
Annali di Matematica (2018) 197:317–328
https://doi.org/10.1007/s10231-017-0681-0

Squares of real conjugacy classes in finite groups

A. Beltrán1 · M. J. Felipe2 · C. Melchor1

Received: 27 February 2017 / Accepted: 8 July 2017 / Published online: 18 July 2017
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany 2017

Abstract We prove that if a finite group G contains a conjugacy class K whose square is
of the form 1 ∪ D, where D is a conjugacy class of G, then 〈K 〉 is a solvable proper normal
subgroup of G and we completely determine its structure. We also obtain the structure of
those groups in which the assumption above is true for all non-central conjugacy classes
and when every conjugacy class satisfies that its square is the union of all central conjugacy
classes except at most one.
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318 A. Beltrán et al.

1 Introduction

There exist many results about the structure of a finite group focused on the product of its
conjugacy classes. Some of them are related to the solvability and non-simplicity of the
group. Perhaps, one of the most relevant problems was stated in 1985 by Z. Arad and M.
Herzog who conjectured that in a non-abelian simple group, the product of two non-trivial
conjugacy classes can never be a single conjugacy class. This conjecture is still open although
it has been obtained for several families of simple groups (see [11]). A particular case of the
conjecture was recently given by G. Navarro and R. Guralnick in [7]. They proved that when
a conjugacy class K in a finite group G satisfies that K 2 is again a conjugacy class, then
〈K 〉 is a solvable (normal) subgroup of G. Another result concerning products of classes was
given by Z. Arad and E. Fisman [1] who demonstrated that if the product of two conjugacy
classes of a group G is exactly the union of these two classes, then G is not a non-abelian
simple group.

In this paper, we present a contribution to the study of the solvability and non-simplicity of
a group from the square of a conjugacy class. Suppose that K is a non-trivial real conjugacy
class of G, that is, a class satisfying that K−1 = K . It trivially follows that K 2 can never be a
conjugacy class unless K consists of only a single central involution of G. However, as K 2 is
always a G-invariant set, we can write K 2 = 1∪ A, where A is the join of conjugacy classes
of G. In this note, we study the extreme case in which A is a single class, and we wonder
whether one may obtain somewhat information concerning solvability inside the group G.
The answer is affirmative: K generates a solvable (normal) subgroup and we determine its
structure. Notice that every class satisfying the property of the following result needs to be
a real class. In fact, this is not a very unusual situation in finite groups.

Theorem A Let K = xG be the conjugacy class of an element x in a finite group G and
suppose that K 2 = 1 ∪ D, where D is a conjugacy class of G. Then 〈D〉 = [x,G] is either
cyclic or p-group for some prime p. Since |〈K 〉/〈D〉| ≤ 2, then 〈K 〉 = 〈x〉[x,G] is solvable.
More precisely,

1. Suppose that |K | = 2.

(a) If o(x) = 2, then 〈K 〉 ∼= Z2 × Z2 and Z2 ∼= 〈D〉 ⊆ Z(G).
(b) If o(x) = n > 2, then 〈K 〉 ∼= Zn and 〈D〉 is cyclic.

2. Suppose that |K | ≥ 3.

(a) If o(x) = 2, then either 〈K 〉 and 〈D〉 are 2-elementary abelian groups or 〈D〉 is a
p-group and |K | = pr with p an odd prime and r a positive integer.

(b) If o(x) > 2, then 〈D〉 is a p-elementary abelian group for some odd prime p.
Furthermore, either o(x) = p or o(x) = 2p.

Observe that in case 2 we determine the order of the elements of K , which may be either
2, p or 2p with p an odd prime.

All cases of TheoremA are feasible, andwe provide examples of each one. Our techniques
for proving Theorem A are quite elementary although we make use of Glauberman’s Z∗
theorem [6] and a result ofY.Berkovich andL.Kazarin in [3].Both require tools frommodular
representation theory, so our results are based on it as well. Other two main ingredients of
the proof of Theorem A are Burnside’s classification of finite 2-groups having exactly one
involution and the classification of groups of order 16. We remark that we do not appeal to
the Classification of Finite Simple Groups.
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Squares of real conjugacy classes in finite groups 319

On the other hand, we prove that the property K 2 = 1 ∪ D in a group G, stated in
TheoremA, can be characterized bymeans of an arithmetical property of the set of irreducible
characters of G. As usual, Irr(G) will denote this set.

Theorem B Let G be a group and x, d ∈ G \ {1}. Let K = xG and D = dG. The following
are equivalent:

(a) K 2 = 1 ∪ D
(b) For every χ ∈ Irr(G), we have

|K |χ(x)2 = χ(1)2 + (|K | − 1)χ(1)χ(d).

As an application of our main result, we obtain the following corollaries. The first one
is related to groups in which every non-central conjugacy class satisfies the hypothesis of
Theorem A and its proof is a trivial consequence. The second concerns conjugacy classes
whose square is the join of classes all central except at most one.

Corollary C Let G be a finite group such that every non-central conjugacy class K satisfies
that K 2 = 1∪D, where D is a conjugacy class of G. Then G/F(G) is an elementary abelian
2-group.

Corollary D Let K be a conjugacy class of a finite group G such that K 2 is union of
conjugacy classes all of them central except at most one. Then 〈K 〉 is solvable.

Suppose now that every conjugacy class K of a group G satisfies that K 2 is a conjugacy
class. It is trivial that every real element must lie in Z(G) and must have order 2. In [4], D.
Chillag and A. Mann described the groups in which every real element is a central element.
Particularly, in Remark 5.5 of [4], the authors also announce, with omitted proof, that any
group satisfying this property is nilpotent. We include here an extension of this result which
will be needed in order to study the structure of those groups in which all conjugacy classes
satisfy the hypothesis of Corollary C. Note that these groups are solvable by Theorem A, and
we show that they are close to nilpotent groups.

Corollary E Let G be a finite group and let π be a set of primes. Suppose that K 2 is a
conjugacy class for all conjugacy class K of π -elements of G. Then G/Oπ ′(G) is nilpotent.
In particular, if π = π(G), then G is nilpotent.

Corollary F Let G be a finite group such that every conjugacy class K satisfies that K 2

is union of conjugacy classes all of them central except at most one. Let M/F(G) =
O2(G/F(G)). Then G/M is nilpotent and, consequently, G is solvable with Fitting length
at most 3.

2 Preliminary results

We begin by stating the Z∗ theorem version appearing in [8].

Theorem 1 Let G be a finite group. Suppose that P ∈ Syl2(G) and j ∈ P such that
j2 = 1 �= j and P ∩ { j g|g ∈ G} = { j}. Then O2′(G)〈 j〉 � G.

The following elementary properties will be often used in the proofs. The reader interested
in further properties related to products and powers of conjugacy classes can refer to [2].
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320 A. Beltrán et al.

Lemma 1 Let K be a real conjugacy class of a finite group G. Then

a) 〈K 〉/〈K 2〉 is trivial or cyclic of order 2.
b) If K 2 = 1 ∪ K, then 〈K 〉 is a minimal normal subgroup of G and it is p-elementary

abelian for some prime p.

Proof We write N = 〈K 2〉 and consider the factor group 〈K 〉/N which is generated by
the set of elements xN with x ∈ K . But, if x, y ∈ K we know that xy−1 ∈ K 2 ⊆ N ,
so xN = yN , and consequently 〈K 〉/N is generated by just one element, say xN , with
x ∈ K , and (xN )2 = N . Thus, a) is proved. Statement b) trivially follows because K 2 is a
subgroup of G and all non-trivial elements of K 2 are conjugate, so all of them have the same
order. ��

Aswe have already indicated in the Introduction, we use the following result of Berkovich
and Kazarin of [3], which is based on the well-known Kazarin’s Theorem (see for instance
[8]), which asserts that any conjugacy class of prime-power size generates a solvable normal
subgroup.

Lemma 2 (Lemma 3 of [3]) Let G be a finite group and let x ∈ G. If |xG | is a power
of q ∈ π(G), then (〈x〉G)′ is a q-subgroup. In particular, 〈x〉G/Oq(〈x〉G) is an abelian
π(o(x))-group.

The following result, to which we have referred at the beginning of the Introduction, will
be used in the proof of Corollaries D and E, although the solvability part is only required in
Corollary D. We remark that we do not need it to prove Theorem A.

Theorem 2 (Theorem A of [7]) Let G be a finite group, let x ∈ G, and let K = xG be the
conjugacy class of x in G. Then the following are equivalent:

a) K 2 is a conjugacy class of G.
b) K = x[x,G] and CG(x) = CG(x2).

In this case, [x,G] is solvable. Furthermore, if x has order a power of a prime p, then [x,G]
has a normal p-complement.

The original result of [7] includes one more assertion related to Character Theory, but we
do not use it in this paper. Furthermore, the proof of the equivalence between a) and b) in the
above theorem, although is omitted here, can be easily obtained without using characters.
The solvability in Theorem 2, however, needs the Classification of Finite Simple Groups.

Finally, we will also use a Burnside’s classic result whose proof can be found in [10] for
instance.

Lemma 3 (Theorem 1.2.6 of [10]) A non-cyclic 2-group P has only one involution if and
only if P is a generalized quaternion group.

3 Proofs

We start by proving the equalities concerning commutators that appear in Theorem A. Recall
that the conjugacy classes K and D of the statement are real classes.

Lemma 4 Let K = xG be a conjugacy class of a finite groupG and suppose that K 2 = 1∪D,
where D is a conjugacy class of G. Then 〈D〉 = [x,G] and 〈K 〉 = 〈x〉[x,G].
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Squares of real conjugacy classes in finite groups 321

Proof If K = {x1, . . . , xn}, it is clear that K 2 = x1K ∪ · · · ∪ xnK . Let y ∈ xi K . Since K
is real, then y = xi g−1x−1

i g ∈ [x−1
i ,G] = [xi ,G] for some g ∈ G. Also, if i �= j , then

x j = xhi for some h ∈ G. Thus, [x j ,G] = [xhi ,G] = [xi ,G]h = [xi ,G]. Consequently,
K 2 ⊆ [x,G] and 〈D〉 ⊆ [x,G]. On the other hand, since any element [x, t] lies in K 2 for all
t ∈ G, then [x,G] ⊆ 〈K 2〉 = 〈D〉 and hence, 〈D〉 = [x,G]. The equality 〈K 〉 = 〈x〉[x,G]
is standard, since the normal closure 〈x〉G of a subgroup 〈x〉 is equal to 〈x〉[x,G]. ��

We are ready to prove our main result.

Proof (of Theorem A) The proof is divided into two cases: when |K | = 2 and when |K | ≥ 3.

Case 1 Suppose that |K | = 2.

Case 1.a. Let K = {x, xg}with g ∈ G. Ifo(x) = 2, then K 2 = 1∪{xxg, xgx}. But observe
that since CG(x) � G, we have CG(x) = CG(xg), so xxg = xgx . Thus, K 2 = 1 ∪ {xxg},
so xxg ∈ Z(G) and 〈D〉 = 〈xxg〉 ⊆ Z(G). Furthermore, 〈K 〉 = 〈x, xg〉 = 〈x〉 × 〈xg〉 ∼=
Z2 × Z2 and |〈K 〉/〈D〉| = 2. So, 1.a is proved.

Case 1.b. If o(x) = n > 2, then K = {x, x−1} and as a consequence, 〈K 〉 = 〈x〉, which
is cyclic of order n and 〈D〉 = 〈x2〉. If n is odd, then 〈D〉 = 〈x〉 = 〈K 〉. If n is even, then
|〈K 〉/〈D〉| = 2. Therefore, 1.b is proved.

Case 2 Suppose that |K | ≥ 3.

Case 2.a. Suppose that o(x) = 2 and let t ∈ D. We distinguish two cases depending on the
order of t . Suppose that o(t) = 2. We set K = {x1, . . . , xs} and we have K 2 = 1∪{xi x j |i �=
j}. Since o(xi x j ) = 2 for every 1 ≤ i, j ≤ s with i �= j , then 1 = x2i x

2
j = xi xi x j x j =

xi x j xi x j , so xi and x j commute. Consequently, 〈K 〉 is generated by pairwise commuting
involutions, so 〈K 〉 is 2-elementary abelian (and 〈D〉 too) and we obtain the first assertion of
2.a.

Suppose now that o(t) > 2. Observe that any two distinct elements of K do not commute.
Otherwise, the order of t would be necessarily 2. As a consequence, each xi ∈ K acts via
conjugation on K in such a way that it fixes only the element xi and permutes in pairs
the elements of K \ {xi }. As a result, |K | is odd. This implies that x ∈ Z(P) for some
P ∈ Syl2(G). Therefore, P ∩ K = {x} and we deduce that O2′(G)〈x〉 � G by Theorem 1.

The Frattini argument gives G = NG(〈x〉)O2′(G). But observe that NG(〈x〉) = CG(x)
because o(x) = 2. Thus, G = CG(x)O2′(G). As a result,

K 2 = {x−1xg|x ∈ K , g ∈ G} = {[x, g]|x ∈ K , g ∈ O2′(G)} ⊆ O2′(G).

Then D ⊆ O2′(G), and in particular, |〈D〉| is odd.
Now, we prove that |K | is a power of an odd prime. Since x /∈ Z(G), we can take an

odd prime p dividing |O2′(G) : CO2′ (G)(x)|. As O2′(G) has odd order, then the number of
Sylow p-subgroups of O2′(G) is also odd, and hence x , which acts on this set of subgroups,
must fix one of them. Let P ∈ Sylp(O2′(G)) such that Px = P . Thus, [x, P] ⊆ P . Now,
if [x, P] = 1 this contradicts that p divides |O2′(G) : CO2′ (G)(x)|, so [x, g] is a non-trivial
p-element for some g ∈ P . Therefore, [x, g] = xxg ∈ K 2 is a p-element lying in D, so all
elements of D are p-elements and in particular, the prime p is unique. Moreover,

pm = |O2′(G) : CO2′ (G)(x)| = |CG(x)O2′(G) : CG(x)| = |G : CG(x)| = |K |
for somem ≥ 1, as wewanted to prove. By applying Lemma 2, we deduce that 〈K 〉/Op(〈K 〉)
is an abelian 2-group. As a consequence, O2′(〈K 〉) = Op(〈K 〉). By Lemma 1(a), we have
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322 A. Beltrán et al.

that 〈K 〉/〈D〉 is necessarily cyclic of order 2 and then 〈D〉 = Op(〈K 〉). The second assertion
of case 2.a is complete.

Case 2.b. Suppose that o(x) > 2. We prove first that |D| = |K |. We know that |K | ≤
|K 2| = 1+|D| and D = (x2)G . Note that |D| divides |K | becauseCG(x) ⊆ CG(x2). Thus,
either |D| = |K | or |D| ≤ |K |/2. However, if |D| ≤ |K |/2, the first inequality implies that
|K | ≤ 1 + |K |/2, so |K | ≤ 2, a contradiction. Consequently, |K | = |D| as wanted. Now,
notice that xK ∪ x−1K ⊆ K 2 and we claim that xK �= x−1K . Indeed, if xK = x−1K , then
x2K = K . Hence for all g ∈ G, it follows that (xg)2K = (x2K )g = Kg = K , which means
that DK = K . As a result, 〈D〉K = K . This implies that K is union of right classes of 〈D〉
and then |〈D〉| divides |K |. But this is a contradiction because |K | = |D| < |〈D〉|.

We have proved that xK �= x−1K with xK ∪ x−1K ⊆ K 2. Since |K 2| = |K | + 1 and
|K | = |xK | = |x−1K |, there exists only just one element z ∈ xK \ x−1K . Moreover, it is
easy to prove that z−1 is the only element contained in x−1K \ xK (notice that z, z−1 ∈ D).
Therefore, K 2 can be decomposed as

K 2 = xK ∪ x−1K = (xK ∩ x−1K ) ∪ {z} ∪ {z−1}.
From the fact that (xK )(x−1K ) = K 2 and K 4 = (1∪ D)(1∪ D) = K 2 ∪ D2, we deduce

that

K 4 = K 2 ∪ {z2} ∪ {z−2} = 1 ∪ D ∪ {z2} ∪ {z−2}.
Let us see that K 4 = D2. We know that D2 is a G-invariant set, so we can write D2 =

1 ∪ A1 ∪ · · · ∪ Ar with Ai a conjugacy class for 1 ≤ i ≤ r . On the other hand, since
xK ⊆ K 2 = 1 ∪ D then xK = 1 ∪ D′ with D′ ⊆ D and similarly x−1K = 1 ∪ D′′ with
D′′ ⊆ D. Thus, D′D′′ ⊆ K 2 ∩ D2 and |D′D′′| ≥ |D′| = |K | − 1 ≥ 2. We conclude that
there exists 1 �= g ∈ K 2 ∩ D2. As a result, g ∈ D. Also, g ∈ Ai for some 1 ≤ i ≤ r .
Consequently, D = Ai and hence D ⊆ D2. Accordingly, K 4 = 1 ∪ D ∪ D2 = D2, as
wanted. Therefore,

D2 = 1 ∪ D ∪ {z2} ∪ {z−2}.
We distinguish two subcases depending on whether z2 ∈ K 2 or z2 /∈ K 2.

(a) If z2 ∈ K 2, we have either z2 = 1 or z2 ∈ D (and z−2 ∈ D). In both cases, it follows
that D2 = K 2 = 1 ∪ D, and then 〈D〉 is p-elementary abelian for some prime p by
applying Lemma 1(b). Furthermore, 〈D〉 = 〈K 2〉, and |〈K 〉/〈D〉| ≤ 2 by Lemma 1(a).
Observe that (x2)G = D, so o(x) divides 2p, and hence, either o(x) = p or o(x) = 2p.
If o(x) = p > 2, then 〈x〉 = 〈x2〉 and 〈K 〉 = 〈D〉 is p-elementary abelian. Let us
prove that if o(x) = 2p, then p is odd. If p = 2, then o(x) = 4 and we know that
2a = |〈D〉| = 1 + |D| for some a > 1. Thus, |D| = 2a − 1 = |K | is odd. As K is real,
then o(x) = 2, a contradiction. Thus, we obtain the assertion of 2.b.

(b) Suppose that z2 /∈ K 2, what is equivalent to say that either {z2} and {z−2} are central
classes or {z2, z−2} is a single conjugacy class of cardinality 2. The rest of the proof
consists in getting a contradiction by a series of steps.
Step 1: 〈D〉/〈z2〉 is a 2-elementary abelian group. Moreover, 〈D〉 is nilpotent of class at
most 2. Therefore, we write 〈D〉 = P × H with P ∈ Syl2(〈D〉) and H a 2-complement
of 〈D〉 with H ⊆ 〈z2〉 ⊆ Z(〈D〉).
By the hypotheses of (b), it follows that 〈z2〉 � G. We denote G = G/〈z2〉 and consider
D. We have D

2 = D2 = 1∪ D. By Lemma 1(b), 〈D〉 is p-elementary abelian for some
prime p. Observe that if d ∈ D, then d = zg , for some g ∈ G, and d2 = (zg)2 = (z2)g ∈
{z2, z−2}. Thus, d2 = d2 = 1 and p = 2. Furthermore, z ∈ CG(z2) � G, and hence,
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D ⊆ CG(z2). This means that 〈z2〉 ⊆ Z(〈D〉), so 〈D〉/Z(〈D〉) is abelian and 〈D〉 is
nilpotent of class at most 2. The decomposition for 〈D〉 of the statement certainly holds.
Step 2: We can assume that o(z2) is even.
If z2 ∈ Z(G), since z ∈ D and D is real, we have that z2 and z−2 are conjugate and hence
z2 = z−2. Thus, o(z2) = 2. Consequently, we can assume that {z2, z−2} is a conjugacy
class of cardinality 2 for the rest of this step. Suppose that o(z2) = k is odd and notice
that o(z) = 2k, so we can write z = zk z2 where zk and z2 are the 2-part and the 2′-part
of z, respectively. Moreover, there exists g ∈ G such that (z2)g = z−2. We know that
zzg ∈ D2 = 1 ∪ D ∪ {z2, z−2}. Also, zzg = zk z2(zk)gz−2 = zk(zk)g ∈ P by taking
into account that P � G, so zzg is a 2-element. As a consequence, zzg can only be
equal to 1, z2 or z−2 because the elements of D have order 2k. Now, if zzg = 1, then
z−1 = zg = (zk)g(z2)g = (zk)gz−2 what means that z = (zk)g , a contradiction. If zzg

is equal to either z2 or z−2 we can easily compute that o(z) = 4, again a contradiction.
Thus, o(z2) must be even.
Step 3: 〈D〉 = 〈z2〉∪D〈z2〉 and 〈D〉 has just one element of order 2 that is the involution
of 〈z2〉.
Since D ⊆ D2, it is easy to prove by induction on k that for every k ≥ 2, Dk−1 ⊆ Dk ⊆
1 ∪ D ∪ 〈z2〉 ∪ D〈z2〉. We can deduce that there exists l ∈ N, depending on the order of
z, such that 〈D〉 = Dl ⊆ 1 ∪ D ∪ 〈z2〉 ∪ D〈z2〉 ⊆ 〈D〉. This yields to

〈D〉 = 1 ∪ D ∪ 〈z2〉 ∪ D〈z2〉 = 〈z2〉 ∪ D〈z2〉.
Accordingly, it is enough to show that there exists no element dz2i ∈ Dz2i with d ∈ D
such that o(dz2i ) = 2. Otherwise, we assume (dz2i )2 = d2z4i = 1 and notice that d2 =
(zg)2 = (z2)g ∈ {z2, z−2} for some g ∈ G. Consequently, either z4i+2 = z2(2i+1) = 1
or z4i−2 = z2(2i−1) = 1. In both cases, o(z2) would be odd, which contradicts Step 2.
As a result, the unique element of order 2 in 〈D〉 is the involution of 〈z2〉.
Step 4: Final contradiction.
By Step 3 and Lemma 3, P must be cyclic or generalized quaternion. We will get a
contradiction in both cases. Assume first that P is cyclic. Since 〈D〉 = 〈D〉/〈z2〉 ∼=
P/P∩〈z2〉 is 2-elementary abelian by Step 1 and P is cyclic, then either 〈D〉 ∼= Z2 or 〈D〉
is trivial. Furthermore, 〈z〉 �= 〈z2〉. Otherwise, CG(z) = CG(z2) and then |K | = |D| =
|(z2)G |would be either 1 or 2, contradicting the fact that |K | ≥ 3. Thus, 〈z2〉 ⊂ 〈z〉 ⊆ 〈D〉
and this forces that 〈D〉 = 〈z〉. As the elements of D have the same order that z, which
is even, this equality implies that they are odd powers of z and, as a consequence, the
elements of D2 are even powers of z. This contradicts that D ⊆ D2.
From now on, P can be assumed to be generalized quaternion.We denote ˜G = G/H and
then 〈˜D〉 = 〈̃D〉 ∼= P . Notice thatZ(P) ∼= Z(〈˜D〉) = Z(〈D〉/H) = Z(〈D〉)/H , because
〈D〉 = P × H , and that 〈˜D〉/Z(〈˜D〉) is dihedral. Also, 〈˜D〉/Z(〈˜D〉) ∼= 〈D〉/Z(〈D〉) is
2-elementary abelian by Step 1. By joining both facts, we conclude that 〈˜D〉/〈Z(˜D)〉 ∼=
Z2 ×Z2. Therefore, 〈˜D〉 ∼= Q8 and 〈D〉 ∼= Q8 × H . Note that 〈̃z2〉 ⊆ Z(〈˜D〉) which has
order 2. Then the order of 〈̃z2〉 is either 1 or 2. If 〈̃z2〉 is trivial, from Step 3, we get

〈˜D〉 = 〈̃z2〉 ∪ ˜D〈̃z2〉 =˜1 ∪ ˜D

and by Lemma 1(b), 〈˜D〉 is elementary abelian, a contradiction. Thus, we can assume
that o(̃z2) = 2. Again, by Step 3,

〈˜D〉 =˜1 ∪ ˜D ∪ ˜Dz̃2 ∪ {̃z2},
and we distinguish two cases. When ˜D and ˜Dz̃2 are equal or distinct. If ˜D �= ˜Dz̃2, then
8 = 2+ 2|˜D| = 2(1+ |˜D|), what means that |˜D| = 3. The fact that ˜D is real forces that
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324 A. Beltrán et al.

o(̃z) = 2, a contradiction. Therefore, ˜D = ˜Dz̃2 and 8 = |〈˜D〉| = 2 + |˜D|, so |˜D| = 6.
Nowwe prove that |˜K | = |˜D|.We have ˜K 2 =˜1∪ ˜D. Since o(̃z2) = 2 and x̃2 and z̃ are ˜G-
conjugate, we know that o(̃x) > 2. So, ˜D = (̃x2)˜G and, sinceC

˜G (̃x) ⊆ C
˜G (̃x2) ⊆ ˜G, we

conclude that |˜D| divides |˜K |. As 6 = |˜D| ≤ |˜K | ≤ |˜K 2| = 1+ |˜D|, we get |˜D| = |˜K |,
as wanted.
On the other hand, by taking into account that ˜K is a real class and Lemma 1(a), we
know that 〈˜K 〉/〈˜K 2〉 = 〈˜K 〉/〈˜D〉 is trivial or cyclic of order 2. In the former case, that
is, if 〈˜K 〉 = 〈˜D〉 = ˜1 ∪ {̃z2} ∪ ˜D, we see that this leads to a contradiction. We know
that˜1 �= x̃ ∈ 〈˜K 〉. If x̃ = z̃2, then o(̃x) = 2. Then x2 ∈ H , which implies that z ∈ H
and o(z2) is odd, a contradiction. So x̃ ∈ ˜D and we can write x = dh with d ∈ D and
h ∈ H ⊆ 〈z2〉 ⊆ Z(〈D〉). Then x2 = d2h2 ∈ 〈z2〉, and we conclude that z = (x2)g ∈
〈z2〉 and, as a result, 〈z〉 = 〈z2〉. So, CG(z) = CG(z2) and |D| = |(z2)G | = 2, which
contradicts that |K | ≥ 3. We can assume then that 〈˜K 〉/〈˜D〉 ∼= Z2. Therefore, 〈˜K 〉 is a
2-group of order 16, which has a normal subgroup isomorphic to Q8, and moreover, 〈˜K 〉
possesses at least 6 elements of order 8 (the elements of ˜K ). However, the only groups of
order 16 having a normal subgroup isomorphic to Q8 are: SD16, the semidihedral group;
Q16, the generalized quaternion group; the central product of D8 and Z4; and the direct
product Q8 × Z2. The former two groups posses exactly 4 elements of order 8, and the
latter two groups have no elements of order 8. All cases give a contradiction.

��
Examples Let us show several examples of each case of TheoremA. In some of them, we use
the SmallGroups library ofGAP [5]. The m-th group of order n in this library is identified
by n#m.

Case 1.a.We take G the group

M2n+1 = 〈a, b | a2n = b2 = 1, ab = a2
n−1+1〉

with n ≥ 3. We consider the conjugacy class K = bG that satisfies K 2 = 1 ∪ D where
D = (a2

n−1
)G .

Case 1.b. We consider G = D2n = 〈a, b | an = b2 = 1, ab = a−1〉 with n ≥ 3 and
K = aG . Then K 2 = 1 ∪ D where D = (a2)G . Remark that if n is odd, then 〈D〉 = 〈K 〉,
whereas if n is even, |〈K 〉/〈D〉| = 2.

Case 2.a. Let N = 〈x1〉×· · ·×〈xr 〉 = Z2×· · ·×Z2 and consider the natural action of Sr
on N , that is, G = NSr is the wreath product of N and Sr . In this case, K = {x1, · · · , xr } is
a conjugacy class of G such that K 2 = 1∪ D where D = {xi x j |i �= j} is a conjugacy class,
because Sr acts transitively on D, and o(xi x j ) = 2 for every i �= j and |K | = r . This is an
example of case 2.a of Theorem A in which 〈D〉 is 2-elementary abelian and |〈K 〉/〈D〉| = 2.

The alternating group A4 is another examplewhere K is the conjugacy class of involutions.
In this case, 〈K 〉 = 〈D〉.

Let G = 216#88 = 〈a, b, c | c3 = 1, a4 = 1, a2 = b2, ba = b−1, ab = a−1,

c−1a−1ca−1bcb = 1, c−1a−1c−1b−1ca−1b = 1, b−1ca−1c−1abc = 1〉 ∼= ((Z3 × Z3) �

Z3) � Q8. The conjugacy class K = (a2)G satisfies that K 2 = 1 ∪ D where D = cG .
Moreover, o(a2) = 2, o(c) = 3, |K | = 9 and |D| = 24. This is an example of Case 2.a in
which 〈D〉 is a non-abelian extraspecial 3-group of order 27 and exponent 3.

Case 2.b. Let 〈a〉 ∼= Z5 and let 〈b〉 ∼= Z8 acting on 〈a〉 by ab = a2. LetG be the associated
semidirect product 〈a〉 � 〈b〉 and take K = (b4a)G . We have K 2 = 1 ∪ D where D = aG ,
o(b4a) = 10, o(a) = 5, |K | = 4 and |D| = 4. This shows Case 2.b of Theorem A with
〈D〉 ∼= Z5 and 〈K 〉 ∼= Z10.
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We get another example for the case in which the order of the elements of K is a prime.
Take G = (Z3 × Z3) � Q8 ∼= PSU(3, 2) = 〈a, b, c, d |a4 = c3 = d3 = 1, a2 =
b2, ab = a−1, ca = cd2, da = c2d2, cb = d, db = c2〉 and K = cG , with c an element
of order 3. This class satisfies that K 2 = 1∪ K with |K | = 8. Furthermore, 〈K 〉 ∼= Z3 × Z3.

Observe that both examples satisfy |K | = |D|, as it is explicitly showed in the proof of
Theorem A.

Now we prove the characterization of the property stated in Theorem A in terms of
irreducible characters. For our purposes, we use the following result which characterizes
when the product of two conjugacy classes is again a conjugacy class.

Lemma 5 Let G be a group and let a, b, c ∈ G be non-trivial elements of G. The following
conditions are equivalent:

(a) aGbG = cG

(b) χ(a)χ(b) = χ(c)χ(1) for all χ ∈ Irr(G).

Proof See for instance Lemma 1 of [11]. ��

Proof (of Theorem B) Suppose that K 2 = 1 ∪ D and let χ ∈ Irr(G). Notice that K is real.
By applying problem 3.12 of [9],

χ(x)2 = χ(x)χ(x−1) = χ(1)

|G|
∑

g∈G
χ(x(x−1)g).

We can divide the sum into two parts, so the above formula is equal to

χ(1)

|G|

⎛

⎝

∑

g∈CG (x)

χ(x(x−1)g) +
∑

g∈G\CG (x)

χ(x(x−1)g)

⎞

⎠

= χ(1)

|G| (|CG(x)|χ(1) + (|G| − |CG(x)|)χ(d)).

We obtain (b) by simply multiplying by |K |.
Suppose now that (b) holds. Again by problem 3.12 of [9] we have that for every h ∈ G,

χ(1)

|G|
∑

g∈G
χ(x(xh)g) = χ(x)χ(xh) = χ(x)2=χ(1)

|G| (|CG(x)|χ(1) + (|G| − |CG(x)|)χ(d)).

Thus,
∑

g∈G
χ(x(xh)g) = |CG(x)|χ(1) + (|G| − |CG(x)|)χ(d). (1)

Let h ∈ G and suppose that xxh /∈ D. We will prove that xxh = 1. By Eq.(1) and taking
into account the second orthogonality relation,

∑

g∈G

∑

χ∈Irr(G)

χ(x(xh)g)χ(d) = |CG(x)|
∑

χ∈Irr(G)

χ(1)χ(d)

+ (|G| − |CG(x)|)
∑

χ∈Irr(G)

χ(d)χ(d)

= (|G| − |CG(x)|)|CG(d)|.
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On the other hand, since xxh /∈ D, then
∑

g∈CG (xh)

∑

χ∈Irr(G)

χ(x(xh)g)χ(d) +
∑

g∈G\CG (xh)

∑

χ∈Irr(G)

χ(x(xh)g)χ(d)

=
∑

g∈G\CG (xh)

∑

χ∈Irr(G)

χ(x(xh)g)χ(d).

Therefore,
∑

g∈G\CG (xh)

∑

χ∈Irr(G)

χ(x(xh)g)χ(d) = (|G| − |CG(x)|)|CG(d)|.

Again by using the second orthogonality relation, we deduce that there are exactly (|G| −
|CG(x)|) elements g ∈ G \ CG(xh) such that

∑

χ∈Irr(G)

χ(x(xh)g)χ(d) = |CG(d)|.

So, for every g ∈ G \ CG(xh), we have x(xh)g ∈ D. Now, if we come back to Eq.(1), we
have

∑

g∈CG (xh)

χ(x(xh)g) +
∑

g∈G\CG (xh)

χ(x(xh)g) = |CG(x)|χ(1)

+ (|G| − |CG(x)|)χ(d) ∀χ ∈ Irr(G).

As a result,

|CG(xh)|χ(xxh) + (|G| − |CG(x)|)χ(d) = |CG(x)|χ(1)

+ (|G| − |CG(x)|)χ(d) ∀χ ∈ Irr(G).

This implies that χ(xxh) = χ(1) for every χ ∈ Irr(G), that is, xxh = 1. Therefore, we
have proved that for every h ∈ G, either xxh = 1 or xxh ∈ D, that is, K 2 ⊆ 1 ∪ D. Since
K 2 is a G-invariant set, the only possibilities are K 2 = D or K 2 = 1 ∪ D. However, if
K 2 = D, by Lemma 5, we have χ(x)2 = χ(1)χ(d) and by replacing in the equation of (b),
we get |K |χ(1)χ(d) = χ(1)2 + (|K | − 1)χ(1)χ(d) for every χ ∈ Irr(G). This forces that
χ(d) = χ(1) for every χ ∈ Irr(G), so d = 1, a contradiction. Then K 2 = 1∪ D, as wanted.

��
Proof (of Corollary C) For every non-central element x ∈ G, we know that (xG)2 = 1 ∪ D
for some conjugacy class D. Then x2 ∈ 〈D〉 and 〈D〉 is nilpotent by Theorem A. Thus,
x2 ∈ F(G) for every x ∈ G. Consequently, G/F(G) is 2-elementary abelian. ��
Proof (of Corollary D) It may occur that K 2 is a conjugacy class and then, by applying
Theorem 2, 〈K 〉 is solvable. Otherwise, it happens that either K 2 = A1 ∪ A2 ∪ · · · ∪ An or
K 2 = A1 ∪ A2 ∪ · · · ∪ An ∪ D with Ai a central class for every i and D a non-central class.

If we consider G = G/Z(G), it follows that either K
2 = 1 or K

2 = 1 ∪ D. In the former
case, 〈K 〉 is cyclic of order 2 and as a consequence, 〈K 〉 is solvable. In the second case, by
applying Theorem A, 〈K 〉 = 〈K 〉Z(G)/Z(G) is solvable, so 〈K 〉 is solvable too. ��
Proof (of Corollary E) Wecan easily prove that the hypotheses are inherited by factor groups
and we work by induction on the order of G. If Oπ ′(G) �= 1, it easily follows by induction
that G = G/Oπ ′(G) is nilpotent. So we can assume that Oπ ′(G) = 1. For every p ∈ π ,
we choose 1 �= xp ∈ Z(P) for some P ∈ Sylp(G). The hypotheses imply that (xGp )2 is
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a conjugacy class and, by applying Theorem 2, |xGp | = |[xp,G]| and hence, [xp,G] has
p′-order.

Let Kp′/[xp,G] := Oπ ′(G/[xp,G])) which is a p′-group. Since [xp,G] is p′-group,
then Kp′ ⊆ Op′(G). By induction,

G/[xp,G]/Oπ ′(G/[xp,G]) ∼= G/Kp′

is nilpotent. Now, we consider the natural homomorphism

φ : G −→ G/Kp′
1
× · · · × G/Kp′

s

where π = {p1, . . . , ps}. Since ⋂s
i=1 Kp′

i
⊆ ⋂s

i=1 Op′
i
(G) = Oπ ′(G) = 1, we conclude

that φ is injective and thus G is nilpotent. ��
Proof (of Corollary F) The hypotheses are inherited by quotients. Let us see that we can
assume Z(G) = 1. Indeed, if we consider G = G/Z(G), we have

O2(G/F(G)) = O2(G/F(G)) ∼= O2(G/F(G)) = M/F(G) ∼= M/F(G).

If Z(G) > 1, arguing by induction on the order of G, we obtain that G/M ∼= G/M is
nilpotent and then the theorem is proved. Thus, we can assume Z(G) = 1, as wanted.

We assume first that there exists a 2′-element x ∈ G \F(G) such that (xG)2 is not a class.
However, (xG)2 is union of conjugacy classes, all of them central except at most one. As
Z(G) = 1, we have (xG)2 = 1 ∪ D, where D is a non-central class of G. By Theorem A,
we conclude that x2 ∈ 〈D〉 ⊆ F(G) and, since 〈x〉 = 〈x2〉, we get a contradiction.

Therefore, if we consider ̂G = G/F(G), we can assume that every non-trivial 2′-element
x̂ ∈ ̂G satisfies that (̂x̂G)2 is a conjugacy class of ̂G. Observe that we can certainly assume
that x is a 2′-element of G such that x /∈ F(G) and that (xG)2 is a conjugacy class. We apply
Corollary E with π = {2}′ in order to deduce that ̂G/O2(̂G) is nilpotent, which implies that
G/M is nilpotent, and the proof is finished. ��
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