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Abstract We prove that every nearly Sasakian manifold of dimension greater than five is
Sasakian. This provides a new criterion for an almost contact metric manifold to be Sasakian.
Moreover, we classify nearly cosymplectic manifolds of dimension greater than five.
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1 Introduction

One of the most successful attempts to relax the definition of a Kähler manifold is provided
by the notion of a nearly Kähler manifold. Namely, nearly Kähler manifolds are defined
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as almost Hermitian manifolds (M, J, g) such that the covariant derivative of the almost
complex structure with respect to the Levi-Civita connection is skew-symmetric, that is

(∇X J )X = 0,

for every vector field X on M . A remarkable classification of nearly Kähler manifolds was
obtained by Nagy in [14]. This result reveals how 6-dimensional nearly Kähler manifolds
play a central role, appearing as one of the possible factors in the de Rham decomposition of
a complete simply connected strict nearly Kähler manifold.

Notice that in the defining condition of a nearly Kähler manifold, only the symmetric part
of ∇ J vanishes, in contrast to the Kähler case where ∇ J = 0. Nearly Sasakian and nearly
cosymplectic manifolds were defined in the same spirit starting from Sasakian and coKähler
(sometimes also called cosymplectic) manifolds, respectively.

A smooth manifold M endowed with an almost contact metric structure (φ, ξ, η, g) is
said to be nearly Sasakian if

(∇Xφ)X = g(X, X)ξ − η(X)X, (1)

for every vector field X on M . Similarly, the condition for M to be nearly cosymplectic is
given by

(∇Xφ)X = 0, (2)

for every vector field X on M .
The notion of a nearly Sasakian manifold was introduced by Blair and his collaborators

in [4], while nearly cosymplectic manifolds were studied by Blair and Showers in [1,3]. In
the subsequent literature on the topic, quite important were the papers of Olszak [15,16] for
nearly Sasakian manifolds and those of Endo [9,10] on nearly cosymplectic manifolds. Later
on, these two classes have played a role in the Chinea-Gonzalez’s classification of almost
contact metric manifolds ([8]). They also appeared in the study of harmonic almost contact
structures (cf. [11,17]). In [13], Loubeau and Vergara-Diaz proved that a nearly cosymplectic
structure, once identified with a section of a twistor bundle, always defines a harmonic map.

Recently, a systematic study of nearly Sasakian and nearly cosymplectic manifolds was
carried forward in [7]. In that paper, the authors proved that any nearly Sasakian manifold
is a contact manifold. In the five-dimensional case, they showed that any nearly Sasakian
manifold admits a nearly hypo SU (2)-structure that can be deformed to give a Sasaki–
Einstein structure. Moreover, they proved that any nearly Sasakian manifold of dimension 5
has an associated nearly cosymplectic structure, thereby showing the close relation between
these two notions. For five-dimensional nearly cosymplectic manifolds, they proved that
any such manifold is Einstein with positive scalar curvature. It is also worth remarking
that (1-parameter families of) examples of both nearly Sasakian and nearly cosymplectic
structures are provided by every 5-dimensional manifold endowed with a Sasaki-Einstein
SU(2)-structure.

While Sasakian manifolds are characterized by the equality

(∇Xφ)Y = g(X, Y )ξ − η(Y )X,

the defining condition (1) of a nearly Sasakian manifold gives a constraint only on the
symmetric part of ∇φ. In this paper we show that, surprisingly, in dimension higher than
five, condition (1) is enough for the manifold to be Sasakian.

Concerning nearly cosymplectic manifolds, we prove that a nearly cosymplectic non-
coKähler manifold M of dimension 2n + 1 > 5 is locally isometric to one of the following
Riemannian products:
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On nearly Sasakian and nearly cosymplectic manifolds 129

R × N 2n, M5 × N 2n−4,

where N 2n is a nearly Kähler non-Kähler manifold, N 2n−4 is a nearly Kähler manifold, and
M5 is a nearly cosymplectic non-coKähler manifold. If one makes the further assumption
that the manifold is complete and simply connected, then the isometry becomes global.

2 Definitions and known results

An almost contact metric manifold is a differentiable manifold M of odd dimension 2n + 1,
endowed with a structure (φ, ξ, η, g), given by a tensor field φ of type (1, 1), a vector field
ξ , a 1-form η and a Riemannian metric g satisfying

φ2 = − I + η ⊗ ξ, η(ξ) = 1, g(φX, φY ) = g(X, Y ) − η(X)η(Y )

for all vector fields X, Y on M (see [2,5] for further details). From the definition it follows
that φξ = 0 and η ◦ φ = 0. Moreover, φ is skew-symmetric with respect to g, so that the
bilinear form � := g(−, φ−) defines a 2-form on M , called fundamental 2-form. An almost
contact metric manifold such that dη = 2� is called a contact metric manifold. In this case
η is a contact form, i.e., η ∧ (dη)n �= 0 everywhere on M .

A Sasakian manifold is defined as a contact metric manifold such that the tensor field
Nφ := [φ, φ] + dη ⊗ ξ vanishes identically. It is well known that an almost contact metric
manifold is Sasakian if and only if the Levi-Civita connection satisfies:

(∇Xφ)Y = g(X, Y )ξ − η(Y )X. (3)

A nearly Sasakian manifold is an almost contact metric manifold (M, φ, ξ, η, g) such
that

(∇Xφ)Y + (∇Yφ)X = 2g(X, Y )ξ − η(X)Y − η(Y )X (4)

for all vector fields X, Y on M , or, equivalently, (1) is satisfied.
We recall some basic facts about nearly Sasakian manifolds. We refer to [4,7,15,16] for

the details.
In any nearly Sasakian manifold (M, φ, ξ, η, g), the characteristic vector field ξ is Killing

and the Levi-Civita connection satisfies ∇ξ ξ = 0 and ∇ξ η = 0. One can define a tensor field
h of type (1, 1) by putting

∇X ξ = −φX + hX. (5)

The operator h is skew-symmetric and anticommutes with φ. It satisfies hξ = 0, η ◦ h = 0
and

∇ξh = ∇ξ φ = φh = 1

3
Lξ φ,

whereLξ denotes the Lie derivativewith respect to ξ . The vanishing of h provides a necessary
and sufficient condition for a nearly Sasakian manifold to be Sasakian ([16]). In [15] the
following formulas are proved:

g((∇Xφ)Y, hZ) = η(Y )g(h2X, φZ) − η(X)g(h2Y, φZ) + η(Y )g(hX, Z), (6)

(∇Xh
2)Y = η(Y )(φ − h)h2X + g((φ − h)h2X, Y )ξ, (7)

R(ξ, X)Y = (∇Xφ)Y − (∇Xh)Y = g(X − h2X, Y )ξ − η(Y )(X − h2X), (8)

where R is the Riemannian curvature of g.
A central role in the study of nearly Sasakian geometry is played by the symmetric operator

h2. We recall the fundamental result due to Olszak [15]:
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Theorem 2.1 If a nearly Sasakian non-Sasakian manifold (M, φ, ξ, η, g) satisfies the con-
dition

h2 = λ(I − η ⊗ ξ)

for some real number λ, then dim(M) = 5.

In [16] Olszak also proved that any 5-dimensional nearly Sasakian non-Sasakian manifold
is Einstein with scalar curvature >20. In [7] it is proved that the eigenvalues of h2 are
constant. Being h skew-symmetric, the nonvanishing eigenvalues of h2 are negative, so that
the spectrum of h2 is of type

Spec(h2) = {0,−λ21, . . . ,−λ2r },
λi �= 0 and λi �= λ j for i �= j . Further, if X is an eigenvector of h2 with eigenvalue −λ2i ,
then X , φX , hX , hφX are orthogonal eigenvectors of h2 with eigenvalue −λ2i . Hence the
minimum dimension for a nearly Sasakian non-Sasakian manifold is 5. In the following we
denote by [ξ ] the 1-dimensional distribution generated by ξ , and by D(0) and D(−λ2i ) the
distributions of the eigenvectors 0 and −λ2i , respectively. We shall also denote by D the
distribution [ξ ] ⊕ D(−λ21) ⊕ · · · ⊕ D(−λ2r ), and by D0 the distribution orthogonal to D, so
that D(0) = [ξ ] ⊕ D0.

We will use the following results, proved in [7], concerning nearly Sasakian manifolds of
dimension ≥5.

Theorem 2.2 Let M be a nearly Sasakian manifold with structure (φ, ξ, η, g) and let
Spec(h2) = {0,−λ21, . . . ,−λ2r } be the spectrum of h2. Then the distributions D(0) and
[ξ ] ⊕ D(−λ2i ) are integrable with totally geodesic leaves. In particular,

(a) the eigenvalue 0 has multiplicity 2p + 1, p ≥ 0. If p > 0, the leaves of D(0) are
(2p + 1)-dimensional Sasakian manifolds;

(b) each negative eigenvalue −λ2i has multiplicity 4 and the leaves of the distribution [ξ ]⊕
D(−λ2i ) are 5-dimensional nearly Sasakian (non-Sasakian) manifolds.

(c) If p > 0, the distribution D = [ξ ]⊕D(−λ21) ⊕ · · · ⊕D(−λ2r ) is integrable with totally
geodesic leaves.

Theorem 2.3 For a nearly Sasakian manifold (M, φ, ξ, η, g) of dimension 2n + 1 ≥ 5 the
1-form η is a contact form.

Before listing some known results on nearly cosymplectic manifolds, we recall that an
almost contact metric manifold (M, φ, ξ, η, g) is said to be a coKähler manifold if dη = 0,
d� = 0 and Nφ ≡ 0. Equivalently, one can require ∇φ = 0. It is known that a coKähler
manifold is locally the Riemannian product of the real line and a Kähler manifold, which
is an integral submanifold of the distribution D = Ker(η). Note that some authors call
cosymplectic the class of manifold that we denominate coKähler (see [6] for details).

A nearly cosymplectic manifold is an almost contact metric manifold (M, φ, ξ, η, g) such
that

(∇Xφ)Y + (∇Yφ)X = 0 (9)

for all vector fields X, Y . Clearly, this condition is equivalent to (2). It is known that in a
nearly cosymplectic manifold the Reeb vector field ξ is Killing and satisfies ∇ξ ξ = 0 and
∇ξ η = 0. The tensor field h of type (1, 1) defined by

∇X ξ = hX (10)
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On nearly Sasakian and nearly cosymplectic manifolds 131

is skew-symmetric and anticommutes with φ. It satisfies hξ = 0, η ◦ h = 0 and

∇ξ φ = φh = 1

3
Lξ φ.

The following formulas hold ([9,10]):

g((∇Xφ)Y, hZ) = η(Y )g(h2X, φZ) − η(X)g(h2Y, φZ), (11)

(∇Xh)Y = g(h2X, Y )ξ − η(Y )h2X, (12)

tr(h2) = constant. (13)

3 Nearly Sasakian manifolds

We start by computing the covariant derivatives of the structure endomorphisms φ and h on
a nearly Sasakian manifold.

Proposition 3.1 Let (M, φ, ξ, η, g) be a nearly Sasakian manifold of dimension 2n+1 ≥ 5.
Then for all vector fields X, Y on M one has

(∇Xφ)Y = η(X)φhY − η(Y )(X + φhX) + g(X + φhX, Y )ξ, (14)

(∇Xh)Y = η(X)φhY − η(Y )(h2X + φhX) + g(h2X + φhX, Y )ξ, (15)

(∇Xφh)Y = g(φh2X − hX, Y )ξ + η(X)(φh2Y − hY ) − η(Y )(φh2X − hX). (16)

Proof From (6), for all vector fields X, Y, Z we have

g((∇Xφ)Y, hZ) = −η(Y )g(φhX, hZ) + η(X)g(φhY, hZ) − η(Y )g(X, hZ),

which is coherent with (14). On the other hand,

g((∇Xφ)Y, ξ) = −g(Y, (∇Xφ)ξ) = g(Y, φ∇X ξ) = g(Y,−φ2X + φhX)

= g(X + φhX, Y ) − η(X)η(Y ).

Now, assume that Spec(h2) = {0,−λ21, . . . ,−λ2r } and consider the distribution D = [ξ ] ⊕
D(−λ21) ⊕ · · · ⊕ D(−λ2r ). In order to complete the proof of (14), it remains to show that

g((∇Xφ)Y, V ) = −η(Y )g(X, V ) (17)

for every X, Y ∈ X(M) and V ∈ D0. Since the distribution D is integrable with totally
geodesic leaves, if X, Y ∈ D, then (∇Xφ)Y ∈ D and both sides in (17) vanish. Now consider
X ∈ D0 and Y ∈ D. Then

g((∇Xφ)Y, V ) = −g(Y, (∇Xφ)V ) = −η(Y )g(X, V ),

where we applied the fact that the distribution D(0) = [ξ ] ⊕ D0 is integrable with totally
geodesic leaves, and the induced almost contact metric structure on each leaf is Sasakian, so
that (∇Xφ)V = g(X, V )ξ − η(V )X . On the other hand, if we take X ∈ D and Y ∈ D0, then
g((∇Yφ)X, V ) = −η(X)g(Y, V ), and applying (4), we have

g((∇Xφ)Y, V ) = −g((∇Yφ)X + η(X)Y, V ) = 0.

Finally, taking X, Y ∈ D0, (17) is verified because of (3) and the fact that the vector fields
X, Y, V are orthogonal to ξ .

As regards (15), it follows from (8) and (14). Finally, a straightforward computation using
(14) and (15) gives (16). ��
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We will write εdη for the operator on �∗(M) defined by ω �→ dη ∧ ω.

Proposition 3.2 Let (M, η) be a contact manifold of dimension 2n + 1. Then, the operator

εdη : �2(M) → �4(M)

β �→ dη ∧ β

is injective for n ≥ 3.

Proof Since dη is a nondegenerate 2-form on the distribution D = Ker(η), the assumption
n ≥ 3 implies that the operators

εdη : �1(D) → �3(D) α �→ dη ∧ α (18)

and
εdη : �2(D) → �4(D) β �→ dη ∧ β. (19)

are injective. For every k ≥ 1 we have

�k(M) = �k(D) ⊕ η ∧ �k−1(D). (20)

Indeed, every k-form ω on M can be decomposed as

ω = iξ (η ∧ ω) + η ∧ iξω.

On the other hand, if a k-form ω belongs to the intersection of the two subspaces, that is
ω ∈ �k(D) and ω = η ∧ σ , with σ ∈ �k−1(D), then

σ = iξ (η ∧ σ) + η ∧ iξ σ = iξω = 0,

and thus ω = 0. This shows that the sum in (20) is direct.
Now, let ω = β + η ∧ α, with β ∈ �2(D) and α ∈ �1(D), be a 2-form on M such that

dη ∧ ω = 0. Then, owing to (20) for k = 4, we have dη ∧ β = 0 and dη ∧ η ∧ α = 0, which
also gives dη ∧ α = 0. Finally, we deduce from the injectivity of the operators in (18) and
(19) that both the forms β and α vanish, and thus ω = 0. ��

Now we are able to prove our main result.

Theorem 3.3 Every nearly Sasakian manifold of dimension 2n + 1 > 5 is Sasakian.

Proof Let M be a nearly Sasakian manifold with structure (φ, ξ, η, g), of dimension 2n+1.
We consider the 2-forms H and �k , k = 1, 2, defined by

H(X, Y ) = g(hX, Y ), �k(X, Y ) = g(φhk X, Y ).

We shall prove that

dH = 3η ∧ �1, (21)

d�1 = 3η ∧ (�2 − H). (22)

From (15), we have that for all vector fields X, Y, Z ,

g((∇Xh)Y, Z) = η(X)g(φhY, Z) − η(Y )g(h2X + φhX, Z) + η(Z)g(h2X + φhX, Y )

= η(X)g(φhY, Z) + η(Y )g(φhZ , X) + η(Z)g(φhX, Y )

− η(Y )g(h2Z , X) + η(Z)g(h2X, Y ).
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On nearly Sasakian and nearly cosymplectic manifolds 133

Therefore,

dH(X, Y, Z) = g((∇Xh)Y, Z) + g((∇Y h)Z , X) + g((∇Zh)X, Y )

= 3 (η(X)g(φhY, Z) + η(Y )g(φhZ , X) + η(Z)g(φhX, Y ))

= 3η ∧ �1(X, Y, Z).

Analogously, from (16), we have

g((∇Xφh)Y, Z) = η(X)g(φh2Y − hY, Z) − η(Y )g(φh2X − hX, Z)

+ η(Z)g(φh2X − hX, Y )

= η(X)g(φh2Y, Z) + η(Y )g(φh2Z , X) + η(Z)g(φh2X, Y )

− η(X)g(hY, Z) − η(Y )g(hZ , X) − η(Z)g(hX, Y ).

Hence,

d�1(X, Y, Z) = g((∇Xφh)Y, Z) + g((∇Yφh)Z , X) + g((∇Zφh)X, Y )

= 3
(
η(X)g(φh2Y, Z) + η(Y )g(φh2Z , X) + η(Z)g(φh2X, Y )

)

− 3 (η(X)g(hY, Z) + η(Y )g(hZ , X) + η(Z)g(hX, Y ))

= 3 η ∧ �2(X, Y, Z) − 3 η ∧ H(X, Y, Z).

Now, from (21) and (22), we have

0 = d2H = 3 dη ∧ �1 − 3η ∧ d�1 = 3 dη ∧ �1.

If we assume that the dimension of M is 2n + 1 > 5, η being a contact form, the fact that
dη ∧ �1 = 0 implies �1 = 0, by Proposition 3.2. Therefore h = 0, and the structure is
Sasakian. ��

4 Nearly cosymplectic manifolds

In this section we will classify nearly cosymplectic manifolds of dimension higher than five.
In the following, given a nearly cosymplectic manifold (M, φ, ξ, η, g), we shall denote by
h the operator defined in (10).

Proposition 4.1 Let (M, φ, ξ, η, g) be a nearly cosymplectic manifold. Then h = 0 if and
only if M is locally isometric to the Riemannian product R× N, where N is a nearly Kähler
manifold.

Proof For every vector fields X, Y we have

dη(X, Y ) = g(∇X ξ, Y ) − g(∇Y ξ, X) = 2g(hX, Y ). (23)

Therefore, if h = 0, the distribution D = Ker(η) is integrable. Denoting by N an integral
submanifold ofD, it is a totally geodesic hypersurface of M . Indeed, for every X, Y ∈ D, we
have g(∇XY, ξ) = −g(Y, hX) = 0. Being also∇ξ ξ = 0, M turns out to be locally isometric
to the Riemannian product R× N . Further, the almost contact metric structure induces on N
an almost Hermitian structure which is nearly Kähler.

Conversely, if M is locally isometric to the Riemannian product R × N , where N is a
nearly Kähler manifold, then dη(X, Y ) = 0 for all vector fields X, Y orthogonal to ξ . By
(23) and hξ = 0, we deduce that h = 0. ��
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134 A. De Nicola et al.

As a consequence of the above proposition, a nearly cosymplecticmanifold (M, φ, ξ, η, g)
is coKähler if and only if h = 0 and the leaves of the distribution D are Kähler manifolds.
Recall that 4-dimensional nearly Kähler manifolds are Kähler (see [12, Theorem 5.1]), and
this implies that if M is a 5-dimensional nearly cosymplectic manifold with h = 0, then it is
a coKähler manifold.

We shall now study the spectrum of the symmetric operator h2.

Proposition 4.2 The eigenvalues of the symmetric operator h2 are constant.

Proof From (12) it follows that

(∇Xh
2)Y = g(X, h3Y )ξ − η(Y )h3X. (24)

Let us consider an eigenvalue μ of h2 and a local unit vector field Y , orthogonal to ξ , such
that h2Y = μY . Applying (24) for any vector field X , we have

0 = g((∇Xh
2)Y, Y )

= g(∇X (h2Y ), Y ) − g(h2(∇XY ), Y )

= X (μ)g(Y, Y ) + μg(∇XY, Y ) − g(∇XY, h2Y )

= X (μ)g(Y, Y )

which implies that X (μ) = 0. ��
Since h is skew-symmetric, the nonvanishing eigenvalues of h2 are negative. Therefore,

the spectrum of h2 is of type

Spec(h2) = {0,−λ21, . . . ,−λ2r },
where we can assume that each λi is a positive real number and λi �= λ j for i �= j . Notice
that if X is an eigenvector of h2 with eigenvalue −λ2i , then X , φX , hX , hφX are orthogonal
eigenvectors of h2 with eigenvalue −λ2i . Since h(ξ) = 0, we get the eigenvalue 0 has
multiplicity 2p + 1 for some integer p ≥ 0.

We denote by D(0) the distribution of the eigenvectors with eigenvalue 0, and by D0 the
distribution of the eigenvectors inD(0) orthogonal to ξ , so thatD(0) = [ξ ]⊕D0. LetD(−λ2i )

be the distribution of the eigenvectors with eigenvalue −λ2i . We remark that the distributions
D0 and D(−λ2i ) are φ-invariant and h-invariant.

Proposition 4.3 Let (M, φ, ξ, η, g) be a nearly cosymplectic manifold and let Spec(h2) =
{0,−λ21, . . . ,−λ2r } be the spectrum of h2. Then,

(a) for each i = 1, . . . , r , the distribution [ξ ] ⊕D(−λ2i ) is integrable with totally geodesic
leaves.

Assuming that the eigenvalue 0 is not simple,

(b) the distribution D0 is integrable with totally geodesic leaves, and each leaf of D0 is
endowed with a nearly Kähler structure;

(c) the distribution [ξ ]⊕D(−λ21)⊕ . . .⊕D(−λ2r ) is integrable with totally geodesic leaves.

Proof Consider an eigenvector X of h2 with eigenvalue −λ2i . Then ∇X ξ = hX ∈ D(−λ2i ).
On the other hand, (24) implies that ∇ξh2 = 0, and thus ∇ξ X is also an eigenvector with
eigenvalue −λ2i . Now, taking X, Y ∈ D(−λ2i ) and applying (24), we get

h2(∇XY ) = −λ2i ∇XY − (∇Xh
2)Y = −λ2i ∇XY + λ2i g(X, hY )ξ.
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On nearly Sasakian and nearly cosymplectic manifolds 135

Therefore,

h2(φ2∇XY ) = φ2(h2∇XY ) = −λ2i φ
2(∇XY ).

Thus φ2∇XY ∈ D(−λ2i ). It follows that ∇XY = −φ2∇XY + η(∇XY )ξ belongs to the
distribution [ξ ] ⊕ D(−λ2i ). This proves (a).

As regards (b), applying again (24), we have (∇Xh2)Y = 0 for every X, Y ∈ D0, so that
h2(∇XY ) = 0. Moreover,

g(∇XY, ξ) = −g(Y,∇X ξ) = −g(Y, hX) = 0.

Hence,D0 is integrablewith totally geodesic leaves. Since the leaves ofD0 areφ-invariant, the
nearly cosymplectic structure induces a nearly Kähler structure on each integral submanifold
of D0.

Finally, in order to prove (c), owing to (a), we only have to show that

g(∇XY, Z) = 0

for every X ∈ D(−λ2i ), Y ∈ D(−λ2j ), i �= j , and Z ∈ D0. In fact, from (24), we have

g(∇XY, Z) = − 1

λ2j
g(∇X (h2Y ), Z)

= − 1

λ2j
g((∇Xh

2)Y + h2(∇XY ), Z)

= − 1

λ2j
η(Z)g(X, h3Y ) − 1

λ2j
g(∇XY, h2Z)

which vanishes since η(Z) = 0 and h2Z = 0. ��
Theorem 4.4 Let (M, φ, ξ, η, g) be a nearly cosymplectic manifold such that 0 is a simple
eigenvalue of h2. Then M is a 5-dimensional manifold.

Proof First we show that

(∇Xφ)Y = g(φhX, Y )ξ + η(X)φhY − η(Y )φhX, (25)

(∇Xφh)Y = g(φh2X, Y )ξ + η(X)φh2Y − η(Y )φh2X (26)

for all vector fields X and Y . Applying (10) we have

g((∇Xφ)Y, ξ) = −g(Y, (∇Xφ)ξ) = g(Y, φ∇X ξ) = g(Y, φhX).

Taking a vector field U orthogonal to ξ , then U = hZ for some vector field Z . Then, by
applying (11) and recalling that φ anticommutes with h, we get

g((∇Xφ)Y,U ) = η(Y )g(h2X, φZ) − η(X)g(h2Y, φZ)

= η(Y )g(hX, φhZ) − η(X)g(hY, φhZ)

= − η(Y )g(φhX,U ) + η(X)g(φhY,U )

which completes the proof of (25). From (12) and (25) we easily get (26).
We consider now the 2-forms �k , k = 0, 1, 2, defined by

�k(X, Y ) = g(φhk X, Y ).
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In particular, �0 = −�. We prove that

d�0 = 3η ∧ �1, d�1 = 3η ∧ �2. (27)

From (25), for all vector fields X, Y, Z we have

g((∇Xφ)Y, Z) = η(X)g(φhY, Z) + η(Y )g(φhZ , X) + η(Z)g(φhX, Y ),

which implies that d�0 = 3η ∧ �1. Analogously, from (26), we have

g((∇Xφh)Y, Z) = η(X)g(φh2Y, Z) + η(Y )g(φh2Z , X) + η(Z)g(φh2X, Y ),

so that d�1 = 3η ∧ �2. From (27),

0 = d2�0 = 3 dη ∧ �1 − 3η ∧ d�1 = 3 dη ∧ �1.

Nextwe show that if 0 is a simple eigenvalue, then η is a contact form. This, by an argument
similar to the one in the proof of Theorem 3.3, will imply that dim M = 5.

First we assume that Spec(h2) = {0,−λ2}, with λ > 0, 0 being a simple eigenvalue. This
is equivalent to require that

h2 = −λ2(I − η ⊗ ξ).

Let us take the tensor fields

φ̃ = −1

λ
h, ξ̃ = 1

λ
ξ, η̃ = λη, g̃ = λ2g.

One can verify that (φ̃, ξ̃ , η̃, g̃) is an almost contact metric structure. Moreover, from (23)
we have

dη̃(X, Y ) = 2λg(hX, Y ) = 2

λ
g̃(hX, Y ) = 2 g̃(X,− 1

λ
hY ) = 2 g̃(X, φ̃Y ).

Therefore (φ̃, ξ̃ , η̃, g̃) is a contact metric structure. In particular, both the forms η̃ and η are
contact forms. Hence, in this case M is a 5-dimensional manifold and the multiplicity of the
eigenvalue −λ2 is 4.

We assume now that

Spec(h2) = {0,−λ21, . . . ,−λ2r },
where λi is a positive real number and λi �= λ j for i �= j . From Proposition 4.3, we know
that for each i = 1, . . . , r , the distribution [ξ ] ⊕ D(−λ2i ) is integrable with totally geodesic
leaves. Each integral submanifold of this distribution is endowed with an induced almost
contact metric structure, here again denoted by (φ, ξ, η, g), whose structure tensor field h
satisfies

h2 = −λ2i (I − η ⊗ ξ).

We deduce that η is a contact form on the leaves of the distribution. In particular, each
eigenvalue −λ2i of h

2 has multiplicity 4.
Notice that, taking two distinct eigenvalues −λ2i and −λ2j , for every X ∈ D(−λ2i ) and

Y ∈ D(−λ2j ), we have
dη(X, Y ) = 2g(hX, Y ) = 0, (28)

since the operator h preserves the distributions D(−λ2i ) and D(−λ2j ), which are mutually
orthogonal.
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Now, fix a point x ∈ M . Since η is a contact form on the leaves of each distribution
[ξ ] ⊕ D(−λ2i ), for any i ∈ {1, . . . , r} one can find a basis (vi1, v

i
2, v

i
3, v

i
4) of Dx (−λ2i ) such

that
η ∧ (dη)2(ξx , v

i
1, v

i
2, v

i
3, v

i
4) �= 0. (29)

Therefore, putting n = 2r , the dimension of M is 2n + 1 and

η ∧ (dη)n
(
ξx , v

1
1, v

1
2, v

1
3, v

1
4, . . . , v

r
1, v

r
2, v

r
3, v

r
4

)

= η(ξx )(dη)2(v11, v
1
2, v

1
3, v

1
4) . . . (dη)2(vr1, v

r
2, v

r
3, v

r
4) �= 0.

This proves that η is a contact form. ��
Theorem 4.5 Let (M, φ, ξ, η, g) be a nearly cosymplectic non-coKähler manifold of dimen-
sion 2n + 1 > 5. Then M is locally isometric to one of the following Riemannian products:

R × N 2n, M5 × N 2n−4,

where N 2n is a nearly Kähler non-Kähler manifold, N 2n−4 is a nearly Kähler manifold, and
M5 is a nearly cosymplectic non-coKähler manifold.

Proof If h = 0, then M is locally isometric to the Riemannian product R× N 2n , where N 2n

is a nearly Kähler non-Kähler manifold.
If h �= 0, then h2 admits nonvanishing eigenvalues and we can assume Spec(h2) =

{0,−λ21, . . . ,−λ2r }, where each λi is a positive real number. Since dim M > 5, owing to
Theorem 4.4, the eigenvalue 0 is not a simple eigenvalue. From (b) and (c) of Proposition 4.3,
M is locally isometric to theRiemannian productM ′×N , whereM ′ is an integral submanifold
of the distribution [ξ ] ⊕ D(−λ21) ⊕ . . . ⊕ D(−λ2r ), and N is an integral submanifold of D0,
which is endowedwith a nearly Kähler structure. Now,M ′ is endowedwith an induced nearly
cosymplectic structure for which 0 is a simple eigenvalue of the operator h2. Therefore, by
Theorem 4.4, we have that λ1 = . . . = λr and M ′ is a 5-dimensional nearly cosymplectic
non-coKähler manifold. Consequently, the dimension of N is 2n − 4. ��
Remark 4.6 Note that if themanifoldM inTheorem4.5 is assumed to be complete and simply
connected, then, by the de Rham decomposition theorem, the isometry becomes global as the
involved distributions are parallel with respect to the Levi-Civita connection. Note also that
the nearly Kähler factor can be further decomposed. See Theorem 1.1 and Proposition 2.1 in
[14] for details.
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