Annali di Matematica (2018) 197:357-397 @ CrossMark
https://doi.org/10.1007/s10231-017-0683-y

Second-order Lagrangians admitting a first-order
Hamiltonian formalism

E. Rosado Maria! - J. Muiioz Masqué?

Received: 9 January 2017 / Accepted: 10 July 2017 / Published online: 18 July 2017
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany 2017

Abstract Second-order Lagrangian densities admitting a first-order Hamiltonian formalism
are studied; namely, (1) for each second-order Lagrangian density on an arbitrary fibred
manifold p: E — N the Poincaré—Cartan form of which is projectable onto J! E, by using
a new notion of regularity previously introduced, a first-order Hamiltonian formalism is
developed for such a class of variational problems; (2) the existence of first-order equivalent
Lagrangians is discussed from a local point of view as well as global; (3) this formalism is
then applied to classical Hilbert—Einstein Lagrangian and a generalization of the BF theory.
The results suggest that the class of problems studied is a natural variational setting for
GR.

Keywords Hilbert—Einstein Lagrangian - Hamilton—Cartan formalism - Jacobi fields - Jet
bundles - Poincaré—Cartan form - Presymplectic structure

Mathematics Subject Classification Primary 58E30; Secondary 58A20 - 83C05

Electronic supplementary material The online version of this article (doi:10.1007/s10231-017-0683-y)
contains supplementary material, which is available to authorized users.

B E. Rosado Maria
eugenia.rosado@upm.es

J. Muioz Masqué
jaime@iec.csic.es

Departamento de Matemadtica Aplicada, Escuela Técnica Superior de Arquitectura, UPM, Avda.
Juan de Herrera 4, 28040 Madrid, Spain

Instituto de Tecnologfas Fisicas y de la Informacién, CSIC, C/ Serrano 144, 28006 Madrid,
Spain

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-017-0683-y&domain=pdf
http://dx.doi.org/10.1007/s10231-017-0683-y

358 E. Rosado Maria, J. Muiloz Masqué

1 Preliminaries
1.1 Jet-bundle formalism

Below, a fibred manifold p: E — N is considered over a connected n-dimensional manifold
N oriented by a volume form v = dx! A --- A dx™. The bundle of k-jets of local sections of
p is denoted by p¥: J¥E — N, with natural projections p;‘: JYE > J'E k> 1.

Every fibred coordinate system (%7, y9),1<j<n1<a<m=dimE — n, for the
submersion p, induces a coordinate system (x7, y{) (I = (i1, ..., i) being a multi-index
in N” of order |I| =i; + ...+ i, <r)on J"E defined by,

8'”()}“ 0s)

= e a0

v (ivs)

where s is a local section of p. We also set (j) = (0,...,0, lj 0,...,0) e N, (jk) =
(j) + (k), etc., and y?‘j) = y‘/"

Hence j s codifies the partial derivatives up to the order r at the pointx € N of the section
s of p, determining the first r terms of the Taylor series of the coordinates s* = y“os of s at x.

From the earlier seventies (e.g., see [12,15]), jet bundles constitute the natural geometric
setting to develop calculus of variations and Lagrangian and Hamiltonian formalisms, as well
as to study the presymplectic structure attached to a variational problem. For more details on
this topic, we refer the reader to more recent articles, such as [1, Chapter 6], [26, §1.3], [35,
Chapters 2 & 3], [36, §§0.1, 0.2], [37].

As is known, classical fields can be viewed as the sections of fibred manifolds and the
Lagrangian formalism are then formulated in terms of jet manifolds.

A Lagrangian density Lv of order r is the product of a volume form v on N and a smooth
function on J': i.e., L is a function of the n +m ("’:r) coordinate functions x/, y%,1 < j <n,
1 <a <m,|I| < r,where m denotes, as above, the dimension of the fibres p_l(x), Vx € N,
of the projection p: E — N.

1.2 Legendre and Poincaré—Cartan forms

The Legendre form of a second-order Lagrangian density A = Lv, definedon p: E — N,
L € C®(J2E), is the V*(ph)-valued p3—h0rizontal (n — 1)-form wy on J3E locally given
by (e.g., see [28,31,38]),

wp = (=D"T'LYv @ dy* + (=1 Liv @ dy?,

where v; = dx!' A+ Adxi A--- Adx", and

pi— 1L ()
2= 8 9y()
oL 1, (M) | )
3qu 2 — 8,'./' ’ ay?ij)

9 00 m o P . . .
and D; = 57t Z‘ 71=0 D=t VY ) BT denotes the total derivative with respect to the

coordinate x/. The Poincaré—Cartan form (or P—C form for short) attached to A is the ordinary
n-formon J3E givenby ®) = (p%)*@z/\wA +A (e.g.,see [28,38]), where 6 1. 62 are the first-
and second-order structure formson J' E, J2E, locally given by (cf. [27,37]), ol =0*® 3%,
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02 =0"Q® % +07® ﬁ, respectively, and 0% = dy® — y,‘j‘dxk, 0f =dyf — yg.k)dxk, is
the standard basis of contact 1-forms, and the exterior product of ( p%)*@2 and the Legendre
form, is taken with respect to the standard pairing V (p!) x JIE V¥(p)y = R.

The theory of the P-C form for a second-order Lagrangian density is different from that
of a first-order density, due to the appearance of operator D; in the formula (2), which is
essential for the formula (9) to hold. Because of this, such problem has motivated many
works among which we should mention [7,9,13,17,20,23,24,28,38].

1.3 Projecting onto J2E or J'E

The most outstanding difference with a first-order Lagrangian density is that the Legendre
and Poincaré—Cartan forms associated with a second-order Lagrangian density are generally
defined on J3E, thus increasing by one the order of the Lagrangian density A.

Although the Legendre form w, of a second-order Lagrangian density A = Lv depends
on the third derivatives of L, it may happen that for certain second-order Lagrangian densities
the sum ®5 = ( p%)*@z A wp + A depends on the second derivatives only. In this case, the
P—C form © of A is said to be projectable onto J?E, e.g., see [13].

More precisely, as it is known, the P-C form of a second-order Lagrangian projects onto
J?E if and only if the following system of PDEs holds (cf. [7,13]):

1 9’L L 9L L] L
2=6ib gyb.oys 2= dia oyl oy 2= Sic ayP oy

forallindices 1 <a<b<c<n,a,=1,...,m.

More surprisingly, there exist second-order Lagrangians for which the associated P-C
form projects not only on J2E but also on J!E. Notably, this is the case of the Hilbert—
Einstein Lagrangian in General Relativity [cf. formula (25)].

As is well known (e.g., see [15, (1.3)], [31,2.1]), p;_,: J'E — J"~1E admits an affine
bundle structure modelled over the vector bundle

W' = (pr—l)*SrT*N ® (pg—l)*v(p) N Jr_lE. (3)

Proposition 1.1 (cf. [24,33]) The Poincaré—Cartan form attached to a Lagrangian L €
C*®(J*E) projects onto J'E if and only if L is an affine function with respect to the affine
structure ofp%: J2E — JYE, namely

L=LJy} +Lo, L =LY eCUJ'E), LyeCV"E), )
and the following equations hold:
AL gpia
b2 ahi=1,...n, a,f=1,....,m. (5)
g ay,

Equation (5) admit a variational meaning. The Euler-Lagrange (or E-L for short) operator
of an arbitrary second-order Lagrangian can be written in terms of the coefficients of the P-C
form [see the formulas (1), (2)] as follows:

5@3—2200 <8L> 1)<8L>+8L
o = iDi\=—— | —Dil| —% —
i<j 95ij) B dy®
aL ,
=——D,~<Lixo), l1<a<m.
ay*
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The E-L equations for an affine second-order Lagrangian L, given as in the formula (4), are
of third order and they are of second order if and only if equation (5) hold (cf. [33, Proposition
2.2)).

As the projection p;_,: J'E — J "=l E admits an affine bundle structure, a natural
vector-bundle isomorphism is obtained,

1" ()" W = (p)S'T*N ® (ph)*V(p) —> V(pl_y). (©)

where the vector bundle W” is defined in (3). Given an arbitrary vector bundle W — N,
there exists an antiderivation

dgn: T(E, N'V*(p) ® p*W) — T(E, A"T'V*(p) @ p*W)

of degree +1—called the fibre differential (e.g., see [15, (1.9)])—such that dgn (fp*§) =
dfly) ®§, forall f € C®(E) and all & € T'(E, W). (In the previous paragraph, the
relevant fact is that the vector bundle W — N is defined over the base manifold N, and not
over the fibred manifold E.)

In what follows, we are mainly concerned with the fibre derivative d ;1 g0, which will
simply be denoted by do1 for the sake of simplicity.

A Lagrangian L € C®°(J2E) is an affine function with respect to the affine structure of
p%: J2E — JLE if there exists a linear form wy : W2 — R, which is unique, such that
L(t + j2s) = wp(v) + L(j2s), VT € S’T*N ® Vi) (p) and Vj2s € J2E.

By using the isomorphism (WH* = (pH*S2TN ® (p(l))*V*(p), the linear form wp
defines a section of the vector bundle (p")*S2TN ® (p(l))*V*(p) — JYE.If L is locally
given by the formula (4), then w; = Lgi a%h ©) aii ®dy*|y(p)» where the symbol © denotes
symmetric product.

If2: (WH* > (pH*@2 TN Q® (p(l))*V*(p) is the natural embedding, then we consider
the section

1,.
wi:i(lloLQOwL)ZJIE—>(p])*TN®V*(p(])) @)

obtained by composing the following mappings:
2
J'E =5 (p")*SPTN ® (pg)*V*(p) = (WH* = (p')* @ TN ® (p))*V*(p)
il
= ()TN [(P)*TN & (p)*V*(p)] — (P TN ® V*(p}),

where I! = Lpiyerny ® ((UH*) ™! is the isomorphism deduced from (6) for r = 1. As
I'(dx* ® 8/3y*) = 8/dy?, dually we obtain (I")*(d}y%) = 3/0x ® dy*|y p).
Hence w) = LM"d} () ® -

oxt”

Remark 1.1 Equation (5) simply mean that for every index & the form =Ll dyf is
dé -closed, namely d& n" = 0. Hence, there exist L € C*°(J!E) such that locally,

aL! @ gL 9L!
, 1 =T
ayy ayy oyy

(i) L = l<a<m, hi=1,...,n, ®)

. . . / i _ h
the equations (ii) above being a consequence of the symmetry L’ = L.

Letting W = T N in the definition of the fibre differential above, recalling that the Poincaré
lemma also holds for fibre differentiation (e.g., see [29]) and recalling that the fibres of
p(l) : J'E — E are simply connected as they are diffeomorphic to R””, the following global
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characterization of second-order variational problems with a P—C form projecting onto J ' E,
is obtained:

Proposition 1.2 (see [33, Proposition 3.1]) The Poincaré—Cartan form of a Lagrangian
L € C®(J*E) projects onto J'E if and only if L is an affine function with respect to the
affine structure of p%: J2E — J'E and the T N-valued 1-form w; defined in the formula
(7) is dé-closed. In this case, for every global (smooth) section o: E — J'E of p(l), there
exists a unique globally defined section w§ € L(JE, (pY)*TN) such that dé (wi) = w],
w] (o(e)) =0,Ve € E.

Remark 1.2 A general procedure to obtain global sections o: E — J'E of p(l) is to use
Ehresmann (or nonlinear) connections, i.e., to use a differential 1-form y on E taking values
in the vertical subbundle V (p) such that y(X) = X, VX € V(p); hence, locally (cf. [32]),
y = (dy* + )/_I‘-"dx-/) ® # yj‘?‘ € C°(E). The vertical differential of a sections: U — E
(defined on a neigbourhood U of x € N) at e = s(x) is defined to be the linear mapping
(dVs)e: ToE — Vo(p), (ds)eX = X —54p«(X),VX € T,E. We claim that forevery e € E,
there exists a unique j}s € JVE such that i) s(x) = e, where x = p(e), and ii) (dVs)e = Ye-
In fact, one has (3(y* o s)/ Ix/)(x) = —y;" (e), and the section o? attached to y is defined
by, 0¥ (e) = j;s.

1.4 Summary of contents

Bearing the previous definitions and notations in mind, the paper is organized as follows: in
Sect. 2 the Hamiltonian function, the momenta, and the Hamilton—Cartan equations attached
to each of the aforementioned Lagrangians are introduced as a consequence of a normal form
for their P-C form.

In Theorem 2.1, the local expression for the momenta, Hamiltonian and exterior differen-
tial of P-C form attached to a second-order Lagrangian density with P-C form projectable
onto J! E, are given and in the case that the momenta are functionally independent, the corre-
sponding Hamiltonian equations are written explicitly. In Proposition 2.2, the holonomy of a
solution to these equations is proved. In Corollary 2.3 this result is stated intrinsically in terms
of the bilinear form b, previously introduced, which is symmetric (see Proposition 2.4). As
each Lagrangian L with P—C form projectable onto J!E is affine with respect to the affine
structure of p3: J2E — J'E [see formula (4)], its Hessian matrix vanishes identically and
hence L cannot be regular in the usual sense. Accordingly, a suitable notion of regularity is
required for such class of Lagrangians; this new notion is precisely the aim of Proposition 2.2
and Corollary 2.3.

In [33], the study of the formal integrability—in the sense of Goldschmidt—Spencer—of
the field equations for second-order Lagrangians with projectable P—C form to first order in
their Hamiltonian form, is developed. In the real analytic case, this allows one to solve the
Cauchy initial value problem for this class of Lagrangians.

The previous sections and the results of [33] are then applied to GR in Sect. 3, thus
showing how the theory developed fits very well to the standard Lagrangians in this setting.
Specifically, Sect. 3.1 studies Hilbert—Einstein Lagrangian from this point of view, proving
its regularity and giving a new statement for the initial value problem. We have included
explicit formulas in local coordinates of the P-C form for H-E Lagrangian in Section 3.1, as
well as the values of the momenta (L £); and (Lyg)i0.

Section 3.2 provides a strong generalization of the classical Lagrangians in BF the-
ory, again showing that the results obtained above can naturally be applied to these new
Lagrangians. The main result of this section is Theorem 3.2, characterizing the H-E
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362 E. Rosado Maria, J. Muiloz Masqué

Lagrangian density among all the Lagrangian densities Ag defined by formula (27), and
computing the Euler-Lagrange equations for anyone of such densities explicitly.

In Sect. 4, the existence of first-order Lagrangians variationally equivalent to a second-
order Lagrangian admitting a first-order Hamiltonian formalism is studied, both from local
and global point of view; see Theorem 4.1. This generalizes previous results obtained for the
H-E Lagrangian in [4] (cf. Lemma 4.2 and Proposition 4.3).

Section 5 introduces the notions of symmetry and Noether invariant for the class of vari-
ational problems dealt with throughout the paper. Let us note that Theorem 5.1—the main
result of the section—is completely new.

Section 6 discusses in particular the concepts introduced in the previous section for the
H-E Lagrangian. Here we should highlight Theorem 6.1, which provides an interesting
characterization of infinitesimal symmetries for Ay g whenn = dim N > 3.

Finally, in Section 7 the notion of a Jacobi field along an extremal s is introduced and the
presymplectic structure (w2), defined on the space of Jacobi fields along s is defined. For the
case of the H-E Lagrangian, in (44) the explicit formula of a Jacobi field along an extremal
metric g is written in terms of the Levi-Civita connection of g and its curvature tensor. Two
explicit cases are also developed in detail; see Examples 7.1 and 7.2. In Theorem 7.1, we
make a contribution to the study of non-degeneracy of the presymplectic structure attached
to a variational problem, by giving a sufficient condition for the radical of (w») to vanish.
In particular (see Corollary 7.2), this implies that the 2-form (w;), associated to A ;g along
an Einstein metric g is non-degenerate.

2 Regularity and Hamiltonian formalism

In the usual (i.e., first-order) calculus of variations, a section s is an extremal of the Lagrangian
density A on J!E if and only if it satisfies the so-called Hamilton—Cartan equations (or H-C
for short, e.g., see [15, (3.8)], [13, (1)]), namely if and only if the following equation holds:
(j'$)*(ixd®,) = 0 for every p!-vertical vector field X on J'E.

If A = Lv is an arbitrary second-order Lagrangian density on E, then the following
formula holds (e.g., see [28]):

dOp = E (L)% A v+ npy1(L), ©
where 19,,4+1(L) = (—l)iné(L) A v; and né (L) is the 2-contact 2-form given by,

. aLiO aLiU aLlj
ny(L) = 3—;9“ L. ( 0% A eﬂ
y

8yj 3}’
+ Z a 9aA9ﬂzk>+ > a G“Ae*‘jkh
j<k y(,k) i<k<l y(jkl)
ALY aL”
e KRN D SN
3yk k<l y(kl)

From the formula (9), it follows that the H-C equations also characterize critical sections for
a second-order density A; i.e., s is an extremal for A if and only if, (j35)*(ixd®A) = 0 for
every p3-vertical vector field X on J3E

Remark 2.1 If the P—C form of a second-order density A projects onto J!E, then its H-C
equations have the same formal expression of a first-order density (see the formula (14)),
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although there is no first-order density having ©, as its P-C form. In fact, the P-C form of
a first-order Lagrangian density A = Lv, L € C®°(J!E), is given by,

i 0L |, - .. AL
O; = (-1 ayqdy Avi + Ho, H:L—ayayl. 10)

L

If ®5 = Oy, then the following three equations are obtained:

oL . oL
G LY = —.
ay

(WL =0, @Lo—y'LY =1L~ Wy,-“,
i

o
l
From (4) and (1) it follows L = Lg; hence, L is of first order.
Moreover, taking (2) into account, the formulas (2) and (3) above are, respectively, rewrit-

tenas Lo — L = yf‘M, a(La‘z, =0.Hence L = L.
Theorem 2.1 (see [33, Theorem 4.1]) If A = Lv is a second-order Lagrangian density on
E whose Poincaré—Cartan form projects onto J'E, then letting

L

PQZLZO_W’ l<a<m, 1<i<n, (an

AL!

W= oLl - 5

) 12)

where the functions L' are defined by the formulas (8)-(i), the following formula holds:
dOy = (=) "Ydpl Ady* Avi +dH Av. (13)

Furthermore, if the linear forms d& (p(‘;t): V(p(l)) - R 1 <a<m 1<i<n,arelinearly
independent, then a section s: N — E is an extremal for A if and only if it satisfies the
Sollowing equations:

dpioj's) oH

0= . ojls, 1<a<m,
ax! 8“ (14)
a(y*os) '
027.4- .0]s, l<a<m, 1<ic<n.
ax! apl,

As is well known (e.g., see [15]), if the Hessian metric Hess(L) of a first-order density
A = Lv is non-singular, then every sections' : N — J!E of the projection p': J'E — N
that satisfies the P—-C equation for A is holonomic;i.e., s! coincides with the 1-jet extension of
the section s = pé os! of the projection p. Namely, (s')*(ixd® ) = 0 for every p'-vertical
vector field X on J'E, implies s' = jls.

In the case of a second-order density with a P—C form projecting onto J ' E, the following

result holds:

Proposition 2.2 [33] If A = Lv is a second-order Lagrangian on E such that (i) its
Poincaré—Cartan form ® p projects onto JYE, (i) the linear forms dé (pét): V(pé) — R,
1 <a <m, 1 <1i < n, where the functions p, are introduced in (11), are linearly
independent, then every solution to its H-C equations, is holonomic.

As p(l): J'E — E is an affine bundle modelled over W! = p*(T*N) ® V(p) [cf. (3)],

there is a canonical isomorphism 7: (p})*W! 3 V(p}) locally given by, I(jls, (dx'), ®
(0/9y*)sx)) = (3/3y;" jls+
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364 E. Rosado Maria, J. Muiloz Masqué

According to the previous lemma, we can define a bilinear form
ba: (pO*W x i (pOy*wl — R,
by (jls; wo ® Yo, wi ® Y1) = (wo, (9D 7! (iyyiy (dO4))), (15)
wy € TN, Y, € Voy(p)oa=0,1; Y =1(jls, w; ® Y1),
where qb,’j is the isomorphism defined by

ok ANTLN = ATTRTEN (16)
forevery 1 < k < n — 1, obtained by contracting with v, namely
PEXy A AXp) =ix, . ix,v, VX1, ..., X € TeN.

If wy = (dx'), and Yy = (0/9y%)s(x)» then one readily obtains,

o oL Ly
ixiy (dO4) = (=1) 1(8 “(jas) = = (As)) (Wi)x.
Yj

ay*
L0 ALY
(wo, @) (ingiv @OL))) = =% (jls) = ——2-(j1s).
ay". dy

J
In other words,
ij

: 9 . d dL? dLg
ba(jls; (dx') ®<—) ,(dxf) ®<—) = e ls)y = —Ljls).
( * x Y ) s o) x ayp () ayP ayx ¥

Yj

Hence, the next result follows:

Corollary 2.3 Let A be a second-order density on E whose P—C form projects onto J'E.
If the bilinear form defined in (15) is non-singular, then every solution to the H-C equations
for A is holonomic.

Proposition 2.4 (see [33, Proposition 5.4]) The bilinear form b definedin (15) is symmetric.
In fact, if L is the Lagrangian defined by
_ aL! aL!

E= b= G e "

then, as a calculation shows, B
i E (18)
pa - ayla .

3 Applications to GR
3.1 Hilbert-Einstein Lagrangian

Below, we follow [33]. Let pys: M = M(N) — N be the bundle of pseudo-Riemannian
metrics of a given signature (n, n~), nt + n~ = n. Every coordinate system (x’ )i, on
an open domain U € N induces a coordinate system (x?, Yjx) on ( pM)_l(U ), where the
functions yjx = yy; are defined by,

gx = ¥ij(g)(dx)y ® (dx')y, Vgr € (pm)~ (V).
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Following the notations in [19], the Ricci tensor field attached to a symmetric connection
I is given by S¥ (X, Y) = trace(Z — R”(Z, X)Y), where RY denotes the curvature tensor
field of the covariant derivative V¥ associated to I" on the tangent bundle; hence, S7 =
(RY); pdx'®@dx/ where (RY) j; = (RV)/kl,and(RV)’kl =Jr l/axk—af‘lk/ax —I—F ka
I i

Jk_ lm- . o
The H-E Lagrangian density is given by
(AHE) 2y = &7 (RO}, (vg(¥) = Lug(jig)vx,

where v is the standard volume form, RS is the curvature tensor of the Levi-Civita connection
I'¢ of the metric g, and v, denotes the Riemannian volume form attached to g; i.e., in

coordinates, vy = /|det((gab)zyb:1)|v. Hence,

Lugojg=(pog)0Y o ) (RO}, p = /ldet((an)h - (19)

The local expression for L g is readily seen to be

Lyg = pza , ch ( acbd y“by“d) Yab,ed + (LHE)Q s

(Lug) = p ZZ T 8k1)(1 = ( rs (ykiyjl + yliyjk) _ 2yklysry

r<s k<l
+2y ( ]r si +yjs rl) +3yl] ( kryls +yk3ylr>
—yir (yksyjl + ylsyjk) _yis (ykryjl + ylryjk)
oy <yslyjr + yr/yjs> _ 0yl <yskyjr n yrkyjs)> Vel.i Yrs.- (20)

Hence L g is an affine function and according to Proposition 1.1 its P-C form projects onto
J'M if and only if the following equations hold:

OLup)t  dLup)y  ILue)

0=2 ,
8yht,a ayrs,h 8yrs,i
where
i 1 oLpyg
(Lug)ss =
T2 — 81 By
1
— ]s ]r is N 11)7 21
1+5mp( +y y 20

and the result follows immediately as (L g £)ys does not depend on the variables y;; .
Furthermore, in the present case, one has

QZZZQab +Z ah

a<b a<b

ayabl
ab __ k N ) ' /
0 = dyap — )’ab,kdx s 9,‘ = dyab,t - yab,tldx ,
3 ( P(Lur)o  dLup)]) a(LHE);g>
- - rs,j

i
Pr =

=\ Oyrs. jOVkLE Ors 9Yki
=> %"y, (22)
r<s
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Yi;fS:]' _ o [zyrsyklyij _ (yrkysl + yrlysk) yij
M (1 + &) (1 + 8,5)

+ (yskylj + yslykj) yri T (yrkylj + yrlykj) ysi

_ <ykiylj + yliykj) Ve (yriysj n yrjysi> ykl]’ (23)
1 ,
H=p (_ytjyklyrs
g é; (I + 8rs)(1 + k1)

+ykl <ylry].3 +y”y")+5y” (ykAylr+ykryls)

1 . . . 1 . . .
_ 5ytr <yjlyks + yjkyls> _ 5yzs <yjlykr + yjkylr)> Vrs.j VklLi- (24)

Hence the P-C form of the H-E Lagrangian is given by
h—1 hO
Oy = Zasb(—l) (LHE)gpdYab N vp

+ 3 D Lup)gdyvas A vk + H, (25)

where H = —(LHE)ZE,)yah,h - Zhgj (LHE)Z£Yab,jh + Ly is the Hamiltonian defined in
the formula (24) and (L gy E)ig) is given by the formula

. 1 Lo P
L i0 _ [rs( ai _ bj bi a])
Lol =0 2o gy o L 077 47

+ yji (yurybs + yusybr)
—y4 (ybsyf’ + yb’y”) — (y‘”y” + y"’y”)] Vrs. i (26)

Remark 3.1 As a calculation shows, from the expression in (24) for the Hamiltonian of
the H-E Lagrangian, for every j!g € J!'M the following formula holds true: H(jlg) =
p(x)gY (x) ((Fg);j (x) (Fg)zr (x) — (I'8)},; (x) (Fg)?r (x)). Hence the function H—considered
as a first-order Lagrangian—not only provides the H-C equations for A g g but also its own
E-L equations, e.g., see [5, 3.3.1].

Theorem 3.1 (cf. [4,10,33]) We have

(i) With the natural identification V (py) = py, S2T*N, the bilinear form by, is defined
on pi (T*N ® S’T*N).
(ii) The Lagrangian function Ly g defined in (17) coincides with the opposite to the Hamil-
tonian function.
(iii) The H-E Lagrangian satisfies the regularity condition of Corollary 2.3.

Proof (i) From the formula '
apl, 9L ALY

8y£ - Byf oy’

and (22), (23) it follows that the matrix of b , , in the basis (dx")x®(8/8yjk)gx,gx e p~l(x),
1<i<nl §j§k§n,atapointjx1gis

msr, m=r, j
c

- _ jicd,h )
o= (e

J .1
(@phr /900 Gl9)) o

and one can conclude.

@ Springer



Second-order Lagrangians admitting a first-order ... 367

(ii) It follows from the formulas (18), (22), (24) by means of a simple calculation.
(iii) The proof is similar to that of Proposition 5.1 in [4], as

aprj;lr _ 82ZAHE _ 82LV
8ycd,h aymr,jaycd,h aymr,jaycd,h ’

where LV is the first-order Lagrangian variationally equivalent to L g ¢ introduced in [4].
In the present case, equation (14) become

_Apyojlsy  9H

0 . —oj's, 1<k<l<n,
, dx! aa)’kl
H
0:M+ .ojls, 1<i<n, 1<k=<l=<n
ax! g,

m}

Remark 3.2 By using the previous theorem, in [33, Theorem 6.2] the following result has
been obtained: “Given symmetric scalars y} = )/]i i i, j,k=1,...,n,there exists a Ricci-
flat (pseudo-)Riemannian metric g of signature (n~, n") defined on a neighbourhood of
X0 € N such that g;;(xo) = 8, (Fg)j.k(xo) = y}k, forall i, j, k.”

3.2 BF field theory

In this section, we consider a new approach to BF Lagrangians (cf. [3,6,11,21,22]) general-
izing the H-E functional.

Let pyy: M — N be the bundle of pseudo-Riemannian metrics of a given signature
(nt,n7), nT 4+ n~ = n. A classical result ([41, Appendix II], also see [25,40]) states
that the only Diff N-invariant Lagrangian on J>M depending linearly on the second-order
coordinates ygp,;; is of the form ALgy + w, for scalars A, w.

Since the seventies, nonlinear models have been appearing of the H-E Lagrangian; see
[8,14,18], and the references cited in these papers. The Lagrangians considered in such works
are either of the form f(Lyg), f” # 0, or are linear combinations of quadratic expressions
of the curvature tensor. In both cases, L is not an affine function over J2M — J!M (cf.
Proposition 1.1). Hence, these Lagrangians are outside the framework of the problems of
second order whose P—C form projects onto the first-order jet bundle, thus possessing a true
Hamiltonian formalism of first order.

The interest of the generalization of the BF theory that appears below lies on the fact that,
while such Lagrangians are a remarkable generalization of the H-E Lagrangian, all of them
satisfy the conditions of Proposition 1.1.

Let 7: F(N) — N be the principal Gl(n, R)-bundle of linear frames on N. Given a
metric gon N, let g : Fo(N) C F(N) — N be the subbundle of orthonormal linear frames
withrespectto g,i.e.,u = (X1, ..., X,) belongs to F,(N) if and only if, g(X;, X ;) = &;4;;,

withe; = +1for1 <i <ntande = —1for 1 +nt < i < n. This is a principal
bundle with structure group the orthogonal group O(n*, n™), n™ +n~ = n, associated to
the quadratic form ¢ (x) = Z;’;(x“f — ZZ;:EFI (x)2.

By virtue of the symmetries of the curvature tensor R® of the Levi-Civita connection
of a metric g, for every X,Y € TN the endomorphism RE(X,Y) takes values in the
vector subspace of skew-symmetric linear operators (with respect to g,) in End(7, N) =
TN ®T,N.More generally, let pys: M — N be the bundle of pseudo-Riemannian metrics
of signature (n*, n™), and let
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A(TN) C (py)*End(TN) = M xy End(TN)

be the vector subbundle of the pairs (g, A), g« € (pm)~'(x) and A € End(7y N), such that
gx(AX,Y)+ g:(X,AY) =0,VX,Y € T N; ie., A is skew-symmetric with respect to gy.
Pulling A(T N) back along a metric g, understood as a smooth section of pys: M — N, one
obtains the adjoint bundle of the bundle of orthonormal frames with respect to g, i.e., the
bundle associated to Fy(N) under the adjoint representation of O(n, n™) on its Lie algebra
o(nt,n7),ie., g*A(TN) = ad Fo(N) = (Fg(N) x o(nt,n7)) /0@, n7).

If g is an A(T N)-valued pjs-horizontal (n — 2)-form on M, then a second-order
Lagrangian density Ag is defined on J 2 M by setting,

(Ap) 2 = Lp(ize)v(x) = trace (B(g:) A RS (x) . @7
where R# is considered as a ad F, (N)-valued 2-form on N. Locally,
. . 9
0 0 k I
RE = (R®)y axi’
k<l
. . 0 .
B= Bl jou ®dx! ® . By € CO(M), (28)
k<l

where vy = dx! A AdxkE A A 3}7 A---Adx". Here and below, we identify the vector
space End(TN) to TN ® T N by agreeing that w ® X is identified to the endomorphism
given by, (w @ X)(Y) = w(¥)X,VX,Y € T, N, w € T}N. Hence

Lg(itg) = Y (=D B (g (RO, (x). (29)
k<l
If we set ﬂkl ,31 «.; fork > [, then, as a calculation shows, the following local expression
holds: o
Lg = (=D 3Py i+ Ly, (30)
with

s okl tr kl ts
Z:2:4(1 +5k1)(1 + 8rs) {[(_1) Bay" + (=1 By y" ]

k<l r=s
+[DIBUYT + (<1 BT R [T BT+ (-1 B ]
[T B + (D BT | 34 [T B+ (1B |
e G A A R (O R G Rl B
(DR B ] = [ DR ]

* Ykl,iYVrs,js

y

|

where :311 = (- 1)kﬁkl (= 1/ ﬂkl ,» and the equations ﬂac ly’b + ,BM ly = 0 have been
used, which hold because B takes Values in A(TN).

Remark 3.3 As the functions ﬁ,‘(j ;; and y" do not depend on the first partial derivatives Yab.cs
the formula (30) proves that the Lagrangian Lg satisfies the conditions of Proposition 1.1
and hence the theory developed here can be applied to all these Lagrangians.

@ Springer



Second-order Lagrangians admitting a first-order ... 369

Remark 3.4 Attached to each A(T N)-valued pps-horizontal (n — 2)-form 8 on M, there
exists a section § of the vector bundle (pM)*(/\zTN) ® A(T N), given by

B(go) = Bg) o (B2 @idarn) ', Ver €M,

where ¢5 is the isomorphism defined in (16). If g is locally given as in (28), then

_ i 2 9 . 5
Blg) = 2p (=1 By ;(80) (axk>x " <3xl)x ® (e <8xl>x ’

Vg, € M.

If sym,;: ®* TuN — ®*T, N is the symmetrization operator of the arguments 1 and 4,
Le,sympu(X1 @ Xo X3 X4) =X1 @ X2® X530 X4+ X4 ® X2 ® X3 ® Xy, for all
X; € TyN,1 <i <4, and for every p > 0, g > 1, the symbol # denotes the isomorphism
QPFITIN @1~ TN — ®PT*N ®7 T, N induced by the metric g, then

~ ; ; a a a ad
s (F6e0) = 0o (55) 0 (50) @ (50) © (50),

and the formula (30) can be rewritten as, Lg = (—l)c“ﬂfi}’yidyah,cd + L%.
Theorem 3.2 Let Ag be the Lagrangian density attached to a A(T N)-valued p p-horizontal
(n — 2)-form B as defined in (27). Then

(i) The Lagrangian function (29) coincides with the H-E Lagrangian (i.e., Lg = Lgg) if
and only if the form B is given by,

Bup),; = (Do (5%y7! = 5y 7). G31)
where the function p is defined in (19).
(ii) With the natural identification V (py) = p;[SZT*N, the bilinear form by, is defined

on pi,(T*N ® S*’T*N).
(iii) The E-L equations for the Lagrangian density Ag are the following:

g*(du/nB) A RS + symyod™" (wu—1(g. B)) =0, (32)
where,

e V& is the covariant differentiation with respect to the Levi-Civita connection of a
section g of the bundle py;: M — N.

o The fibre differential dy N B is understood to be a section of the vector bundle
(pM)*((SQTN) ® A"2T*N @ End(TN)), taking the isomorphism V*(py) =
(pm)*(S2T N) into account.

o g*(dy/nPB) A RS is the S2T N-valued n-form on N defined by,

(g (dM/N/S)/\I;g)(wl wy, X1, ..., Xn)
J(— Dk
trace{ *dynB) (wi wa, X1, Xpo oo X Xn) o RE (X, XY
VX1, ..., Xn € TuN,Ywi, wy € TEN.

o w,_1(g,B) isthe (TN ® T N)-valued (n — 1)-form on N given by,
w18, B) = ()7 ®idry ©9)) (47 (g°p)F).

gblf being defined in the formula (16).
e sym,: ®> TN — S>TN denotes the symmetrization operator.
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Proof (i) By comparing the formula (29) with the following:

Lue(le) =Y p(o) (8% (x) = 8¢/ () ) (R®)iy (o),

k<l

we obtain (31) directly.
(i1) As a calculation shows, the matrix of b p is given as follows:

(Fﬂ)rfs;i,afb,j

270 ij ij
_ Ly dLg oL}
0Vrs,i ayab,j Oyrs 0Yab

1 1 1

b T o mul I [ PR GO B
+ [0+ 0]y [0 B+ (1 By ’”]y“’
[0y 1By [ BT <1 By
= [0+ oyt ]y - |
= [0y 4+ 1By ]y = [ 1By 4 (1) By
—(—1)“/32’}( rybs +y”y'"> — (=DPB (5" Y™ 4y y)
— (DB (P ) = <1 (v vy

+(1+8m)<( ¢ 5‘” Yy (=P o %, m)
0Yrs d

rs yrs

3 ) ”
+(1+8ab)<( 1 Ly 4 (1) =L ’)}
Yab ay

ab

[
(=P BjyyT + (=1 By ]
[

v

thus proving the statement.
(iii) The E-L equations for the Lagrangian density Ag = Lgv are straightforwardly com-

puted, thus obtaining,

EP(Lg)o j’g = ( Dt (aﬂ i ><R8>
A ik

T +15ab {Bx’ [(_1)%;}7 + (_1)’7@;“]
+ =1 [op e + et ||

for1 <a < b < n, where

(B o)y m e ri
= Z( D ( ¢+(ﬂog)kam(l"g)kl (Bo (Fé>2m>g
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Moreover, the following local expressions are deduced:

_ 1 3B 8 @
fwmwmARg=2«4%““<“%%(mnumﬁ® ®v,

dyab axb
i 0 d
V8 x _ ab v
(@@ p) =Y, otue o
from which the result follows. ]

Corollary 3.3 A flat metric g is a solution to equation (32) if and only if the form B in (28)
satisfies the following equation:

s [(Vg)z {Symm <5ﬁ o g)}] =0,

where cfg C @T*MQ*TM — ®2T M denotes the contraction operator of the first covariant
index with the second contravariant one, and the second covariant index with the third
contravariant one.

Remark 3.5 The geometric construction of the form (31) is as follows: Given an arbitrary
system X1, ..., X,—» € Ty N, we must define a skew-symmetric (with respect to g, ) endo-
morphism B(g,) (X1, ..., Xp—2): TyN — Ty N.

If the given system is linearly dependent, then B(g.)(X1,...,X,—2) = 0. We
assume: i) the system (X1, ..., X,—2) is linearly independent. Hence its orthogonal IT =
(X1,.... Xp_2)lisa subspace of dimension 2 in 7, N; ii) the subspace (X, ..., X,—2) is
not singular with respect to g,. Hence

I'N=1&(Xy,...,Xs-2),

and IT is also non-singular. Let (n*(IT), n~ (IT)) € {(2,0), (1, 1), (0, 2)} be its signature and

let
eIy 0
(0&®,(mmmm6mmw1uL1»
be the matrix of g, in an orthonormal basis (Y1, Y>) of I, which', in addition, is assumed to
satisfy the following: v(X1,..., X,—2,Y1,Y2) > 0.If Z; = b’,. Yi, i, j = 1,2, is another
orthonormal basis with v(X 1, ..., X,,_2, Z1, Z>) > 0, then det(bi/.) = 1. Hence (bii) belongs

to SO (n™(IT), n~(I1)), and the endomorphism J&' : IT — TI given by J5* (Y1) = &1 (ID) Y2,
JE (Y2) = —e2(I1)Yy, is independent of the basis chosen (as SO (n™ (IT), n~(I1)) is com-
mutative) and skew-symmetric. We define J&*: TxN — TN by setting, J&'|n = J&,
JE (X1, Xu_s) = 0. Finally,

(BuEe) () (X1, ..., Xy—2) =det (g(Yq, Yb))ﬁ,b:1 Vo, (X1, ..oy Xnoa, Y1, Vo) JE.

Remark 3.6 The bilinear form by p is identified to a section of the vector bundle
D ((TN QR S’TN)® (TN ® SzTN)), and the following formula holds:

bay = %sym45 (alt% [Symn(,é) +alt;3(8) — B]) — % [symlz(ﬁ) +alt3(8) — ,é]

1 ~
+ 5 Symy2) (45) dmyn (sym23 (symm(ﬁﬁ))) )
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where the operators alt;;, sym;;, sym; 5450 ®° ThN — @°TuN, 1 <i < j <6, are
defined as follows:

alt;; (X1 @ X, ® - ®X;®---®Xg) =

XI® ®Xi® ®X;® ®X—X|® X, ® X ®: ® Xe,
sym;; (X1 ® - QXi® - QX;Q:-®Xe) =

Xi® - 0Xi® 0X;® 0Xe+X1® - 0X;® QX & ® X,
Symj 2y4,5 (X1 ® -+ ® X¢) =

X1 - ®Xe+ X4 ®Xs® X3 X1 ® X2 ® Xo,

Xi1,...,X6 € TxN,

and the contravariant 6-tensor  is given by,

A

B =sym;s [sym23 (Sym14(/§ﬁ)) ® (gj)ﬁ] — Symy3 (Symm(/éﬁ)) ® (gH".

Remark 3.7 1f B = By in Theorem 3.2-(iii), then the functions ®’? (appearing in the proof)
vanish, and Eq. (32) reduce to Einstein’s vacuum equations for arbitrary signature.

4 First-order equivalent Lagrangians

Theorem 4.1 Let A = Lv be a second-order Lagrangian density on p: E — N whose
Poincaré—Cartan form projects onto J' E. We have

(i) The H-C equations of the first-order Lagrangian Lv given in (17) coincide locally
with the H-C equations of A. Furthermore, if L' is another first-order Lagrangian
fulfilling this property, then L'v — Lv = Da,_1, where D denotes the horizontal
exterior derivative and oy, —1 is a p-horizontal (n — 1)-form on E.

(i) The E-L equations of A, considered as a second-order partial differential system, satisfy
the Helmholtz conditions.

(iii) The E-L equations of the first-order Lagrangian Lv above coincide with E-L equations
of A.
(iv) Let qﬁ,f be the isomorphism defined in (16) for k = 1 and let wg’g be the T N-valued

section on J'E defined as in Proposition 1.2. The composite mapping ¢ll) ) w(L]’U can

be viewed as a p'-horizontal (n — 1)-form on J'E and the difference Lsv = Lv —
D(d)i owg’g) determines a globally defined first-order Lagrangian which is variationally
equivalent to Lv, but this is not canonically attached to Lv as it depends on the section
0.

Proof (i) Locally, the Hamiltonian and the momenta associated to L are given, respectively,
by [cf. formula (10) in Remark 2.1],

By comparing the H-C equations for L with the H-C equations for L given in (14), one
obtains, H = H and p), = p!,. Hence

o OLt - oL
0 _

LY oLt _ oL (34)
© Py ay®
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Replacing (34) into (33), one concludes that L is given as in the formula (17). Moreover,
if L' is the first-order Lagrangian associated to other primitive functions L" = L’ + A,
Al e C®°(E), according to Proposition 1.2, then L' =1L — D; A

(i) As a simple—although rather long—computation shows, the second-order differential
operator £y (L)dy* A v satisfies the equations (1.5a), (1.5b), and (1.5¢) in [2]. In fact, by
using the formulas (1), (2), and (8), the following equations are checked:

3EL(L)  3E, (L)
(152) 0= =0 — ;; ,
Yiij) Yiij)
AEL(L)  0E5(L 3, (L
(1.5b) 0 = “(U) "(a)—(l+5,<j)Dj 72() :
9yi 9 9¥ij)
IEL(L)  0E, (L) 3, (L) dE, (L)
(1.50) 0= ——= — —~ a( ”a>—ZLgQDj |-
ay ay ay; By(ij)

(iii) From the formula (17), it follows that the Lagrangian L can also be written as i_:
L — D; L', thus proving that L and L differ on a total divergence and hence £y (L) = £y (L).
(iv) Locally, wg’g = L1 3/3x'; hence, ¢ o wg’g = (—=1)I='Li v;, and consequently, D(¢, o
w%a) = (D;L! )v. The result thus follows from L, = L — D; L. in item (iii). m}
Remark 4.1 Asisknown (e.g., see [16, (2.21)—(2.25)]), the Vainberg-Tonti Lagrangian Ly

attached to a second-order afﬁng Lagrangian as in (4) is also affine, say Lyr = (Lyr)o +
(Ly7)1, with (Ly7)1 = (Ly7)d y‘(’gj). Then, as a computation shows, one has

. b (oL
Lyr —L=—Dy Y\ ggoxn|dr).,
0 ayh

where x; (x', y*, ) = (xf, Ay®, Ay{), but it should be noted that the Vainberg-Tonti
Lagrangian is of second order in the general case; e.g., if L(x,y,y,¥) = Li(x,y, )y +
Lo(x,y, y),then Lyr = (Lyr)o + (Lyr)1¥, with

(8L . 3°L, .
(Lyvr)1 =y 20— (x, Ay, AY) + A——(x, Ay, AY)
0 ay axay
2. 9%L; . 9’Lo :
FATY (0, Ay, AY) — A——5(x, Ay, AY) ¢ dA,
dydy dy?
1'(aL Ly .
(Lvr)o =Y 7;4(x,ky,ky)4—Agggix,ky,ky)
o L dy dx
2/ 282L1 . . 82Ll .
+ AT ()~ (x, Ay, Ay) + 24y (x, Ay, Ay)
ay axdy
2LO( Ay, AY) A'azLO( Ay, A¥) b da
- X, s - ~ (X, s .
axay ) T ANy e A Y

Therefore, Ly 7 is of second order, except when (Ly 7)1 = 0, and this latter condition is seen
to be equivalent to the following:

Ly L 3°Ly %L

axdy Y aydy 932

In the particular case of the bundle of metrics, there exists a more specific way to obtain a

section o of p}: M — J'M than the procedure suggested in Remark 1.2, which depends
on a linear connection only rather than a nonlinear connection; namely,
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Lemma 4.2 Let pyy: M — N be the bundle of pseudo-Riemannian metrics of a given
signature (n*,n7), nt +n~ = n, and let V be a symmetric linear connection on N. For
every g, € (py)~ ' (x), there exists a unique 1-jet of metric j;g € Jlesuch that 1) gx = gx,
and 2) (V@) = 0. The mapping o¥: M — J'M given by oV (gy) = j;g is a section of
poItM — M.

Proof If I‘j. « are the local symbols of V in a coordinate system, then as a calculation shows,
the condition (2)—assuming (1)—of the statement is equivalent to,
98ij
dxk

(x) = T/ () gnj (x) + T (x) gni (x),
thus proving that oV makes sense. O

Proposition 4_.3 (cf.[4,1]) Let pps: M — N be as in Lemma 4.2. For t@e H-FE Lagrangian,
the density (LyEg),vv introduced in Theorem 4.1-(iv) is given by, (LHE)o_v(szg)vx =

c ((alt23 (Vng)x)ﬁ> (vg)x,for all j%g € JZM, where
atyy: @ TMOTM > T MRTM
denotes the alternating operator of the second and third covariant indices, and
L RTMRTM — @T*M ®*TM
is the isomorphism induced by g, i.e.,
wI QW @ w3y ® X > wi @ wy ® (w3)f ® X,

and ¢c: @2 T*M @2 TM — R is the total contraction of the first (resp. second) covariant
index with the first (resp. second) contravariant one.

5 Symmetries and Noether invariants

Given fibred manifolds p: E — N, p’: E/ — N’, every morphism ®: E — E’ for which
the associated map on the base manifolds ¢: N — N’ is a diffeomorphism, induces a map

" J'E > JTE’,
(b(r)(j;s) = jg(x)(q) oS °¢71)'

If @, is the flow of a p-projectable vector field X, then <I>fr) is the flow of a vector field
X" e X(J"E), called the infinitesimal contact transformation of order r associated to the
vector field X. The mapping X — X" is an injection of Lie algebras. For r = 1,2, the
general prolongation formulas read as follows:

;0 o 0
X=u—+1v"—y,
ax? ay*

ul € C®(N),v* € C®(E),

xO =i & e D
dax! ay“

v = D (va — uhyfl‘) + uhyf‘hi),

d
+U;x3y7,
1
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;0 a
X =yl — 4 +
ax! 8y ’By, IZJ: Joye )’(,,)

h h
vf‘j =D;D; (vo‘ —u yfl‘) +u y?hij)'

Theorem 5.1 Let A = Lv be a second-order Lagrangian density on p: E — N with P-C
form projectable onto JVE. If X is a p-projectable vector field on E, then the P—C form of
the second-order Lagrangian density A’ = L'v = Lye A also projects onto J VE and the
following formula holds:

®LX(2)A = LX(1)®A-

Therefore, if s: N — E is an extremal for A and X is an infinitesimal symmetry (i.e.,
Lyo A =0), then the (n — 1)-form (jls)*iX(|)® is closed. The (n — 1)-form iy ® is called
the Noether invariant associated to X; also, see [34].

Proof Wehave L' = X® (L) +div(X')L, X' being the projection of X onto N and div(X")
the divergence of X’ with respect to v. According to Proposition 1.1, we must prove the
existence of functions L6, = L;J on J!E such that

Y /
L'=La yGj) + Lo,
(‘}L)’éh aer
aya - By

,a,h,i=1,...,n, a,=1,...,m

As L satisfies such formulas by virtue of the hypothesis, and X® projects onto X1, we
have

v u
L = [x“) (Lgb) +— LY - 2—Lb’ + div(X )L“b:| Y

ay ax"
9%v 92 92 9%u"
+ Ly yf —
“« <8x’8x1 Y oxigyP Yj o ayPayr  OxidxJ Vi
+ XU (Lg) + div(X") L. (35)
Hence
rab () (yab W -yl T ab
L = x (La ) + oy L~ 25 L AN OLE, (36)
a2 92 a2 92 9%u"
Ly=LY ==+ + ——— + by - T8 e
07 e <8x’ ox/  9xiayp Vi T oxi ayp Vi ayPayv YiYi T gxigni Oh
+ XD (Lo) + div(X") Lo. (37)
From the formula (37), it also follows:
l] Ol ij aU aui jr a 1 . /
X 1)(L")) (0 g OLY  auh oLl gLl
Replacing P =X d} + E AT . ™ f we
obtain
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oLy’ _ o) (adj) g’ oLy au' 9Ly v ALY

ayf ayl )P ayy axa gyf o ay gyP
dul dLie  dui 9LY g
g I gy 2L
ax ay, axe 9 ay,

and similarly,

oLy _ aLjSh gur ALY gui LY gyv AL
3y dy* 8y7./ dx® gye  ayP g

P haLia 3 i 9L ah aLih
£ e S + divX')
Yj

ot
J

BLaj _ 3L/ih
8yj

and taking the formulas (5) into account, we can conclude that . Moreover, from

the formula [33, (8)] we know

yh

L= (=i~ (L;;?dy“ + L;hdy;;) Avi + (L — YL~ y;*,”.)Lff) v, (38

where
L— Y7Ly = yGyLy = Lo— y{LY,
Lij = 1 L
—a
2 — 6 ay(ij)
hk hk
Lh0=% dLy _y ,0Lg
P ayf et ok 8yV’

the third equation again being a consequence of (5). Hence
Lyn®y = (—1)~! (X<1> (Lff) dy? + xO (ij‘) dy“) Av;

v® i, OVp
+ (Lg?a l +L;"a—x’;> + -1y 57 L’Odyﬂm,

vyt dup
+(= 1)1 lLth Y dyﬁ 4 idy/_s A Vj
y y
+ (=D (L0dy* + L) A Ly ()
+ [x0 (20 = L) v+ divex (2o = ¥ L) .

Expanding the right-hand side above, we obtain

. Y v’
Lyn©p = (—=1)7! (Xm (foo) +— 557 L‘0 + aaL’h> dy® Av;

4 L
+ (=D (x“) (L;”) + aaL”) dyj A vi
h
4 (=it (Lff’dy“ 4 L{j‘dy;';) A Ly (v)
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ov¥ oY
(a0 (ro—ope) ¢ 25+ 25

+ div(x’) (Lo — L) v
Moreover, by applying the formula (38) to the density A’ we have
Opn = (=D (Lgodya + Lghdyz) AV + (L6 - yf‘Lgo) v

We first compute L0, From (2), (35), (36), and (37), we deduce

: 8
L0 = x® (L’O) +div(x) L0 4 2 ﬂL"ﬂO _ o L0 %Lg".
ay“ ax’ ay“

Furthermore,
L = XMLy 4 div(X') LY + A,
Ly = XD (Lo) + div(X') Lo + TS, LI,
with
Aij _ ﬁLi/’ _ aui i ou’
@ gye B gxr T gxr
78 _ 92vP . a2vP n 8%vP n 82vP Wy — a%u” yﬁ.
e gxhgxk T dyraxkTh T gyvaxh kT gyrayo ThIk T gxhgxk T
Hence
’ o0 (1) a7i0 . / a7i0 av” i0 avh hk
Ly —y?L0 = xD(Ly - y-La)—l—dw(X)( — YL )—I—ﬁL + oLl

and we obtain

. . FOLEE v p
On = (—1)i~! (X“) (L) + 251 + L’“)dy A vy

dy ay*

) . oul
+ (=it (div(x’)Lg? - a—;Lg(O) dy® A v;

h
+ (=D 1<x<‘>(L’h)+ ﬁL’h ou L”)d YA
BT gxr e )Dn AU

- out
_ _1 i—1
=D ax”"

A+ (=D div(X ) Litays A v

f
. v
+ <X“>(L0 — L) + div(x) (Lo — ¥ L) Vo 4 2t L’;f)

axi axk

By using the formula L/ (v;) = div(X")v; + Y 5 _;(— [)h=i=12 W vh, we can thus conclude
that ®y» = Ly1©®p. Finally, if Ly A = 0, then ®Lx(2)A = 0 and by virtue of the
formula in the first part of the statement we deduce L y1)® 5 = 0. Hence ( jls)*(d iy ®)+

(Jj Loy« xd®) = 0, and we can conclude recalling that the second term in the left-hand
side vanishes, as follows from the H-C equations in Theorem 2.1. O
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6 Symmetries of the H-E Lagrangian density

Example 6.1 In the particular case of the bundle of pseudo-Riemannian metrics of a given
signature pyr: M — N (cf. Sect. 3.1), the natural lift of a vector field X' = u' % in X(N)
is given as follows (cf. [32, section 2.2]):

8uh 9
X'y ——E ; ) — M),
( )’h>8yij€%( )

and from the geometric properties of the scalar curvature the H-E Lagrangian density Agg
admits X', as an infinitesimal symmetry for every X’ € X(N). Let us compute its Noether
invariant (jlg)*i(x, ) ®y g along an Einstein metric g. From the formulas

M

.9 u duh 9
X/ (l) = 17. - e i - . i D
(Xh) Y Z axi Ot + FIRL 9yij
Z 32 h N 92uh N duh N uh N duh 9
xiax % Vhj i 9x % Vhi axl i Yhjk O o Yhik Ik Yij,h ayij,k ,
Onp = (1)~ 94 iha ;
He = (=1) Zk<] (LHE) dyki + (LHE)y; dYykin ) A vi

+ ((LHE)o - stl Vil i (LHE)??) v

where (LHE)};(;, (LHE)}ZI‘ ,and (LHE)o are given in (2), (21), and (20), respectively, by using
anormal coordinate system (x')7_; centred at x € N we eventually obtain

R 2 i 9%u! 92uh
((Jlg) (Z(X;w)(l)@HE))X:(_l) {(811 it G 8xiaxh) (x)

9% gik 0% gk
+ (eren gy — ereg o )l o)

a2gk, a2g
_ (s,-ekaxja;k —Enfk s h)(x)u (x)}(vi)x.

By composing the tensor ((Vg )2 X’ ) and the isomorphism induced by the metric, gg ®
X
id: T)NQT)NQT N — TN ® T)N ® T, N, we have

((vg)zx/)i = fa (ai) ®(a') @ <aizgxh T 8th> ) (axc)

Contracting the first contravariant index and the first covariant one, it follows:

20
1 2 f 0°u 3th
Ve X) - ,
€l (( ) X eh <8xh8xh +u’ *) axt

f
and contracting c} ((Vg )2 X’ ) and the volume form,
X

i1 o%u' b 9T hp
i ((vg)ZX/)Ij Ux = (_1) En axha_xh +u axh (x)(vi)JC'
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Similarly, contracting the second contravariant index in ((Vg )2 X' ) and the first covariant
X
one, it follows:

2.h h
2 A2 oA\ _ 0“u » 00, 9
“ ((V&) X >x = <8xi8xh tu oxt 2 oxt )’
X

) (xX)(Vi)x-

Aok . .
(] g) (Z(X;M)“)®HE) = lc%((vg)xf)t(v) - lc}((vg)x/)ﬁ(v)-

and also,
; 92ul
. _ o 1\i—1g. b
eg(wnxr e = (CD e (axi axh Y

ary,
oxi
Finally,

Theorem 6.1 Forn = dim N > 3 the vector fields of the form X',,, where X' € X(N), are
the only infinitesimal symmetries of the Lagrangian density AgE.

Proof Let pyr: M — N be the bundle of pseudo-Riemannian metrics of a given signature.
If X is an infinitesimal symmetry of A iy and X’ is its pjs-projection onto N, then X — X/,
is a pys-vertical symmetry of A yg. Hence, the statement is equivalent to saying that the only
pum-vertical symmetry X of the H-E Lagrangian is the null vector field.

Letp: E — N beasubmersion. If X = V¢ 8‘}%, V% € C*°(E) is an infinitesimal symme-

try of a second-order Lagrangian L with P-C form projectable onto J ! E, then X® (L) = 0,
where

9 9
X® =ve— 4 D;(VY)— DyD; (V¥ .
e TP 50e + D, DaDiC oy
As
ave v
D; (V%) = i p ,
iV ax! +i ayP
3y 3rve ave 3rve 3Zve
Dy D;(VY) = I BT \F v ,
nDi(V) dxdxi + dxidyp Vhi Ay ti dxhoyp + i ayPayr
it follows:
AL ave ave\ oL
XO Ly = ve 0y (S gy ) 20
ay* ax! ayP ) ay;
ALy ave avey aLY gy
Ve B . p B Lk B
+< Ay +<8x’ i ayr ) oy + e dyP ik

[ 92V 97V Ve Ve
Ll -+ yE— A y .
* hZ: @ <8xh8x’ T gigys T (axhayﬁ T G By

Hence, the coefficient of yfk must vanish and we obtain the following system of partial
differential equations:
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Jjk Jjk
0 yalls ave v oLy KV
= a ™ + a i yi 0 o o }3
X dy ay; ay
dLgo A% oV*\ 0Ly
0=vVve—— ‘ g
8“+<8x’ Vi aw)aya

2 2 2 2
+y LY VT 0V +)7 LA ki
n<i @ \ gxhgxi Y axzayﬂ 8xh8 B h 8y53y1’

In the case of the H-E Lagrangian, we obtain

3 (Lup)i¥ , aVab
[i] 0=Z[(”E)“V“b+(L )aba L j<ks<t,

a<b 8)’ab
y 9 (Luk) gvab Ve \ 8 (Luk)
[ii] 0=Z Tovab‘i‘ W‘i‘zyuv,ia 370
a<b ab u=<v Yuv Yab,i
82Vab
L
—l—;( HE)N, |: PUEP Zysth 0x ye
2 ab 2y7ab
% 2°V
+) ¥ Yuv,h ; (39)
SZ; o (axhaYY MX: “ ayvta)’uv)iH

jk
as 2GAELL — ), by virtue of (21), with V = 3", Ve 52 V@b & C%(M). Collecting the
terms of degrees 2, 1, and 0 in the variables y,p ¢, @ < b, on the right-hand side of [ii]-(39),

it breaks into the following equations:

K.isrs.i
0 Z P A, isrs,j yab 4 (Agb,i;rs,j +A63,i;ab,j) gyab ,
2 dyab Ykl

a<b
aZvah
ey 20
2 —6;; @ Y5 Ykl
r<s,k<lyijkl,r,s=1,...,n,
0= ( ) 82Vab + B (Aah,i;rx,j +Ars,j;ab,i> avab
) _511 HE)4p dx layrs 2 0 0 9yl s
r<s;jrs=1, ,n,
0= ZZ(LHE)ab —
axhoxi
h<i a<b

where we have used the notations below,

14 kl,i;rs,j
(LHE)) = 7 qu k<l Ag " i vrs s
kl,isrs,j ( (ki Jjl li  jk kl | sr
A _— A A S )—Zy yyli
0 E ; (1+ ak/)a + 8rs)

+ 2y ( jr Sl+ij r1)+3yz]( kryls+yksylr>
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_ yir <yksyjl + ylsyjk> _ yis <ykryjl + ylryjk>

_ Zyki <yslyjr + yrlyjs) _ 2yli (yskyjr + yrkyjs)) )

Moreover, as a calculation shows, we have

1<i<j<n

det ((LHE)”) =—(n-— 1)[0%(n+1)(n+4)7

I<r<s<n

. . jk\ 1=J=k=n . . jk\ 1=jsk=n
where p isdefinedin (19).If A = (Aab) ) is the inverse matrix of ((LHE)ab>1 ,
a<b<n <

<a<b<n
then from (39)-[i] for & < i, it follows:

aveb aba(LHE)ftq cd
st _Zc<d2p<q Pa 9yeq VRoasbest @

and by imposing the integrability conditions to these equations, we obtain

N D (Lyp)lE AN 9 (Lyp)lk
gl

a<b j<k ayuv 8)’ab 8yn ayab
” i
+AM 0 Lue)y 0 Lup)uw |\ o
J ayabayuv ayabayst

L | AR OV Ly 2V
0Yab Yuy 0Yab 0yst

and substituting (40) in the previous equation, we eventually have

y - "
0 ZZ 0MG 3 (Lup)ly _ ONji 3 (L)
Yuv 0Yed 0Yst 0Yed

jk ik
+ Al 0> (Lup)y 9 (LHE)w
0Yed MYuy 0Ycd 0Yst

ik ik
FALS S A (a(LHmf;’ d(Lup)hy 8 (Lup)l a(LHE)53> Vel a1,

a<b p=q aycd 3yab 3yab 3ycd
Furthermore, from A AL OL A, it follows:
ypg 3¥pq

hi
8Aj;c _ (LHE),OG Apo
_— = E E ik -

9Yuv r=np<o

@ Springer



382 E. Rosado Maria, J. Muiloz Masqué

Hence
hi ) ni .
NG D (LHE)ﬁtk _ NG 9 (Lup)is
ayuv aycd ayst 3ycd
ik ik
_ Z Z Abi 9 (LHE)SJZ Apaa (Lug); n 3(LHE),%Z Apaa (LuE)w
{<np=o Cn 9Yuv Ik dYed st i 0Yed '
and letting
ik ik
o 0? (Lup)y 9 (LuE)in
stauv,ed — 3)} 9 - 9 9
cd 9Yuv Yed 0Yst
ik ik
£ 3 A O(Lup)y, d(Lue)y \ 9 (Lup)
a<b P=<q 0yt 0Yab 0Yed

N (a (Lup)ils 9 (LHE>£’;) 9 (LHE>§’;’>

0Yab 0Yuv 0ycd

equation (41) transform into the following:

0= (A Pyu)y V9 h<is<tu<v,

c<d
where @,y is the matrix (g, W)cd <bjtkuv oq-foreverys < t,u < v.Asdim @y 23 # 0
for n = 3 and det @3 34 # 0 for n > 4, it follows yed =, ]

Remark 6.1 For n = 2 the H-E Lagrangian density is known to be a conformally invariant
2-form; hence, A gg admits—in this dimension—the Liouville vector field as a vertical
infinitesimal symmetry.

7 Jacobi fields and presymplectic structure

Let V(p) C TE be the subbundle of p-vertical tangent vectors for the submersion p: E —
N. The infinitesimal variation of a one-parameter variation S; of asections: N — E isthe p-
vertical vector field along s, X € T'(N, s*V (p)), defined by the formula, X, = tangent vector
atr = 0 to the curve t — S;(x), Vx € N. On a fibred coordinate system (x?, y%), we have
x, = 078 )<i
ot ay“
Let S be the sheaf of extremals of a second-order Lagrangian density A = Lvonp: E — N
whose Poincaré—Cartan form projects onto J ! E: For every open subset U € N, we denote
by S(U) the set of solutions to the Euler-Lagrange equations of A, which are defined on
U. As is well known [12,15,37] in the Hamiltonian formalism extremals can be char-
acterized as the solutions to the Hamilton—Cartan equation; that is, s is an extremal if
and only if (j's)*(iyd®,) = 0 for all Y € X(J'E). Jacobi fields are the solutions
to the linearized Hamilton—Cartan equation. Precisely, a Jacobi field along an extremal
s € S(U) is a p-vertical vector field defined along s, X € ['(U, s*V(p)), satisfying the
Jacobi equation (j's)*(iyLymd®x) = 0, VY € X(J'(p~'U)), where XV is the first-
order infinitesimal contact transformation on J! E associated to X (e.g., see [27,29,37]). If

X, =V*x) (%)S(X), then

) . VxeN. 42)
s(x)
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d ave 5
(x) =v‘*(x)<—> +—w (=] -
ils ay* ) jig - 0x ay; ils

In fact, it is readily checked that if S; is a one-parameter variation of s and S; is an extremal
for every ¢, then the infinitesimal variation X of S; [see (42)] satisfies the Jacobi equation.
Hence we think of the Jacobi fields along s as being the tangent space at s to the “manifold”
S(U) of extremals and accordingly we denote it by 7;S(U). Let s: N — E be an extremal
of a Lagrangian density A defined on J'E.

In a fibred coordinate system (x%, y¥), avectorfield X € I'(U, s*V (p)) along an extremal
s is aJacobi field if and only if (jls)*(ia/aya Ly1d®p) =0,forl < a < m (see [30, section
3.5]). By using the formulas (11), (12), and (13), we obtain

Ly1d®p = Ly {(—l)i_ldpfx Ady* Avi+dH A v}
= (=D (XDpl) Ady A

o

(=) ldpl AdVE A +d (X“)H) Av.

Hence
ax M (ph) 3 (XM (pi))
» I = (1)1 B g p gy, - A PG
i3/aye Lyyd®p = (1)’ oy dy” Av; o v
0 (XD (pt 0 (XD (Pl
S L G, )V D a2 P

j
vk ave  ax(H
Shpove X))
ay¥ odx! ay“

’

and finally,
asB [ (XD (ph) 3 (xD(p!
0= s' 7pﬁojls _ (7(%‘))0]'15
dx! ayY ayP
axMH 3 (XD (pi
+ aX 7(H) ojls) — 7( (.pa)) ojls
ay* ax!
3 (XD (pi 2258 avh (op]
— 7( ;Pa)) ojls .S - 4 - —ﬁojls .
3)’/' axtox/ axt \ oy¥
Expanding,

32vr [ apl ashP [ 9%pl 92 pi
— paojls =VY SA P ojls— Pa ojls
axidx/ 3y}/ oxi \ 9y«oyr ayPayv

9*H %P [ 9?p!
+ ojle = 25 [ Ll g
ay*ay” ox'dx/ 8y?’8yf

20
— 9" Py ojls
axigyY

avr [ast [ 0%p] 92pi
+ al ﬂy ojls — p"‘y ojls
axh | axt \ ay*ady; ayPoy,
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%P [ 8%pi w9
_ is i ﬂpa ojls + &_& jls
ox'dxl \ oylayy Iy« ayr

2pt 92H
-— ozy ojls + T
dx'ay;, dy*dyy,

ojls], l<a<m. (43)

Remark 7.1 In the case of the H-E Lagrangian density, Greek indices of the general case
transform into a pair of non-decreasing Latin indices: « = (a,b),1 <a < b < n,and a
Jacobi vector field along g can locally be written as follows:

d
Xy = V“b(x>( )
9yab /) g(x)

= V() (dx?), ® (dx"),, Vx €N,

with V9 = v%@ for ¢ > b. Moreover, in this case, the general equations (43) for Jacobi
fields can also be written as follows:

1 ib_ ij ab v

0= 5 I:((Savaj,u. + Sauavj) 8§ —8 /Savsbu -8 (Sivajp.jl oxiox)
1 b i Sav&'u +8a;L8iv b A agoﬁ b,
S T o P e e

Sandp . A 08sp i Si
_ allz v |:gaz (l—-g))LO— _g)m axo')\ glﬁi| + 12V )La (l—wg)'ux_i_ lZM )La (Fg)

S ) F) . i gyab
2 [ 00, = 0 (00 ]+ 2 [ ooy - 0o, )
+g* {(Rg)jiw\ + &Y 810 ((Fg)iv (re)n, = (T9)y, (Fg)fw)

+ (T9)5, (P9)7, = (T9)S, (T9)7, = (T9)7, (T9)6, + (T9)S, ()7} ver,
l<wpu<v<n, (44)

where I'¢ denotes the Levi-Civita connection of g, and R its curvature tensor.

Example 71 If N = (]R/ZNZ)4 is a 4-dimensional torus with Lorentzian metric g =
gi(dx)?, ey = —1, ey = &3 = €4 = +1, then Eq. (44) of the Jacobi fields along g are
as follows:
10 A B
ZB:[ PADUE =0, 1<A<10, (45)
where

Ul Vll U2 V12 U3 Vl3 U4 Vl4 U5 V22
U V23 U7 V24 U8 V33 U9 V34 UIO V44

Pll —IZ 2(D1)2 Pl D DZ Pl D D3

Pl=D'DY  Pl=F DV R=0,
=0 PR
Ph=7DY,  Pi=o, P =D)L (D',
Py=3DD". P}=iD?D*, P}=0,

PE=4p'D PP=iD'DY PR=3IDIDY
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P;=0, PYy=5'D'D?, P} =0,
P =4D?D?, P} =51(DH?-1(DY?, P} =iD3D*,
P3==D'D3, P} =4D'D?, P}=0,
P =0, P =1D'D*, P}, ==D'D3,
Pl=0, P} =3D?D*, p}=1D3D*,
Pi=34(D**-3(D*)?, P}=5'D'D*, Pi=0,
P}=1iD'D?, P{=5D'D*, Py =1D'D?,
Piy=0, P} =1D?D? Py = —-D'D?
Py =0, P} =0, Py =10 -1yl (DY,
P} = D*D?, Py = D>D*, Py =5'D*D?,
P =0, Py, ==D*D?, PP =1D%D3,
P$=='D'D3, P¢=='D'D?, PS=0,
PS=0, Pé=3(D"?*-3(DY?, PP =1D3D*,
Pé=0, P¢=4D*D*, Py =>D*D3,
P/ =1D*D*, P} =5'D'D*, P]=0,
P]=5'D'D?, Pl=0, Pl =31D3D*,
P77= %(D])Q—%(D3)2, P87= %ID2D4, P9 1D2D3
Ply=0, P} =3(D%?, P¥=0,
P$= —-D'D3, P=0, P8 = —1(D%?,
P¥= D*D?, P¥=0, P8 =3(D"* -3 (DH*-1(D"?,
P$= D*D*, Py =H(D%)?, P} =1D*D*,
P} =0, Py =3'D'D*, P} =3'D'D3,
P! =='D3D*, P} =4D*D*, P} =4D?D3,
P =0, 3(DHY*=5(DH?, Pj =0,
10=1(D%?, P)0=o0, Pi%= 0,
PIOZ —DID4, PSIOZ_TI(D4)2’ PlOZ 0,
PIO D2D4 Pgl(): —l(D4)2, PIO D3D4
—(D )2_, 2(D)2 DI = axl’ 1<i<4.

We can obtain the global solutions to Jacobi equations (45) by expanding in Fourier series;

namely,

vt = Z(kl

kq €Xp(ikjx

h, ug

.....
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2ur
so that 3oy = = q,....
transform into the following:

ky)eZ? ky kg UkA1 ks exp(iijj) and the Jacobi equations (45)

.....

1
=3 ((k2)* + (k3)* + (ka)?) U},

.....

1
—kiks Ui, + 5 k1)? (U,fl

.....

= — ((k3)* + ka)*) UZ &

8
..... ky + Ukl,..., + U ,...,k4) ’

+ koks Uk31

..........

+k1k3Uk61 ,,,,, + k1k4Uk1 ,,,,, ky k1k2 (U/§1 ,,,,, ky + Ukllo,...,k4) ’
0 =kok3Uj,  p, — ((k2)* + (ka) )Ulq ..... +k3k4Uk1 ..... ks
+kikoUp, g, — Kiks (U,fl +U ’’’’’ k4) +k1k4Uk1 ..... ky
0 = kokaUf, 4, +HkskaUZ 4, ((kz‘)2 + ()7 U g,
—k]k4 (Ukl """" k +Uk81 ’’’’ k4) +k1k2Uk1 ’’’’ +k]k’§Ukl """ k
0= E(WU,JI, —kikaUg, s ((kl) — k3)* = k)*) UG, s,
+hoksUS  y, +kakaU] 4, — §(k2)2 U kUL 1)
0= koksUy, g, = kiksUg, g, — kik2Uf g,
+ ((k)? - (k4) UL o HhskaUl o +hoksUR 4 — koksULL .
0 = kokaUy, . k1k4Uk ..... ks k]szkl ..... ks
+k3k4Uk, ,,,,, ke (kD> = k) U] —hokaUf 4 koksU
1 2 1 5
0= 5"3 (UIq ..... w— Ui, k4) kik3Ug, +k2k3Uk1 ..... ke
1
(k)2 = (k2)® = k) U, sy +hakalf, gy = 5 (UL,
0= ksksUy, . —kiks U, i, k1k3Uk1 ..... K
_k3k4Uk1 ,,,,, HhokUg g, +keksUL g + (kD = ) U,

1 2 1 5 8 4
0= >0 (Uhoy = Ut — Uk1 W) — ik Ui,

yaens yeenK4 T K1,k ) TR, L

t HhaksUL 4 ((kl) — (k2)* = (k3)*) U 4,0

.....

for every system (ki ..., k4) € Z*. Solving these equations for k4 # 0, we obtain

k K?
1 _ AKXl 4 K1 yr10
Ukl ,,,,, k4_2k4Uk1 ~~~~~ ky szkl ----- kg?
4
g2 ke ki kikz 10
k1. kg k ki, kg ks ki, kg 2 ki, kg
4
vro 2R kg kiks 10
kiy.ky ks ki, kg ks kiy...kq 2 ki, kg
4
k k2
U — 227 %2 10
ki, ky — k4 ki, ky k2 ki, kg
4
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6 ks

b= —U] + kiU]? _ @UIO .
kiy. kg ks Lseenskg ks Lseenskg k% kiy.ky
2
U _ zkj 9 _ kiUlo
kiyeks = ks ki,....ka 2 kiyeska?
4

and the unknowns U , Ul ,U? and U0 remain undetermined.
ki,o.kg? Zky,nkg? Tk, kg ki,....kq

If k3 # 0 but k4 = 0, then the solutions to the previous equations are

2
U} _ ks _ K
ki, ks — k3 ki, kg k2 ki, kg
3
g2 s ki e kiky 18
kroeks = g Yk T Yk = 2 Yk
3
k
4 _ k19
Ukl,-~~,k4 - k3 Uk1~,~~-»k4’
ko k2
5 _ 6 K318
Ukl ,,,,, ky _2k Ukly» ky szkly kg
3
U7 _ kg
kiyokg — ks kiyooks
10
Uk1,..‘,k4 =0,

3 : : ., —
the unknowns Ukl,-u,k4’ Ukl,...,k4’ Ukl...,,k4 and Ulq,...,k4 remain undetermined. If k3 = k4 =0

but ky # 0, then

2
Ul ok _zﬁUz k i ok
- 9
1 4 k2 1 sK4 k% 1s.-sK4
3 ki 6

U = — ,
ki, kg k> kiy...kq

8 0 _ 0 _
Udoks = Uy ks = Upyty =0

the unknowns Ukzl’_“’ ke and U,f}’__" ke 5 < A < 7 remain undetermined. Finally, if ky = k3 =
ky = 0,then U ' =0,5 < A < 10, and the unknowns Ug} .1 < A < 4 remain

undetermined.
Therefore

ki o o
Ul = Z <ZIMU1?1,A..,J<4 - *lUkll,...,kA; exp(ik;x’)

ki K2 ) .
P C- B, (TR PR
k3 #0,kg=0

+ <2Uk21,...,k4 - Ulf],...,k4> 6Xp(lijj)
k3=k4=0,kr #0

+Ukl|000 exp(iklxl)
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ko ki kiko . .
2 4 7 10
Us = Z (k4Uk1 ..... ka4 + HUkl ..... kg — ki k4> exp(lijj)

..............

1) 3 ki 6 kiko 3 . .
+ Z <]<3Ukl k4+73Uk1 ke~ 52 Ukyky exp(ik;x’)

T Z UR...k ©xP(ikjx7) + UE oo explikjx)),

.....

,,,,,

,,,,,

o ky o
U4=ZU1?1 fy €XP(ikjx7) + Z . ks eXp(ikjxT)

,,,,,,,,,,

ka#0 J3£0,kg=0 2

ki 4
— Loyl 4 . 1
T Zk3=k4=0,k2#0 k2 Ukl """ ka4 EXp(l k]'x ) + Uk1000 exp(lklx )7

ka o
US = Z <2k4Uk7‘ .... ke zUkll(f.”,k4> exp(lijf)
ka7#0

ka6 2718 . ;
+ Z <2kUk1 ke — 5 Uky ke | €XPGKjXT)

.....

o ko o
U= UL g explikpx) + Y T o ks €XP(ikjxT)

,,,,,,,,,,

ka#0 k4=0,k37£0
+ Y UL g explikjx)),
k3=kq=0,k #0
k k2 .
8 3779 37710 .
Ut = Z (2kUk1 ,,,,, b~ 2V k4> exp(ik;x’)
ka0 \ 4 4
+ Y U g eplikx),
ka=0,k3£0
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U9:ZUI<91 k4exp(ik.,'xj)+ Z U,?1 k4exp(iijj),

..........

k40 ks=0,k370

,,,,,

Hence we obtain

10

i . ; k1
Y UYEs = U goexplikixYEx+ Y UZ i, explikjx?) {ZEEI + Ez}
A=l k3=k4=0,kr 70
k
+Ub g explikix Y Ey + Y UJ 4, explik;x)) {2 E\+ k2 Ez}
k3 #£0.kg=0
+ Z Up . explikjx))E3 + UF oo explikix') E3
k3#0,ky=0
4 j ko k3
+ DUk oxplikjxT) 2 E1 + “Ery+ —~E;3
ok ky4 k4
kg 70
+ D7 Uk X0k ) Ea + Uf g explikix ) Es
kg 70

. k2
+ Z U/f, k4eXP(iijJ):—k]2E1+E5]

k3=k4=0,ky #0 2

ko
+ Z Uk6| ..... exp(zkx/){ E2+2k E5+E6}

+ 2 UL eXp(th’){ E3+E6}
k3=k4=0,kr #0

ko k3
+ Z Uly....ks ©XPUk; xj){ E2+2k E5+k E6+E7}

+ Y UL eXp(lkx){ E4+E7}
k3=k4=0,k2#0

8 . i k12 kiky k%
+ Z Ukl ----- kAeXp(lij') _gEl k2 E2_k§E5+E8

ky ks
+ U] e><p(lkx’){ E3+ —Eg+2= E8+E9}

k20 k4 ky
9 . ki ko
+ Z Uk[ ..... ky eXp(lij/) k E4 + — k E7 =+ E9
k3#0,kg=0
N kik kik
— Z U yyyyy &y €XpUikjx?) { ! 2E2 + 123 }
kg #0 k4 k
2 2 2
. k koks k
+ Z UL 4 explikjx)) {—lel - k%ES — Es — k%Es + Elo} )
ka#0 4 4 4 4
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where s s s s s
Elzm, EQZW’E3:3X13’E4ZW’ ESZ@, 46)
E¢ = 5, E7 = 50, Eg = 50—, E9 = 32—, E10 = 7—.
0y23 0y24 9y33 il 0y44
and the following vector fields
k RN
X] = exp(ikix ) —,
ay11
ki 0 0
X5 = exp(i k1x1+k2x2){2 +—}, ky #0,
2 i ( ) ka dyir | dyia
xk = exp(i/qx‘)i
. 3)’12’
ki 0 ky 0
XK = exp(i (kix" + kox? + ksx* ){277+ } ks #0,
4 Pl ( ) k3 0y11 k3 0y12 #

d
X5 = exp(i (kix' + kox? + k3x3))ﬁ, k3 # 0,
13

d
Xlg = exp(ikjx')—,
13

ki 8 ka8 k3 @
X5 = exp(ik;x?) {2—— + = + = } ks # 0,
! ks dyn ks dyia | ks dyi3

X’g = exp(iijj)—, ks #0,
0y14

xk = exp(ﬂqxl)i
? s’

K> 9 9
Xk = ex =i klxl—i-kzxz) -1 4 — 1 ky #0,
10 Pl ( ) k2 oy dyn
ki 0 kr 0 0
Xk = ex =i kix! +k2x + k3x ){ 2— +7}, k3 #0,
1 Pl ( ) ks dy12 k3 9y | dyr
XX, = exp(i (klxl + kzxz)) {kl 0 + o } ky #0
12 kydyiz oy )’ '
) ki 0 k@ ks d D
XT3 = exp(ik; x7) +—1, k4 #0,
ks dyra ks dyxn | ks dyxs | Oyoa
ki 0 d
X%, = exp(i (kix" + kox? ){ +7}’ ky #0,
14 ( ) ka dyia 9y
B 9  kiky 9 k3 9 3
XK =exp(i (kix' +hox® +ha®D{ L — + 2 — 42— b k3 #£0,
15 Pl ( ) k3 oy k3 9y k3 dyn 8y
ki 0 ky 0 ky 0 0
X’l‘6:exp(zk x]){ ! 2 % 4B 9 7}, ks #0,
ky dy13 | kg dy23 ks dyz3 3y
ki 0 ky 0 0
X5 = expli (kix' + kox®> + k3x®) | — — + = —— 7}, kz # 0,
17 PG ) k3 0y1a k3 0yzsa  0y3s

. i | kiko 0 kiks d
Xk =explikix/) ] == —— + =2 —— 1, k4 £0,
18 Pty k2 dynz k3 dyi3
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k9 kK 93 koks 9 k2 9 B
X%y = exp(ik;x?) +2 — 4 +3 %2 _ kg #£0,
" P k2 ayi1 k2 9y22 k2 23 k2 9y3s  Oyas 7

with k € Z*, span T,S((R/27Z)*) topologically.

Let A be a Lagrangian density on an arbitrary fibred manifold p: E — N and let ® 5 be
the P-C form associated to A. Let X, Y € T;S(N) be Jacobi vector fields defined along an
extremal s € S(N) for the Lagrangian density A. Then, d[(jls)*(iYmide@A)] =0(e.g.,
see [12]); i.e., the (n — 1)-form iy)iya1)d® 4 is closed along jls.

The alternate bilinear mapping taking values in the space Z"~! (N) of closed (n —1)-forms,
defined by

(@2)5: TiS(N) x TLS(N) — Z"H(N),
(@2)s(X.Y) = (j'9)* (iynixnd®x)

is called the presymplectic structure associated to A.

Theorem 7.1 Let s be an extremal of a second-order Lagrangian density A = Lv on
p: E — N with Poincaré—Cartan form projectable onto J'E. Assume that the variational
problem defined by A is regular in the sense ofPropmition 2.2. Foreveryx € N, let RZ(A) -
J 2(s V(p)) be the vector subspace of 2-jets j;: 2X of p-vertical vector fields along s that sat-
isfy the Jacobi equations (43) at x. If the natural projection p1 : R)% (A) — Jx (s*V(p)) is
surjective for every x € N, then the radical of the valued 2-form (w;)s vanishes.

Proof According to (13), we have d@A = ( l)i_ldp' Ady* ANvi +dH Av. ITE XD =

VO 5t + S 5 ayrs Y0 = W5 + 5 with Vo, W € C®(N), then

dxl dy” >

(@) (X.Y) = (=)~ {(va we — vewe) ( i’@ 0 j1s>

(A e WY (0P g
ox/ dx/ aye

If we assume the vector field X belongs to rad(w)y, then by evaluating at x the equation
(2)5(X,Y) =0,VY € T;S(N), we obtain

V;.

jls

ls)

3 12

0=[VIx)W*(x) = V¥(x)W? (x)] pg
Ve

[ ]

The assumption in the statement implies that given arbitrary values for W (x) and 2 o awe (x)

(x) — V“(X)

's), 1<i<n. a7

there exists an element j2Y € R2(A) projecting under the natural mapping p? i : R2(A) —
Jx (s*V(p)) onto the 1-jet at x the coordinates of which coincide with these values. Accord-

ingly, the coefficients of W (x) and %(x) in (47) must vanish, i.e.

ap; ap! ave [op;
0=V“<350J1> V“(;—goﬁs)—i-aj 3—§ojls ,
y y x\ 9ys

1<i<n, 1<B=<m,

B

ai
0=v“<p“ "), hi=1,....n, 1<B<m, (48)
dyy,
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as the point x is arbitrary. Hence the formulas (48) are the equations for the radical of (w);.
If we set

)

; 1<i<n,l<a<m
8pa)

=WL,...,Vv™, Oy=O,...,0), T:<ﬁ
ay,

then the second group of equations in (48) can matricially be written as

Voot s V) (Yo j's) = (Om, ..., Om).
——— —_———
n times n times

If the variational problem defined by the density A is regular in the sense of Proposition 2.2,
then det Y # 0. Hence V = 0. O

Criterion 7.1 Next, we give a criterion in order to ensure that the condition of Theorem 7.1

holds. According to (18) we have p}, = d , where L is the first-order Lagrangian defined

y
by (17), see also Theorem 4.1. As is known, the Hessian metric of L is the section of the

vector bundle S2V*( pé) locally given by, Hess(L) = P EL aL dO We® dol y? . As mentioned in

Sect. 2, there is a canonical isomorphism

I: (p)* (p*(T*N) ® V(p)) — V(pd),

. j J J
1 <jxls, (dx’)x %9 (8}"’ )S<X)> = (Bqu)j!x s

I*: V¥(pg) = (pg)* (p*(TN) ® V*(p)) ,
I* (j)gsv (z;)xi))( 02 (dya)s(x)) = (d(%yla)]vls

Hence the Hessian metric can be viewed as a symmetric bilinear form

Hess(L) j1,: V;15(pg) x Viig(pg) = [(TEN) ® Vi) (P)] X [(TEN) ® Vi (p)] — R,

and we can define a linear map as follows:

and dually,

Hess(I:)u C(TIN) @ (TYN) @ Vi () = Vi, (P).
Hess(L)%y, (wi, w. X1) (X2) = Hess(L) 1, (w1 ® X1, w2 ® X2) |
Ywy, wy e TN, VXi, X3 e Vi (p).

o
The matrix of Hess(L)" is TP = (| 22 Lo 8” o s in the
Bl mer e <‘+‘5"f ay; Ge) vi<i
standard basis. Moreover, letting v,. = a‘;,-g: - (x), and denoting by E* the right-hand side

of the formula (43), this formula, evaluated at x, reads as follows: vl); gpy (ls) = E*(x),

which is a linear system with m equations in the 5'n(n 4 1) unknowns vV l<i<j<n,

and the matrix of this system is precisely Y. Consequently, if Hess(L)i.lS is assumed to be
X
surjective, then the previous system is compatible.

Corollary 7.2 The radical of the valued 2-form (w2) g corresponding to the H-E Lagrangian
density along an arbitrary extremal metric g, vanishes.

@ Springer



Second-order Lagrangians admitting a first-order ... 393

Proof According to Theorem 7.1, in order to prove the corollary above, we need only to verify
that the projection p% : R)%(A) — J1(s*V(p)) is surjective for every x € N. By considering
a system of normal coordinates for the metric g at the point x, and letting v*® = Ve (x),

ab _
1 dx’ dxl

(x) equation (44) evaluated at x are written as follows:

s s \si o
0= 5 |& (Bavdju + 8apduj) 80 — &89 8408y — €a8°08:08 | v

+ep (RS, ()0
& . . ..
=4 (vt 4+ ol — vil, = oY) + e (RO ()0

I<wu=<v<n,

which is a system with 1 n(n—|—1) equations in the nz(n—f—l)2 unknowns qu’ I1<i<j<n,

1 <wu=<v<n,with qu = vv’M = vljw, and where the scalars v*, 1 < a < b < n, can take

arbitrary values. A particular solution to this system is obtained by letting,

(1) aivffv = sivﬁv =0
.. ; i , 1<pu<v<n. 49
(i) 70}t = evf = —8;,(Rg)”vb(x)v“b === 49
Equation (49)-(i) hold by setting v}jv =v;, V.Vi,p,v=1,...,n, u < v, while equation
(49)-(ii) hold by setting
v’“_v‘”—O 2<i<n
l]];/- LILL__ (Rg)a ()ab ’ lfﬂf\)ffl.
Vi, = vlu = —€1&p b X)v,

[m}

Example 7.2 Below, we compute the presymplectic structure associated to Example 7.1; i.e.,
we compute (w3), for the H-E Lagrangian density when N = (R/27x 7Z)* and g = g; (dx')?,
&1 = —1, & = &3 = g4 = +1 by using the basis Xﬁ, 1 <h <8,k € Z* of that example.
We follow some ideas in [39, Section 7] for our particular case.

According to the previous notations and calculations, we have

(wz)g(x’ Y) — (_l)ifl {(Vklwab _ Vakal> <8pab Oj g>

dyki
avHk awH 9
I _wab _ yab OV pab ojle Vi)
ax/ ax/ OV, j .
J' 8
b b
0Yab ox/ 8yab,j 8yab dx/ ayab,j

and from the formulas (22), (23) it follows:

a
8pkl ojlg=0.
Yuv

Therefore
(@2)¢(X,Y) = (1) wh(X, V)v;,

where

. qVk Wkl
(X, Y : Wab _ Vahi' ,
@1 = ZZ( Ykt j ) ( dx/ dx/ )

k<l a<b
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and, as a computation shows, the scalar differential forms w’2 are given by

L LawB awtaw!\ 1wt awE aw2 aw )
2= 5\ ox3 x4 dx2 v T2\ ax2 dx2 9x2 9x2 v
1 awll aw22 aw33 3w44 V13 l awll aw33 aw22 N 8W44 v14
2\ ax3 ax3 ax3 ax3 2\ x4 x4 ax? ax?
w2z awld w2 1 oW aw* w2 awld awi4
+ _ yB 42 _ _ y22
9x3 9x2 ox! 2\ ox! ox! dx2 dx3 x4
awlZ awl4 aw24 ”
+ - \%
ax* x2 ox!
1 faw# w2 w2 aw! aw14 3
+ = — \%4
2\ ax! ax! ax2 ax3
awl3 awl4 aw34 6W33 dw22 awlz awl3 awl4 W
+ x4 ax>  ax! ox! dx2 9x3 x4 v
_1 avlS avl2 8V14 11 1 V22 V44 avll avxg le
2\ ox3 ax2 ax* 2 9x2 ax2 ax2
avll av33 av44 3‘/22 avZZ av33 3‘/“ 3‘/44 W14
dx3 ax3 ax3 x4 x4 x4 x4
VZ? V13 ale ” 1 av33 dv44 ale avl3 avl4 ”
T 92 axl L I I T a3 a4 )W
0x 2\ ox ax ax ax ax
(av24 av” av'2> 18V avd av2 gV gy o
2 vl ML 2 T 2 9:3 94 w
ax 2\ ox! ax ax ax ox
V34 Vl4 avl3 2 1 av22 8‘/33 8V12 av13 avl4 m
o o )V TG T T T e T )V
X x! X X x> X
12 23 44 33 a4
5 dW ow ow ow W 1
W, = = - - \%
2 x! ax3 9x2 9x2 ax*
Ll v'2 N ovE avH avE avih Ly
2\ ox! ox3 ax2 dx2 dx*
L1 8W“+8W22 AW awH piz 1 avil  gv22 v jyH w2
2 ax! ax! ax! 2\ ax! ax! ax! ax!
3W12 aW23 WS 5 V2 avE gy
V- - w
ax! dx2 ax3 ax! ax2
W24 W14 8W12 " av24 avl4 avl2 "
— Ve — - - w
ox* ox! ax2 dx*
L] aW12 aW24 AW\ o, L/ avIZ o gy v
- [ oxt 93 W
2 ox! x4 ax3 2 dx X X
l Wll W22 aw33 aw44 V23+l avll av22 av33 av44 W23
2 ax3 ax3 2\ ax3 ax3 9x3 ax3
1 aW” aW22 oW awH N avit v gy jv# W
A ox* ox* 2\ ox4 x4 dx* ax*
+1 W2'§ W12 aw24 aw44 awll V33
2 x1 x4 dx2 dx2
1 av” av12 av  av# gyl W
T2 x3 ax! x4 ax2 ax2
8W2’; aw24 aw34 " av23 av24 av34 2
+ Vot — - w
x3 dx2 ax?t 9x3 x2
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(ISR

1( aw w2 aw3 aw? aw“) m
(- - - 1%

2 9x3 ox! 9x2 9x3 dx2

L/ v aviz av3 av3 vy
—= |- - - w

2 ax3 ax! ax2 ax3 ax2
1/ aw?  aw?22  aw*  awB  awh
= + + - — \%
2 ax2 ax3 ax3 ax! ax?

1 av23 av22 av44 avlS av34 W”

2 9x2 9x3 ax3 ox! x4

aw' w2z aw? avis vz avB\
T 3 T agd a2 T a0 T W
ax 9x ax ax 9x ax!

oW awH aw22+aw“ pi3_ L(avE av® vz
dx! dx! dx! dx! 2 \ax!  ax!  ax!
. 14 . 13 . 3 :

aw aw 8W34)V,4 <3V14 avi3 av34>W14

9x3 + x4 + ax! 9x3 + ax + Ax!

+
AN

avll
W13
+ 8x1>

1w aw2  aw!l aw'd  awHy )
*3 axt a2 ax3  oxl | 9x3 v
Lav3 v vt v ¥y
- = - - — w
2 < ax4 9x2 9x3 ax1 ax3 >
1 oW oW N W awlhy oy 1 gvE v N oVE aVITy s
2\ ox? dx2 dx2 9x2 2\ 9x2 dx2 ax2 9x2
34 24 k : :
N ( aW2 aW3 B awi’) v < av*4 avi“ B av”) —
dx dx dx 0x° x4
23 13
L1 <aw2 AW aw34> v ( sz v” av34) W
2\ oax ax! x4 xb 0 9xt
+l aw33 N aw44 ()sz ()W“ l dv33 N av44 N av22 8‘/“ W34
2 x4 dx4 dx4 2 ax4 x4 x4 ax
1wt aw!  aw aW22 AW\
+3 3 - 4 7+ 4
2\ ox ox! dx 9x3 0x2
1 av“ vl gy v v
5 axl  axt 943 ax2 W
1 3 aw34 aw22 aw24 awl4 V”
2\ axt  axd + axt  ax2 T ax!
1 av'ﬂ V34 av22 av24 avl4 ”
2 <8x4 B ax*  9x2 ox! ) W
awlZ aw24 awl4 V12 B _3vl2 av24 N avl4 le
x! 9x2 ax4 ox! 9x2
13 34 14 13 34 qy14
ow ow v A% A%
( x! ax3 ) . (_ x4 + ax1 + ax3 ) L
L1 aW” B aW22 aw33 N aw . avit v gy jv# —_—
*3 ox! ox! ox! ox! dx! ax! ax!
1 W24 W%4 awl4  aw3  awll
2 3 T vz
2 dx x4 ax4

24 3
1 av av34 _avM gy N avil w2
T2 ax! x4 x4
34 8W24 N aw23 V23 8‘/34 av24 N 8V23 W23
x3 dx* ax2 9x3 ox*
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+1 Wll W22 aw33 aw44 V24 1 avll avZZ av33 av44 W24
2 ax2 x2 ox2 x2 2 ox2 ax2 dx2 x2
L 3W14 3W‘4 w2 awll gw?? NES
2 x3 ax2 axt x4
1 Vl4 V34 N av24 N avll 3‘/22 W??
T2 ax3 ax2 dxt x4
L1 aW22 aW33 Cow!h awH e av2 v pylt gy# —
2\ 9x3 ox3 ox3 ox3 ox3 ax3 9x3
L] aw! N 3W34 N AW 4 L/ avie gyt gy —-—
2 ax! ax3 ax2 2 ax! ax3 ax2 '

Remark 7.2 The cohomology class [w (X}, kox! )] of the closed 3-form omega w> (X, k' x l)
may be non-trivial for certain particular values of k,l,a, b;for example: Fora = 13,b = 18
(hence k4 # 0, 14 # 0), we have

wh (X3, Xig) = Ci13 18 €Xp (i (k; +l./')xj) ;

Cizg = o 12 (2 (ko + 213k3 + lska) + ko (=13 + ko + 13k3)),
0%3,13 = ﬁ ((It + k1) laky + 213k 1 k3) ,
11113
Ci3is = ks 12k2( h+ki),
. ilihk,
C13,18 = k4l4 :
Hence, fork; = —1;, 1 <i <4, and [, = 0 we have
[w2(Xf3, Xig)] = 03 (Xf5, Xig)[va]
1212
= -2 .
ly
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