F) −→ H2n−p

ddΛ (M/F)

H p
d+dΛ(M/F) −→ H2n−p

d+dΛ(M/F)

We note that this does not depend on the presence of neither the transverse Riemannian
structure (which may well not exist) nor the homological orientation (cf. Definitions 3 and
5).
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It can be shown using [12,14] that for a Riemannian transversally symplectic foliation
H•

ddΛ and H•
d+dΛ are finite dimensional.

3 An algebraic lemma and its consequences

Let I1, I2, I12, K1, K2, K12 be vector spaces satisfying

I12 ⊂ I1, I2 I1 ⊂ K1 I2 ⊂ K2 K1, K2 ⊂ K12

Then, the following lemma holds:

Lemma 1 If K1
/

I1 or K2
/

I2 have infinite dimension, then (K1∩K2)
/

I12 or K12
/
(I1+ I2)

has infinite dimension as well.

Proof Without loss of generality, let us assume that K1
/

I1 is infinite dimensional. Then,
there are two sequences

(K1 ∩ I2)
/

I12 K1
/

I1 K12
/
(I1 + I2)

(K1 ∩ K2)
/

I12 K1
/

I1 K12
/
(I1 + K2)

f ′ g′

f ′′ g′′

It is easy to see that these sequences are exact in the middle term (since, for example,
the appropriate kernel and image are classes represented by elements of (K1 ∩ I2)). If both
(K1 ∩ K2)

/
I12 and K12

/
(I1 + I2) have finite dimension, then so do (K1 ∩ I2)

/
I12 and

K12
/
(I1 + K2) since they are smaller. But then the middle term has finite dimension by

exactness, a contradiction. �

We can apply this lemma to the transversally symplectic and transversally holomorphic

structures to get

Proposition 1 If F is a transversally symplectic foliation for which Hk(M/F) is infinite
dimensional, then Hk

d+dΛ(M/F) or Hk
ddΛ(M/F) is infinite dimensional as well.

Proof In the lemma take:

K1 = ker d K2 = ker dΛ K12 = ker ddΛ

I1 = im d I2 = im dΛ I12 = im ddΛ

�

Proposition 2 IfF is a transversally holomorphic foliation for which H p,q

∂̄
(M/F) is infinite

dimensional, then H p,q
BC (M/F) or H p,q

A (M/F) is infinite dimensional as well.

Proof In the lemma take:

K1 = ker ∂ K2 = ker ∂̄ K12 = ker ∂∂̄

I1 = im ∂ I2 = im ∂̄ I12 = im ∂∂̄

�
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Corollary 2 If F is a transversally holomorphic foliation such that Hk(M/F) has infinite
dimension, then for some (p, q) satisfying p + q = k, H p,q

BC (M/F) or H p,q
A (M/F) has

infinite dimension.

Proof By the previous proposition, it is sufficient to prove that Dolbeault cohomology has
infinite dimension for some (p, q) with p + q = k. This is obvious since the basic Frölicher
spectral sequence converges to the basic cohomology of F and so the dimensions of the
entries on the first page must be greater than those in the limit. �


4 Transversally symplectic example

Consider, as in [8], a map of the 2-torus T2 given by the matrix A = [
1 1
0 1

]
. We form a sus-

pension of this map, (M,FA): a codimension two foliation onT2 × [0, 1] /
(t, 0) ∼ (At, 1) .

The plaques of this foliation are the lines {t0} × [0, 1] and T
2 can be taken for the trans-

verse manifold, with the infinite cyclic group generated by A as the holonomy pseudogroup.
Since det A = 1, this foliation is transversally symplectic with the standard symplectic form
dx ∧ dy on T2.

Wedetermine the basic complex.Anybasic function f must satisfy f (x, y) = f (x+y, y).
Taking an irrational y0 and any x0, we see that f does not depend on the first coordinate,
since it is constant on {(x0 + ny0, y0)}, dense in {(x, y0)}. Therefore, the basic functions
correspond to smooth functions on a circle

Ω0(M/FA) = { f (y) | f ∈ C∞(S1)}
In a similar fashion, we see that

Ω1(M/FA) = { f (y)dy | f ∈ C∞(S1)}
Ω2(M/FA) = { f (y)dx ∧ dy | f ∈ C∞(S1)}

It is then easy to see that the basic cohomology is

1. H0(M/FA) = H1(M/FA) = R

2. H2(M/FA) = C∞(S1)

We note again that this precludes FA from being Riemannian.
We compute H•

d+dΛ(M/FA) and H•
ddΛ(M/FA). Observe that ddΛ = −dΛd = 0,

because in degree 2 and 0 it factors through the trivial spaces, Ω3(M/FA) and Ω−1(M/

FA), respectively, and in degree 1, ddΛ f (y)dy = −dΛd f (y)dy = 0 (or because ∗s = id
on Ω1(M/FA)). Consequently

1. H0
d+dΛ(M/FA) = H2

d+dΛ(M/FA) = R

2. H1
d+dΛ(M/FA) = C∞(S1)

and

1. H0
ddΛ(M/FA) = H2

ddΛ(M/FA) = C∞(S1)

2. H1
ddΛ(M/FA) = R
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5 Transversally holomorphic example

To provide a transversally holomorphic foliation exhibiting a similar behaviour, we mimic
the construction presented above. We take the map of the 4-torus T4 induced by the matrix

A =
[ 1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

]

. As before, we form a suspension of this map, (M,FA): a codimension four

foliation on T4 × [0, 1]/(t, 0) ∼ (At, 1) . Since A is in Gl(2,C) ⊂ Gl(4,R), this foliation
is transversally holomorphic with the complex structure induced from T

4.
On the transverse manifold T4, we will use real coordinates (x1, y1, x2, y2) (better suited

for the suspension) and then switch to complex coordinates (w, z) = (x1 + iy1, x2 + iy2)
(better suited for the bigradation of the complex forms). We will describe the A-invariant
forms, computing only the 2-forms explicitly as an example. The operators ∂ , ∂̄ and ∂∂̄ will
prove to be not too complicated, and we will proceed to compute basic de Rham, Dolbeault,
Aeppli and Bott–Chern cohomologies.

5.1 Invariant forms

As in the previous example, we can easily see the invariant complex functions to depend only
on the last two real coordinates, or on the complex coordinate z. Hence, Ω0(M/FA,C) =
C∞(T2,C).

An A-invariant complex 2-form on the 4-torus is a section of
∧2 T ∗ (

T
4
)
; therefore, a

skew-symmetric matrix

α(x1,y1,x2,y2)

=

⎡

⎢
⎢
⎣

0 f1(x1, y1, x2, y2) f2(x1, y1, x2, y2) f3(x1, y1, x2, y2)
− f1(x1, y1, x2, y2) 0 f4(x1, y1, x2, y2) f5(x1, y1, x2, y2)
− f2(x1, y1, x2, y2) − f4(x1, y1, x2, y2) 0 f6(x1, y1, x2, y2)
− f3(x1, y1, x2, y2) − f5(x1, y1, x2, y2) − f6(x1, y1, x2, y2) 0

⎤

⎥
⎥
⎦

Since it is invariant, it satisfies

α(x1,y1,x2,y2) = AtαA(x1,y1,x2,y2) A

that amounts to f1 = 0 and f3 = f4, and all the functions being A-invariant. This gives

Ω2(M/FA,C) ={ f2(x2, y2)dx1 ∧ dx2}
⊕ { f3(x2, y2) (dx1 ∧ dy2 + dy1 ∧ dx2)}
⊕ { f5(x2, y2)dy1 ∧ dy2}
⊕ { f6(x2, y2)dx2 ∧ dy2}

which we will now rewrite in the complex coordinates

Ω2(M/FA,C) ={b(z)dw ∧ dz}
⊕ {c(z) (dw ∧ dz̄ + dw̄ ∧ dz)}
⊕ {e(z)dw̄ ∧ dz̄}
⊕ { f (z)dz ∧ dz̄}

Note that any complex function of the complex coordinate is to be smooth, not holomorphic.
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2 {e(z)dw̄ ∧ dz̄} {g(z)dz ∧ dw̄ ∧ dz̄} {g(z)dw ∧ dz ∧ dw̄ ∧ dz̄}

1 {g(z)dz̄} { f (z)dz ∧ dz̄} ⊕ {c(z) (dw ∧ dz̄ + dw̄ ∧ dz)} {g(z)dw ∧ dz ∧ dz̄}

0 {g(z)} {g(z)dz} {b(z)dw ∧ dz}

0 1 2

0 0

0

0

We present all the invariant forms with the complex bigradation Ω•,•(M/FA,C), indicating
where the differentials are obviously trivial. We use a generic letter g for functions in degrees
other than 2, since the labellingwill play no role there. The curvy arrows aremeant to indicate
that dΩ1(M/FA) is contained in the { f (z)dz ∧ dz̄} term of Ω1,1(M/FA) and dΩ1,1(M/

FA) = d{c(z) (dw ∧ dz̄ + dw̄ ∧ dz)}. Note that the diagram shows that ∂∂̄ can be nonzero
only on the 0-forms.

5.2 De Rham cohomology

We compute the basic cohomology over C. Some of the spaces involved can be described
in terms of cohomology of the complex torus T2—parts of the diagram above clearly repeat
parts of Ω•,•(T2,C)—which is not complicated since the torus is Kähler.

Since the differentials are quite simple too, we hope that the reader will have no trouble
justifying the claims below.

1. H0(M/FA) � H0(T2) = C;
2. H1(M/FA) � H1(T2) = C

2;
3. H2(M/FA) � V ⊕ H2(T2) = V ⊕ C, where V is an infinite dimensional space {∂̄b −

∂c = ∂̄c − ∂e = 0} easily seen to be infinite dimensional; none of these closed forms
is exact since the image dΩ1(M/FA) ⊂ { f (z)dz ∧ dz̄}; the term H2(T2) follows from
this inclusion;

4. H3(M/FA) � (
H2(T2)

)2 = C
2 since the dw and dw̄ factors do not interfere in any

way;
5. H4 = C∞(T2,C) since the image dΩ3(M/FA) is trivial;

We present the three complex cohomologies in diagrams explaining their entries below each
one.
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5.3 Dolbeault cohomology

2 C∞(T2,C) C C∞(T2,C)

1 C C ⊕ C C

0 C C C

0 1 2

1. H0,0
∂̄

is represented by the constant functions;

2. H1,0
∂̄

and H2,0
∂̄

are represented by the holomorphic functions;

3. H1,1
∂̄

splits as H1,1
∂̄

(T2) and the holomorphic functions;

4. H0,1
∂̄

is again identified with the holomorphic functions—note that ∂̄{g(z)} is isomorphic
to the space of all functions divided by the holomorphic ones, and we take a quotient

again to get H0,1
∂̄

= C∞(T2,C)

/(
C∞(T2,C)

/
C

)
= C; the same reasoning applies

to H2,1
∂̄

and H1,2
∂̄

;

5. the remaining spaces are C∞(T2,C) since the relevant differentials are all trivial.

5.4 Bott–Chern cohomology

2 C C∞(T2,C) C∞(T2,C)

1 C C ⊕ C C∞(T2,C)

0 C C C

0 1 2

1. H0,0
BC is represented by the constant functions;

2. H1,0
BC and H0,1

BC are represented by the holomorphic and antiholomorphic functions,
respectively;

3. so are H2,0
BC and H0,2

BC ;

4. H1,1
BC is H1,1

BC (T2) plus the constant functions coming from the second summand in
Ω1,1(M/FA);

5. H2,1
BC = H1,2

BC = H2,2
BC = C∞(T2,C) since each of the ∂ , ∂̄ , and ∂∂̄ is trivial in these

cases.
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5.5 Aeppli cohomology

2 C∞(T2,C) C C∞(T2,C)

1 C C ⊕ C∞(T2,C) C

0 C C C∞(T2,C)

0 1 2

1. H0,0
A is represented by constant functions;

2. H1,0
A = H1,0

A (T2) and H0,1
A = H0,1

A (T2);

3. H2,0
A and H0,2

A are all the relevant forms, since the differentials are all zero in these cases;

4. H1,1
A splits into H1,1

BC (T2) = H2(T2) plus C∞(T2,C) since the ∂∂̄ is trivial;

5. H2,1
A = H1,2

A is again H1,2
A (T2) = H2,1

A (T2);

6. H2,2
A = C∞(T2,C) since all the differentials are trivial.

6 Conclusions

We close this paper summarising some interesting properties of the given examples.

Remark 1 The transversally symplectic example highlights that the infinite dimension of
symplectic cohomology in dimension k may stem, by Proposition 1, from the infinite dimen-
sion of the de Rham basic cohomology in degree k (H2

ddΛ(M/FA)), or in degree 2n − k, via

Poincaré duality (H0
ddΛ(M/FA)), or it can be indeed unprovoked by any of these (H1

d+dΛ(M/

FA)).

Remark 2 The transversally holomorphic example exhibits infinite dimensional basic de
Rham, Dolbeault, Bott–Chern and Aeppli cohomologies. The basic Aeppli cohomology is
infinite dimensional in bidegrees (2, 0), (1, 1), (0, 2), and (2, 2). In bidegree (1, 1), both the
basic Dolbeault cohomology and its adjoint counterpart (the basic ∂-cohomology) are finite
dimensional. This shows that also the basic Aeppli cohomology can be infinite dimensional
without help from basic Dolbeault cohomology and Proposition 2. The same thing happens
for the basic Bott–Chern cohomology in bidegrees (2, 1) and (1, 2). We also note that while
infinite dimension of H1,1

A (M/FA) could be perhaps linked to the infinite dimension of

H2(M/FA), it is not the case for either H2,1
BC (M/FA) or H1,2

BC (M/FA), since H3(M/FA) is
finite dimensional.

Remark 3 The example proves that Poincaré duality between Bott–Chern and Aeppli coho-
mology may fail in the absence of the Riemannian metric. We also point out that for the same
reason the Dolbeault cohomology of the example does not exhibit Serre duality.
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Remark 4 It is also worth pointing out that the basic de Rham cohomology of this example
is infinite dimensional in degrees 2 and 4, but reverts to finite dimension in degree 3. To the
extent of our knowledge, such an example have not been described before.

Remark 5 The property of reverting to finite dimension is important for the further develop-
ments in this field. The richest geometry in the transversally symplectic setting is the Kähler
structure, and short of that—the hard Lefschetz property, that

Hn−k(M/FA) Hn+k(M/FA)
∧ωk

is an epimorphism. It is a theorem that this property forces the map

H•
d+dΛ(M/FA) � [α] �→ [α] ∈ H•(M/FA)

to be epimorphic as well, cf. [5,14]. It is natural to ask for examples where the infinite
dimension of the former is derived from infinite dimension of the latter via the hard Lefschetz
property. However, it is well known that H0(M/FA) and H1(M/FA) are always finite
dimensional and there is no known example of infinite dimensional basic cohomologywithout
the infinite dimension in the top degree.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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