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Abstract In this paper, we describe the oriented Riemannian four-manifolds M for which
the Atiyah–Hitchin–Singer or Eells–Salamon almost complex structure on the twistor space
Z of M determines a harmonic map from Z into its twistor space.
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1 Introduction

The twistor approach has been used for years for studying conformal geometry of four-
manifolds by means of complex geometric methods, and in this way many important results
have been obtained. Moreover, the twistor spaces endowed with the Atiyah–Hitchin–Singer
and Eells–Salamon almost complex structures are interesting geometric objects in their own
right whose geometric properties have been studied by many authors. In this paper, we look
at these structures from the point of view of variational theory. The motivation behind is the
fact that if a Riemannian manifold admits an almost complex structure compatible with its
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metric, it possesses many such structures (cf., for example [6,9]). Thus, it is natural to seek
criteria that distinguish some of these structures among all. One way to obtain such a criterion
is to consider the compatible almost complex structures on a Riemannian manifold (N , h) as
sections of its twistor bundleZ. The smooth manifoldZ admits a natural Riemannian metric
h1 such that the projection map (Z, h1) → (N , h) is a Riemannian submersion with totally
geodesic fibres. From this point of view, Calabi and Gluck [4] have proposed to consider
as “the best” those compatible almost complex structures J on (N , h) whose image J (N )

in Z is of minimal volume. They have proved that the standard almost Hermitian structure
on the 6-sphere S6, defined by means of the Cayley numbers, can be characterized by that
property. Another criterion has been discussed byWood [28,29] who has suggested to single
out the structures J that are harmonic sections of the twistor bundle Z, i.e. critical points of
the energy functional under variations through sections ofZ. While the Kähler structures are
absolute minima of the energy functional, there are many examples of non-Kähler structures,
which are harmonic sections [28,29]. Sufficient conditions for a compatible almost complex
structure to be a minimizer of the energy functional and examples of non-Kähler minimizers
have been given by Bor et al. [3].

Forgetting the bundle structure of Z, we can also consider compatible almost complex
structures that are critical points of the energy functional under variations through all maps
N → Z. These structures are genuine harmonic maps from (N , h) into (Z, h1); we refer to
[12] for basic facts about harmonic maps. The problem when a compatible almost complex
structure on a four-dimensional Riemannian manifold is a harmonic map into its twistor
space has been studied in [9] (see also [6]).

If the base manifold N is oriented, the twistor space Z has two connected components
often called positive and negative twistor spaces of (N , h); their sections are compatible
almost complex structures yielding the orientation and, respectively, the opposite orientation
of N .

Setting ht = π∗h + thv , t > 0, where π : Z → N is the projection map and hv is the
metric of the fibre, define a 1-parameter family of Riemannian metrics onZ compatible with
the almost complex structures J1 and J2 on Z introduced, respectively, by Atiyah–Hitchin–
Singer [1] and Eells–Salamon [13]. In [8] we have found geometric conditions on an oriented
four-dimensional Riemannian manifold under which the almost complex structures J1 and
J2 on its negative twistor space (Z, ht ) are harmonic sections.

Theorem 1 Let (M, g) be an oriented Riemannian 4-manifold and let (Z, ht ) be its negative
twistor space. Then:
(i) The Atiyah–Hitchin–Singer almost complex structure J1 on (Z, ht ) is a harmonic section
if and only if (M, g) is a self-dual manifold.
(i i) The Eells–Salamon almost complex structure J2 on (Z, ht ) is a harmonic section if and
only if (M, g) is a self-dual manifold with constant scalar curvature.

By a theorem of Atiyah–Hitchin–Singer [1], the self-duality of (M, g) is a necessary and
sufficient condition for the integrability of the almost complex structure J1. In contrast, the
almost complex structure J2 is never integrable by a result of Eells–Salamon [13] but it is
very useful for constructing harmonic maps.

The aim of the present paper is to find the four-manifolds for which the almost complex
structures J1 and J2 are harmonic maps. More precisely, we prove the following

Theorem 2 LetJ1 andJ2 be the Atiyah–Hitchin–Singer and Eells–Salamon almost complex
structures on the (negative) twistor space (Z, ht ) of an oriented Riemannian four-manifold
(M, g). Each Jk (k=1 or 2) is a harmonic map if and only if (M, g) is either self-dual and
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Harmonicity of the Atiyah–Hitchin–Singer and Eells–Salamon… 187

Einstein, or is locally the product of an open interval in R and a 3-dimensional Riemannian
manifold of constant curvature.

Note that any compact self-dual Einstein manifold with positive scalar curvature is iso-
metric to the 4-sphere S

4 or the complex projective space CP
2 with their standard metrics

[14,16] (see also [2, Theorem 13.30]). In the case of negative scalar curvature, a complete
classification is not available yet and the only known compact examples are quotients of
the unit ball in C

2 with the metric of constant negative curvature or the Bergman metric.
In contrast, there are many local examples of self-dual Einstein metrics with a prescribed
sign of the scalar curvature (cf., e.g. [11,17,20–22,24,26]). Note also that every Riemannian
manifold that locally is the product of an open interval in R and a 3-dimensional Riemannian
manifold of constant curvature c is locally conformally flat with constant scalar curvature
6c. It is not Einstein unless c = 0, i.e. Ricci flat.

The proof of Theorem 2 is based on an explicit formula for the second fundamental form
˜∇ J∗ of a compatible almost complex structure J on a Riemannian manifold considered
as a map from the manifold into its twistor space (Proposition 1). In particular, it follows
from Theorem 1 mentioned above that if the vertical part of Trace˜∇Jk ∗ vanishes then the
manifold (M, J ) is self-dual. This simplifies the formulas for the values of the horizonal part
of Trace˜∇Jk ∗ at vertical and horizontal vectors (Lemmas 1 and 2). Using these formulas,
we show that the Ricci tensor of (M, g) is parallel and three of its eigenvalues coincide. Thus
either (M, g) is Einstein or exactly three of the eigenvalues coincide. In the second case, a
result in [10, Lemma 1] (essentially due to LeBrun and Apostolov) implies that the simple
eigenvalue vanishes, thus (M, g) is locally the product of an interval in R and a 3-manifold
of constant curvature.

Note also that if (ht ,J1) is a Kähler structure, then J1 is a totally geodesic map. It is a
result of Friedrich–Kurke [14] that (ht ,J1) is Kähler exactly when the base manifold is self-
dual and Einstein with positive scalar curvature 12/t . The necessary and sufficient conditions
for J1 and J2 to be totally geodesic maps will be discussed elsewhere.

2 Preliminaries

2.1 The manifold of compatible linear complex structures

Let V be a real vector space of even dimension n = 2m endowed with an Euclidean metric
g. Denote by F(V ) the set of all complex structures on V compatible with the metric g,
i.e. g-orthogonal. This set has the structure of an imbedded submanifold of the vector space
so(V ) of skew-symmetric endomorphisms of (V, g).

The group O(V ) of orthogonal transformations of (V, g) acts smoothly and transitively
on the set F(V ) by conjugation. The isotropy subgroup at a fixed J ∈ F(V ) consists of the
orthogonal transformations commuting with J . Therefore, F(V ) can be identified with the
homogeneous space O(2m)/U (m). In particular, dim F(V ) = m2 − m. Moreover, F(V )

has two connected components. If we fix an orientation on V , these components consist of
all complex structures on V compatible with the metric g and inducing ± the orientation of
V ; each of them has the homogeneous representation SO(2m)/U (m).

The tangent space of F(V ) at a point J consists of all endomorphisms Q ∈ so(V ) anti-
commuting with J and we have the decomposition

so(V ) = TJ F(V ) ⊕ {S ∈ so(V ) : S J − J S = 0}. (1)
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188 J. Davidov, O. Mushkarov

This decomposition is orthogonal with respect to the restriction to F(V ) of the metric
G(A, B) = − 1

n TraceAB of so(V ) (the factor 1/n is chosen so that every J ∈ F(V ) to
have unit norm). The metric G on F(V ) is compatible with the almost complex structure J
defined by

J Q = J Q for Q ∈ TJ F(V ).

Let J ∈ F(V ) and let e1, . . . , e2m be an orthonormal basis of V such that Je2k−1 = e2k ,
k = 1, . . . , m. Define skew-symmetric endomorphisms Sa,b, a, b = 1, . . . , 2m, of V setting

Sa,bec =
√

n

2
(δaceb − δbcea), c = 1, . . . , 2m.

The maps Sa,b, 1 ≤ a < b ≤ 2m, constitute a G-orthonormal basis of so(V ). Set

Ar,s = 1√
2
(S2r−1,2s−1 − S2r,2s), Br,s = 1√

2
(S2r−1,2s + S2r,2s−1),

r = 1, . . . , m − 1, s = r + 1, . . . , m.

Then, {Ar,s, Br,s} is a G-orthonormal basis of TJ F(V ) with Br,s = J Ar,s .
Denote by D the Levi-Civita connection of the metric G on F(V ). Let X, Y be vector

fields on F(V ) considered as so(V )-valued functions on so(V ). By the Koszul formula, for
every J ∈ F(V ),

(DX Y )J = 1

2
(Y ′(J )(X J ) + J ◦ Y ′(J )(X J ) ◦ J ) (2)

where Y ′(J ) ∈ Hom(so(V ), so(V )) is the derivative of the function Y : so(V ) → so(V )

at the point J . The latter formula easily implies that (G,J ) is a Kähler structure on F(V ).
Note also that the metric G is Einstein with scalar curvature m

2 (m − 1)(m2 − m) (see, for
example [5]).

2.2 The four-dimensional case

Suppose that dim V = 4. Then, as is well-known, each of the two connected components
of F(V ) can be identified with the unit sphere S2. It is often convenient to describe this
identification in terms of the space �2V . The metric g of V induces a metric on �2V given
by

g(x1 ∧ x2, x3 ∧ x4) = 1

2
[g(x1, x3)g(x2, x4) − g(x1, x4)g(x2, x3)],

the factor 1/2 being chosen in consistence with [7,8]. Consider the isomorphisms so(V ) ∼=
�2V sending ϕ ∈ so(V ) to the 2-vector ϕ∧ for which

2g(ϕ∧, x ∧ y) = g(ϕx, y), x, y ∈ V .

This isomorphism is an isometry with respect to the metric G on so(V ) and the metric g on
�2V . Given a ∈ �2V , the skew-symmetric endomorphism of V corresponding to a under
the inverse isomorphism will be denoted by Ka .

Fix anorientation onV anddenote by F±(V ) the set of complex structures onV compatible
with the metric g and inducing ± the orientation of V . The Hodge star operator defines an
endomorphism ∗ of �2V with ∗2 = I d . Hence, we have the decomposition

�2V = �2−V ⊕ �2+V
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Harmonicity of the Atiyah–Hitchin–Singer and Eells–Salamon… 189

where�2±V are the subspaces of�2V corresponding to the (±1)-eigenvalues of the operator
∗. Let (e1, e2, e3, e4) be an oriented orthonormal basis of V . Set

s±
1 = e1 ∧ e2 ± e3 ∧ e4, s±

2 = e1 ∧ e3 ± e4 ∧ e2, s±
3 = e1 ∧ e4 ± e2 ∧ e3. (3)

Then, (s±
1 , s±

2 , s±
3 ) is an orthonormal basis of�2±V . Note that this basis defines an orientation

on �2±V , which does not depend on the choice of the basis (e1, e2, e3, e4) (see, for example,
[6]). We call this orientation “canonical”.

It is easy to see that the isomorphism ϕ → ϕ∧ identifies F±(V ) with the unit sphere
S(�2±V ) of the Euclidean vector space (�2±V, g). Under this isomorphism, if J ∈ F±(V ),
the tangent spaceTJ F(V ) = TJ F±(V ) is identifiedwith the orthogonal complement (RJ∧)⊥
of the space RJ∧ in �2±V .

Consider the 3-dimensional Euclidean space (�2±V, g) with its canonical orientation and
denote by × the usual vector-cross product in it. Then, if a, b ∈ �2±V , the isomorphism
�2V ∼= so(V ) sends a × b to ± 1

2 [Ka, Kb]. Thus, if J ∈ F±(V ) and Q ∈ TJ F(V ) =
TJ F±(V ), we have

(J Q)∧ = ±(J∧ × Q∧). (4)

2.3 The twistor space of an even-dimensional Riemannian manifold

Let (N , g) be a Riemannian manifold of dimension n = 2m. Denote by π : Z → N the
bundle over N whose fibre at every point p ∈ N consists of all compatible complex structures
on the Euclidean vector space (Tp N , gp). This is the associated bundle

Z = O(N ) ×O(n) F(Rn)

where O(N ) is the principal bundle of orthonormal frames on N and F(Rn) is the manifold
of complex structures on R

n compatible with its standard metric. The manifold Z is called
the twistor space of (N , g).

The Levi-Civita connection of (N , g) gives rise to a splittingV⊕H of the tangent bundle of
any bundle associated with O(N ) into vertical and horizontal parts. This allows one to define
a natural 1-parameter family of Riemannian metrics ht , t > 0, on the manifold Z sometimes
called “the canonical variation of the metric of N” [2, Chapter 9 G]. For every J ∈ Z, the
horizontal subspace HJ of TJZ is isomorphic via the differential π∗J to the tangent space
Tπ(J )N and the metric ht on HJ is the lift of the metric g on Tπ(J )N , ht |HJ = π∗g. The
vertical subspace VJ of TJZ is the tangent space at J to the fibre of the bundle Z through
J and ht |VJ is defined as t times the metric G of this fibre. Finally, the horizontal spaceHJ

and the vertical space VJ are declared to be orthogonal. Then, by the Vilms theorem [27], the
projection π : (Z, ht ) → (N , g) is a Riemannian submersion with totally geodesic fibres
(this can also be proved directly).

The manifold Z admits two almost complex structures J1 and J2 defined in the case
dim N = 4byAtiyah–Hitchin–Singer [1] andEells–Salamon [13], respectively.On a vertical
space VJ , J1 is defined to be the complex structure JJ of the fibre through J , while J2 is
defined as the conjugate complex structure, i.e. J2|VJ = −JJ . On a horizontal space HJ ,
J1 andJ2 are both defined to be the lift toHJ of the endomorphism J of Tπ(J )N . The almost
complex structures J1 and J2 are compatible with each metric ht .

Consider Z as a submanifold of the bundle

π : A(T N ) = O(N ) ×O(n) so(n) → N
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of skew-symmetric endomorphisms of T N . The inclusion of Z into A(T N ) is fibre-
preserving and, for every J ∈ Z, the horizontal subspace HJ of TJZ coincides with the
horizontal subspace of TJ A(T N ) since the inclusion of F(Rn) into so(n) is O(n)-equivariant.

The Levi-Civita connection of (N , g) determines a connection on the bundle A(T N ), both
denoted by ∇, and the corresponding curvatures are related by

(R(X, Y )ϕ)(Z) = R(X, Y )ϕ(Z) − ϕ(R(X, Y )Z)

for ϕ ∈ A(T N ), X, Y, Z ∈ T N . The curvature operatorR is the self-adjoint endomorphism
of �2T N defined by

g(R(X ∧ Y ), Z ∧ T ) = g(R(X, Y )Z , T ), X, Y, Z , T ∈ T N .

Let us note that we adopt the following definition for the curvature tensor R : R(X, Y ) =
∇[X,Y ] − [∇X ,∇Y ].

Let (U, x1, . . . , xn) be a local coordinate system of N and E1, . . . , En an orthonormal
frame of T N on U . Define sections Si j , 1 ≤ i, j ≤ n, of A(T N ) by the formula

Si j El =
√

n

2
(δil E j − δl j Ei ), l = 1, . . . , n. (5)

Then, Si j , i < j, form an orthonormal frame of A(T N )with respect to the metric G(a, b) =
−1

n
Trace(a ◦ b) ; a, b ∈ A(T N ). Set

x̃i (a) = xi ◦ π(a), y jl(a) =
√

2

n
G(a, S jl), j < l,

for a ∈ A(T N ). Then, (x̃i , y jl) is a local coordinate system of the manifold A(T N ). Setting
ylk = −ykl for l ≥ k, we have aE j = ∑n

l=1 y jl El , j=1,…,n.
For each vector field

X =
n
∑

i=1
Xi ∂

∂xi

on U , the horizontal lift Xh on π−1(U ) is given by

Xh =
n
∑

i=1
(Xi ◦ π) ∂

∂ x̃i
− ∑

j<l

∑

p<q
ypq G(∇X Spq , S jl) ◦ π ∂

∂y jl
. (6)

Let a ∈ A(T N ) and p = π(a). Then, (6) implies that, under the standard identification
Ta A(T N ) ∼= A(Tp N ) (= the skew-symmetric endomorphisms of (Tp N , gp)), we have

[Xh, Y h]a = [X, Y ]h
a + R(X, Y )a. (7)

Farther we shall often make use of the isomorphism A(T N ) ∼= �2T N that assigns to
each a ∈ A(Tp N ) the 2-vector a∧ for which

2g(a∧, X ∧ Y ) = g(aX, Y ), X, Y ∈ Tp N ,

the metric on �2T N being defined by

g(X1 ∧ X2, X3 ∧ X4) = 1

2
[g(X1, X3)g(X2, X4) − g(X1, X4)g(X2, X3)].
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Lemma 1 ([5]) For every a, b ∈ A(Tp N ) and X, Y ∈ Tp N, we have

G(R(X, Y )a, b) = 2

n
g(R([a, b]∧)X, Y ). (8)

Proof Let E1, . . . , En be an orthonormal basis of Tp N . Then,

[a, b] = 1

2

n
∑

i, j=1
g([a, b]Ei , E j )Ei ∧ E j .

Therefore,

g(R([a, b]∧)X, Y )

= 1

2

n
∑

i, j=1

g(R(X, Y )Ei , E j )[g(abEi , E j ) + g(aEi , bE j )]

= 1

2

n
∑

i=1

g(R(X, Y )Ei , abEi )

+1

2

n
∑

i, j,k=1

g(R(X, Y )Ei , E j )g(Ei , aEk)g(E j , bEk)

= −1

2

n
∑

i=1

g(a(R(X, Y )Ei ), bEi ) + 1

2

n
∑

k=1

g(R(X, Y )aEk , bEk)

= n

2
G(R(X, Y )a, b).

��
For every J ∈ Z, we identify the vertical space VJ with the subspace of A(Tπ(J )N ) of

skew-symmetric endomorphisms anti-commuting with J . Then, for every section K of the
twistor space Z near a point p ∈ N and every X ∈ Tp N , the endomorphism ∇X K of Tp N
belongs to the vertical space VK (p).

Lemma 1 implies that

ht (R(X, Y )J, V ) = 2t

n
g(R([J, V ]∧)X, Y ) = 4t

n
g(R((J ◦ V )∧)X, Y ). (9)

Denote by D the Levi-Civita connection of (Z, ht ).

Lemma 2 ([5,7]) If X, Y are vector fields on N and V is a vertical vector field on Z, then

(DXh Y h)J = (∇X Y )h
J + 1

2
Rp(X ∧ Y )J (10)

(DV Xh)J = H(DXh V )J = −2t

n

(

Rp
(

(J ◦ VJ )∧
)

X
)h

J (11)

where J ∈ Z, p = π(J ), and H means “the horizontal component”.

Proof Identity (10) follows from the Koszul formula for the Levi-Civita connection and (7).

Let W be a vertical vector field on Z. Then,

ht

(

DV Xh, W
)

= −ht

(

Xh, DV W
)

= 0
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192 J. Davidov, O. Mushkarov

since thefibres are totally geodesic submanifolds, so DV W is a vertical vector field.Therefore,
DV Xh is a horizontal vector field.Moreover, [V, Xh] is a vertical vector field, hence DV Xh =
HDXh V . Thus,

ht

(

DV Xh, Y h
)

= ht

(

DXh V, Y h
)

= −ht

(

V, DXh Y h
)

.

Now (11) follows from (10) and (9). ��

3 The second fundamental form of an almost Hermitian structure
as a map into the twistor space

Now let J be an almost complex structure on the manifold N compatible with the metric g.
Then, J can be considered as a section of the bundle π : Z → N . Thus, we have a map
J : (N , g) → (Z, ht ) between Riemannian manifolds. Let J ∗TZ → N be the pull-back
of the bundle TZ → Z under the map J : N → Z. Then, we can consider the differential
J∗ : T N → TZ as a section of the bundle Hom(T N , J ∗TZ) → N . Denote by ˜D the
connection on J ∗TZ induced by the Levi-Civita connection D on TZ. The Levi Civita
connection ∇ on T N and the connection ˜D on J ∗TZ induce a connection ˜∇ on the bundle
Hom(T N , J ∗TZ). Recall that the second fundamental form of the map J is, by definition,

˜∇ J∗
The map J : (N , g) → (Z, ht ) is harmonic if and only if

Traceg˜∇ J∗ = 0.

Recall also that the map J : (N , g) → (Z, ht ) is totally geodesic exactly when ˜∇ J∗ = 0.
Any (local) section a of the bundle A(T N ) determines a (local) vertical vector field ã

defined by

ãI = 1

2
(a(p) + I ◦ a(p) ◦ I ), p = π(I ).

Thus, if aE j = ∑n
l=1 a jl El ,

ã = ∑

j<l
ã jl

∂
∂y jl

where

ã jl = 1

2

[

a jl ◦ π +
n
∑

r,s=1
y jr (ars ◦ π)ysl

]

The next lemma is “folklore”.

Lemma 3 If I ∈ Z and X is a vector field on a neighbourhood of the point p = π(I ), then

[Xh, ã]I = (∇̃X a)I .

Proof Take an orthonormal frame E1, . . . , En of T N near the point p such that ∇Ei |p = 0,
i = 1, . . . , n. Let (x̃i , y jl), 1 ≤ j < l ≤ n, be the local coordinates of A(T N ) defined by
means of a local coordinate system x of N at p and the frame E1, . . . , En . Then, by (6),

[

Xh,
∂

∂y jl

]

I

= 0, j, l = 1, . . . , n, Xh =
n
∑

i=1
Xi (p)

(

∂
∂ x̃i

)

I
.
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It follows that

[

Xh, ã
]

I
= 1

2

[

X p(a jl) +
n
∑

k,m=1
y jk(I )X p(akm)yml(I )

]

=
(

∇̃X a
)

I

since

(∇X p a
)

(Ei ) =
n
∑

l=1
X p(a jl)(El)p.

��
Remark 1 For every I ∈ Z, we can find local sections a1, . . . , am2−m of A(T N ) whose
values at p = π(I ) constitute a basis of the vertical space VI and such that ∇aα|p = 0, α =
1, . . . , m2 − m. Let ãα be the vertical vector fields determined by the sections aα . Lemma 3
and the Koszul formula for the Levi-Civita connection imply that ht (Dãα ãβ, Xh)I = 0 for
every X ∈ Tp N . Therefore, for every vertical vector fields U and V , the covariant derivative
(DU V )I at I is a vertical vector. It follows that the fibres of the twistor bundle are totally
geodesic submanifolds.

Let I ∈ Z and let U, V ∈ VI . Take sections a and b of A(T N ) such that a(p) = U ,
b(p) = V for p = π(I ). Let ã and˜b be the vertical vector fields determine by the sections a
and b. Taking into account the fact that the fibre ofZ through the point I is a totally geodesic
submanifold and applying formula (2) we get

(Dã˜b)I = 1

4
[U V I + I V U + I (U V I + I V U )I ] = 0. (12)

Lemma 4 For every p ∈ N, there exists a ht -orthonormal frame of vertical vector fields
{Vα : α = 1, . . . , m2 − m} such that
(1) (DVα Vβ)J (p) = 0, α, β = 1, . . . , m2 − m.
(2) If X is a vector field near the point p, [Xh, Vα]J (p) = 0.
(3) ∇X p (Vα ◦ J ) ⊥ VJ (p)

Proof Let E1, . . . , En be an orthonormal frame of T N in a neighbourhood N of p such
that J (E2k−1)p = (E2k)p , k = 1, . . . , m, and ∇El |p = 0, l = 1, . . . , n. Define sections
Si j ,1 ≤ i, j ≤ n by (5) and, as in Sect. 2, set

Ar,s = 1√
2
(S2r−1,2s−1 − S2r,2s), Br,s = 1√

2
(S2r−1,2s + S2r,2s−1),

r = 1, . . . , m − 1, s = r + 1, . . . , m.

Then, {(Ar,s)p, (Br,s)p} is a G-orthonormal basis of the vertical space VJ (p) such that
(Br,s)p = J (Ar,s)p . Note also that ∇ Ar,s |p = ∇ Br,s |p = 0. Let ˜Ar,s and ˜Br,s be the
vertical vector fields on Z determined by the sections Ar,s and Br,s of A(T N ). These vector
fields constitute a frame of the vertical bundle V in a neighbourhood of the point J (p).

Consider ˜Ar,s ◦ J as a section of A(T N ). Then, if X ∈ Tp N , we have

∇X p

(

˜Ar,s ◦ J
) = 1

2

{(∇X p J
) ◦ (Ar,s)p ◦ Jp + Jp ◦ (Ar,s) ◦ (∇X p J

)}

= 1

2

{−∇X p J ◦ Jp ◦ (Ar,s)p + Jp ◦ (Ar,s) ◦ (∇X p J
)}

= 1

2

[

(Br,s)p,∇X p J
]
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The endomorphisms (Br,s)p and ∇X p J of Tp N belong to VJ (p), so they anti-commute with
J (p), hence their commutator commuteswith J (p). Therefore, in viewof (1), the commutator
[(Br,s)p,∇X p J ] is G-orthogonal to the vertical space at J (p). Thus

∇X p

(

˜Ar,s ◦ J
) ⊥ VJ (p)

and similarly ∇X p (
˜Br,s ◦ J ) ⊥ VJ (p).

It is convenient to denote the elements of the frame {˜Ar,s, ˜Br,s} by {˜V1, . . . , ˜Vm2−m}. In
this way, we have a frame of vertical vector fields near the point J (p) with the property (3)
of the lemma. Properties (1) and (2) are also satisfied by this frame according to (12) and
Lemma 3, respectively. In particular,

(

˜Vγ

)

J (p)

(

ht
(

˜Vα, ˜Vβ

)) = 0, α, β, γ = 1, . . . , m2 − m.

Note also that, in view of (11),

V (

DXh ˜Vα

)

J (p)
=

[

Xh, ˜Vα

]

J (p)
= 0,

hence

Xh
J (p)

(

ht
(

˜Vα, ˜Vβ

)) = 0.

Now it is clear that the ht -orthonormal frame {V1, . . . , Vm2−m} obtained from {˜V1, . . . ,
˜Vm2−m} by the Gram-Schmidt process has the properties stated in the lemma. ��

Proposition 1 For every X, Y ∈ Tp N, p ∈ N,

˜∇ J∗(X, Y ) = 1

2
V (∇2

XY J + ∇2
Y X J

)

−2t

n

[

(

R
(

(J ◦ ∇X J )∧
)

Y
)h

J (p)
+ (

R
(

(J ◦ ∇Y J )∧
)

X
)h

J (p)

]

where ∇2
XY J = ∇X∇Y J − ∇∇X Y J is the second covariant derivative of J .

Proof Extend X and Y to vector fields in a neighbourhood of the point p. Let V1, . . . , Vm2−m
be a ht -orthonormal frame of vertical vector fields with the properties (1) - (3) stated in
Lemma 4.

We have

J∗ ◦ Y = Y h ◦ J + ∇Y J = Y h ◦ J +
m2−m
∑

α=1
ht (∇Y J, Vα ◦ J ) (Vα ◦ J ) ,

hence

˜DX (J∗ ◦ Y ) =
(

DJ∗ X Y h
)

◦ J +
m2−m
∑

α=1

ht (∇Y J, Vα)
(

DJ∗ X Vα

) ◦ J

+ t
m2−m
∑

α=1

G (∇X∇Y J, Vα ◦ J ) (Vα ◦ J )
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This, in view of Lemma 2, implies

˜DX p (J∗ ◦ Y ) = (∇X Y )h
J (p) + 1

2
R(X ∧ Y )J (p) − 2t

n

(

R
(

(J ◦ ∇X J )∧
)

Y
)h

J (p)

+ t
m2−m
∑

α=1

G
(∇X p ∇Y J, Vα ◦ J )pVα(J (p)

)

− 2t

n

(

R
(

(J ◦ ∇Y J )∧
)

X
)h

J (p)

= (∇X p Y
)h

J (p)
+ 1

2
V (∇X p ∇Y J + ∇Yp ∇X J

) + 1

2
∇[X,Y ]p J

− 2t

n

[

R
(

(J ◦ ∇X J )∧)Y
)h

J (p)
+ (

R
(

(J ◦ ∇Y J )∧
)

X
)h

J (p)

]

.

It follows that

˜∇ J∗(X, Y ) = ˜DX p (J∗ ◦ Y ) − (∇X Y )h
σ − ∇∇X p Y J

= 1

2
V

(

∇X p ∇Y J − ∇∇X p Y J + ∇Yp ∇X J − ∇∇Yp X J
)

− 2t

n

[

R
(

(J ◦ ∇X J )∧)Y
)h

J (p)
+ (

R
(

(J ◦ ∇Y J )∧
)

X
)h

J (p)

]

.

��
Corollary 1 If (N , g, J ) is Kähler, the map J : (N , g) → (Z, ht ) is a totally geodesic
isometric imbedding.

Remark 2 By a result of Wood [28,29], J is a harmonic almost complex structure, i.e. a
harmonic section of the twistor space (Z, ht ) → (N , g) if and only if [J,∇∗∇ J ] = 0 where
∇∗∇ is the rough Laplacian. This, in view of the decomposition (1), is equivalent to the
condition that the vertical part of ∇∗∇ J = −Trace∇2 J vanishes. Thus, by Proposition 1, J
is a harmonic section if and only if

VTrace˜∇ J∗ = 0.

4 The Atiyah–Hitchin–Singer and Eells–Salamon almost complex
structures as harmonic sections

Let (M, g) be an orientedRiemannianmanifold of dimension four. The twistor space of such a
manifold has two connected components, which can be identifiedwith the unit sphere subbun-
dles Z± of the bundles �2±T M → M , the eigensubbundles of the bundle π : �2T M → M
corresponding to the eigenvalues ±1 of the Hodge star operator. The sections of Z± are the
almost complex structures on M compatible with the metric and ±-orientation of M . The
spaces Z+ and Z− are called the “positive” and the “negative” twistor space of (M, g).

The Levi-Civita connection ∇ of M preserves the bundles �2±T M , so it induces a metric
connection on each of them denoted again by ∇. The horizontal distribution of �2±T M
with respect to ∇ is tangent to the twistor space Z±. Thus, we have the decomposition
TZ± = H ⊕ V of the tangent bundle of Z± into horizontal and vertical components. The
vertical space Vτ = {V ∈ TτZ± : π∗V = 0} at a point τ ∈ Z is the tangent space to the
fibre of Z± through τ . Considering TτZ± as a subspace of Tτ (�

2±T M) (as we shall always
do), Vτ is the orthogonal complement of τ in �2±Tπ(τ)M .
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Given a ∈ �2T M , define, as in Sec. 2.1, an endomorphism Ka of Tπ(a)M by

g(Ka X, Y ) = 2g(a, X ∧ Y ), X, Y ∈ Tπ(a)M.

For σ ∈ Z±, Kσ is a complex structure on the vector space Tπ(σ)M compatible with the
metric and ± the orientation.

Denote by × the vector-cross product in the 3-dimensional oriented Euclidean space
(�2±Tp M, gp), p ∈ M .

It is easy to show that if a, b ∈ �2±T M

Ka ◦ Kb = −g(a, b)I d ± Ka×b. (13)

This identity implies that for every vertical vector V ∈ Vσ and every X, Y ∈ Tπ(σ)M

g(V, X ∧ Kσ Y ) = g(V, Kσ X ∧ Y ) = g(σ × V, X ∧ Y ). (14)

Note also that, in view of (4), the Atiyah–Hitchin–Singer and Eells–Salamon almost
complex structures J1 and J2 at a point σ ∈ Z± can be written as

Jk V = ±(−1)k+1σ × V for V ∈ Vσ ,

Jk Xh
σ = Kσ X for X ∈ Tπ(σ)M,

k = 1, 2.

Denote by B : �2T M → �2T M the endomorphism corresponding to the traceless Ricci
tensor. If s denotes the scalar curvature of (M, g) and ρ : T M → T M the Ricci operator,
g(ρ(X), Y ) = Ricci(X, Y ), we have

B(X ∧ Y ) = ρ(X) ∧ Y + X ∧ ρ(Y ) − s

2
X ∧ Y.

LetW : �2T M → �2T M be the endomorphism corresponding theWeyl conformal tensor.
Denote the restriction ofW to�2±T M byW±, soW± sends�2±T M to�2±T M and vanishes
on �2∓T M .

It is well-known that the curvature operator decomposes as (see, e.g. [2, Chapter 1 H])

R = s

6
I d + B + W+ + W−.

Note that this differ by the factor 1/2 from [2] because of the factor 1/2 in our definition of
the induced metric on �2T M .

The Riemannian manifold (M, g) is Einstein exactly when B = 0. It is called self-dual
(anti-self-dual) if W− = 0 (resp. W+ = 0). By a well-known result of Atiyah–Hitchin–
Singer [1], the almost complex structure J1 onZ− (resp.Z+) is integrable (i.e. comes from a
complex structure) if and only if (M, g) is self-dual (resp. anti-self-dual). On the other hand,
the almost complex structure J2 is never integrable by a result of Eells–Salamon [13] but
nevertheless it is very useful in harmonic map theory.
Convention. In what follows the negative twistor spaceZ− will be called simply “the twistor
space” and will be denoted by Z.

Changing the orientation of M interchanges the roles of�2+T M and�2−T M , respectively,
of Z+ and Z−. But note that the Fubini-Study metric on CP

2 is self-dual and not anti-self-
dual, so the structure J1 on the negative twistor space Z− is integrable while on Z+ it is not.
This is one of the reasons to prefer Z− rather than Z+.

Remark 2, Proposition 1 and Theorem 1 imply
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Corollary 2 (i) VTrace˜∇J1 ∗ = 0 if and only if (M, g) is self-dual.
(i i) VTrace˜∇J2 ∗ = 0 if and only if (M, g) is self-dual and with constant scalar curvature.

5 The Atiyah–Hitchin–Singer and Eells–Salamon almost complex
structures as harmonic maps

In this section, we prove Theorem 2, which is the main result of the paper.
Note first that the almost complex structure Jk , k = 1 or 2, is a harmonic map if and

only if VTrace˜∇Jk ∗ = 0 and HTrace˜∇Jk ∗ = 0. By Corollary 2 if the vertical part of
Trace˜∇Jk ∗ vanishes, then the manifold (M, g) is self-dual. According to Proposition 1
HTrace˜∇Jk ∗ = 0, k = 1, 2, if and only if for every σ ∈ Z and every F ∈ TσZ

Traceht

{

TσZ � A → ht (RZ ((Jk ◦ DAJk)
∧)A), F)

} = 0.

Set for brevity

T rk(F) = Traceht

{

TσZ � A → ht (RZ ((Jk ◦ DAJk)
∧)A), F)

}

.

The next two technical lemmas, giving explicit formulas for T rk(F) in the self-dual case,
will be proved in the next section.

Lemma 5 Suppose that (M, g) is self-dual. Then, if σ ∈ Z and U ∈ Vσ ,

T rk(U ) = t

4
g(B(U ),B(σ )), k = 1, 2.

Lemma 6 Suppose that (M, g) is self-dual. Then, if X ∈ Tp M, p = π(σ),

T rk

(

Xh
σ

)

=
[

1 + (−1)k
] s(p)

144
X (s) + 1

12

(

ts(p)

6
− 2

)

X (s)

+ Traceht

{

Vσ � V →
[

t

8
g ((∇XB) (V ),B(V ))

+(−1)k+1 ts(p)

24
g (δB(KV X), V )

]}

.

Proof of Theorem 2 Suppose that J1 or J2 is a harmonic map. By Corollary 2, (M, g) is
self-dual or self-dual with constant scalar curvature.Moreover, T rk(U ) = 0 for every vertical
vector U and T rk(Xh) = 0 for every horizontal vector Xh , k = 1 or k = 2. Note that in both
cases the first term in the expression for T rk(Xh) given in Lemma 6 vanishes:

[1 + (−1)k] s(p)

144
X (s) = 0, k = 1, 2.

By Lemma 5, for every p ∈ M and every orthonormal basis v1, v2, v3 of �2−Tp M ,
g(B(vi ),B(v j )) = 0, i, j = 1, 2, 3, i �= j . This implies g(B(vi ),B(vi )) = g(B(v j ),B(v j )),
i �= j . It follows that the function Zp � σ → ||B(σ )||2 is constant on the fibre Zp of Z at
p. Thus, we have a smooth function f on M such that f (p) = ||B(σ )||2 for every σ ∈ Zp .
It follows that

X ( f ) = 2g((∇XB)(σ ),B(σ )) (15)

for every tangent vector X ∈ Tp M . ��
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Let E1, . . . , E4 be an oriented orthonormal basis of Tp M consisting of eigenvectors of ρ.
Denote by λ1, . . . , λ4 the corresponding eigenvalues. We have λ1 + λ2 + λ3 + λ4 = s and

B(X ∧ Y ) = ρ(X) ∧ Y + X ∧ ρ(Y ) − s

2
X ∧ Y. (16)

Define s+
i and si = s−

i , i = 1, 2, 3, as in (3) by means of the basis E1, . . . , E4. Then,

B(s1) =
(

λ1 + λ2 − s

2

)

s+
1 , B(s2) =

(

λ1 + λ3 − s

2

)

s+
2 ,

B(s3) =
(

λ1 + λ4 − s

2

)

s+
3 .

Therefore, ||B(·)||2 = const on the fibre Zp if and only if
∣

∣

∣λ1 + λ2 − s

2

∣

∣

∣ =
∣

∣

∣λ1 + λ3 − s

2

∣

∣

∣ =
∣

∣

∣λ1 + λ4 − s

2

∣

∣

∣ ,

i.e. if and only if, at every point p ∈ M , three eigenvalues of ρ coincide.
Moreover,

3 f (p) = ||B(s1)||2 + ||B(s2)||2 + ||B(s3)||2 = ||ρ||2 − s2(p)

4
.

and, by (15), it follows that

Traceht {Vσ � V → g((∇XB)(V ),B(V ))} = 1

3
X

(||ρ||2) − s(p)X (s)

6
.

Fix a tangent vector X ∈ Tp M and denote by P the symmetric bilinear form on �2−Tp M
corresponding to the quadratic form

P(a, a) = ts(p)

24
g(δB(Ka X), a). (17)

Set

ψ = −
(

ts(p)

144
+ 1

6

)

X (s) + t

24
X (||ρ||2).

Then, for every σ ∈ Zp and every V ∈ Vσ with ||V ||g = 1 we have

T rk(Xh
σ ) = (−1)k+1

[

1

t
P(V, V ) + 1

t
P(σ × V, σ × V )

]

+ ψ. (18)

Let {s1, s2, s3} be an orthonormal basis of �2−Tp M . Take

σ = 1
√

y21 + y22 + y23

(y1s1 + y2s2 + y3s3)

for (y1, y2, y3) ∈ R
3 with y1 �= 0. Set

V = 1
√

y21 + y22

(−y2s1 + y1s2).

Then,

σ × V = 1
√

(

y21 + y22
) (

y21 + y22 + y23
)

(−y1y3s1 − y2y3s2 + (

y21 + y22
)

s3
)

.
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Now varying (y1, y2, y3) we see from (18) that the identity T rk(Xh
σ ) = 0 implies

P(si , s j ) = 0, (−1)k+1 1

t

[

P (si , si ) + P
(

s j , s j
)] + ψ = 0, i, j = 1, 2, 3, i �= j.

Since P(si , s j ) = 0, i �= j , for every orthonormal basis, we have P(si , si ) = P(s j , s j ).
Suppose that s(p) �= 0. Then, by the latter identity,

g
(

δB (

Ksi X
)

, si
) = g

(

δB (

Ks j X
)

, s j
)

, i, j = 1, 2, 3.

Take an oriented orthonormal basis E1, . . . , E4 of Tp M and, using it, define si = s−
i ,

i = 1, 2, 3. Then, g(δB(Ks1 X), s1) = g(δB(Ks2 X), s2) for every X ∈ Tp M . This, in view
of (13), gives

−g(δB(X), s1) = g(δB(Ks3 X), s2), X ∈ Tp M.

Applying the latter identity for the basis E3, E4, E1, E2, we get

g(δB(X), s1) = g(δB(Ks3 X), s2).

Hence, g(δB(X), s1) = 0. Similarly, g(δB(X), s2) = (δB(X), s3) = 0. Therefore, for every
X ∈ Tp M and a ∈ �2−Tp M

g(δB(X), a) = 0.

Then, by (17), P(a, a) = 0 for every a ∈ �2−Tp M . Thus, we see from (18) that the condition
T rk(Xh

σ ) = 0 for every σ ∈ Z, X ∈ Tπ(σ)M is equivalent to the identities

g(δB(X), σ ) = 0, ψ = 0.

Identity (16) implies that for every X ∈ Tp M and every orthonormal basis E1, .., E4 of
Tp M

δB(X) = δρ ∧ X −
4
∑

m=1

[

Em ∧ (∇Em ρ)(X) − 1
2 Em(s)Em ∧ X

]

.

Therefore, the identity g(δB(X), σ ) = 0 is equivalent to

g (δρ, Kσ X) +
4
∑

m=1
g

((∇Em ρ
)

(X), Kσ Em
) + 1

2 (Kσ X)(s) = 0.

This is equivalent to
4
∑

m=1
g((∇Em ρ)(Kσ Em), X) = 0 (19)

since g(δρ, Z) = − 1
2 Z(s) by the second Bianchi identity and the Ricci operator ρ is g-

symmetric. Let r(X, Y ) be the Ricci tensor and set

dr(X, Y, Z) = (∇Y r)(Z , X) − (∇Z r)(Y, X).

Thus,

dr(X, Y, Z) = g((∇Y ρ)(Z), X) − g((∇Z ρ)(Y ), X).

The left-hand side of (19) clearly does not depend on the choice of the basis (E1, . . . , E4). So,
take an oriented orthonormal basis (E1, . . . , E4) such that E2 = Kσ E1 and E4 = −Kσ E3.
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Then,

dr(X, E1, E2) − dr(X, E3, E4) =
4
∑

m=1
g

((∇Em ρ
)

(Kσ Em) , X
)

.

Denote by W− the 4-tensor corresponding to the operator W−,

W−(X, Y, Z , T ) = g(W−(X ∧ Y ), Z ∧ T ).

Then, the second Bianchi identity implies

dr(X, E1, E2) − dr(X, E3, E4) = −2[δW−(X, E1, E2) − δW−(X, E3, E4)].
Since (M, g) is self-dual, we see from the latter identity that identity (19) is always satisfied.
The above identity shows also that

dr(X, σ ) = 0, σ ∈ Z, X ∈ Tπ(σ)M. (20)

Let λ1(p) ≤ λ2(p) ≤ λ3(p) ≤ λ4(p) be the eigenvalues of the symmetric operator
ρp : Tp M → Tp M in the ascending order. It is well-known that the functions λ1, . . . , , λ4
are continuous (see, e.g. [18, Chapter Two, § 5.7 ] or [25, Chapter I, § 3]). We have seen that,
at every point of M , at least three eigenvalues of the operator ρ coincide. The set U of points
at which exactly three eigenvalues coincide is open by the continuity of λ1, . . . , λ4. For every
p ∈ U denote the simple eigenvalue of ρ by λ(p) and the triple eigenvalue by μ(p), so the
spectrum of ρ is (λ, μ,μ,μ) with λ(p) �= μ(p) for every p ∈ U . As is well-known, the
implicit function theorem implies that the function λ is smooth. It is also well-known that,
in a neighbourhood of every point p of U , there is a (smooth) unit vector field E1 which is
an eigenvector of ρ corresponding to λ. (for a proof see [19, Chapter 9, Theorem 7]). Fix
p ∈ U and choose local vector fields E2, E3, E4 such that (E1, E2, E3, E4) is an oriented
orthonormal frame. Let α be the dual 1-form to E1, α(X) = g(E1, X). Then,

r(X, Y ) = (λ − μ)α(X)α(Y ) − μg(X, Y )

in a neighbourhood of p. Note that the function μ = 1
3 (s − λ) is also smooth. Hence, the

identity δr = − 1
2ds reads as

−E1(λ − μ)α(X) − X (μ) + (λ − μ)
[

δα.α(X) − (∇E1α
)

(X)
]

= − 1
2 [X (λ) + 3X (μ)] , X ∈ T U.

(21)

Let si = s−
i , i = 1, 2, 3, be defined by means of E1, . . . , E4. Taking into account that

(∇Xα)(E1) = 0, we easily see that the identities dr(Ek, s1) = 0, k = 1, 2, 3, 4, give

(λ − μ)
[(∇E1α

)

(E2) − (∇E3α
)

(E4) + (∇E4α
)

(E3)
] − E2(λ) = 0

(λ − μ)
(∇E2α

)

(E2) − E1(μ) = 0, (λ − μ)
(∇E2α

)

(E3) − E4(μ) = 0
(λ − μ)

(∇E2α
)

(E4) + E3(μ) = 0.
(22)

The identities obtained from the latter ones by cycle permutations of E2, E3, E4 also hold
as a consequence of the identities dr(Ek, s2) = 0 and dr(Ek, s3) = 0. Thus

(λ − μ)
(∇E j α

)

(E j ) = E1(μ), j = 2, 3, 4. (23)

Hence,
(λ − μ)δα = −3E1(μ) (24)

Moreover, we have
(∇E3α

)

(E4) = E2(μ),
(∇E4α

)

(E3) = −E2(μ)
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and the first identity of (22) gives

(λ − μ)
(∇E1α

)

(E2) = E2(λ) + 2E2(μ).

On the other hand, identity (21) implies

(λ − μ)
(∇E1α

)

(E2) = 1

2
E2(λ) + 1

2
E2(μ).

It follows that

0 = 1

2
E2(λ) + 3

2
E2(μ) = 1

2
E2(s),

so E2(s) = 0. Similarly, E3(s) = 0 and E4(s) = 0. Identity (21) for X = E1 together
with (24) implies 0 = E1(λ) + 3E1(μ) = E1(s). It follows that the scalar curvature s is
locally constant on U . Then, identity ψ = 0 implies that ||ρ||2 is locally constant. Thus in a
neighbourhood of every point p ∈ U , we have λ + 3μ = a and λ2 + 3μ2 = b2 where a and
b are some constants. It follows that

μ = 1

12

(

3a ±
√

12b2 − 3a2
)

.

Note that 12b2 − 3a2 �= 0 since otherwise we would have μ = 1
4a, hence λ = a − 3μ =

1
4a = μ, a contradiction. Since μ is continuous, we see that μ is constant, hence λ is also
constant. Then, by (23), (∇E j α)(E j ) = 0 for j = 2, 3, 4 and the first equation of (22) gives
(∇E1α)(E2) = 0. Similarly (∇E1α)(E3) = (∇E1α)(E4) = 0. Thus (∇Xα)(E j ) = 0 for
every X and j = 2, 3, 4. This and the obvious identity (∇X α)(E1) = 0 imply that the 1-form
α is parallel. It follows that the restriction of the Ricci tensor to U is parallel.

In the interior of the closed set M \ U the eigenvalues of the Ricci tensor coincide, hence
the metric g is Einstein on this open set. Therefore, the scalar curvature s is locally constant
on I nt (M \ U ) and the Ricci tensor is parallel on it. Thus the Ricci tensor is parallel on the
open set U ∪ I nt (M \U ) = M \bU , where bU stands for the boundary of U . Since M \bU
is dense in M it follows the Ricci tensor is parallel on M . This implies that the eigenvalues
λ1 ≤ · · · ≤ λ4 of the Ricci tensor are constant. Thus either M is Einstein or exactly three of
the eigenvalues coincide. Since (M, g) is self-dual, in the second case the simple eigenvalue
λ vanishes by [10, Lemma 1]. Therefore, M is locally the product of an interval in R and a
3-dimensional manifold of constant curvature.

Conversely, suppose that (M, g) is self-dual and either Einstein or locally is the product
of an interval and a manifold of constant curvature. Then, at least three of the eigenvalues of
the Ricci tensor coincide which, as we have seen, imply that ||B(·)||2 = const on every fibre
of Z. It follows that g(B(σ ),B(τ )) = 0 for every σ, τ ∈ Z with g(σ, τ ) = 0. Therefore,
T rk(U ) = 0 for every vertical vector U , k = 1, 2, by Lemma 5. Moreover, T rk(Xh) = 0 by
Lemma 6 since the scalar curvature is constant and ∇B = 0.

Remark 3 According to Theorems 1 and 2, the conditions underwhichJ1 orJ2 is a harmonic
section or a harmonic map do not depend on the parameter t of the metric ht . Taking certain
special values of t , we can obtain ametric ht with nice properties (cf., for example, [7,10,23]).

6 Proofs of Lemmas 5 and 6

Denote by RZ the curvature tensor of the Riemannian manifold (Z, ht ).
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Let �k,t (A, B) = ht (Jk A, B) be the fundamental 2-form of the almost Hermitian mani-
fold (Z, ht ,Jk), k = 1, 2. Then, for A, B, C ∈ TσZ,

ht (Jk ◦ DAJk)
∧, B ∧ C) = −1

2
ht ((DAJk)(B),JkC) = −1

2
(DA�k,t )(B,JkC).

Lemma 7 ([23]) Let σ ∈ Z and X, Y ∈ Tπ(σ)M, V ∈ Vσ . Then,
(

DXh
σ
�k,t

) (

Y h
σ , V

)

= t

2

[

(−1)k g (R(V ), X ∧ Y ) − g (R (σ × V ) , X ∧ Kσ Y )
]

.

(

DV �k,t
)

(

Xh
σ , Y h

σ

)

= t

2
g (R (σ × V ) , X ∧ Kσ Y + Kσ X ∧ Y ) + 2g(V, X ∧ Y ).

Moreover, (DA�k,t )(B, C) = 0 when A, B, C are three horizontal vectors at σ or at least
two of them are vertical.

Corollary 3 Let σ ∈ Z, X ∈ Tπ(σ)M, U ∈ Vσ . If E1, . . . , E4 is an orthonormal basis of
Tπ(σ)M and V1, V2 is a ht -orthonormal basis of Vσ ,

(

Jk ◦ DXh
σ
Jk

)∧ = −1

2

4
∑

i=1

2
∑

l=1
[g (R (σ × Vl) , X ∧ Ei )

+(−1)k g (R(Vl), X ∧ Kσ Ei )
] (

Eh
i

)

σ
∧ Vl

(Jk ◦ DUJk)
∧ = ∑

1≤i< j≤4

[

t

2
g

(R (σ × U ) , Ei ∧ E j − Kσ Ei ∧ Kσ E j
)

−2g
(

U, Ei ∧ Kσ E j
)]

(

Eh
i

)

σ
∧

(

Eh
j

)

σ
.

The sectional curvature of the Riemannian manifold (Z, ht ) can be computed in terms of
the curvature of the base manifold M by means of the following formula.

Proposition 2 ([7]) Let E, F ∈ TσZ and X = π∗E, Y = π∗F, V = VE, W = VF. Then,

ht (RZ (E, F)E, F) = g (R(X, Y )X, Y )

− tg ((∇XR) (X ∧ Y ), σ × W ) + tg ((∇YR) (X ∧ Y ) , σ × V )

− 3tg (R(σ ), X ∧ Y ) g (σ × V, W )

− t2g (R (σ × V ) X, R (σ × W ) Y )

+ t2

4
||R (σ × W ) X + R (σ × V ) Y ||2

− 3t

4
||R(X, Y )σ ||2 + t

(||V ||2||W ||2 − g(V, W )2
)

.

Using this formula, the well-known expression of the Levi-Civita curvature tensor by
means of sectional curvatures and differential Bianchi identity one gets the following.

Corollary 4 Let σ ∈ Z, X, Y, Z , T ∈ Tπ(σ)M, and U, V, W ∈ Vσ . Then,

ht

(

RZ
(

Xh, Y h
)

Zh, T h
)

σ
= g (R(X, Y )Z , T )

− 3t

12
[2g (R(X, Y )σ, R(Z , T )σ ) − g (R(X, T )σ, R(Y, Z)σ )

+g (R(X, Z)σ, R(Y, T )σ )] .
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ht

(

RZ (Xh, Y h)Zh, U
)

σ
= − t

2
g (∇ZR(X ∧ Y ), σ × U ).

ht

(

RZ (Xh, U )Y h, V
)

σ
= t2

4
g (R (σ × V ) X, R (σ × U ) Y )

+ t

2
g (R(σ ), X ∧ Y ) g (σ × V, U ).

ht

(

RZ (Xh, Y h)U, V
)

σ
= t2

4
[g (R (σ × V ) X, R (σ × U ) Y )

−g (R (σ × U ) X, R (σ × V ) Y )]

+tg (R(σ ), X ∧ Y ) g (σ × V, U ) .

ht

(

RZ (Xh, U )V, W
)

= 0.

We have stated in Lemma 5 that if (M, g) is self-dual,

T rk(U ) = t

4
g(B(U ),B(σ )) for every U ∈ Vσ , σ ∈ Z.

Proof of Lemma 5. Let E1, . . . , E4 be an orthonormal basis of Tp M , p = π(σ), such that
E2 = Kσ E1, E4 = −Kσ E3. Define s1 = s−

1 , s2 = s−
2 , s3 = s−

3 via (3) by means of
E1, . . . , E4, so that σ = s1 and Vσ = span{s2, s3}. Thus V1 = 1√

t
s2, V2 = 1√

t
s3 is a

ht -orthonormal basis of Vσ . ��
By Corollary 3, for every U ∈ Vσ

T rk(U ) = −1

2

4
∑

i, j=1

2
∑

l=1

[

g
(R (σ × Vl) , E j ∧ Ei

) + (−1)k g(R(Vl), E j ∧ Kσ Ei
]

× ht

(

RZ
(

Eh
i , Vl

)

Eh
j , U

)

+ t

2

2
∑

l=1
{g (R(σ × Vl), s2)

[

ht
(

RZ
(

Eh
1 , Eh

3

)

Vl , U
) − ht

(

RZ
(

Eh
4 , Eh

2

)

Vl , U
)]

+ g (R (σ × Vl) , s3)
[

ht

(

RZ
(

Eh
1 , Eh

4

)

Vl , U
)

− ht

(

RZ
(

Eh
2 , Eh

3

)

Vl , U
)]

}

− 2
∑

1≤i< j≤4

2
∑

l=1
g

(

Vl , Ei ∧ Kσ E j
)

ht

(

RZ
(

Eh
i , Eh

j

)

Vl , U
)

(25)

We show first that

4
∑

i, j=1

2
∑

l=1
[g (R (σ × Vl) , E j ∧ Ei

)

ht

(

RZ
(

Eh
i , Vl

)

Eh
j , U

)

= − t

2
Traceht {Vσ � V → g (R (σ × V ) ,R(σ )) g (σ × U, V )} . (26)

In order to prove this identity, we note that if F ∈ TσZ, V ∈ Vσ and a ∈ �2Tπ(σ)M , the
algebraic Bianchi identity implies

4
∑

i, j=1
g

(

a, E j ∧ Ei
)

ht

(

RZ
(

Eh
i , V

)

Eh
j , F

)

= −1

2

4
∑

i, j=1
g

(

a, Ei ∧ E j
)

ht

(

RZ
(

Eh
i , Eh

j

)

V, F
)

. (27)
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Using the latter identity and Corollary 4 we obtain

4
∑

i, j=1

2
∑

l=1

[g (R(σ × Vl) , E j ∧ Ei )ht

(

RZ
(

Eh
i , Vl

)

Eh
j , U

)

= − t

2

2
∑

l=1
g (R (σ × Vl) ,R(σ )) g (σ × U, Vl)

= − t

2
Traceht {Vσ � V → g (R (σ × V ) ,R(σ )) g (σ × U, V )} .

Next, we claim that

4
∑

i, j=1

2
∑

l=1
g(R(Vl), E j ∧ Kσ Ei )ht (RZ (Eh

i , Vl)Eh
j , U ) = 0. (28)

For every V ∈ Vσ , we have

4
∑

i, j=1

g
(R(V ), E j ∧ Kσ Ei

)

ht

(

RZ
(

Eh
i , V

)

Eh
j , U

)

= g (R(V ), E1 ∧ E2)
[

ht

(

RZ
(

Eh
1 , V

)

Eh
1 , U

)

+ ht

(

RZ
(

Eh
2 , V

)

Eh
2 , U

)]

−g (R(V ), E3 ∧ E4)
[

ht

(

RZ
(

Eh
3 , V

)

Eh
3 , U

)

+ ht

(

RZ
(

Eh
4 , V

)

Eh
4 , U

)]

+g (R(V ), E1 ∧ E3)
[

ht

(

RZ
(

Eh
4 , V

)

Eh
1 , U

)

+ ht

(

RZ
(

Eh
2 , V

)

Eh
3 , U

)]

+g (R(V ), E1 ∧ E4)
[

−ht

(

RZ
(

Eh
3 , V

)

Eh
1 , U

)

+ ht

(

RZ
(

Eh
2 , V

)

Eh
4 , U

)]

+g (R(V ), E2 ∧ E3)
[

ht

(

RZ
(

Eh
4 , V

)

Eh
2 , U

)

− ht

(

RZ
(

Eh
1 , V

)

Eh
3 , U

)]

+g (R(V ), E4 ∧ E2)
[

ht

(

RZ
(

Eh
3 , V

)

Eh
2 , U

)

+ ht

(

RZ
(

Eh
1 , V

)

Eh
4 , U

)]

(29)

Corollary 4 implies that

ht

(

RZ
(

Eh
4 , V

)

Eh
1 , U

)

+ ht

(

RZ
(

Eh
2 , V

)

Eh
3 , U

)

= t2

4
[g (R (σ × U ) E4, E2) g (R (σ × V ) , s1)

+g (R (σ × V ) E1, E3) g (R (σ × U ) , s1)]

− t

2
g (R(σ ), s3) g (σ × U, V )

Since (M, g) is self-dual, for every τ ∈ �2−Tπ(σ)M ,

R(τ ) = s

6
τ + B(τ )

where B(τ ) ∈ �2+Tπ(σ)M . Therefore,

g(R(σ × V ), s1) = g(R(σ × V ), σ ) = 0

and

g(R(σ × U ), s1) = 0, g(R(σ ), s3) = 0.
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Thus
ht

(

RZ
(

Eh
4 , V

)

Eh
1 , U

)

+ ht

(

RZ
(

Eh
2 , V

)

Eh
3 , U

)

= 0. (30)

Similarly

−ht

(

RZ
(

Eh
3 , V

)

Eh
1 , U

)

+ ht

(

RZ
(

Eh
2 , V

)

Eh
4 , U

)

= 0

ht

(

RZ
(

Eh
4 , V

)

Eh
2 , U

)

− ht

(

RZ
(

Eh
1 , V

)

Eh
3 , U

)

= 0

ht

(

RZ
(

Eh
3 , V

)

Eh
2 , U

)

+ ht

(

RZ
(

Eh
1 , V

)

Eh
4 , U

)

= 0. (31)

Moreover, a straightforward computation gives

2
∑

l=1

{

g (R(Vl), E1 ∧ E2)
[

ht
(

RZ
(

Eh
1 , Vl

)

Eh
1 , U

) + ht
(

RZ
(

Eh
2 , Vl

)

Eh
2 , U

)]

−g (R(Vl), E3 ∧ E4)
[

ht
(

RZ
(

Eh
3 , Vl

)

Eh
3 , U

) + ht
(

RZ
(

Eh
4 , Vl

)

Eh
4 , U

)]}

= t2

8

2
∑

l=1
g

(R(Vl), s+
1

)

g (R (σ × U ) , s1) g
(B (σ × Vl) , s+

1

) = 0.

In view of (29), the latter identity, (30) and (31) imply (28).
Using the algebraic Bianchi identity, we see from (31) that

ht
(

RZ
(

Eh
1 , Eh

3

)

V, U
) − ht

(

RZ
(

Eh
4 , Eh

2

)

V, U
) = 0

ht
(

RZ
(

Eh
1 , Eh

4

)

V, U
) − ht

(

RZ
(

Eh
2 , Eh

3

)

V, U
) = 0.

Hence,

2
∑

l=1

{

g (R (σ × Vl) , s2)
[

ht
(

RZ
(

Eh
1 , Eh

3

)

Vl , U
) − ht

(

RZ
(

Eh
4 , Eh

2

)

Vl , U
)]

+g (R (σ × Vl) , s3)
[

ht
(

RZ
(

Eh
1 , Eh

4

)

Vl , U
) − ht

(

RZ
(

Eh
2 , Eh

3

)

Vl , U
)]} = 0.

(32)

Using (14) and Corollary 4, we get

∑

1≤i< j≤4

g
(

V, Ei ∧ Kσ E j
)

ht

(

RZ
(

Eh
i , Eh

j

)

V, U
)

= t2

4

∑

1≤i< j≤4
g

(

σ × V, Ei ∧ E j
) [

g
(

R (σ × U ) Ei , R (σ × V ) E j
)

−g(R (σ × V ) Ei , R (σ × U ) E j
]

= t2

8

4
∑

i=1
g (R (σ × U ) Ei , R (σ × V ) Kσ×V Ei )

Therefore,

∑

1≤i< j≤4

2
∑

l=1
g(Vl , Ei ∧ Kσ E j )ht (RZ (Eh

i , Eh
j )Vl , U )

= t

8

4
∑

i,k=1
[g(R(σ × U )Ei , Ek)g(R(s3)Ks3 Ei , Ek)

+g(R(σ × U )Ei , Ek)g(R(s2)Ks2 Ei , Ek)]
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= t

8
[−g(R(σ × U ), σ )g(R(s3), s2) + g(R(σ × U ), s2)g(R(s3), s1)

+g(R(σ × U ), σ )g(R(s2), s3) − g(R(σ × U ), s3)g(R(s2), s1)]
This, by virtue of the self-duality of (M, g), gives

∑

1≤i< j≤4

2
∑

l=1
g(Vl , Ei ∧ Kσ E j )ht

(

RZ
(

Eh
i , Eh

j

)

Vl , U
)

= 0. (33)

Identities (25),(26),(28), (32) and (33) imply

T rk(U ) = t

4
Traceht {Vσ � V → g (R (σ × V ) ,R(σ )) g (σ × U, V )} , k = 1, 2.

Now the lemma follows from the latter identity since g(R(τ ),R(σ )) = g(B(τ ),B(σ )) for
every τ, σ with τ ⊥ σ .

Recall that, according to Lemma 6, if (M, g) is self-dual

T rk(Xh
σ ) =

[

1 + (−1)k
] s(p)

144
X (s) + 1

12

(

ts(p)

6
− 2

)

X (s)

+ Traceht

{

Vσ �V →
[

t

8
g ((∇XB) (V ),B(V ))

+(−1)k+1 ts(p)

24
g (δB(KV X), V )

]}

.

for X ∈ Tπ(σ), σ ∈ Z.

Proof of Lemma 6. Let s1 = s−
1 , s2 = s−

2 , s3 = s−
3 be the basis of �2−Tp M , p = π(σ),

defined bymeans of an oriented orthonormal basis E1, . . . , E4 of Tp M such that E2 = Kσ E1,
E4 = −Kσ E3. Set V1 = 1√

t
s2, V2 = 1√

t
s3. ��

Then, by Corollary 3,

T rk(Xh
σ ) = −1

2

4
∑

i, j=1

2
∑

l=1

[

g
(R (σ × Vl) , E j ∧ Ei

) + (−1)k g(R(Vl), E j ∧ Kσ Ei
]

×ht

(

RZ
(

Eh
i , Vl

)

Eh
j , Xh

)

+
∑

i< j

2
∑

l=1

[

t

2
g

(R (σ × Vl) , Ei ∧ E j − Kσ Ei ∧ Kσ E j
) − 2g

(

Vl , Ei ∧ Kσ E j
)

]

×ht

(

RZ
(

Eh
i , Eh

j

)

Vl , Xh
)

.

Identity (27) and Corollary 4 imply

4
∑

i, j=1

2
∑

l=1

g
(R (σ × Vl) , E j ∧ Ei

)

ht

(

RZ
(

Eh
i , Vl

)

Eh
j , Xh

)

σ

= − t

4

2
∑

l=1
g

(

1

6
X (s)σ × Vl + (∇XB) (σ × Vl) ,

1

6
s(p)σ × Vl + B

)

(σ × Vl)

= − s(p)

72
X (s) − t

4
Traceht {Vσ � V → g ((∇XB) (V ),B(V ))} ,
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where the latter identity follows from the fact that g((∇XB)(a), b) = 0 for every a, b ∈
�2−Tp M (since the operator B sends �2−T M into �2+T M , and the connection ∇ preserves
the bundles �2±T M).

Taking into account identity (14) and the fact that

Ei ∧ E j − Kσ Ei ∧ Kσ E j ∈ �2−Tπ(σ)M,

we have

∑

i< j

2
∑

l=1

[

t

2
g

(R (σ × Vl) , Ei ∧ E j − Kσ Ei ∧ Kσ E j
) − 2g

(

Vl , Ei ∧ Kσ E j
)

]

× ht

(

RZ
(

Eh
i , Eh

j

)

Vl , Xh
)

σ

=
(

ts(p)

6
− 2

)

∑

i< j

2
∑

l=1
g

(

σ × Vl , Ei ∧ E j
)

ht

(

RZ
(

Eh
i , Eh

j

)

Vl , Xh
)

= t

4

(

ts(p)

6
− 2

)

2
∑

l=1
g ((∇XR) (σ × Vl) , σ × Vl)

= 1

4

(

ts(p)

6
− 2

)

X (s)

3
.

Thus

T rk

(

Xh
σ

)

= (−1)k+1 1

2

4
∑

i, j=1

2
∑

l=1
g(R(Vl), E j ∧ Kσ Ei ht

(

RZ
(

Eh
i , Vl

)

Eh
j , Xh

)

σ

+ s(p)

144
X (s) + 1

12

(

ts(p)

6
− 2

)

X (s)

+ Traceht

{

Vσ � V → t

8
g ((∇XB) (V ),B(V ))

}

In order to compute the first summand in the right-hand side of the latter identity, it is
convenient to set Cil j = ht (RZ (Eh

i , Vl)Eh
j , Xh)σ . Then,

4
∑

i, j=1

∑

l=1
g

(R(Vl), E j ∧ Kσ Ei
)

ht

(

RZ
(

Eh
i , Vl

)

Eh
j , Xh

)

σ

= 1

2

2
∑

l=1

[

g
(R(Vl), s+

1 + s1
)

C1l1 − g
(R(Vl), s+

3 − s3
)

C1l3 + g
(R(Vl), s+

2 − s2
)

C1l4

+g
(R(Vl), s+

1 + s1
)

C2l2 + g
(R(V ), s+

2 + s2
)

C2l3 + g
(R(V ), s+

3 + s3
)

C2l4

−g
(R(V ), s+

3 + s3
)

C3l1 + g
(R(V ), s+

2 − s2
)

C3l2 − g
(R(V ), s+

1 − s1
)

C3l3

g
(R(V ), s+

2 + s2
)

C4l1 + g
(R(V ), s+

3 − s3
)

C4l2 − g
(R(V ), s+

1 − s1
)

C4l4
]

= s(p)

12
√

t
[(−C114 + C213 − C312 + C411) + (C123 + C224 − C321 − C422)]

+1

2

2
∑

l=1

[

g
(B(Vl), s+

1

)

(C1l1 + C2l2 − C3l3 − C4l4)

+g
(B(Vl), s+

2

)

(C1l4 + C2l3 + C3l2 + C4l1)

+g
(B(Vl), s+

3

)

(−C1l3 + C2l4 − C3l1 + C4l2)
]

.
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By Corollary 4

−C124 + C223 − C322 + C421

=
√

t

2

4
∑

i=1

[− 1
12 Ei (s)g(Ei , X) + g

((∇Ei B
) (

Ks3 Ei ∧ X
)

, s3
)]

.

For every i = 1, . . . , 4, Ks3 Ei ∧ X + Ei ∧ Ks3 X ∈ �2−Tp M . Hence,

g
((∇Ei B

) (

Ks3 Ei ∧ X + Ei ∧ Ks3 X
)

, s3
) = 0.

It follows that

−C124 + C223 − C322 + C421 =
√

t

2

[

− 1

12
X (s) + g(δB(Ks3 X), s3)

]

.

Similarly

C133 + C234 − C331 − C432

=
√

t

2

[

− 1

12
X (s) + g(δB(Ks2 X), s2)

]

.

Hence,

(−C124 + C223 − C322 + C421) + (C133 + C234 − C331 − C432)

=
√

t

2
[−1

6
X (s) + tTraceht {Vσ � V → g(δB(KV X), V )}.

Set for short

�(E1, . . . , E4) =
2
∑

l=1

[

g
(B(Vl), s+

1

)

(C1l1 + C2l2 − C3l3 − C4l4)

+ g
(B(Vl), s+

2

)

(C1l4 + C2l3 + C3l2 + C4l1)

+g
(B(Vl), s+

3

)

(−C1l3 + C2l4 − C3l1 + C4l2)
]

.

Under this notation, we have

T rk(Xh
σ ) =

[

1 + (−1)k
] s(p)

144
X (s) + 1

12

(

ts(p)

6
− 2

)

X (s)

+ Traceht

{

Vσ �V →
[

t

8
g ((∇XB) (V ),B(V ))

+(−1)k+1 ts(p)

24
g (δB(KV X), V )

]}

.

+ (−1)k+1 1

2
�(E1, . . . , E4).

In particular, the sum�(E1, . . . , E4) does not depend on the choice of the oriented orthonor-
mal basis E1, . . . , E4 (clearly it does not depend on the choice of the ht -orthonormal basis
V1, V2 of Vσ as well). Since

�(E3, E4, E1, E2) = −�(E1, E2, E3, E4),

it follows that

�(E1, E2, E3, E4) = 0.

This proves the lemma.
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