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Abstract Let g be a real semisimple Lie algebra with Iwasawa decomposition k ⊕ a ⊕ n.
We show that, except for some explicit exceptional cases, every derivation of the nilpotent
subalgebra n that preserves its restricted root space decomposition is of the form ad(W ),
where W ∈ m ⊕ a.
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1 Introduction

Let g be a semisimple Lie algebra, with Iwasawa decomposition g = k ⊕ a ⊕ n, where
k is compact, a is abelian, and n is nilpotent, and let m be the centraliser of a in k. Then
n = ∑

γ∈�+ gγ , where �+ is the set of positive restricted roots and gγ is the restricted root
space corresponding to the restricted root γ .
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234 P. Ciatti, M. G. Cowling

We study the derivations of n which preserve its root space decomposition, that is,
the derivations D such that D(gγ ) ⊆ gγ for each positive restricted root γ . By defini-
tion and the Jacobi identity, if W ∈ m ⊕ a, then [H, W ] = 0 for all H ∈ a, and so
[H, [W, X ]] = [W, [H, X ]] = γ (H)[W, X ] for all X ∈ gγ ; thus ad(W ) preserves the root
space decomposition. The main point of this paper is that, unless g contains a simple sum-
mand of the form so(n, 1) or su(n, 1), every root-space-preserving derivation D of n is of
the form ad(W ), where W ∈ m⊕ a, and more precisely the symmetric part of D is in ad(a)
while the skew-symmetric part of D is in ad(m).

The root-space-preserving derivations are known for real rank-one simple Lie algebras.
Indeed, Korányi [16] showed that in the rank-one case, n is an H -type Lie algebra, and the
Lie algebra of derivations and the automorphism group of an H -type algebra were found by
Riehm [20] and Saal [21]. Our work may be viewed as a development of the ideas of these
authors.

Here is our strategy. First, the algebrag splits into a sumof simple ideals, andwe show that it
suffices to consider the case where g is simple. As noted, the real rank-one case is understood;
we treat the algebras of real rank two by considering the possible restricted root systems
separately, and using a detailed analysis of several H -type algebras contained in n in each
case.Akey argument at this stage is showing that eachderivation is the sumof a symmetric and
an antisymmetric derivation. To treat the general case, we again show that it suffices to treat
symmetric and an antisymmetric derivations separately. The symmetric derivations act by
scalars on each restricted root space, and belong to ad(a), but the skew-symmetric derivations
are trickier. We handle these by introducing identities (Dγ,δ) and (Eγ,δ), where γ, δ ∈ �+,
which involve the interplay of a derivation with the Cartan involution θ , and show that these
identities characterise derivations in ad(m) in simple Lie algebras of arbitrary real rank. We
prove these identities for the simple algebras of higher rank by reducing to subalgebras of
real rank one and two, and then using our analysis of these algebras.

This paper is a step towards the classification of the derivations and automorphisms of
n, which is interesting for a variety of reasons. One reason is to find the derivations of
(minimal) parabolic subalgebras of semisimple Lie algebras, which has been a lively field
in recent years; see, for example, Chen [2] and Wang and Yu [22]. Every derivation of a
parabolic subalgebra induces a derivation of its nilradical; if we can show that these are
Lie multiplication by elements of the subalgebra, then we are well on the way to finding
the derivations of the whole subalgebra. Another reason is the question of classification of
nilpotent Lie algebras: In general, this is an impossibly tedious matter, but one might hope
to do better with algebras with lots of symmetry; to see whether this is viable, we need to
understand some examples.

Next, to carry out harmonic analysis on the simply connected nilpotent Lie group associ-
ated with n, which has applications in diverse areas including theoretical physics and linear
partial differential equations, it is important to understand its symmetries; see, for example,
the study of Folland [12].

A fourth reason for studying the automorphisms of n is the theory of quasiconformal map-
pings of “Carnot groups”. Indeed, as defined by Pansu [19], the derivative of a quasiconformal
mapping of an Iwasawa N group is an automorphism, and restrictions on the automorphisms
give rise to restrictions on the quasiconformalmappings. Further, it was shown byYamaguchi
[24], using the theory of Tanaka prolungations and the Borel–Bott–Weil theorem, and Cowl-
ing et al. [8], using more elementary arguments, that the space of “multicontact mappings”,
that is, mappings whose differentials preserve the simple root spaces, is finite-dimensional
when all the derivations that preserve the root spaces are of the form ad(m ⊕ a). The result
presented here leads to the same conclusion in an even simpler way. Indeed, unless n has

123



On derivations of subalgebras of real semisimple Lie... 235

dimension 1 or 2, the Tanaka prolongation of n through ad(m ⊕ a) is finite-dimensional;
see Ottazzi and Warhurst [18], and this implies that multicontact mappings form a finite-
dimensional Lie group. While a more abstract approach, for instance via cohomology, might
well also establish our main result for Iwasawa algebras, our more concrete analysis also
provides tools that should apply to more general algebras that do not arise as subalgebras of
semisimple algebras.

It is also of interest to consider derivations that preserve the grading of n, that is, the
subspaces

∑
α gα where we sum over all α of the same height, and to consider derivations

of nilradicals of more general parabolic algebras; we will return to these questions in future
work.

This paper is organised as follows. In Sect. 2 we analyse the derivations of an H -type
algebra. We start by showing that every derivation is the sum of a symmetric derivation and
a skew-symmetric derivation; we then describe symmetric and skew-symmetric derivations
separately.

In Sect. 3, we consider real semisimple Lie algebras. First, we reduce matters to the case
of simple Lie algebras, and then we show that these contain various H -type algebras. We
also see how the geometry of root systems is reflected in the structure of various subalgebras
of g. Most of the ideas behind this section may be found in Ciatti [3–7].

In Sect. 4, we consider the grading of a semisimple Lie algebra associated with a choice
of positive roots, and grading-preserving derivations of g, of m ⊕ a ⊕ n and of n. We find
a simple Lie algebraic criterion for a skew-symmetric grading-preserving derivation of n to
extend to a derivation of g; this extended derivation is not only grading preserving but also
root space preserving.

Finally, in Sect. 5 we apply the results of Sects. 2 and 3 to the study of the derivations of
n that preserve the root space decomposition. These are sums of symmetric derivations and
skew-symmetric derivations. The main idea is to show that our assertion is true when the real
rank of g is 1 or 2, and then apply this result to the rank-two subalgebras of a general simple
Lie algebra, deducing from these the full result.

Main Theorem If no simple summand of g is isomorphic to so(n, 1) or su(n, 1) for any
n, then all the derivations of n that preserve the root spaces are of the form ad(W ), where
W ∈ m ⊕ a. Otherwise, there are derivations of n that preserve the root spaces that do not
arise in this way.

2 Derivations of an H-type Lie algebra

In this section, we first define H -type Lie algebras, which arose in the work of Kaplan [14],
and then describe their derivations. These are always the sum of a symmetric derivation and a
skew-symmetric derivation. In Corollary 2.6, skew-symmetric derivations are decomposed as
the sum of two components, one of which is trivial on the centre. The symmetric derivations
are classified in Corollary 2.8 by a diagonalisation process.

Let h be a two-step nilpotent Lie algebra, endowed with an inner product 〈·, ·〉. We denote
by z the centre of h and by v the orthogonal complement of z; given a subspace s of h, we
write Is for the identity map on s. Then

g = v ⊕ z
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236 P. Ciatti, M. G. Cowling

(throughout this paper, ⊕ denotes a vector space direct sum; in general, the summands need
not be Lie algebras). For each Z in z, we define JZ in End(v) by

〈JZ X, Y 〉 = 〈Z , [X, Y ]〉 ∀X, Y ∈ v. (2.1)

Then JZ is trivially skew-symmetric, that is, JT
Z = −JZ , where T denotes the transpose

relative to the inner product. We say that h is of Heisenberg type, or just H -type, when

J 2
Z = −‖Z‖2 Iv (2.2)

for all Z ∈ z. Equivalently, for each X ∈ v of length 1, the map ad(X) is an isometry from
ker(ad(X))⊥ onto z. For the rest of this section, we assume that h is an H -type algebra.

By polarisation, (2.2) implies that

JZ JZ ′ + JZ ′ JZ = −2
〈
Z , Z ′〉 Iv ∀Z , Z ′ ∈ z. (2.3)

Thus the JZ generate a Clifford algebra.
Recall that a derivation of a Lie algebra h is a linear endomorphism D : h → h such that

D ([X, Y ]) = [DX, Y ] + [X, DY ] ∀X, Y ∈ h;
every derivation of a Lie algebra automatically preserves the centre. We say that a linear
endomorphism D of h preserves the grading if D(v) ⊆ v and D(z) ⊆ z, and write D(h)

for the Lie algebra of all grading-preserving derivations of h. We denote by Dsym(h) the
subspace of D(h) of all symmetric derivations and by Dskew(h) the Lie subalgebra of all
skew-symmetric derivations. We also writeDsym

0 (h) andDskew
0 (h) for the subspaces of these

spaces of derivations that vanish on z.

Proposition 2.1 Let D be a grading-preserving linear endomorphism of h. Then D is a
derivation if and only if

JDTZ = DT JZ + JZ D ∀Z ∈ z. (2.4)

Suppose moreover that D|z = 0. If D is skew-symmetric, then D is a derivation if and only
if D commutes with all the JZ and if D is symmetric, then D is a derivation if and only if D
anticommutes with all the JZ .

Proof From (2.1), it follows that D is a derivation if and only if, for all Z in z and X , Y in v,

〈
JDTZ X, Y

〉 =
〈
DTZ , [X, Y ]

〉
= 〈Z , D [X, Y ]〉

= 〈Z , [DX, Y ]〉 + 〈Z , [X, DY ]〉
= 〈JZ DX , Y 〉 +

〈
DT JZ X, Y

〉
,

proving the result. �

The next result is known, but we give a proof for completeness.

Lemma 2.2 (Riehm [20]) For every pair of orthogonal vectors Z ′ and Z ′′ in z, the grading-
preserving linear map �Z ′ Z ′′ , defined by

�Z ′ Z ′′(X + Z) = JZ ′ JZ ′′ X + 2
〈
Z ′, Z

〉
Z ′′ − 2

〈
Z ′′, Z

〉
Z ′

for all Z ∈ z and all X ∈ v, is a skew-symmetric derivation of h.
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Proof It is evident that�Z ′ Z ′′ is skew-symmetric. By Proposition 2.1, it suffices to show that

J�Z ′ Z ′′ (Z) X = �Z ′ Z ′′ JZ X − JZ �Z ′ Z ′′ X ∀X ∈ v.

We consider the right-hand side of the equation, and use (2.3):

JZ ′ JZ ′′ JZ X − JZ JZ ′ JZ ′′ X = −2
〈
Z , Z ′′〉 JZ ′ X − JZ ′ JZ JZ ′′ X

+ 2
〈
Z , Z ′〉 JZ ′′ X + JZ ′ JZ JZ ′′ X

= 2
〈
Z ′, Z

〉
JZ ′′ X − 2

〈
Z ′′, Z

〉
JZ ′ X

= J2〈Z ′,Z〉Z ′′−2〈Z ′′,Z〉Z ′ X

= J�Z ′ Z ′′ (Z) X,

as required. �

We defineR(h) to be the vector subspace ofD(h) of all grading-preserving derivations of

h spanned by the �Z ′ Z ′′ . As observed by Riehm [20], the subspace R(h) is a subalgebra of
D(h). To see this, we take an orthonormal basis {Z1, . . . , Zm} for z, and write �i j in place
of �Zi Z j . Since �Z ′ Z ′′ depends linearly on Z ′ and on Z ′′, every element of R(h) is a linear
combination of the �i j . Moreover,

�i j�kl − �kl�i j =
{
0 if {i, j} ∩ {k, l} = ∅,

2� jl if i = k,

which shows that R(h) is closed under taking commutators. We omit the proof of these
commutation relations, as we do not need this result.

Corollary 2.3 Suppose that D is a grading-preserving derivation of h. Then we may write
D as D0 + D1, where D0 ∈ D(h) and D0|z is symmetric, and D1 ∈ R(h).

Proof The skew-symmetric part of the restriction D|z of D to z decomposes as a linear
combination of the �i j |z defined above; we take D1 to be the same linear combination of
the �i j , and D0 to be D − D1. The result follows immediately. �

Corollary 2.4 Suppose that D ∈ D(h) and D|z is symmetric. Then DT ∈ D(h).

Proof Since D|z is symmetric, it is diagonalisable. Take an eigenvector Z in zwith eigenvalue
2μ. By Proposition 2.1,

2μJZ = JDZ = JDTZ = DT JZ + JZ D,

whence multiplication on both sides by JZ gives

−2μ|Z |2 JZ = −|Z |2 JZ DT − |Z |2D JZ ,

and

JDZ = D JZ + JZ DT.

This holds for all eigenvectors Z of D, and so for all Z ∈ z by linearity, so DT is a derivation,
again by Proposition 2.1. �

Corollary 2.5 Suppose that D is a grading-preserving endomorphism of h. Then D ∈ D(h)

if and only if DT ∈ D(h). Hence if D ∈ D(h), then we may write D as Da + Ds, where
Ds ∈ Dsym(h) and Da ∈ Dskew(h).
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Proof For the first part, it suffices to suppose that D ∈ D(h) and show that DT ∈ D(h). In
light of Corollary 2.3, by subtracting off an element of R(h) if necessary, we may assume
that D|z is symmetric. It follows that DT ∈ D(h), as required.

For the second part of the corollary, take

Ds = 1

2

(
D + DT

)
and Da = 1

2

(
D − DT

)
;

the conclusion is obvious. �

Hence, to describe the elements of D(h), we can study symmetric and skew-symmetric

derivations separately. First we consider the skew-symmetric derivations.

Corollary 2.6 Each D in Dskew(h) decomposes as a sum D0 + R, where D0 ∈ Dskew
0 (h)

and R ∈ R(h). In particular, D0|v commutes with all the maps JZ .

Proof This is a consequence of Corollary 2.3 and Proposition 2.1. �

Nowwe consider a symmetric derivation D, which is diagonalisable with real eigenvalues.

Since D preserves v and z, these spaces decompose into eigenspaces for D. We take vλ to
be the eigenspace of D|v for the eigenvalue λ, and, given a subspace s of h, we write Ps for
the orthogonal projection of h onto s.

Proposition 2.7 Suppose that D ∈ Dsym(h). Then D|z = 2μIz for some μ in R. Moreover,
if X ∈ vλ, then

D JZ X = (2μ − λ)JZ X and D JZ JZ ′ X = λJZ JZ ′ X (2.5)

for all Z and Z ′ in z.

Proof Fix an orthonormal basis {Z1, . . . , Zm} of z such that DZi = 2μi Zi when i =
1, . . . , m, with μi ∈ R. From (2.4), it follows that

D JZi X = JDZi X − JZi DX = (2μi − λ)JZi X

when i = 1, . . . , m, and the first formula of (2.5) is established, and similarly,

D JZi JZk X = (2μi − 2μk + λ)JZi JZk X (2.6)

when i, k = 1, . . . , m.
If dim(z) = 1, then D|z = 2μIz for someμ inR and the second formula of (2.5) is trivial,

so we suppose henceforth that dim(z) > 1. By interchanging i and k in (2.6), we see that

D JZk JZi X = (2μk − 2μi + λ)JZk JZi X,

which yields

D JZi JZk X = (2μk − 2μi + λ)JZi JZk X,

when i �= k, since JZi JZk = −JZk JZi by (2.3). This equality, compared with (2.6), shows
that μi = μk , and the lemma follows. �

Corollary 2.8 Let D be a derivation in Dsym(h). Denote by 2μ the eigenvalue of D on z,
and by {λ1, . . . , λr } the distinct eigenvalues of D on v, listed in decreasing order, and by vi

the corresponding eigenspaces. Then λi + λr+1−i = 2μ, and we may write

D = μ
(
2Pz + Pv

) +
�r/2�∑

i=1

(λi − μ)
(
Pvi − Pvr+1−i

);
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all the maps
(
Pvi − Pvr+1−i

)
and 2Pz + Pv are derivations.

Proof This follows from Propositions 2.7 and 2.1. �


3 Structure of semisimple Lie algebras

In this section, we describe the restricted root structure and the standard Iwasawa and Bruhat
decompositions of a semisimpleLie algebra. Thenwe exhibit a number of H -type subalgebras
of the Iwasawa n subalgebra. Next, we analyse the structure of g and n in more detail.

3.1 Semisimple Lie algebras of the noncompact type

Take a real semisimple Lie algebra g with Killing form B and Cartan involution θ , and let
k ⊕ p be the corresponding Cartan decomposition of g. Fix a maximal subalgebra a of p; its
dimension is known as the real rank of g. Given an element α of Hom(a, R), we define the
(possibly trivial) subspace gα of g by

gα = {X ∈ g : [H, X ] = α(H)X, ∀H ∈ a} .

Then α is said to be a restricted root if α �= 0 and gα �= {0}. We denote by � the restricted
root system, that is, the set of all restricted roots. Note that [gα, gβ ] ⊆ gα+β for all α, β ∈
Hom(a, R), because ad(H) is a derivation for each H ∈ a. Hence if α and β are roots, then
α + β is also a root, unless α + β = 0 or [gα, gβ ] = {0}. Since a is θ -invariant, so is g0, and
it follows easily that g0 = m ⊕ a, where m = g0 ∩ k. Then

g = m ⊕ a ⊕
∑

α∈�

gα.

Henceforth, in this paper, unless stated explicitly otherwise, we write rank and root rather
than real rank and restricted root for brevity; this should not create any confusion.

We recall that� is said to be decomposable if� = �1∪�2, where�1 and�2 are disjoint
nontrivial subsets of � and 〈γ, δ〉 = 0 for all γ ∈ �1 and all δ ∈ �2, and indecomposable
otherwise. It is standard (see, for instance, Helgason [13] or Knapp [15]) that � is indecom-
posable if and only if g is simple, that is, cannot be written as a direct sum of nontrivial
pairwise commuting ideals. We recall also that � is said to be reduced if the only multiples
of a root γ that also lie in � are ±γ .

A Weyl chamber is a maximal open subset of a in which no root vanishes. We choose one
of these, C say, and say that a root γ is positive, and write γ ∈ �+, when γ (H) > 0 for all
H ∈ C . Then�+ is closed under addition and� = �+∪(−�+).Wewrite
 for the smallest
subset of �+ such that the boundary of C is a subset of the set

⋃
α∈
{H ∈ a : α(H) = 0};

the roots in 
 are called simple. Set

n =
∑

α∈�+
gα.

Then we obtain the Bruhat decomposition of g, namely,

g = θn ⊕ m ⊕ a ⊕ n.

Each root γ in �+ may be written uniquely as a sum
∑

α∈
 nαα, where each nα is a
nonnegative integer. The positive integer

∑
α∈
 nα is called the height of γ , and written
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240 P. Ciatti, M. G. Cowling

height(γ ). Clearly the height of a simple root is 1, and moreover

height(γ + δ) = height(γ ) + height(δ)

for all γ, δ ∈ �+ such that γ + δ ∈ �+. Then n is graded by height; more precisely, we may
write n = ∑

h∈Z+ gh , where [gh, gk] ⊆ gh+k .

3.2 Reduction to the simple case

Our first simplification is a reduction of the problem to the case of the Iwasawa n subalgebra
of a simple Lie algebra g.

Proposition 3.1 Suppose that g = g1 ⊕ g2 ⊕ · · · ⊕ gJ , where J > 1 and each g j is a
nontrivial simple ideal, and that n = n1 ⊕n2 ⊕· · ·⊕nJ is the corresponding decomposition
of n into subalgebras. Then

D(n) =
J∑

j=1

D(nj).

Remark 3.2 This is to be interpreted in the sense that each root-space-preserving derivation
of n preserves each of the subalgebras n j , and the restriction to each subalgebra is a root-
space-preserving derivation thereof, and vice versa.

Some of the simple summands g j may be compact. In this case, the corresponding space
n j is {0}; we define D({0}) = {0}.
Proof Since D in D(n) preserves the root spaces, it preserves each gα and hence each n j .
So one direction of the assertion is proved. The other is obvious. �

Remark 3.3 If we replace the root-space-preserving assumption by a grading-preserving
assumption, and add the hypothesis that no summand is isomorphic to so(n, 1) for any n,
then the result still holds. Indeed, when there is no abelian summand, n is “totally nonabelian”
in the language of Cowling and Ottazzi [11], and the conclusion follows from [11, Corollary
2.4].

3.3 The simple case

In light of Proposition 3.1, we may and shall assume that g is simple in the rest of this paper.
Two observations underpin our approach to the study of derivations. First, derivations

are local, in the sense that if D is a root-space-preserving linear endomorphism of n, then
linearity implies that D is a derivation if and only if

D [X, Y ] = [DX, Y ] + [X, DY ] ∀X ∈ gγ ∀Y ∈ gδ,

as γ and δ range over �+. This identity holds trivially if γ + δ is not a root, for then both
sides are 0. If γ + δ is a root, then the subalgebra n{γ,δ}, defined by

n{γ,δ} =
∑

ε∈�+∩(Rγ+Rδ)

gε,

is the Iwasawa n subalgebra of a simple subalgebra of g, whose rank is 1 if γ = δ and 2
otherwise. Then we can understand D provided we understand its restriction to Iwasawa n
algebras of simple Lie algebras of rank one and rank two.
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On derivations of subalgebras of real semisimple Lie... 241

The second observation is that n may be equipped with a natural inner product so that,
in the rank-one case, n itself is an H -type algebra, while in the rank-two cases, n has many
H -type subalgebras. We will use what we know about the derivations of H -type algebras,
but first we need to find H -type subalgebras of n.

3.4 Subalgebras of n of H-type

If c > 0, then the symmetric bilinear form 〈·, ·〉 on g, given by
〈X, Y 〉 = −cB(X, θY ), (3.1)

is an inner product, which induces an inner product on the dual of a, also written 〈·, ·〉; we
denote the corresponding norms by ‖ · ‖. We fix c so that the length of the longest roots is√
2. In the vector space decomposition m ⊕ a ⊕ ∑

α∈� gα of g, the distinct summands are
orthogonal.

Now the Killing form satisfies the well-known identity

B ([Z , X ] , Y ) + B (X, [Z , Y ]) = 0 ∀X, Y, Z ∈ g,

and so ad(Y )T = − ad(θY ), that is,

〈X, [Y, Z ]〉 = − 〈[θY, X ] , Z〉 ∀X, Y, Z ∈ g. (3.2)

If γ ∈ � and X, Y ∈ gγ , then [θ X, Y ] ∈ g0. Further, for all H ∈ a,

〈H, [θ X, Y ]〉 = − 〈[X, H ] , Y 〉 = 〈[H, X ] , Y 〉 = γ (H) 〈X, Y 〉 . (3.3)

On the one hand, if X ⊥ Y , then 〈H, [θ X, Y ]〉 = 0, and so [θ X, Y ] ∈ a⊥, whence [θ X, Y ] ∈
m. On the other hand, θ [θ X, X ] = −[θ X, X ], so [θ X, X ] ∈ a. We write Hγ for the unique
element of a such that δ(Hγ ) = 〈δ, γ 〉 for all δ ∈ Hom(a, R), or equivalently for all δ ∈ �.
Now (3.3) implies that

δ ([θ X, X ]) = 〈δ, γ 〉 ‖X‖2 and [θ X, X ] = ‖X‖2Hγ (3.4)

for all X ∈ gγ . For future purposes, note that

a =
∑

α∈�+
RHα; (3.5)

in general, this sum is not direct.
Our next results allow us to find various subalgebras of n that are H -type algebras, or

nearly so.

Lemma 3.4 Suppose that γ , δ, and γ + δ are positive roots. For all Z in gγ+δ , we define
the linear operator JZ on gγ ⊕ gδ by

JZ = ad(Z) ◦ θ. (3.6)

Then JZ maps gγ into gδ and gδ into gγ ; further

〈JZ X, Y 〉 = 〈Z , [X, Y ]〉 ∀X, Y ∈ gγ ⊕ gδ. (3.7)

Proof The mapping properties of JZ are consequences of the orthogonality of distinct root
spaces, while (3.7) follows from the definition of JZ and (3.2). �
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242 P. Ciatti, M. G. Cowling

Lemma 3.5 Suppose that γ , δ, and γ + δ are positive roots, and that JZ is defined as in
Lemma 3.4. Suppose also that neither 2γ + δ nor γ + 2δ is a root. Then

[X, JZ X ] = 〈γ + δ, γ 〉 ‖X‖2Z ∀X ∈ gγ ⊕ gδ (3.8)

and
J 2

Z X = −〈γ + δ, γ 〉 ‖Z‖2X ∀X ∈ gγ ⊕ gδ, (3.9)

Thus if Z �= 0, then JZ is a linear isomorphism of gγ ⊕ gδ that exchanges gδ and gγ .
Moreover, if γ = δ, then gγ ⊕ g2γ is an H-type algebra, while if neither 2γ nor 2δ is a root,
then gγ ⊕ gδ ⊕ gγ+δ is an H-type algebra.

Proof When 2γ + δ is not a root, [X, Z ] = 0 for all Z in gγ+δ and all X in gγ . Hence, from
the Jacobi identity and (3.4),

[X, JZ X ] = [X, [Z , θ X ]]

= [[X, Z ] , θ X ] + [Z , [X, θ X ]]

= (γ + δ) ([θ X, X ]) Z

= 〈γ + δ, γ 〉 ‖X‖2Z ,

and similarly,

JZ (JZ X) = [Z , θ [Z , θ X ]]

= [Z , [θ Z , X ]]

= [X, [θ Z , Z ]] + [θ Z , [Z , X ]]

= −〈γ + δ, γ 〉 ‖Z‖2X.

By exchanging the role of γ and δ in the last two formulae, we see that

[Y, JZ Y ] = 〈γ + δ, δ〉 ‖Y‖2Z

and

JZ (JZ Y ) = −〈γ + δ, δ〉 ‖Z‖2Y

for all Z ∈ gγ+δ and all Y ∈ gδ when γ + 2δ is not a root. Hence (3.8) and (3.9) are proved,
and JZ is a linear isomorphism from gγ ⊕ gδ onto gδ ⊕ gγ when Z �= 0.

Either γ = δ or the roots γ and δ span a root system of rank 2. By inspection of the
possibilities, we see that the hypotheses that γ , δ, and γ + δ are roots and 2γ + δ and γ + 2δ
are not roots imply that ‖γ ‖ = ‖δ‖ and 〈γ + δ, δ〉 = 〈γ + δ, γ 〉 > 0. Now (3.8) and (3.9)
follow immediately. Further, if γ = δ or neither 2γ nor 2δ is a root, then 〈γ + δ, γ 〉 = 1,
and so

J 2
Z X = −‖Z‖2X ∀X ∈ gγ ⊕ gδ ∀Z ∈ gγ+δ,

as required. �


Remark 3.6 We have just shown that the Iwasawa n algebras of real rank one simple Lie
algebras are H -type. Further, inspection of the root systems of rank one and two shows that
if γ , δ, and γ + δ are roots and 2γ + δ and γ + 2δ are not roots, then either 2γ and 2(γ + δ)

are both roots, or neither is a root.
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Corollary 3.7 Suppose that γ , δ, and γ + δ are positive roots, and that neither 2γ + δ nor
γ + 2δ is a root. If D is a root-space-preserving derivation of g whose restriction to gγ+δ is
symmetric, then

DT[X, Y ] =
[

DTX, Y
]

+
[

X, DTY
]

∀X ∈ gγ ∀Y ∈ gδ. (3.10)

Proof The proof is a mild generalisation of the proof of Corollary 2.4. Observe first that
if E is a root-space-preserving linear endomorphism of gγ ⊕ gδ ⊕ gγ+δ , then E[X, Y ] =
[E X, Y ] + [X, EY ] if and only if

〈
JETZ X, Y

〉 =
〈
ETZ , [X, Y ]

〉

= 〈Z , E [X, Y ]〉
= 〈Z , [E X, Y ]〉 + 〈Z , [X, EY ]〉
= 〈JZ E X , Y 〉 +

〈
ET JZ X, Y

〉
,

(3.11)

for all X ∈ gγ , all Y ∈ gδ , and all Z ∈ gγ+δ .
Since D|gα+β is symmetric, it is diagonalisable. Take an eigenvector Z in gα+β with

eigenvalue 2μ. By (3.11),

2μJZ = JDZ = JDTZ = DT JZ + JZ D,

whence composition on both sides by JZ gives

−2μ|Z |2 JZ = −|Z |2 JZ DT − |Z |2D JZ ,

and

JDZ = D JZ + JZ DT.

This holds for all eigenvectors Z of D, and so for all Z ∈ z by linearity, so (3.10) holds by
(3.11). �


We are supposing that g is simple, so � is indecomposable. In particular, � contains just
one highest root (see Bourbaki [1, p. 165, Proposition 25]), which we denote by ω. We fix
the constant c in (3.1) by requiring that ‖ω‖2 = 2. Then for each γ ∈ �, the number 〈γ, ω〉
is one of ±2, ±1 and 0; further, it is ±2 if and only if γ = ±ω.

Define

�1 = {γ ∈ � : 〈γ, ω〉 = 1} and �0 = {γ ∈ � : 〈γ, ω〉 = 0},
and write �+

0 for �+ ∩ �0. Then, by Ciatti [6, Lemma 2.1],

�+ = �+
0 ∪ �1 ∪ {ω}.

Further, define
v =

∑

γ∈�1

gγ , h = v ⊕ gω and n0 =
∑

γ∈�+
0

gγ ;

then

n = n0 ⊕ v ⊕ gω = n0 ⊕ h.

Following Ciatti [6], for Z in gω, we define the operator JZ : v → v by

JZ X = [Z , θ X ]. (3.12)
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Then by definition and (3.2),

〈JZ X, Y 〉 = 〈[Z , θ X ] , Y 〉 = 〈Z , [X, Y ]〉 ∀X, Y ∈ v.

Lemma 3.8 (Ciatti [3]) The pair (v ⊕ z, 〈·, ·〉) is an H-type algebra with centre gω, that is,
[v, v] = gω and

J 2
Z X = −‖Z‖2X (3.13)

for all Z in gω and X in v.

Proof This follows from Lemma 3.5. �

Now we list some H -type subalgebras of the Iwasawa n algebras of rank-two simple Lie

algebras.When the root system is of type A2, then n is itself an H -type algebra.When the root
system is of type B2, say � = {α, β, α + β, 2α + β}, then gα ⊕ gα+β ⊕ g2α+β is an H -type
subalgebra (and moreover gβ ⊕ gα+β ⊕ g2α+β is abelian and hence a degenerate H -type
algebra too).When the root system is of type BC2, say� = {α, 2α, β, α+β, 2α+β, 2α+2β},
then gα⊕g2α andgβ⊕gα+β⊕g2α+β⊕g2α+2β are H -type subalgebras, and gα⊕gα+β⊕g2α+β

is close to an H -type subalgebra (see Lemma 3.5). Finally, when the root system is of
type G2, say � = {α, β, α + β, 2α + β, 3α + β, 3α + β}, then gα ⊕ g2α+β ⊕ g3α+β and
gβ ⊕ gα+β ⊕ g2α+β ⊕ g3α+β ⊕ g3α+2β are H -type subalgebras.

3.5 The fine structure of g

We now study g in more detail.

Lemma 3.9 Suppose that γ , δ, and γ + δ are positive roots, and that γ − δ and γ + 2δ are
not roots. If U ∈ gδ\{0}, then

{[U, X ] : X ∈ gγ

} = gγ+δ and
{[θU, Y ] : Y ∈ gγ+δ

} = gγ . (3.14)

Consequently, dim(gγ ) = dim(gγ+δ) and ad(U ) is bijective from gγ to gγ+δ .

Proof The hypotheses imply that 〈γ + δ, δ〉 = 1
2 〈δ, δ〉 �= 0. Evidently, if Y ∈ gγ+δ , then

[θU, Y ] ∈ gγ and

[U, [θU, Y ]] = [[U, θU ], Y ] + [θU, [U, Y ]] = (γ + δ) ([U, θU ]) Y = −〈γ + δ, δ〉 ‖U‖2Y

by (3.4), and it follows that Y is in the range of ad(U ). This proves the left hand formula of
(3.14) and hence dim(gγ ) ≥ dim(gγ+δ). The right-hand formula and the opposite inequality
dim(gγ ) ≤ dim(gγ+δ) may be shown similarly.

The bijectivity of ad(U ), and of ad(θU ), follow. �

Lemma 3.10 Suppose that γ , δ, γ + δ and γ + 2δ are positive roots, and that γ − δ and
γ + 3δ are not roots. If U ∈ gγ \{0} and X ∈ gδ\{0}, then

[U, X ] �= 0 and [[U, X ], X ] �= 0.

Proof First, [U, θ X ] = 0 since γ − δ is not a root.
The hypotheses imply that γ and δ span a root subsystem of type B2 or BC2, whence

2γ + δ is not a root, and that 〈γ + δ, δ〉 = 0 while 〈γ, δ〉 �= 0 (see Bourbaki [1, p. 148,
Théorème 1]). Now [U, X ] �= 0, by Lemma 3.9 with the roles of γ and δ exchanged.

Next, by the Jacobi identity and the facts that 〈γ + δ, δ〉 = 0 and [U, θ X ] = 0,
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[[[U, X ], X ] , θ X ] = [[θ X, X ], [U, X ]] + [[[U, X ], θ X ] , X ]

= (γ + δ) ([θ X, X ]) [U, X ] + [[[U, X ], θ X ] , X ]

= 〈γ + δ, δ〉 ‖X‖2[U, X ] + [[U, [X, θ X ]] , X ] + [[[U, θ X ], X ] , X ]

= 〈γ, δ〉 ‖X‖2[U, X ] �= 0,

which ensures that [[U, X ], X ] �= 0 if neither U nor X is 0. �

We are going to analyse general simple Lie algebras by looking carefully at subalgebras

of rank 1 or 2. Given a subset E of �+, we write gE for the subalgebra of g generated by the
root spaces gε where ε ranges over span E.

We define, for any root γ , m{γ } = m ∩ g{γ } and

mγ = span
{[X, θY ] : X, Y ∈ gγ , 〈X, Y 〉 = 0

}
.

Lemma 3.11 Suppose that γ , δ and γ + δ are positive roots. Then
{[X, Y ] : X ∈ gγ , Y ∈ gδ

} = gγ+δ;
{
U ∈ gγ : ad(U )|gδ = 0

} = {0}.
Proof We observe that ad(m ⊕ a) is irreducible on gε for any positive root ε. Indeed, we
know that ad(m ⊕ a) maps gε into itself, while from Kostant’s double transitivity theorem
[17], ad(m{ε}) is transitive on the unit sphere in gε , whence ad(m ⊕ a) takes any nonzero
vector in gε to any other nonzero vector. (For an alternative approach to this, see Cowling et
al. [9]).

It follows that the subspace [m ⊕ a, [gγ , gδ]] is either gγ+δ or {0}. Hence, to prove the
first equality, it suffices to show that

[gγ , gδ] �= {0}. (3.15)

To do this, we consider the subset (Zγ + Zδ) ∩ � of �, which is a root system in its own
right.

If this root subsystem is of rank one, then necessarily δ = γ , and γ + δ = 2γ . In this
case, gγ ⊕ g2γ is an H -type algebra, and (3.15) follows.

If the root system is of type A2, then we are done, since gγ ⊕ gδ ⊕ gγ+δ is an H -type
algebra.

If the root system is of type B2 or BC2, then (3.15) follows from Lemma 3.10.
If the root system is of type G2, then the algebra is split or complex, and in this case the

result is well known.
Finally, suppose that U ∈ gγ \{0} and [U, X ] = 0 for all X ∈ gδ . Then

[ ad(W )U, X ] = ad(W )[U, X ] − [U, ad(W )X ] = 0

for all X ∈ gδ and all W ∈ m ⊕ a, and hence [V, X ] = 0 for all V ∈ gγ and all X ∈ gδ ,
which is impossible. �

Lemma 3.12 The following hold:

(i) if γ is a root, then m−γ = mγ ,
(ii) if γ is a root, then [m,mγ ] ⊆ mγ ,
(iii) if γ , δ and ε are roots and ε ∈ Zγ + Zδ, then mε ⊆ mγ + mδ ,
(iv) if γ is a root, then mγ ⊆ m{γ }, with equality if γ /2 is not a root,
(v) m = ∑

γ∈
 mγ = ∑
γ∈�+ mγ .
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Proof Observe that if X, Y ∈ g−γ , then [X, θY ] = −[θY, θ(θ X)], and θY, θ X ∈ gγ , so (i)
holds.

Now we prove (ii). If Z ∈ m and X, Y ∈ gγ , then

[Z , [X, θY ]] = [[Z , X ], θY ] + [X, [Z , θY ]] .
Both summands lie in mγ . Thus mγ is an ideal in m, and in particular, is a subalgebra.

Next, we prove (iii). First, if γ , δ and γ + δ are roots and W, Z ∈ gγ+δ , then there exist
X ∈ gγ and Y ∈ gδ such that [X, Y ] = Z , by Lemma 3.11. Then

[W, θ Z ] = [W, [θ X, θY ]] = [[W, θ X ], θY ] + [θ X, [W, θY ]]
= [W, θ X ], θY ] − [[W, θY ], θ X ] ∈ mγ + mδ.

To prove (iii), we use (i) and the observation above repeatedly.
To prove (iv), observe that if 2γ and 1

2γ are not roots, then g−γ ⊕ mγ ⊕ RHγ ⊕ gγ

coincides with the subalgebra g{γ }, whence mγ = m{γ }. Similarly, if γ and 2γ are both
roots, then m2γ ⊆ mγ , by (ii), so g−2γ ⊕ g−γ ⊕mγ ⊕ RHγ ⊕ gγ ⊕ g2γ coincides with the
subalgebra g{γ }, and againmγ = m{γ }. Finally, if γ and 1

2γ are both roots, mγ ⊆ mγ /2, and
mγ ⊆ m{γ }. This inclusion is strict when g{γ } is su(n, 1) (where n > 1) or sp(n, 1) (where
n > 1).

To prove (v), we use (i) and (iii) repeatedly. �


4 Derivations of semisimple Lie algebras

In this section, we discuss the height of roots and the associated grading of the Lie algebra g,
and prove a number of results on height-preserving derivations. Then we prove a localisation
result for derivations of g. Our final result is a necessary and sufficient condition for a skew-
symmetric root-space-preserving derivation of n to be of the form ad(Z) for some Z ∈ m.

Lemma 4.1 Suppose that W ∈ g0. Then W = 0 if and only if ad(W )|gβ = 0 for all β ∈ 
.

Proof One implication is obvious. To prove the other, suppose that ad(W )|gβ = 0 for all
β ∈ 
. Then ad(W ) vanishes on n, whence ad(θW ) also vanishes on n since ad(θW ) =
− ad(W )T.

Now if X ∈ n, then

[W, θ X ] = θ [θW, X ] = 0.

Since g is simple, and ad(W ) is a derivation that vanishes on n⊕θn and hence on the algebra
that this generates, that is, g, we conclude that W = 0. �


We are interested in the derivations D of n that preserve the root space structure, that is,
are such that D(gα) ⊆ gα for all α ∈ �+. We write D(n) for the space of these mappings.

Recall that the height of the positive root α, written height(α), is defined to be
∑r

j=1 n j ,
where α = ∑r

j=1 n jα j and α j ∈ 
. Note that there is an element H0 of a such that
[H0, X ] = height(α)X for all X ∈ gα and all α ∈ 
. We may extend the height function to
all roots: we set height(γ ) = h when [H0, X ] = h X for all X ∈ gγ . When h is a nonzero
integer, we write gh for

∑
γ gγ , where we sum over the γ in � such that height(γ ) = h. We

defined g0 to be the “null root space”m⊕a, which fortunately coincides with the subspace of
g of elements of height 0, and so g0 may also be used to describe the latter space, consistently
with our gh notation.

123



On derivations of subalgebras of real semisimple Lie... 247

Proposition 4.2 The Lie algebra g is graded: more precisely, g = ∑
h∈Z gh, and [gh, gh′ ] ⊆

gh+h′ . Next, n is stratified, that is, [gh, g1] = gh+1 for all h ∈ Z
+, so g1 generates n. Finally,

if 0 < h < height(ω), then {X ∈ gh : ad(X)|g1 = 0} = {0}.
Proof The linear operator ad(H0) on g is diagonalisable, whence g decomposes as a sum of
eigenspaces; given that the simple roots correspond to eigenvalue 1 and all positive roots are
sums of simple roots (with multiplicities), all eigenvalues are integers. Further, ad(H0) is a
derivation and so [gh, gh′ ] ⊆ gh+h′ .

If height(γ ) = h + 1 where h > 0, then there exists α ∈ 
 such that γ − α is a root, by
[8, Lemma 3.1]. Lemma 3.11 shows that [gα, gγ−α] = gγ , and it follows that gγ ⊆ [g1, gh].
This applies to all γ of height h + 1 and so gh+1 ⊆ [g1, gh]. The converse inclusion has
already been established.

Finally, suppose that X ∈ gh and ad(X)|g1 = 0. Write X as
∑

γ Xγ , where Xγ ∈ gγ and
height(γ ) = h. Now

0 = [[H, X ], Y ] = [[H, Y ], X ] + [H, [X, Y ]] ∀Y ∈ g1,

whence ad([H, X ])|g1 = 0 for all H ∈ a. The algebra of operators generated by the operators
ad(H) for all H ∈ a is closed under transpose and hence spanned by its minimal projections,
which are precisely the projections onto the root spaces gγ as γ varies over �. We deduce
that ad(Xγ )|g1 = 0 for all γ of height h. By Lemma 3.11, each Xγ is zero. �


We are now going to work with derivation identities.

Definition 4.3 Suppose that D is a derivation of n. For γ, δ ∈ �+, let (Dγ,δ) be the formula

D[X, θ Z ] = [DX, θ Z ] + [X, θ DZ ]
for all X ∈ gγ and all Z ∈ gδ , and (Eγ,δ) be the formula

D [[X, θY ], Z ] = [[DX, θY ], Z ] + [[X, θ DY ], Z ] + [[X, θY ], DZ ]

for all X, Y ∈ gγ and all Z ∈ gδ .

Note that if D were a derivation of g such that θ D = Dθ , then these formulae would
follow from the Jacobi identity. At this point, we are not asserting their truth!

Theorem 4.4 Suppose that D is a skew-symmetric height-preserving derivation of n, and
that (Eγ,δ), as in Definition 4.3, holds for all γ, δ ∈ 
. Then the following statements hold.

(i) There is a unique well-defined linear map D̃ : g0 → g0 such that

D̃ [X, θY ] = [DX, θY ] + [X, θ DY ] ∀X, Y ∈ g1.

(ii) The range of the linear map D̃ is contained in m.
(iii) The linear map E : g0 ⊕ n → g0 ⊕ n, defined by

E (W + X) = D̃W + DX ∀W ∈ g0 ∀X ∈ n,

is a derivation.
(iv) If h ≥ k ≥ 0, then

E [U, θV ] = [EU, θV ] + [U, θ EV ] ∀U ∈ gh ∀V ∈ gk
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Proof To prove (i), we first claim that if α, β ∈ 
 and α �= β, then

[DX, θY ] + [X, θ DY ] = 0 ∀X ∈ gα ∀Y ∈ gβ . (4.1)

To see this, take W in g0 of the form [U, θV ], where U, V ∈ gγ , for some γ ∈ 
. Since D
is a skew-symmetric derivation,

〈[DX, θY ] + [X, θ DY ], W 〉 = − 〈DX, [W, Y ]〉 − 〈X, [W, DY ]〉
= 〈X, D[W, Y ]〉 − 〈X, [W, DY ]〉
= 〈X, [[DU, θV ] + [U, θ DV ], Y ]〉
= − 〈[X, θY ], [DU, θV ] + [U, θ DV ]〉
= 0,

since [X, θY ] = 0 because α −β is not a root; the third step uses (Eγ,β). Since g0 is spanned
by elements of the form [U, θV ], our claim is established.

Now we define L : ⋃
α∈
 gα × ⋃

α∈
 gα → g0 by L(X, Y ) = [X, θY ]. Then L extends
automatically to a linear map, also denoted L , from g1 ⊗ g1 to g0. Take X j , Y j ∈ g1, and
suppose that

∑
j [X j , θY j ] = 0 in g0. Write each X j as

∑
α X j,α and each Y j as

∑
β Y j,β ,

where X j,α ∈ gα and Y j,β ∈ gβ ; here α and β range over 
. Then
∑

j

[
X j , θY j

] =
∑

j,α

[
X j,α, θY j,α

]

since [X j,α, θY j,β ] = 0 because α − β is not a root if α �= β. If γ ∈ 
 and W ∈ gγ , then
∑

j

[[
X j , θY j

]
, W

] = 0 and
∑

j

[[
X j , θY j

]
, DW

] = 0

by hypothesis. Thus by (Eα,γ ),

0 = D
∑

j

[[
X j , θY j

]
, W

] = D
∑

j,α

[[
X j,α, θY j,α

]
, W

]

=
∑

j,α

[[
DX j,α, θY j,α

]
, W

] + [[
X j,α, θ DY j,α

]
, W

] + [[
X j,α, θY j,α

]
, DW

]

=
∑

j,α

[[
DX j,α, θY j,α

] + [
X j,α, θ DY j,α

]
, W

] +
∑

j

[[
X j , θY j

]
, DW

]

=
∑

j,α,β

[[
DX j,α, θY j,β

] + [
X j,α, θ DY j,β

]
, W

]
,

and this shows that
∑

j

[[
DX j,α, θY j,β

] + [
X j,α, θ DY j,β

]
, W

] = 0.

From Lemma 4.1, we see that
∑

j

[
DX j,α, θY j,β

] + [
X j,α, θ DY j,β

] = 0.

It follows immediately that D̃, given by

D̃
∑

j

[
X j , θY j

] =
∑

j

([
DX j , θY j

] + [
X j , θ DY j

])
,
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is well defined; clearly D̃ is also unique.
To prove (ii), note that if X, Y ∈ gα where α ∈ 
, and H ∈ a, then

〈[DX, θY ] + [X, θ DY ], H〉 = 〈DX, [H, Y ]〉 + 〈X, [H, DY ]〉
= 〈DX, [H, Y ]〉 + 〈[H, X ], DY 〉
= α(H) 〈DX, Y 〉 + 〈X, DY 〉
= 0,

since D is skew-symmetric. This equality now holds for all X, Y ∈ g1 by linearity and (4.1),
and so the range of D̃ is contained in m.

We now extend D and D̃ to a linear map E on g0 +n by setting E(W + X) = D̃W + DX
for all W ∈ g0 and all X ∈ n. Since D is a derivation on n, to show that E is a derivation it
suffices to show that

D[W, X ] =
[

D̃W, X
]

+ [W, DX ] ∀W ∈ g0 ∀X ∈ n. (4.2)

and
D̃[W, U ] =

[
D̃W, U

]
+

[
W, D̃U

]
∀W, U ∈ g0. (4.3)

To prove (4.2), observe that

D[W, X ] −
[

D̃W, X
]

− [W, DX ] =
(
[D, ad(W )] − ad

(
D̃W

))
X,

and [D, ad(W )]− ad(D̃W ) is a derivation. To show that it is 0 on n, it suffices to show that it
vanishes on gβ for all simple roots β. By linearity, it suffices to take W of the form [X, θY ]
where X, Y ∈ gα and α ∈ 
; this case follows from (Eα,β).

To prove (4.3), we may suppose by linearity that U = [X, θY ] where X, Y ∈ gα for some
α ∈ 
. Now θ D̃θ = D̃, so

D̃ [W, [X, θY ]] = D̃ [[W, X ] , θY ] + D̃ [X, [W, θY ]]

= D̃ [[W, X ] , θY ] + D̃ [X, θ [θW, Y ]]

= [D [W, X ] , θY ] + [[W, X ] , θ DY ]

+ [DX, [W, θY ]] + [X, θ D [θW, Y ]]

=
[[

D̃W, X
]
, θY

]
+ [[W, DX ] , θY ] + [[W, X ] , θ DY ]

+ [DX, [W, θY ]] +
[

X, θ
[

D̃θW, Y
]]

+ [X, θ [θW, DY ]]

=
[[

D̃W, X
]
, θY

]
+ [[W, DX ] , θY ] + [[W, X ] , θ DY ]

+ [DX, [W, θY ]] +
[

X,
[

D̃W, θY
]]

+ [X, [W, θ DY ]]

=
[

D̃W, [X, θY ]
]

+ [W, [DX, θY ]] + [W, [X, θ DY ]]
=

[
D̃W, [X, θY ]

]
+

[
W, D̃ [X, θY ]

]
,

and (4.3) holds.
Finally, we prove (iv), using induction on h and k. We need to prove the identity (Dh,k),

given by

E [X, θY ] = [E X, θY ] + [X, θ EY ] ∀X ∈ gh ∀Y ∈ gk .
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First we suppose that k = 1. The identity (Dh,1) is equivalent to

[E [X, θY ] , Z ] = [[E X, θY ] , Z ] + [[X, θ EY ] , Z ]

for all X ∈ gh , all Y ∈ g1 and all Z ∈ g1, by Proposition 4.2. Write W for [X, Z ] in gh+1.
Since E is a derivation, from the Jacobi identity and the definition of E

[E [X, θY ] , Z ] − [[E X, θY ] , Z ] − [[X, θ EY ] , Z ]

= E [[X, θY ] , Z ] − [[X, θY ] , E Z ] − [[E X, θY ] , Z ] − [[X, θ EY ] , Z ]

= E [[X, Z ] , θY ] + E [X, [θY, Z ]]− [[X, θY ] , E Z ]− [[E X, θY ] , Z ]− [[X, θ EY ] , Z ]

= E [[X, Z ] , θY ] + [E X, [θY, Z ]] + [X, [θ EY, Z ]] + [X, [θY, E Z ]]

− [[X, θY ] , E Z ] − [[E X, θY ] , Z ] − [[X, θ EY ] , Z ]

= E [[X, Z ] , θY ] + [θY, [E X, Z ]] + [θ EY, [X, Z ]] + [θY, [X, E Z ]]

= E [W, θY ] − [EW, θY ] − [W, θ EY ] .

We deduce that if (Dh+1,1) holds, the last line vanishes; hence the first line vanishes, and
(Dh,1) holds. Since (Dh,1) holds for large positive h (because there is nothing to prove as
gh = {0}), (Dh,1) holds for all positive h.

Now suppose that (Dh,1) and (Dh,k) hold where 1 ≤ k < h. Take X ∈ gh , Y1 ∈ g1 and
Y2 ∈ gk . Then

E [X, θ [Y1, Y2]] − [E X, θ [Y1, Y2]] − [X, θ E [Y1, Y2]]

= E [[X, θY1] , θY2] + E [θY1, [X, θY2]] − [[E X, θY1] , θY2] − [θY1, [E X, θY2]]

− [X, [θ EY1, θY2]] − [X, [θY1, θ EY2]]

= [E [X, θY1] , θY2] + [[X, θY1] , θ EY2] + [θ EY1, [X, θY2]] + [θY1, E [X, θ EY2]]

− [[E X, θY1] , θY2] − [θY1, [E X, θY2]] − [X, [θ EY1, θY2]] − [X, [θY1, θ EY2]]

= [[E X, θY1] , θY2] + [[X, EθY1] , θY2] + [[X, θY1] , θ EY2] + [θ EY1, [X, θY2]]

+ [θY1, [E X, θY2]] + [θY1, [X, θ EY2]] − [[E X, θY1] , θY2] − [θY1, [E X, θY2]]

− [X, [θ EY1, θY2]] − [X, [θY1, EθY2]]

= [[X, EθY1] , θY2] + [[X, θY1] , θ EY2] + [θ EY1, [X, θY2]] + [θY1, [X, θ EY2]]

− [X, [θ EY1, θY2]] − [X, [θY1, EY2]]

= 0.

By Proposition 4.2, (Dh,k+1) also holds. By induction, (Dh,k) holds whenever h ≥ k ≥ 0. �

Theorem 4.5 Suppose that D is a skew-symmetric height-preserving derivation of n. Then
the following are equivalent:

(i) there exists a height-preserving derivation D̃ of g whose restriction to n coincides with
D;

(ii) D = ad(W ) for some W ∈ m;
(iii) (Eγ,δ) holds for all γ, δ ∈ �+.
(iv) (Eγ,δ) holds for all γ, δ ∈ 
.

Further, if any of these conditions hold, then D̃ is root space preserving.

Proof Suppose that (i) holds. Since all derivations of g are inner, D̃ = ad(W ) for some
W ∈ g. Evidently ad(W ) preserves height if and only if W ∈ g0. Thus W ∈ m⊕ a. Since D
is skew-symmetric, W ∈ m, and (ii) is proved.

123



On derivations of subalgebras of real semisimple Lie... 251

If (ii) holds, then the Jacobi identity and the fact that θW = W imply that

D [[X, θY ] , Z ]

= ad(W ) [[X, θY ] , Z ]

= [[ad(W )X, θY ] , Z ] + [[X ad(W )θY ] , Z ] + [[X, θY ] , ad(W )Z ]

= [[ad(W )X, θY ] , Z ] + [[X, θ ad(W )Y ] , Z ] + [[X, θY ] , ad(W )Z ]

= [[DX, θY ] , Z ] + [[X, θ DY ] , Z ] + [[X, θY ] , DZ ] ,

and (iii) holds.
It is trivial that (iii) implies (iv).
Suppose that (iv) holds.We are going to construct a derivation Ẽ that extends the derivation

E of Theorem 4.4 to the simple Lie algebra g and preserves heights.
When X ∈ g0 ⊕ n, we set Ẽ X = E X . When X ∈ g0 ⊕ θn, we define

Ẽ X = θ E(θ X). (4.4)

These definitions agreewhen X ∈ g0 by part (ii) of Theorem4.4. It follows from the definition
that

θ Ẽθ = Ẽ . (4.5)

Finally, to show that D̃ is a derivation, we have to verify that

D̃ [U, V ] =
[

D̃U, V
]

+
[
U, D̃V

]
∀U, V ∈ g.

By linearity, it suffices to demonstrate this for U ∈ gh and V ∈ gk , for all possible heights h
and k. There are various cases to consider. We label the relevant identity (Dh,k):

D̃ [U, V ] =
[

D̃U, V
]

+
[
U, D̃V

]
∀U ∈ gh ∀V ∈ gk .

Case 1: h ≥ 0 and k ≥ 0. This case is trivial as Ẽ coincides with E on g0 ⊕ n.

Case 2: h ≤ 0 and k ≤ 0. In this case, we take X, Y ∈ g0 ⊕ θn, so θ X, θY ∈ g0 ⊕ n, and
then

Ẽ [X, Y ] = θ E [θ X, θY ] = θ [Eθ X, θY ] + θ [θ X, EθY ]

=
[

Ẽ X, Y
]

+
[

X, ẼY
]
,

and (Dh,k) holds.

Case 3: hk < 0. We need to show that

Ẽ [X, Y ] =
[

Ẽ X, Y
]

+
[

X, ẼY
]

∀X ∈ gh ∀Y ∈ gk . (Dh,k)

If h + k ≥ 0, this follows from part (iv) of Theorem 4.4 and (4.5); otherwise, we conjugate
by θ , as in Case 2.

We conclude with the observation that if Ẽ = ad(Z) for some Z ∈ m, then Ẽ is root
space preserving. �
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5 Derivations of n

We are now able to consider a nilpotent Lie algebra n that arises in the Iwasawa decompo-
sition of a real simple Lie algebra g. We write D(n) for the space of root-space-preserving
derivations of n.

Theorem 5.1 If g is simple and not isomorphic to so(n, 1) or su(n, 1), then every D in D(n)

is given by

D = ad(W ),

where W ∈ m ⊕ a.

The main theorem follows from this and Proposition 3.1.
We prove Theorem 5.1 by showing that every derivation is the sum of a symmetric and a

skew-symmetric derivation, and treating these separately. The symmetric derivations are han-
dled using the following lemma,which reducesmatters to showing that symmetric derivations
act by scalars on the root spaces.

Lemma 5.2 If a derivation D of n acts by a real scalar λα on each root space gα where
α ∈ 
, then D = ad(H) for some H ∈ a.

Proof Since D is a derivation, it is determined by the λα where α is simple; further, the
simple roots form a basis of Hom(a, R) and so there exists H ∈ a such that α(H) = λα for
each simple root. Hence D = ad(H). �

Remark 5.3 A similar observation is valid when g is complex and D acts by a complex scalar
on each root space, since every derivation of a complex Lie algebra is complex linear. Hence
Theorem 5.1 is trivial when g is a split or complex Lie algebra. In fact, in the split case (that
is, when all the roots havemultiplicity 1) it follows thatD(n) = ad(a). In particular, Theorem
5.1 holds for the algebras with root system Dn (where n ≥ 4), E6, E7, E8 or G2, since these
are either split or complex, by the classification.

The skew-symmetric derivations are treated using Theorem 4.5, which shows that a skew-
symmetric derivation D lies in ad(m) when the identity (Eα,β) holds for all simple roots α

and β. For convenience, we recall this identity:

D [[X, θY ] , V ] = [[DX, θY ] , V ] + [[X, θ DY ] , V ] + [[X, θY ] , DV ] (Eα,β )

for all X, Y ∈ gα and all V ∈ gβ .
Another key ingredient of our proof,whichweuse in parallelwith the previous observation,

is a reduction to Lie algebras of rank at most two. Recall that if E is a subset of �, then gE

denotes the subalgebra of g generated by all the spaces gε , where ε ∈ E. We also denote by
mE and nE the algebras m ∩ gE and n ∩ gE, and by �E the root subsystem � ∩ span(E).

Now we come to the proof proper. We first consider the rank-one case; this is known, and
we just state what we need. Next, we consider the real rank-two case, and the third step is to
consider the case where the real rank is higher than two.

5.1 The rank-one algebras

The algebras are well known (see, for instance, Weyl [23]) and the root-space-preserving
derivations are well known. We summarise the results in the following proposition for the
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convenience of the reader. As the simple algebras for whichD(n) �= ad(m⊕a) are rank one,
a case-by-case analysis is appropriate.

Proposition 5.4 (Riehm [20], Saal [21]) Let g be a simple Lie algebra of real rank one. Then
D(n) = Dsym(n) ⊕ Dskew(n). Moreover,

(i) if g = so(1, n + 1), then D(n) = sl(n, R) ⊕ R;
(ii) if g = su(1, n + 1), then D(n) = sp(n, R) ⊕ R;
(iii) if g = sp(1, n + 1), then D(n) = sp(n − 1) ⊕ sp(1) ⊕ R;
(iv) if g = f(4,−20), then D(n) = so(7) ⊕ R.

In all cases, the summand R corresponds to ad(a). In the first two cases, Dsym(n) strictly
contains ad(a); in the last two cases, Dsym(n) coincides with ad(a). In all cases, Dskew(n)

coincides with ad(m).

Remark 5.5 In the first two cases, n is not rigid enough to prevent the occurrence of deriva-
tions that are not in ad(m ⊕ a).

Proof This follows from the work of Riehm [20] and Saal [21]; see also Folland [12] and
Pansu [19]. Alternatively, the reader may combine the results about H -type algebras with
the description of the rank-one simple Lie algebras in terms of H -type algebras by Cowling
et al. [10]. �

Corollary 5.6 Suppose that g is a simple Lie algebra of arbitrary rank, and D is a skew-
symmetric root-space-preserving derivation of n. Then the identity (Eα,α) holds for all
positive roots α.

Proof For all rootsα, the restriction D|n{α} is a skew-symmetric root-space-preservingderiva-
tion, and fromTheorem5.1wededuce that D|n{α} ∈ ad(m{α}). Then (Eα,α) holds byTheorem
4.5. �

5.2 The rank-two algebras

Let g be a simple Lie algebra of rank two and denote by n an Iwasawa subalgebra of g.
We shall prove that each root-space-preserving derivation of n is the sum of a symmetric
and a skew-symmetric derivation, that the symmetric derivation lies in ad(a), and that the
skew-symmetric part satisfies (Eα,β) for all α and β in �+.

Before we analyse the various cases, we need a general result about derivations which we
will use when the root system is of type B2 or BC2.

Lemma 5.7 Suppose that α, β and α +β are positive roots while α −β and α + 2β are not
roots, and that D ∈ D(n). Then

DT [U, X ] =
[

DTU, X
]

+
[
U, DTX

]
∀U ∈ gβ ∀X ∈ gα. (5.1)

Proof By Proposition 5.4, the skew-symmetric part of the restriction of D to gβ coincides
with ad(Z) for some Z in mβ . Write D0 for D − ad(Z). Since ad(Z) is a skew-symmetric
derivation, D satisfies (5.1) if and only if D0 does. Thus, by replacing D by D0 if necessary,
there is no loss of generality in assuming that the restriction of D to gβ is symmetric.

We need to show (5.1). The eigenvectors of D|gβ span gβ , and so by linearity it will suffice
to show (5.1) when U is an eigenvector of D and X is arbitrary. Take U in gβ\{0} and λ ∈ R
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such that DU = λU . By Lemma 3.9, ad(U ) : gα → gα+β is surjective, and so it will suffice
to show that

〈
DT [U, X ] , [U, Y ]

〉
=

〈[
DTU, X

]
, [U, Y ]

〉
+

〈[
U, DTX

]
, [U, Y ]

〉

for the eigenvector U in gβ and arbitrary X and Y in gα . Now, by the hypothesis that D is a
root-space-preserving derivation, the choice of U , (3.2), the Jacobi identy, and the fact that
α − β is not a root, the left hand side is equal to

〈[U, X ] , D [U, Y ]〉 = 〈[U, X ] , [DU, Y ]〉 + 〈[U, X ] , [U, DY ]〉
= 〈[U, X ] , [λU, Y ]〉 − 〈X, [θU, [U, DY ]]〉
= 〈[λU, X ] , [U, Y ]〉 − 〈X, [[θU, U ] , DY ]〉 − 〈X, [U, [θU, DY ]]〉
= 〈[λU, X ] , [U, Y ]〉 − 〈X, α ([θU, U ]) DY 〉
=

〈[
DTU, X

]
, [U, Y ]

〉
− α ([θU, U ])

〈
DTX, Y

〉

and similarly
〈[U, DTX ], [U, Y ]〉 is equal to

−
〈
DTX, [θU, [U, Y ]]

〉
= −

〈
DTX, [[θU, U ] , Y ]

〉
−

〈
DTX, [U, [θU, Y ]]

〉

= −
〈
DTX, α ([θU, U ]) Y

〉

= −α ([θU, U ])
〈
DTX, Y

〉
.

The result now follows. �


5.2.1 The case A2

Until further notice, we assume that g has root system A2, the simplest indecomposible root
system of rank 2. We label the simple roots α and β, so that the highest root is α + β and
�+ = {α, β, α + β}. With the notation of Lemma 3.8, �1 = {α, β} and �0 = ∅. We shall
use the result of Ciatti [6, Proposition 4.1] about the structure of n, giving a proof for the
convenience of the reader. We first recall that n is an H -type algebra, and for Z ∈ gα+β , the
map JZ on gα ⊕ gβ is determined by the condition that

〈JZ X, Y 〉 = 〈Z , [X, Y ]〉 ∀X, Y ∈ gα ⊕ gβ .

Lemma 5.8 For every nontrivial X in gα ,

gβ = {JZ X : Z ∈ gα+β} (5.2)

and
gα = {JZ ′ JZ X : Z , Z ′ ∈ gα+β}. (5.3)

Proof We may and shall assume that X is a unit vector, and take Y ∈ gβ . By (3.12) and the
Jacobi identity,

J[Y,X ] X = [[Y, X ], θ X ] = [[θ X, X ], Y ] = β([θ X, X ])Y = Y,

which proves that Y ∈ {JZ X : Z ∈ gα+β}.
Now, by (3.13), JZ is a linear isomorphism that exchanges gβ and gα for all nonzero Z

in gα+β , so (5.3) follows from (5.2). �
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Proposition 5.9 Every root-space-preserving derivation of n is the sum of a symmetric and
a skew-symmetric derivation.

Proof By Lemma 3.8, n is H -type. The result follows from Corollary 2.5. �

Proposition 5.10 Every symmetric root-space-preserving derivation D of n lies in ad(a).

Proof From Corollary 2.8, D is the sum of a symmetric derivation D0 that vanishes on gα+β

and ad(H) for some H in a. Since D0 is symmetric and preserves root spaces, wemay take an
eigenvector X of D0 in gα with corresponding eigenvalue λ. By Proposition 2.1 and Lemma
5.8, D0 anticommutes with the maps JZ and so acts as −λ on gβ , and hence as λ on gα . This
implies that D0 lies in ad(a) by Lemma 5.2. �

Proposition 5.11 The basic derivation identity (Eγ,δ) holds as γ and δ range over the set
{α, β} of simple roots. Consequently, every derivation D in Dskew(n) is equal to ad(Z) for
some Z in m.

Proof Recall the basic derivation identity (Eγ,δ), that is, the identity

D [[X, θY ] , Z ] = [[DX, θY, Z ] + [[X, θ DY ] , Z ] + [[X, θY ] , DZ ]

for all X, Y ∈ gγ and all Z ∈ gδ . By Theorem 4.5, it suffices to prove (Eγ,δ) as γ and δ

range over {α, β}. The identities (Eα,α) and (Eβ,β) hold by Corollary 5.6.
Now we prove (Eα,β). Suppose that X, Y ∈ gα and Z ∈ gβ . Since β − α is not a root,

D [[X, θY ] , Z ] − [[DX, θY ] , Z ] − [[X, θ DY ] , Z ] − [[X, θY ] , DZ ]

= D [[X, Z ] , θY ] − [[DX, Z ] , θY ] − [[X, Z ] , θ DY ] − [[X, DZ ] , θY ]

= D [[X, Z ] , θY ] − [D [X, Z ] , θY ] − [[X, Z ] , θ DY ]

= D [W, θY ] − [DW, θY ] − [W, θ DY ] ,

where W = [X, Z ] ∈ gα+β ; it will suffice to prove that this is 0 for all W ∈ gα+β and all
Y ∈ gα . By the definition of JW , for W ∈ gα+β , we may rewrite the last expression as

D JW Y − JDW Y − JW DY,

and since D is a skew-symmetric derivation, this is 0 by (2.4).
We exchange the roles of α and β to prove the remaining identity. �


5.2.2 The case B2

Until further notice, we assume that g has root system B2. We denote by α and β the simple
roots, with β longer than α. Hence ω = 2α + β and �+ = {α, β, α + β, 2α + β}.

The first proposition is the basic result: it establishes that every element of D(n) is a sum
of a symmetric and a skew-symmetric derivation.

Proposition 5.12 If D is in D(n), then its transpose DT is also in D(n).

Proof By Lemma 3.8, the algebra gα ⊕ gα+β ⊕ g2α+β is H -type. By Corollary 2.5, the
restriction of DT to this H -type algebra is a derivation. Hence it suffices to show that

DT[U, X ] = [DTU, X ] + [U, DTX ]
for all X in gα and all U in gβ . The proposition now follows from Lemma 5.7. �
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Now we describe the symmetric derivations.

Proposition 5.13 Every derivation D in Dsym(n) is equal to ad(H) for some H in a.

Proof By Lemma 3.5, gα ⊕ gα+β ⊕ g2α+β is an H -type algebra. In light of Corollary 2.8,
we may assume that D vanishes on g2α+β , by subtracting ad(H) for a suitable H in a.

The derivation D, being symmetric, may be diagonalised with real eigenvalues. We fix
eigenvectorsU in gβ with eigenvalueλ and X in gα with eigenvalueμ. Since D is a derivation,

D [[U, X ] , X ] = (λ + 2μ) [[U, X ] , X ] .

Now α and β satisfy the hypotheses of Lemma 3.10, and so [[U, X ], X ] is nonzero. Since
D vanishes on g2α+β ,

λ + 2μ = 0.

We vary the eigenvector U , holding X fixed: This shows that λ is independent of X .
Similarly, μ is independent of U . By Lemma 5.2, this implies the proposition. �

Proposition 5.14 The basic derivation identity (Eγ,δ) holds as γ and δ range over the set
{α, β} of simple roots. Consequently, every derivation D in Dskew(n) is equal to ad(Z) for
some Z in m.

Proof Recall the basic derivation identity (Eγ,δ), that is, the identity

D [[X, θY ] , Z ] = [[DX, θY, Z ] + [[X, θ DY ] , Z ] + [[X, θY ] , DZ ]

for all X, Y ∈ gγ and all Z ∈ gδ . Again by Theorem 4.5, we need to prove (Eγ,δ) as γ and
δ range over {α, β}. The identities (Eα,α) and (Eβ,β) hold by Corollary 5.6.

Now we prove (Eβ,α). Suppose that X, Y ∈ gβ and Z ∈ gα . Since β − α is not a root,

D [[X, θY ] , Z ] − [[DX, θY ] , Z ] − [[X, θ DY ] , Z ] − [[X, θY ] , DZ ]

= D [[X, Z ] , θY ] − [[DX, Z ] , θY ] − [[X, Z ] , θ DY ] − [[X, DZ ] , θY ]

= D [[X, Z ] , θY ] − [D [X, Z ] , θY ] − [[X, Z ] , θ DY ]

= D [W, θY ] − [DW, θY ] − [W, θ DY ] ,

where W = [X, Z ] ∈ gα+β ; it will suffice to prove that this is 0 for all W ∈ gα+β and all
Y ∈ gβ . By Lemma 3.9, ad(Y ) maps gα onto gα+β , so it will suffice to prove that

D[[U, Y ], θY ] − [D[U, Y ], θY ] − [[U, Y ], θ DY ] = 0

for all U ∈ gα and all Y ∈ gβ . Since α − β is not a root, [[R, S], θT ] = [R, [S, θT ]] for all
R ∈ gα and all S, T ∈ gβ , whence

D [[U, Y ] , θY ] − [D [U, Y ] , θY ] − [[U, Y ] , θ DY ]

= D [[U, Y ] , θY ] − [[DU, Y ] , θY ] − [[U, DY ] , θY ] − [[U, Y ] , θ DY ]

= D [U, [Y, θY ]] − [DU, [Y, θY ]] − [U, [DY, θY ]] − [U, [Y, θ DY ]]

= 〈α, β〉 ‖Y‖2DU − 〈α, β〉 ‖Y‖2DU − [U, [DY, θY ]] − [U, [Y, θ DY ]]

= [[DY, θY ] + [Y, θ DY ] , U ] .

Now if X ⊥ Y , then [X, θY ] ∈ m and hence

[X, θY ] + [Y, θ X ] = θ [X, θY ] + [Y, θ X ] = [θ X, Y ] + [Y, θ X ] = 0.

Applying this with X equal to DY finishes the proof of (Eβ,α).
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It remains to prove (Eα,β). Take X, Y ∈ gα and U, Z ∈ gβ . Then

〈D [[X, θY ] , Z ] − [[DX, θY ] , Z ] − [[X, θ DY ] , Z ] − [[X, θY ] , DZ ] , U 〉
= − 〈[[X, θY ] , Z ] , DU 〉 + 〈[DX, θY ] , [U, θ Z ]〉

+ 〈[X, θ DY ] , [U, θ Z ]〉 + 〈[X, θY ] , [U, θ DZ ]〉
= 〈[X, θY ] , [DU, θ Z ]〉 − 〈DX, [[U, θ Z ] , Y ]〉

− 〈X, [[U, θ Z ] , DY ]〉 − 〈X, [[U, θ DZ ] , Y ]〉
= − 〈X, [[DU, θ Z ] , Y ]〉 + 〈X, D [[U, θ Z ] , Y ]〉

− 〈X, [[U, θ Z ] , DY ]〉 − 〈X, [[U, θ DZ ] , Y ]〉
= 〈X, D [[U, θ Z ] , Y ] − [[DU, θ Z ] , Y ] − [[U, θ Z ] , DY ] − [[U, θ DZ ] , Y ]〉 .

This shows that (Eα,β) and (Eβ,α) are equivalent, so we are done.
Note that we have not used the fact that 2α and 2(α + β) are not roots, so this argument

holds in the BC2 case too. �

This completes our discussion of the algebras with root system B2. We remind the reader

that C2 is the same as B2. The algebras with root system G2 are covered by Remark 5.3. It
remains to consider the algebras with root system BC2.

5.2.3 The case BC2

Until further notice, we assume that g has root system BC2. Denote by α and β the simple
roots, with α orthogonal to the highest rootω. Then�+ = {α, 2α, β, α+β, 2α+β, 2α+2β}
and ω = 2α + 2β.

Note that {±2α,±β,±(2α + β),±(2α + 2β)} is a root subsystem of type B2, write nsub
for g2α ⊕ gβ ⊕ g2α+β ⊕ g2α+2β . The results of the previous subsection apply to the root-
space-preserving derivations of the subalgebra nsub to give us information about derivations
of n.

The first step is to establish the analogue of Proposition 5.12.

Proposition 5.15 If D is in D(n), then its transpose DT is also in D(n).

Proof By linearity, it suffices to show that

DT [X, Y ] =
[

DTX, Y
]

+
[

X, DTY
]

∀X ∈ gγ ∀Y ∈ gδ, (5.4)

as γ and δ range over�+. As D and hence also DT preserve root spaces, this is trivial unless
γ + δ is a root. Moreover, by Corollary 2.5, the restrictions of DT to the H -type algebras
gβ ⊕ gα+β ⊕ g2α+β ⊕ g2α+2β and gα ⊕ g2α are derivations, and by Proposition 5.12, the
restriction of DT to gβ ⊕ g2α ⊕ g2α+β ⊕ g2α+2β is a derivation.

Thus it suffices to prove (5.4) when (γ, δ) is either (α, β) or (α, α +β). Lemma 5.7 takes
care of the case when γ = α and δ = β.

Since 2(2α + β) is not a root, Proposition 5.4 implies that there exists Z in m2α+β

that agrees with the skew-symmetric part of D on g2α+β . By subtracting ad(Z) from D if
necessary, we may suppose that D is symmetric on g2α+β . Now Corollary 3.7 gives (5.4). �


Once again, we consider the symmetric derivations.

Proposition 5.16 If the root system of g is BC2, then every derivation in Dsym(n) is given
by ad(H) for some H in a.
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Proof By Proposition 5.13, the restriction of D to nsub is given by ad(H) for some H in
a. By subtracting ad(H) if necessary we may suppose that D vanishes on nsub; it will then
suffice to show that D is trivial.

To do this, we pick an eigenvector X of D in gα with eigenvalue λ and U ∈ gβ\{0}. Since
D is a derivation and DU = 0

D [[U, X ] , X ] = 2λ [[U, X ] , X ] .

However, D[[U, X ], X ] = 0, since [[U, X ], X ] lies in g2α+β ⊂ nsub. Since [[U, X ], X ] �= 0
by Lemma 3.10, λ = 0, and D is trivial on gα . Since D is also trivial on gβ , it is trivial on
gα+β , and hence trivial on all the root spaces. �


We conclude our discussion of the rank-two casewith a description of the skew-symmetric
derivations.

Proposition 5.17 The basic derivation identity (Eγ,δ) holds as γ and δ range over the set
{α, β} of simple roots. Consequently, every derivation D in Dskew(n) is equal to ad(Z) for
some Z in m.

Proof This follows from Proposition 5.14, which also holds in the root system BC2, and
Theorem 4.5. �

5.3 The general case

Now we prove Theorem 5.1. Henceforth, g denotes a real simple Lie algebra of rank at least
3, and n is an Iwasawa nilpotent subalgebra of g.

Proposition 5.18 Suppose that D is a derivation of n. Then DT is also a derivation of n.

Proof By linearity, this follows provided that

DT [X, Y ] =
[

DTX, Y
]

+
[

X, DTY
]

for all X ∈ gγ and all Y ∈ gδ where γ and δ range over �+. This is obvious if γ + δ is not
a root, while if γ + δ is a root, then it follows by restricting D to n{γ,δ}. �

Proposition 5.19 Suppose that D is a symmetric derivation of n. Then D lies in ad(a).

Proof Again, by restricting to rank-two subalgebras, we may show that D acts as a scalar on
each root space. By Lemma 5.2, D ∈ ad(a). �

Proposition 5.20 Suppose that D is a skew-symmetric derivation of n. Then D lies in ad(m).

Proof Let D be a skew-symmetric root-space-preservingderivation ofn.Again, by restricting
to rank-two subalgebras, we may show that D satisfies the basic derivation identity (Eγ,δ)

whenever γ and δ are positive roots. Hence D ∈ ad(m) by Theorem 4.5. �
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